1
|
Pistofidis A, Schmeing TM. Protein ligation for the assembly and study of nonribosomal peptide synthetase megaenzymes. RSC Chem Biol 2025; 6:590-603. [PMID: 39957992 PMCID: PMC11824870 DOI: 10.1039/d4cb00306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are biosynthetic enzymes found in bacteria and fungi, that synthesize a plethora of pharmaceutically relevant compounds. NRPSs consist of repeating sets of functional domains called modules, and each module is responsible for the incorporation of a single amino acid to the growing peptidyl intermediate. The synthetic logic of an NRPS resembles an assembly line, with growing biosynthesis intermediates covalently attached to the prosthetic 4'-phosphopantetheine (ppant) moieties of T (thiolation or transfer) domains for shuttling within and between modules. Therefore, NRPSs must have each T domain phosphopantetheinylated to be functional, and host organisms encode ppant transferases that affix ppant to T domains. Ppant transferases can be promiscuous with respect to the T domain substrate and with respect to chemical modifications of the ppant thiol, which has been a useful characteristic for study of megaenzymes and other systems. However, defined studies of multimodular megaenzymes, where different analogs are required to be affixed to different T domains within the same multimodular protein, are hindered by this promiscuity. Study of NRPS peptide bond formation, for which two T domains simultaneously deliver substrates to the condensation domain, is a prime example where one would want two T domains bearing different acyl/peptidyl groups. Here, we report a strategy where two NRPS modules that are normally part of the same protein are expressed as separate constructs, modified separately with different acyl-ppants, and then ligated together by sortase A of Staphylococcus aureus or asparaginyl endopeptidase 1 of Oldenlandia affinis (OaAEP1). We assessed various reaction conditions to optimize the ligation reactions and maximize the yield of the complex of interest. Finally, we apply this method in large scale and show it allows the complex built by OaAEP1-mediated ligation to be characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University Montréal QC H3G 0B1 Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University Montréal QC H3G 0B1 Canada
| |
Collapse
|
2
|
Antonenko A, Pomorski A, Singh AK, Kapczyńska K, Krężel A. Site-Specific and Fluorescently Enhanced Installation of Post-Translational Protein Modifications via Bifunctional Biarsenical Linker. ACS OMEGA 2024; 9:45127-45137. [PMID: 39554417 PMCID: PMC11561763 DOI: 10.1021/acsomega.4c05828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
To understand how particular post-translational modifications (PTMs) affect the function of a target protein, it is essential to first prepare and investigate the target with the modification at the desired position. This drives the continuous development of site-specific protein modification technologies. Here, we present the chemical synthesis and application of the biarsenical linker SrtCrAsH-EDT2, which has a dual labeling functionality. This linker, containing a sortase A recognition motif, can be conjugated with any protein containing the LPXTG motif at the C terminus, such as ubiquitin and the SUMO tag, and then attached to a protein of interest (POI) containing a terminal or bipartite (intramolecularly placed) tetracysteine motif. This modification of the POI facilitates the straightforward and rapid incorporation of PTMs, which are further highlighted by the fluorescent biarsenical probe. Consequently, this directly correlates proteins' physical properties and cellular roles under various physiological conditions or in disease states. The proposed one-pot labeling methodology can be utilized to explore the effects of PTMs on proteins, affecting their structure, function, localization, and interactions within the cellular environment. Understanding these effects is crucial for uncovering the complex mechanisms that regulate cellular function and dysfunction.
Collapse
Affiliation(s)
- Anastasiia Antonenko
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Adam Pomorski
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Avinash Kumar Singh
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester 55901, Minnesota, United States
| | - Katarzyna Kapczyńska
- Department
of Immunology of Infectious Diseases, Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of
Sciences, 53-114 Wrocław, Poland
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Nealy ES, Reed SJ, Adelmund SM, Badeau BA, Shadish JA, Girard EJ, Brasel K, Pakiam FJ, Mhyre AJ, Price JP, Sarkar S, Kalia V, DeForest CA, Olson JM. Versatile tissue-injectable hydrogels capable of the extended hydrolytic release of bioactive protein therapeutics. Bioeng Transl Med 2024; 9:e10668. [PMID: 39553428 PMCID: PMC11561820 DOI: 10.1002/btm2.10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 11/19/2024] Open
Abstract
Hydrogels are extensively employed in healthcare due to their adaptable structures, high water content, and biocompatibility, with FDA-approved applications ranging from spinal cord regeneration to local therapeutic delivery. However, clinical hydrogels encounter challenges related to inconsistent therapeutic exposure, unmodifiable release windows, and difficulties in subsurface polymer insertion. Addressing these issues, we engineered injectable, biocompatible hydrogels as a local therapeutic depot, utilizing poly(ethylene glycol) (PEG)-based hydrogels functionalized with bioorthogonal SPAAC handles for network polymerization and functionalization. Our hydrogel solutions polymerize in situ in a temperature-sensitive manner, persist in tissue, and facilitate the delivery of bioactive therapeutics in subsurface locations. Demonstrating the efficacy of our approach, recombinant anti-CD47 monoclonal antibodies, when incorporated into subsurface-injected hydrogel solutions, exhibited cytotoxic activity against infiltrative high-grade glioma xenografts in the rodent brain. To enhance the gel's versatility, recombinant protein cargos can undergo site-specific modification with hydrolysable "azidoester" adapters, allowing for user-defined release profiles from the hydrogel. Hydrogel-generated gradients of murine CXCL10, linked to intratumorally injected hydrogel solutions via azidoester linkers, resulted in significant recruitment of CD8+ T-cells and the attenuation of tumor growth in a "cold" syngeneic melanoma model. This study highlights a highly customizable, hydrogel-based delivery system for local protein therapeutic administration to meet diverse clinical needs.
Collapse
Affiliation(s)
- Eric S. Nealy
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Steven J. Reed
- Seattle Children's Research InstituteSeattleWashingtonUSA
| | - Steven M. Adelmund
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Barry A. Badeau
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Jared A. Shadish
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Emily J. Girard
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Kenneth Brasel
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | | | - Andrew J. Mhyre
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Jason P. Price
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Surojit Sarkar
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Department of PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Vandana Kalia
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Cole A. DeForest
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
- Institute for Protein Design, University of WashingtonSeattleWashingtonUSA
| | - James M. Olson
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Aslam S, Zulfiqar F, Hameed W, Qureshi S, Zaroon, Bashir H. Fusion proteins development strategies and their role as cancer therapeutic agents. Biotechnol Appl Biochem 2024; 71:81-95. [PMID: 37822167 DOI: 10.1002/bab.2523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Cancer continues to be leading cause of morbidity and mortality despite decades of research and advancement in chemotherapy. Most tumors can be reduced via standard oncology treatments, such as chemotherapy, radiotherapy, and surgical resection, and they frequently recur. Significant progress has been made since targeted cancer therapy inception in creation of medications that exhibit improved tumor-selective action. Particularly in preclinical and clinical investigations, fusion proteins have shown strong activity and improved treatment outcomes for a number of human cancers. Synergistically combining many proteins into one complex allows the creation of synthetic fusion proteins with enhanced characteristics or new capabilities. Signal transduction pathways are important for onset, development, and spread of cancer. As result, signaling molecules are desirable targets for cancer therapies, and significant effort has been made into developing fusion proteins that would act as inhibitors of these pathways. A wide range of biotechnological and medicinal applications are made possible by fusion of protein domains that improves bioactivities or creates new functional combinations. Such proteins may function as immune effectors cell recruiters to tumors or as decoy receptors for various ligands. In this review article, we have outlined the standard methods for creating fusion proteins and covered the applications of fusion proteins in treatment of cancer. This article also highlights the role of fusion proteins in targeting the signaling pathways involved in cancer for effective treatment.
Collapse
Affiliation(s)
- Shakira Aslam
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Warda Hameed
- King Edward Medical University, Lahore, Pakistan
| | - Shahnila Qureshi
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zaroon
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamid Bashir
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Aigbogun OP, Phenix CP, Krol ES, Price EW. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Mol Pharm 2023; 20:853-874. [PMID: 36696533 DOI: 10.1021/acs.molpharmaceut.2c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small-molecule drugs have been employed for years as therapeutics in the pharmaceutical industry. However, small-molecule drugs typically have short in vivo half-lives which is one of the largest impediments to the success of many potentially valuable pharmacologically active small molecules. The undesirable pharmacokinetics and pharmacology associated with some small molecules have led to the development of a new class of bioconjugates known as chemically programmed antibodies (cPAbs). cPAbs are bioconjugates in which antibodies are used to augment small molecules with effector functions and prolonged pharmacokinetic profiles, where the pharmacophore of the small molecule is harnessed for target binding and therefore biological targeting. Many different small molecules can be conjugated to large proteins such as full monoclonal antibodies (IgG), fragment crystallizable regions (Fc), or fragment antigen binding regions (Fab). In order to successfully and site-specifically conjugate small molecules to any class of antibodies (IgG, Fc, or Fab), the molecules must be derivatized with a functional group for ease of conjugation without altering the pharmacology of the small molecules. In this Review, we summarize the different synthetic or biological methods that have been employed to produce cPAbs. These unique chemistries have potential to be applied to other fields of antibody modification such as antibody drug conjugates, radioimmunoconjugates, and fluorophore-tagged antibodies.
Collapse
Affiliation(s)
- Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N-5E5 Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| |
Collapse
|
6
|
Sun Q, Raeeszadeh-Sarmazdeh M, Tsai SL, Chen W. Strategies for Multienzyme Assemblies. Methods Mol Biol 2022; 2487:113-131. [PMID: 35687232 DOI: 10.1007/978-1-0716-2269-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteins are not designed to be standalone entities and must coordinate their collective action for optimum performance. Nature has developed through evolution the ability to co-localize the functional partners of a cascade enzymatic reaction in order to ensure efficient exchange of intermediates. Inspired by these natural designs, synthetic scaffolds have been created to enhance the overall biological pathway performance. In this chapter, we describe several DNA- and protein-based scaffold approaches to assemble artificial enzyme cascades for a wide range of applications. We highlight the key benefits and drawbacks of these approaches to provide insights on how to choose the appropriate scaffold for different cascade systems.
Collapse
Affiliation(s)
- Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Apley KD, Laflin AD, Johnson SN, Batrash N, Griffin JD, Berkland CJ, DeKosky BJ. Optimized Production of Fc Fusion Proteins by Sortase Enzymatic Ligation. Ind Eng Chem Res 2021; 60:16839-16853. [PMID: 38646185 PMCID: PMC11031256 DOI: 10.1021/acs.iecr.1c02842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fc fusions are a growing class of drugs comprising an antibody Fc domain covalently linked to a protein or peptide and can pose manufacturing challenges. In this study we evaluated three synthetic approaches to generate Fc fusions, using Fc-insulin as a model drug candidate. Engineered human IgG1 was digested with HRV3C to produce an Fc fragment with a C-terminal sortase tag (Fc-LPETGGH6). The synthesis of Fc-insulin2 from Fc-LPETGGH6 was evaluated with direct sortase-mediated ligation (SML) and two chemoenzymatic strategies. Direct SML was performed with triglycine-insulin, and chemoenzymatic strategies used to SML fuse either triglycine-azide or triglycine-DBCO prior to linking insulin with copper-catalyzed or strain-promoted azidealkyne cycloaddition. Reaction conditions were optimized by evaluating reagent concentrations, relative equivalents, temperature, and time. Direct SML provided the most effective reaction yields, converting 60-70% of Fc-LPETGGH6 to Fc-insulin2, whereas our optimized chemoenzymatic synthesis converted 30-40% of Fc-LPETGGH6 to Fc-insulin2. Here we show that SML is a practical and efficient method to synthesize Fc fusions and provide an optimized pathway for fusion drug synthesis.
Collapse
Affiliation(s)
- Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Noora Batrash
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, Department of Chemical and Petroleum Engineering, and Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, Department of Chemical and Petroleum Engineering, and Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Alston JJ, Soranno A, Holehouse AS. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021; 193:116-135. [PMID: 33831596 PMCID: PMC8713295 DOI: 10.1016/j.ymeth.2021.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last two decades, intrinsically disordered proteins and protein regions (IDRs) have emerged from a niche corner of biophysics to be recognized as essential drivers of cellular function. Various techniques have provided fundamental insight into the function and dysfunction of IDRs. Among these techniques, single-molecule fluorescence spectroscopy and molecular simulations have played a major role in shaping our modern understanding of the sequence-encoded conformational behavior of disordered proteins. While both techniques are frequently used in isolation, when combined they offer synergistic and complementary information that can help uncover complex molecular details. Here we offer an overview of single-molecule fluorescence spectroscopy and molecular simulations in the context of studying disordered proteins. We discuss the various means in which simulations and single-molecule spectroscopy can be integrated, and consider a number of studies in which this integration has uncovered biological and biophysical mechanisms.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
9
|
Hartzell EJ, Terr J, Chen W. Engineering a Blue Light Inducible SpyTag System (BLISS). J Am Chem Soc 2021; 143:8572-8577. [PMID: 34077186 DOI: 10.1021/jacs.1c03198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The SpyCatcher/SpyTag protein conjugation system has recently exploded in popularity due to its fast kinetics and high yield under biologically favorable conditions in both in vitro and intracellular settings. The utility of this system could be expanded by introducing the ability to spatially and temporally control the conjugation event. Taking inspiration from photoreceptor proteins in nature, we designed a method to integrate light dependency into the protein conjugation reaction. The light-oxygen-voltage domain 2 of Avena sativa (AsLOV2) undergoes a dramatic conformational change in its c-terminal Jα-helix in response to blue light. By inserting SpyTag into the different locations of the Jα-helix, we created a blue light inducible SpyTag system (BLISS). In this design, the SpyTag is blocked from reacting with the SpyCatcher in the dark, but upon irradiation with blue light, the Jα-helix of the AsLOV2 undocks to expose the SpyTag. We tested several insertion sites and characterized the kinetics. We found three variants with dynamic ranges over 15, which were active within different concentration ranges. These could be tuned using SpyCatcher variants with different reaction kinetics. Further, the reaction could be instantaneously quenched by removing light. We demonstrated the spatial aspect of this light control mechanism through photopatterning of two fluorescent proteins. This system offers opportunities for many other biofabrication and optogenetics applications.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Justin Terr
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Zhang QB, Ruan SD, Wu Y, Zhang JH, Lu JG, Feng J. Extending the in vivo Half-Life of Adalimumab Fab via Sortase A-Mediated Conjugation of Adalimumab Fab with Modified Fatty Acids. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1728817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractAdalimumab, a full-length monoclonal antibody, is widely used as an anti-tumor necrosis factor-α (anti-TNF-α) agent. In this article, we aimed to prolong the in vivo half-life of adalimumab antigen-binding fragment (Fab) through Sortase A (SrtA)-mediated conjugation of its Fab with fatty acid (FA). In our study, adalimumab Fab analog was prepared by adding an SrtA recognition sequence (LPETGG) and His6 tag to the heavy chain C-terminal of the Fab via (G4S)3 linker. Four FA motifs with different linkers were designed and synthesized by solid-phase methodology, then conjugated with the Fab analog using SrtA to produce Fab bioconjugates. The successful generation of four Fab bioconjugates (Fab–FA1, Fab–FA2, Fab–FA3, and Fab–FA4) was confirmed by SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and mass spectrometry. Then, the bioactivities and half-life of these Fab bioconjugates were examined using TNF-α-/human serum albumin (HSA)-binding enzyme-linked immunosorbent assay, cytotoxicity assay, and pharmacokinetic study, respectively. All Fab bioconjugates exhibited similar TNF-α-neutralizing activities when compared with the Fab analog, even in the presence of albumin, indicating that there were no apparent influences on the functional site of Fab after FA modification. However, different degrees of affinity for HSA were observed among these Fab–FA bioconjugates, with Fab–FA3 exhibiting the maximal affinity. An in vivo study in mice further revealed remarkably improved pharmacokinetics of Fab– FA3 with a 15.2-fold longer plasma half-life (19.86 hours) compared with that of the Fab analog (1.31 hours). In summary, we have developed a novel long-acting adalimumab Fab bioconjugate, Fab–FA3, with more sustained in vivo activity, which can be used for drug development targeting TNF-α-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Qing-Bin Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Si-Da Ruan
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yong Wu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Duomirui Bio-Technology Co., Ltd., Shanghai, People's Republic of China
| | - Jin-Hua Zhang
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Jian-Guang Lu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Duomirui Bio-Technology Co., Ltd., Shanghai, People's Republic of China
| | - Jun Feng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Duomirui Bio-Technology Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
11
|
Fuchs ACD, Ammelburg M, Martin J, Schmitz RA, Hartmann MD, Lupas AN. Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proc Natl Acad Sci U S A 2021; 118:e2017871118. [PMID: 33688044 PMCID: PMC7980362 DOI: 10.1073/pnas.2017871118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Moritz Ammelburg
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrecht University of Kiel, 24118 Kiel, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
12
|
Park J, Lee S, Kim Y, Yoo TH. Methods to generate site-specific conjugates of antibody and protein. Bioorg Med Chem 2021; 30:115946. [DOI: 10.1016/j.bmc.2020.115946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
|
13
|
Abstract
Historically, ligase activity by proteases was theoretically derived due to their catalyst nature, and it was experimentally observed as early as around 1900. Initially, the digestive proteases, such as pepsin, chymotrypsin, and trypsin were employed to perform in vitro syntheses of small peptides. Protease-catalyzed ligation is more efficient than peptide bond hydrolysis in organic solvents, representing control of the thermodynamic equilibrium. Peptide esters readily form acyl intermediates with serine and cysteine proteases, followed by peptide bond synthesis at the N-terminus of another residue. This type of reaction is under kinetic control, favoring aminolysis over hydrolysis. Although only a few natural peptide ligases are known, such as ubiquitin ligases, sortases, and legumains, the principle of proteases as general catalysts could be adapted to engineer some proteases accordingly. In particular, the serine proteases subtilisin and trypsin were converted to efficient ligases, which are known as subtiligase and trypsiligase. Together with sortases and legumains, they turned out to be very useful in linking peptides and proteins with a great variety of molecules, including biomarkers, sugars or building blocks with non-natural amino acids. Thus, these engineered enzymes are a promising branch for academic research and for pharmaceutical progress.
Collapse
|
14
|
Teng FY, Jiang ZZ, Huang LY, Guo M, Chen F, Hou XM, Xi XG, Xu Y. A Toolbox for Site-Specific Labeling of RecQ Helicase With a Single Fluorophore Used in the Single-Molecule Assay. Front Mol Biosci 2020; 7:586450. [PMID: 33102530 PMCID: PMC7545742 DOI: 10.3389/fmolb.2020.586450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Fluorescently labeled proteins can improve the detection sensitivity and have been widely used in a variety of biological measurements. In single-molecule assays, site-specific labeling of proteins enables the visualization of molecular interactions, conformational changes in proteins, and enzymatic activity. In this study, based on a flexible linker in the Escherichia coli RecQ helicase, we established a scheme involving a combination of fluorophore labeling and sortase A ligation to allow site-specific labeling of the HRDC domain of RecQ with a single Cy5 fluorophore, without inletting extra fluorescent domain or peptide fragment. Using single-molecule fluorescence resonance energy transfer, we visualized that Cy5-labeled HRDC could directly interact with RecA domains and could bind to both the 3′ and 5′ ends of the overhang DNA dynamically in vitro for the first time. The present work not only reveals the functional mechanism of the HRDC domain, but also provides a feasible method for site-specific labeling of a domain with a single fluorophore used in single-molecule assays.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Endocrinology and Metabolism, and Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Endocrinology and Metabolism, and Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling-Yun Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Man Guo
- Department of Endocrinology and Metabolism, and Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China.,LBPA, Ecole normale supérieure Paris-Saclay, Centre national de la recherche scientifique (CNRS), Université Paris Saclay, Cachan, France
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Endocrinology and Metabolism, and Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Lieser RM, Yur D, Sullivan MO, Chen W. Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjug Chem 2020; 31:2272-2282. [DOI: 10.1021/acs.bioconjchem.0c00456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel M. Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| |
Collapse
|
16
|
Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest Hits-Innovative Technologies for High Throughput Identification of Bispecific Antibodies. Int J Mol Sci 2020; 21:E6551. [PMID: 32911608 PMCID: PMC7554978 DOI: 10.3390/ijms21186551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent years have shown a tremendous increase and diversification in antibody-based therapeutics with advances in production techniques and formats. The plethora of currently investigated bi- to multi-specific antibody architectures can be harnessed to elicit a broad variety of specific modes of actions in oncology and immunology, spanning from enhanced selectivity to effector cell recruitment, all of which cannot be addressed by monospecific antibodies. Despite continuously growing efforts and methodologies, the identification of an optimal bispecific antibody as the best possible combination of two parental monospecific binders, however, remains challenging, due to tedious cloning and production, often resulting in undesired extended development times and increased expenses. Although automated high throughput screening approaches have matured for pharmaceutical small molecule development, it was only recently that protein bioconjugation technologies have been developed for the facile generation of bispecific antibodies in a 'plug and play' manner. In this review, we provide an overview of the most relevant methodologies for bispecific screening purposes-the DuoBody concept, paired light chain single cell production approaches, Sortase A and Transglutaminase, the SpyTag/SpyCatcher system, and inteins-and elaborate on the benefits as well as drawbacks of the different technologies.
Collapse
Affiliation(s)
- Tim Hofmann
- Advanced Cell Culture Technologies, Merck Life Sciences KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany;
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| |
Collapse
|
17
|
Di Girolamo S, Puorger C, Lipps G. Stable and selective permeable hydrogel microcapsules for high-throughput cell cultivation and enzymatic analysis. Microb Cell Fact 2020; 19:170. [PMID: 32854709 PMCID: PMC7451113 DOI: 10.1186/s12934-020-01427-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Miniaturization of biochemical reaction volumes within artificial microcompartments has been the key driver for directed evolution of several catalysts in the past two decades. Typically, single cells are co-compartmentalized within water-in-oil emulsion droplets with a fluorogenic substrate whose conversion allows identification of catalysts with improved performance. However, emulsion droplet-based technologies prevent cell proliferation to high density and preclude the feasibility of biochemical reactions that require the exchange of small molecule substrates. Here, we report on the development of a high-throughput screening method that addresses these shortcomings and that relies on a novel selective permeable polymer hydrogel microcapsule. RESULTS Hollow-core polyelectrolyte-coated chitosan alginate microcapsules (HC-PCAMs) with selective permeability were successfully constructed by jet break-up and layer-by-layer (LBL) technology. We showed that HC-PCAMs serve as miniaturized vessels for single cell encapsulation, enabling cell growth to high density and cell lysis to generate monoclonal cell lysate compartments suitable for high-throughput analysis using a large particle sorter (COPAS). The feasibility of using HC-PCAMs as reaction compartments which exchange small molecule substrates was demonstrated using the transpeptidation reaction catalyzed by the bond-forming enzyme sortase F from P. acnes. The polyelectrolyte shell surrounding microcapsules allowed a fluorescently labelled peptide substrate to enter the microcapsule and take part in the transpeptidation reaction catalyzed by the intracellularly expressed sortase enzyme retained within the capsule upon cell lysis. The specific retention of fluorescent transpeptidation products inside microcapsules enabled the sortase activity to be linked with a fluorescent readout and allowed clear separation of microcapsules expressing the wild type SrtF from those expressing the inactive variant. CONCLUSION A novel polymer hydrogel microcapsule-based method, which allows for high-throughput analysis based on encapsulation of single cells has been developed. The method has been validated for the transpeptidation activity of sortase enzymes and represents a powerful tool for screening of libraries of sortases, other bond-forming enzymes, as well as of binding affinities in directed evolution experiments. Moreover, selective permeable microcapsules encapsulating microcolonies provide a new and efficient means for preparing novel caged biocatalyst and biosensor agents.
Collapse
Affiliation(s)
- Salvatore Di Girolamo
- University of Applied Sciences and Arts Northwestern Switzerland, Institute for Chemistry and Bioanalytics, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Chasper Puorger
- University of Applied Sciences and Arts Northwestern Switzerland, Institute for Chemistry and Bioanalytics, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Georg Lipps
- University of Applied Sciences and Arts Northwestern Switzerland, Institute for Chemistry and Bioanalytics, Hofackerstrasse 30, 4132, Muttenz, Switzerland.
| |
Collapse
|
18
|
Veggiani G, Giabbai B, Semrau MS, Medagli B, Riccio V, Bajc G, Storici P, de Marco A. Comparative analysis of fusion tags used to functionalize recombinant antibodies. Protein Expr Purif 2020; 166:105505. [DOI: 10.1016/j.pep.2019.105505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
|
19
|
Semisynthetic, self-adjuvanting vaccine development: Efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group A streptococcal vaccine. J Control Release 2019; 317:96-108. [PMID: 31758971 DOI: 10.1016/j.jconrel.2019.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
Abstract
Protein antigens are, in general, weakly immunogenic, and therefore require co-delivery with adjuvants to stimulate potent immune responses. The fusion of (poly)peptide antigens to immunostimulatory adjuvants (e.g. Toll-like receptor (TLR) agonists) has been demonstrated to greatly improve vaccine potency compared to mixtures of antigen and adjuvant. Chemical approaches, to enable the rapid, site-specific and high-yielding linkage of TLR2 ligands to recombinant protein antigens, have been previously optimized. These approaches require the use of denaturing conditions to ensure high reaction yields, which limits their application, as maintenance of native protein folding is necessary to elicit antibodies against conformational epitopes. Here, this work aimed to optimize an alternative method, to ensure the efficient bioconjugation of TLR2 ligands onto folded protein antigens. An enzyme-mediated approach, using Staphylococcus aureus sortase A (or a penta mutant with enhanced efficiency), was optimized for reaction yield and time, as well as enzyme type and amount. This approach enabled the site-specific conjugation of the TLR2-agonist fibroblast-stimulating lipopeptide-1 (FSL-1) onto a model group A Streptococcus (GAS) recombinant polytope antigen under conditions that maintain protein folding, yielding a homogeneous, molecularly-defined product, with ligation yields as high as 90%. Following intramuscular (IM) administration of the ligation product to humanized plasminogen AlbPLG1 mice, high-titer, antigen-specific IgG antibodies were observed, which conferred protection against subcutaneous challenge with GAS strain 5448. In comparison, mixtures of the GAS antigen with aluminum hydroxide or FSL-1 failed to provide protection, with the FSL-1 mixture yielding ~1000-fold lower antigen-specific IgG antibody titers, and the mixture with alum yielding a Th2-biased response compared to the more balanced Th1/Th2 responses observed with the FSL-1 conjugate. Overall, a FSL-1 bioconjugation method for the efficient production of antigen-TLR2 agonist conjugates, which maintain protein folding, was produced, with broad utility for the development of self-adjuvanting vaccines against subunit protein antigens.
Collapse
|
20
|
Kim H, Gaynor A, Chen W. Tunable modulation of antibody-antigen interaction by protease cleavage of protein M. Biotechnol Bioeng 2019; 116:2834-2842. [PMID: 31286479 DOI: 10.1002/bit.27111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 12/12/2022]
Abstract
While immunoglobulins find ubiquitous use in biotechnology as static binders, recent developments have created proantibodies that enable orthogonal switch-like behavior to antibody function. Previously, peptides with low binding affinity have been genetically fused to antibodies, to proteolytically control binding function by blocking the antigen-binding site. However, development of these artificial blockers requires panning for peptide sequences that reversibly affect antigen affinity for each antibody. Instead, a more general strategy to achieve dynamic control over antibody affinity may be feasible using protein M (ProtM) from Mycoplasma genitalium, a newly identified polyspecific immunity evasion protein that is capable of blocking antigen binding for a wide range of antibodies. Using C-terminus truncation to identify ProtM variants that are still capable of binding to antibodies without the ability to block antigens, we developed a novel and universal biological switch for antibodies. Using a site-specifically placed thrombin cut site, antibody affinity can be modulated by cleavage of the two distinct antibody-binding and antigen-blocking domains of ProtM. Because of the high affinity of ProtM toward a large variety of IgG subtypes, this strategy may be used as a universal approach to create proantibodies that are conditionally activated by disease-specific proteases such as matrix metalloproteinases.
Collapse
Affiliation(s)
- Heejae Kim
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Andrew Gaynor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
21
|
Drabek AA, Loparo JJ, Blacklow SC. A Flow-Extension Tethered Particle Motion Assay for Single-Molecule Proteolysis. Biochemistry 2019; 58:2509-2518. [PMID: 30946563 PMCID: PMC6607913 DOI: 10.1021/acs.biochem.9b00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulated proteolysis of signaling proteins under mechanical tension enables cells to communicate with their environment in a variety of developmental and physiologic contexts. The role of force in inducing proteolytic sensitivity has been explored using magnetic tweezers at the single-molecule level with bead-tethered assays, but such efforts have been limited by challenges in ensuring that beads not be restrained by multiple tethers. Here, we describe a multiplexed assay for single-molecule proteolysis that overcomes the multiple-tether problem using a flow-extension strategy on a microscope equipped with magnetic tweezers. Particle tracking and computational sorting of flow-induced displacements allow assignment of tethered substrates to singly captured and multiply tethered bins, with the fraction of fully mobile, single-tether substrates depending inversely on the concentration of substrate loaded on the coverslip. Computational exclusion of multiple-tether beads enables robust assessment of on-target proteolysis by the highly specific tobacco etch virus protease and the more promiscuous metalloprotease ADAM17. This method should be generally applicable to a wide range of proteases and readily extensible to robust evaluation of proteolytic sensitivity as a function of applied magnetic force.
Collapse
Affiliation(s)
- Andrew A. Drabek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J. Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
22
|
Stengl A, Gerlach M, Kasper MA, Hackenberger CPR, Leonhardt H, Schumacher D, Helma J. TuPPL: Tub-tag mediated C-terminal protein-protein-ligation using complementary click-chemistry handles. Org Biomol Chem 2019; 17:4964-4969. [PMID: 30932115 DOI: 10.1039/c9ob00508k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We introduce a chemoenzymatic strategy for straightforward in vitro generation of C-terminally linked fusion proteins. Tubulin tyrosine ligase is used for the incorporation of complementary click chemistry handles facilitating subsequent formation of functional bispecific antibody-fragments. This simple strategy may serve as central conjugation hub for a modular protein ligation platform.
Collapse
Affiliation(s)
- Andreas Stengl
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 82152 Planegg, Martinsried, Germany.
| | - Marcus Gerlach
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 82152 Planegg, Martinsried, Germany.
| | - Marc-André Kasper
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Chemical Biology Department, Robert-Rössle-Strasse 10, 13125 Berlin, Germany and Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Chemical Biology Department, Robert-Rössle-Strasse 10, 13125 Berlin, Germany and Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 82152 Planegg, Martinsried, Germany.
| | - Dominik Schumacher
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 82152 Planegg, Martinsried, Germany.
| | - Jonas Helma
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 82152 Planegg, Martinsried, Germany.
| |
Collapse
|
23
|
Ca2+ binding induced sequential allosteric activation of sortase A: An example for ion-triggered conformational selection. PLoS One 2018; 13:e0205057. [PMID: 30321208 PMCID: PMC6188747 DOI: 10.1371/journal.pone.0205057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
The allosteric activation of the intrinsically disordered enzyme Staphylococcus aureus sortase A is initiated via binding of a Ca2+ ion. Although Ca2+ binding was shown to initiate structural changes inducing disorder-to-order transitions, the details of the allosteric activation mechanism remain elusive. We performed long-term molecular dynamics simulations of sortase A without (3 simulations of 1.6 μs) and with bound Ca2+ (simulations of 1.6 μs, 1.8 μs, and 2.5 μs). Our results show that Ca2+ binding causes not only ordering of the disordered β6/β7 loop of the protein, but also modulates hinge motions in the dynamic β7/β8 loop, which is important for the catalytic activity of the enzyme. Cation binding triggers signal transmission from the Ca2+ binding site to the dynamic β7/β8 loop via the repetitive folding/unfolding of short helical stretches of the disordered β6/β7 loop. These correlated structural rearrangements lead to several distinct conformational states of the binding groove, which show optimal binding features for the sorting signal motif and feature binding energies up to 20 kcal/mol more favorable than observed for the sortase A without Ca2+. The presented results indicate a highly correlated, conformational selection-based activation mechanism of the enzyme triggered by cation binding. They also demonstrate the importance of the dynamics of intrinsically disordered regions for allosteric regulation.
Collapse
|
24
|
Swartz AR, Chen W. SpyTag/SpyCatcher Functionalization of E2 Nanocages with Stimuli-Responsive Z-ELP Affinity Domains for Tunable Monoclonal Antibody Binding and Precipitation Properties. Bioconjug Chem 2018; 29:3113-3120. [PMID: 30096233 DOI: 10.1021/acs.bioconjchem.8b00458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E2 nanocages functionalized with Z-domain-elastin-like polypeptide affinity ligands (Z-ELP40) using Sortase A (SrtA) ligation have been shown to be a promising scaffold for purifying monoclonal antibodies (mAbs) based on affinity precipitation. However, the reversible nature of SrtA reaction has been attributed to the low ligation efficiency (<25%) and has significantly limited the practical utility of the technology. Here, we reported an improved conjugation platform using the SpyTag/SpyCatcher pair to form a spontaneous isopeptide bond between SpyTag-E2 and Z-ELP-SpyCatcher fusion proteins of two different ELP chain-lengths. Using this system, E2 ligation efficiencies exceeding 90% were obtained with both 40- and 80-repeat Z-ELP-SpyCatcher fusions. This enabled the production of nanocages fully functionalized with Z-ELP for improved aggregation and mAb binding. Compared to the 50% decorated Z-ELP40-E2 nanocages produced by SrtA ligation, the fully decorated Z-ELP80-Spy-E2 nanocages exhibited a 10 °C lower transition temperature and a 2-fold higher mAb binding capacity. The improved transition property of the longer Z-ELP80 backbone allowed for >90% recovery of Z-ELP80-Spy-E2 nanocages at room temperature using 0.1 M ammonium sulfate after mAb elution. The flexibility of customizing different affinity domains onto the SpyTag-E2 scaffold should expand our ability to purify other non-mAb target proteins based on affinity precipitation.
Collapse
Affiliation(s)
- Andrew R Swartz
- Department of Chemical and Biomolecular Engineering , University of Delaware , Colburn Laboratory, 150 Academy Street , Newark , Delaware 19716 , United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering , University of Delaware , Colburn Laboratory, 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
25
|
Accessing Structure, Dynamics and Function of Biological Macromolecules by NMR Through Advances in Isotope Labeling. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0085-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
McConnell SA, Amer BR, Muroski J, Fu J, Chang C, Ogorzalek Loo RR, Loo JA, Osipiuk J, Ton-That H, Clubb RT. Protein Labeling via a Specific Lysine-Isopeptide Bond Using the Pilin Polymerizing Sortase from Corynebacterium diphtheriae. J Am Chem Soc 2018; 140:8420-8423. [PMID: 29927249 PMCID: PMC6230430 DOI: 10.1021/jacs.8b05200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins that are site-specifically modified with peptides and chemicals can be used as novel therapeutics, imaging tools, diagnostic reagents and materials. However, there are few enzyme-catalyzed methods currently available to selectively conjugate peptides to internal sites within proteins. Here we show that a pilus-specific sortase enzyme from Corynebacterium diphtheriae (CdSrtA) can be used to attach a peptide to a protein via a specific lysine-isopeptide bond. Using rational mutagenesis we created CdSrtA3M, a highly activated cysteine transpeptidase that catalyzes in vitro isopeptide bond formation. CdSrtA3M mediates bioconjugation to a specific lysine residue within a fused domain derived from the corynebacterial SpaA protein. Peptide modification yields greater than >95% can be achieved. We demonstrate that CdSrtA3M can be used in concert with the Staphylococcus aureus SrtA enzyme, enabling dual, orthogonal protein labeling via lysine-isopeptide and backbone-peptide bonds.
Collapse
Affiliation(s)
- Scott A. McConnell
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Brendan R. Amer
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - John Muroski
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Janine Fu
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Chungyu Chang
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Jerzy Osipiuk
- Structural Biology Center, Argonne National Laboratory, Argonne, IL, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Yang M, Hong H, Liu S, Zhao X, Wu Z. Immobilization of Staphylococcus aureus Sortase A on Chitosan Particles and Its Applications in Peptide-to-Peptide Ligation and Peptide Cyclization. Molecules 2018; 23:molecules23010192. [PMID: 29351256 PMCID: PMC6017383 DOI: 10.3390/molecules23010192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 11/16/2022] Open
Abstract
Chitosan macro-particles prepared by the neutralization method were applied to Sortase A (SrtA) immobilization using glutaraldehyde as a crosslinking agent. The particles were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Response surface methodology (RSM) was employed to optimize the immobilization process. An average specific activity of 3142 U (mg protein)-1 was obtained under optimized immobilization conditions (chitosan concentration 3%, SrtA concentration 0.5 mg·mL-1, glutaraldehyde concentration 0.5%, crosslinking and immobilization at 20 °C, crosslinking for 3 h, and an immobilization time of 8 h). The transpeptidase activity of immobilized SrtA was proved by a peptide-to-peptide ligation with a conversion yield approximately at 80%, and the immobilized catalyst was successfully reused for five cycles without obvious activity loss. Moreover, the scale-up capability of using immobilized SrtA to catalyze a head-to-tail peptide cyclization was investigated in a batch reaction and the conversion yield was more than 95% when using 20 mg of peptide as a substrate.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Shaozhong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xinrui Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
28
|
A Review of Hydrogen Production by Photosynthetic Organisms Using Whole-Cell and Cell-Free Systems. Appl Biochem Biotechnol 2017; 183:503-519. [DOI: 10.1007/s12010-017-2576-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/02/2017] [Indexed: 10/18/2022]
|
29
|
Patterson D, Schwarz B, Avera J, Western B, Hicks M, Krugler P, Terra M, Uchida M, McCoy K, Douglas T. Sortase-Mediated Ligation as a Modular Approach for the Covalent Attachment of Proteins to the Exterior of the Bacteriophage P22 Virus-like Particle. Bioconjug Chem 2017; 28:2114-2124. [PMID: 28612603 PMCID: PMC6708598 DOI: 10.1021/acs.bioconjchem.7b00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Virus-like particles are unique platforms well suited for the construction of nanomaterials with broad-range applications. The research presented here describes the development of a modular approach for the covalent attachment of protein domains to the exterior of the versatile bacteriophage P22 virus-like particle (VLP) via a sortase-mediated ligation strategy. The bacteriophage P22 coat protein was genetically engineered to incorporate an LPETG amino acid sequence on the C-terminus, providing the peptide recognition sequence utilized by the sortase enzyme to catalyze peptide bond formation between the LPETG-tagged protein and a protein containing a polyglycine sequence on the N-terminus. Here we evaluate attachment of green fluorescent protein (GFP) and the head domain of the influenza hemagglutinin (HA) protein by genetically producing polyglycine tagged proteins. Attachment of both proteins to the exterior of the P22 VLP was found to be highly efficient as judged by SDS-PAGE densitometry. These results enlarge the tool kit for modifying the P22 VLP system and provide new insights for other VLPs that have an externally displayed C-terminus that can use the described strategy for the modular modification of their external surface for various applications.
Collapse
Affiliation(s)
- Dustin Patterson
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Benjamin Schwarz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - John Avera
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - Brian Western
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Matthew Hicks
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Paul Krugler
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Matthew Terra
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Masaki Uchida
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - Kimberly McCoy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| |
Collapse
|
30
|
Gau E, Mate DM, Zou Z, Oppermann A, Töpel A, Jakob F, Wöll D, Schwaneberg U, Pich A. Sortase-Mediated Surface Functionalization of Stimuli-Responsive Microgels. Biomacromolecules 2017; 18:2789-2798. [DOI: 10.1021/acs.biomac.7b00720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elisabeth Gau
- Functional
and Interactive Polymers, Institute of Technical and Macromolecular
Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Diana M. Mate
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Zhi Zou
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute
for Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Alex Oppermann
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Alexander Töpel
- Functional
and Interactive Polymers, Institute of Technical and Macromolecular
Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Felix Jakob
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Dominik Wöll
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute
for Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Andrij Pich
- Functional
and Interactive Polymers, Institute of Technical and Macromolecular
Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|
31
|
Antos JM, Ingram J, Fang T, Pishesha N, Truttmann MC, Ploegh HL. Site-Specific Protein Labeling via Sortase-Mediated Transpeptidation. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 89:15.3.1-15.3.19. [PMID: 28762490 PMCID: PMC5810355 DOI: 10.1002/cpps.38] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strategies for site-specific protein modification are highly desirable for the construction of conjugates containing non-genetically-encoded functional groups. Ideally, these strategies should proceed under mild conditions, and be compatible with a wide range of protein targets and non-natural moieties. The transpeptidation reaction catalyzed by bacterial sortases is a prominent strategy for protein derivatization that possesses these features. Naturally occurring or engineered variants of sortase A from Staphylococcus aureus catalyze a ligation reaction between a five-amino-acid substrate motif (LPXTG) and oligoglycine nucleophiles. By pairing proteins and synthetic peptides that possess these ligation handles, it is possible to install modifications onto the protein N- or C-terminus in site-specific fashion. As described in this unit, the successful implementation of sortase-mediated labeling involves straightforward solid-phase synthesis and molecular biology techniques, and this method is compatible with proteins in solution or on the surface of live cells. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- John M Antos
- Department of Chemistry, Western Washington University, Bellingham, Washington
| | - Jessica Ingram
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Tao Fang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthias C Truttmann
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
32
|
White DR, Khedri Z, Kiptoo P, Siahaan TJ, Tolbert TJ. Synthesis of a Bifunctional Peptide Inhibitor-IgG1 Fc Fusion That Suppresses Experimental Autoimmune Encephalomyelitis. Bioconjug Chem 2017; 28:1867-1877. [PMID: 28581731 PMCID: PMC5659714 DOI: 10.1021/acs.bioconjchem.7b00175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.
Collapse
Affiliation(s)
- Derek R. White
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Zahra Khedri
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Ajinomoto Althea Inc., San Diego, California 92121, United States
| | - Paul Kiptoo
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Sekisui XenoTech, LLC, Kansas City, Kansas 66103, United States
| | - Teruna J. Siahaan
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Thomas J. Tolbert
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
33
|
Thérien A, Bédard M, Carignan D, Rioux G, Gauthier-Landry L, Laliberté-Gagné MÈ, Bolduc M, Savard P, Leclerc D. A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. J Nanobiotechnology 2017; 15:54. [PMID: 28720097 PMCID: PMC5516373 DOI: 10.1186/s12951-017-0289-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/10/2017] [Indexed: 02/04/2023] Open
Abstract
Background Flexuous rod-shaped nanoparticles made of the coat protein (CP) of papaya mosaic virus (PapMV) have been shown to trigger innate immunity through engagement of toll-like receptor 7 (TLR7). PapMV nanoparticles can also serve as a vaccine platform as they can increase the immune response to fused peptide antigens. Although this approach shows great potential, fusion of antigens directly to the CP open reading frame (ORF) is challenging because the fused peptides can alter the structure of the CP and its capacity to self assemble into nanoparticles—a property essential for triggering an efficient immune response to the peptide. This represents a serious limitation to the utility of this approach as fusion of small peptides only is tolerated. Results We have developed a novel approach in which peptides are fused directly to pre-formed PapMV nanoparticles. This approach is based on the use of a bacterial transpeptidase (sortase A; SrtA) that can attach the peptide directly to the nanoparticle. An engineered PapMV CP harbouring the SrtA recognition motif allows efficient coupling. To refine our engineering, and to predict the efficacy of coupling with SrtA, we modeled the PapMV structure based on the known structure of PapMV CP and on recent reports revealing the structure of two closely related potexviruses: pepino mosaic virus (PepMV) and bamboo mosaic virus (BaMV). We show that SrtA can allow the attachment of long peptides [Influenza M2e peptide (26 amino acids) and the HIV-1 T20 peptide (39 amino acids)] to PapMV nanoparticles. Consistent with our PapMV structural model, we show that around 30% of PapMV CP subunits in each nanoparticle can be fused to the peptide antigen. As predicted, engineered nanoparticles were capable of inducing a strong antibody response to the fused antigen. Finally, in a challenge study with influenza virus, we show that mice vaccinated with PapMV-M2e are protected from infection. Conclusions This technology will allow the development of vaccines harbouring long peptides containing several B and/or T cell epitopes that can contribute to a broad and robust protection from infection. The design can be fast, versatile and can be adapted to the development of vaccines for many infectious diseases as well as cancer vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0289-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ariane Thérien
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Mikaël Bédard
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Damien Carignan
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Gervais Rioux
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Louis Gauthier-Landry
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Marie-Ève Laliberté-Gagné
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Pierre Savard
- Neurosciences, Laval University, 2705 Boul. Laurier, Québec City, PQ, G1V 4G2, Canada
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada.
| |
Collapse
|
34
|
Milczek EM. Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.6b00832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Efficient extracellular expression of transpeptidase sortase A in Pichia pastoris. Protein Expr Purif 2017; 133:132-138. [DOI: 10.1016/j.pep.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
|
36
|
Swartz AR, Sun Q, Chen W. Ligand-Induced Cross-Linking of Z-Elastin-like Polypeptide-Functionalized E2 Protein Nanoparticles for Enhanced Affinity Precipitation of Antibodies. Biomacromolecules 2017; 18:1654-1659. [DOI: 10.1021/acs.biomac.7b00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrew R. Swartz
- Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Qing Sun
- Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
37
|
Wang HH, Altun B, Nwe K, Tsourkas A. Proximity-Based Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hejia Henry Wang
- Department of Biochemistry and Biophysics; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA 19104 USA
| | - Burcin Altun
- Department of Bioengineering; University of Pennsylvania; 210 S. 33rd Street, 240 Skirkanich Hall Philadelphia PA 19104 USA
| | - Kido Nwe
- Department of Bioengineering; University of Pennsylvania; 210 S. 33rd Street, 240 Skirkanich Hall Philadelphia PA 19104 USA
| | - Andrew Tsourkas
- Department of Bioengineering; University of Pennsylvania; 210 S. 33rd Street, 240 Skirkanich Hall Philadelphia PA 19104 USA
| |
Collapse
|
38
|
Wang HH, Altun B, Nwe K, Tsourkas A. Proximity-Based Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2017; 56:5349-5352. [PMID: 28374553 DOI: 10.1002/anie.201701419] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Indexed: 01/31/2023]
Abstract
Protein bioconjugation has been a crucial tool for studying biological processes and developing therapeutics. Sortase A (SrtA), a bacterial transpeptidase, has become widely used for its ability to site-specifically label proteins with diverse functional moieties, but a significant limitation is its poor reaction kinetics. In this work, we address this by developing proximity-based sortase-mediated ligation (PBSL), which improves the ligation efficiency to over 95 % by linking the target protein to SrtA using the SpyTag-SpyCatcher peptide-protein pair. By expressing the target protein with SpyTag C-terminal to the SrtA recognition motif, it can be covalently captured by an immobilized SpyCatcher-SrtA fusion protein during purification. Following the ligation reaction, SpyTag is cleaved off, rendering PBSL traceless, and only the labeled protein is released, simplifying target protein purification and labeling to a single step.
Collapse
Affiliation(s)
- Hejia Henry Wang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Burcin Altun
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Kido Nwe
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| |
Collapse
|
39
|
Raeeszadeh-Sarmazdeh M, Parthasarathy R, Boder ET. Fine-tuning sortase-mediated immobilization of protein layers on surfaces using sequential deprotection and coupling. Biotechnol Prog 2017; 33:824-831. [PMID: 28218499 DOI: 10.1002/btpr.2449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/08/2017] [Indexed: 12/23/2022]
Abstract
Increasing interest in protein immobilization on surfaces has heightened the need for techniques enabling layer-by-layer protein attachment. Here, we report a technique for controlling enzyme-mediated immobilization of layers of protein on the surface using a genetically encoded protecting group. An enterokinase-cleavable peptide sequence was inserted at the N-terminus of bifunctional fluorescent proteins containing Sortase A substrate recognition tags at both ends to control Sortase A-mediated protein immobilization on the surface layer-by-layer. Efficient, sequential immobilization of a second layer of protein using Sortase A required removal of the N-terminal protecting group, suggesting the method enables multilayer synthesis using cyclic deprotection and coupling steps. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:824-831, 2017.
Collapse
Affiliation(s)
| | | | - Eric T Boder
- Dept. of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996
| |
Collapse
|
40
|
Qafari SM, Ahmadian G, Mohammadi M. One-step purification and oriented attachment of protein A on silica and graphene oxide nanoparticles using sortase-mediated immobilization. RSC Adv 2017. [DOI: 10.1039/c7ra12128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-step purification and oriented immobilization of protein A on functionalized carriers.
Collapse
Affiliation(s)
- Seyed Mehdi Qafari
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Gholamreza Ahmadian
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| |
Collapse
|
41
|
Enzyme-Based Strategies to Generate Site-Specifically Conjugated Antibody Drug Conjugates. NEXT GENERATION ANTIBODY DRUG CONJUGATES (ADCS) AND IMMUNOTOXINS 2017. [DOI: 10.1007/978-3-319-46877-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Tan LL, Hoon SS, Wong FT. Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly. PLoS One 2016; 11:e0165074. [PMID: 27783674 PMCID: PMC5082641 DOI: 10.1371/journal.pone.0165074] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022] Open
Abstract
Over the last few years, a number of different protein assembly strategies have been developed, greatly expanding the toolbox for controlling macromolecular assembly. One of the most promising developments is a rapid protein ligation approach using a short polypeptide SpyTag and its partner, SpyCatcher derived from Streptococcus pyogenes fibronectin-binding protein, FbaB. To extend this technology, we have engineered and characterized a new Tag-Catcher pair from a related fibronectin-binding protein in Streptococcus dysgalactiae. The polypeptide Tag, named SdyTag, was constructed based on the native Cna protein B-type (CnaB) domain and was found to be highly unreactive to SpyCatcher. SpyCatcher has 320-fold specificity for its native SpyTag compared to SdyTag. Similarly, SdyTag has a 75-fold specificity for its optimized Catcher, named SdyCatcherDANG short, compared to SpyCatcher. These Tag-Catcher pairs were used in combination to demonstrate specific sequential assembly of tagged proteins in vitro. We also demonstrated that the in vivo generation of circularized proteins in a Tag-Catcher specific manner where specific Tags can be left unreacted for use in subsequent ligation reactions. From the success of these experiments, we foresee the application of SdyTags and SpyTags, not only, for multiplexed control of protein assembly but also for the construction of novel protein architectures.
Collapse
Affiliation(s)
- Lee Ling Tan
- Molecular Engineering Lab, Biomedical Sciences Institutes, Biopolis Drive, Singapore, Singapore
| | - Shawn S. Hoon
- Molecular Engineering Lab, Biomedical Sciences Institutes, Biopolis Drive, Singapore, Singapore
| | - Fong T. Wong
- Molecular Engineering Lab, Biomedical Sciences Institutes, Biopolis Drive, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Rosen CB, Kwant RL, MacDonald JI, Rao M, Francis MB. Capture and Recycling of Sortase A through Site-Specific Labeling with Lithocholic Acid. Angew Chem Int Ed Engl 2016; 55:8585-9. [PMID: 27239057 DOI: 10.1002/anie.201602353] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Indexed: 11/05/2022]
Abstract
Enzyme-mediated protein modification often requires large amounts of biocatalyst, adding significant costs to the process and limiting industrial applications. Herein, we demonstrate a scalable and straightforward strategy for the efficient capture and recycling of enzymes using a small-molecule affinity tag. A proline variant of an evolved sortase A (SrtA 7M) was N-terminally labeled with lithocholic acid (LA)-an inexpensive bile acid that exhibits strong binding to β-cyclodextrin (βCD). Capture and recycling of the LA-Pro-SrtA 7M conjugate was achieved using βCD-modified sepharose resin. The LA-Pro-SrtA 7M conjugate retained full enzymatic activity, even after multiple rounds of recycling.
Collapse
Affiliation(s)
- Christian B Rosen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard L Kwant
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James I MacDonald
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Meera Rao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA. .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
44
|
Rosen CB, Kwant RL, MacDonald JI, Rao M, Francis MB. Capture and Recycling of Sortase A through Site‐Specific Labeling with Lithocholic Acid. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christian B. Rosen
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Richard L. Kwant
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - James I. MacDonald
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Meera Rao
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Matthew B. Francis
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
45
|
Williams FP, Milbradt AG, Embrey KJ, Bobby R. Segmental Isotope Labelling of an Individual Bromodomain of a Tandem Domain BRD4 Using Sortase A. PLoS One 2016; 11:e0154607. [PMID: 27128490 PMCID: PMC4851411 DOI: 10.1371/journal.pone.0154607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/17/2016] [Indexed: 11/19/2022] Open
Abstract
Bromodomain and extra-terminal (BET) family of proteins are one of the major readers of epigenetic marks and an important target class in oncology and other disease areas. The importance of the BET family of proteins is manifested by the explosion in the number of inhibitors against these targets that have successfully entered clinical trials. One important BET family member is bromodomain containing protein 4 (BRD4). Structural and biophysical studies of BRD4 are complicated by its tertiary-structure consisting of two bromodomains connected by a flexible inter-domain linker of approximately 180 amino acids. A detailed understanding of the interplay of these bromodomains will be key to rational drug design in BRD4, yet there are no reported three-dimensional structures of the multi-domain BRD4 and NMR studies of the tandem domain are hampered by the size of the protein. Here, we present a method for rapid Sortase A-mediated segmental labelling of the individual bromodomains of BRD4 that provides a powerful strategy that will enable NMR studies of ligand-bromodomain interactions with atomic detail. In our labelling strategy, we have used U-[2H,15N]-isotope labelling on the C-terminal bromodomain with selective introduction of 13CH3 methyl groups on Ile (δ1), Val and Leu, whereas the N-terminal bromodomain remained unlabelled. This labelling scheme resulted in significantly simplified NMR spectra and will allow for high-resolution interaction, structure and dynamics studies in the presence of ligands.
Collapse
Affiliation(s)
- Felix P. Williams
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
| | - Alexander G. Milbradt
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
| | - Kevin J. Embrey
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
- * E-mail: (KJE); (RB)
| | - Romel Bobby
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
- * E-mail: (KJE); (RB)
| |
Collapse
|
46
|
Amer BR, Macdonald R, Jacobitz AW, Liauw B, Clubb RT. Rapid addition of unlabeled silent solubility tags to proteins using a new substrate-fused sortase reagent. JOURNAL OF BIOMOLECULAR NMR 2016; 64:197-205. [PMID: 26852413 PMCID: PMC5110246 DOI: 10.1007/s10858-016-0019-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Many proteins can't be studied using solution NMR methods because they have limited solubility. To overcome this problem, recalcitrant proteins can be fused to a more soluble protein that functions as a solubility tag. However, signals arising from the solubility tag hinder data analysis because they increase spectral complexity. We report a new method to rapidly and efficiently add a non-isotopically labeled Small Ubiquitin-like Modifier protein (SUMO) solubility tag to an isotopically labeled protein. The method makes use of a newly developed SUMO-Sortase tagging reagent in which SUMO and the Sortase A (SrtA) enzyme are present within the same polypeptide. The SUMO-Sortase reagent rapidly attaches SUMO to any protein that contains the sequence LPXTG at its C-terminus. It modifies proteins at least 15-times faster than previously described approaches, and does not require active dialysis or centrifugation during the reaction to increase product yields. In addition, silently tagged proteins are readily purified using the well-established SUMO expression and purification system. The utility of the SUMO-Sortase tagging reagent is demonstrated using PhoP and green fluorescent proteins, which are ~90% modified with SUMO at room temperature within four hours. SrtA is widely used as a tool to construct bioconjugates. Significant rate enhancements in these procedures may also be achieved by fusing the sortase enzyme to its nucleophile substrate.
Collapse
Affiliation(s)
- Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Alex W Jacobitz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Brandon Liauw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA.
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
47
|
Ismail NF, Lim TS. Site-specific scFv labelling with invertase via Sortase A mechanism as a platform for antibody-antigen detection using the personal glucose meter. Sci Rep 2016; 6:19338. [PMID: 26782912 PMCID: PMC4726117 DOI: 10.1038/srep19338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Antibody labelling to reporter molecules is gaining popularity due to its many potential applications for diagnostics and therapeutics. However, non-directional bioconjugation methods which are commonly used often results in the loss of target binding capabilities. Therefore, a site-specific enzymatic based bioconjugation such as sortase-mediated transpeptidation allows for a more rapid and efficient method of antibody conjugation for diagnostic applications. Here we describe the utilization of sortase A bioconjugation to conjugate a single chain fragment variable (scFv) to the extracellular invertase (invB) from Zymomonas mobilis with the aim of developing an invertase based immunoassay. In addition, conjugation to enhanced green fluorescent protein (eGFP) was also validated to show the flexibility of the method. The invertase conjugated complex was successfully applied for the detection of antibody-antigen interaction using a personal glucose meter (PGM) for assay readout. The setup was used in both a direct and competitive assay highlighting the robustness of the conjugate for assay development. The method provides an alternative conjugation process to allow easy exchange of antibodies to facilitate rapid development of diagnostic assays for various diseases on the PGM platform.
Collapse
Affiliation(s)
- Nur Faezee Ismail
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
48
|
Rosenzweig R, Kay LE. Solution NMR Spectroscopy Provides an Avenue for the Study of Functionally Dynamic Molecular Machines: The Example of Protein Disaggregation. J Am Chem Soc 2015; 138:1466-77. [PMID: 26651836 DOI: 10.1021/jacs.5b11346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution-based NMR spectroscopy has been an important tool for studying the structure and dynamics of relatively small proteins and protein complexes with aggregate molecular masses under approximately 50 kDa. The development of new experiments and labeling schemes, coupled with continued improvements in hardware, has significantly reduced this size limitation, enabling atomic-resolution studies of molecular machines in the 1 MDa range. In this Perspective, some of the important advances are highlighted in the context of studies of molecular chaperones involved in protein disaggregation. New insights into the structural biology of disaggregation obtained from NMR studies are described, focusing on the unique capabilities of the methodology for obtaining atomic-resolution descriptions of dynamic systems.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario, Canada M5S 1A8
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario, Canada M5S 1A8.,Program in Molecular Structure and Function, Hospital for Sick Children , 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
49
|
Freiburger L, Sonntag M, Hennig J, Li J, Zou P, Sattler M. Efficient segmental isotope labeling of multi-domain proteins using Sortase A. JOURNAL OF BIOMOLECULAR NMR 2015; 63:1-8. [PMID: 26319988 DOI: 10.1007/s10858-015-9981-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/24/2015] [Indexed: 06/04/2023]
Abstract
NMR studies of multi-domain protein complexes provide unique insight into their molecular interactions and dynamics in solution. For large proteins domain-selective isotope labeling is desired to reduce signal overlap, but available methods require extensive optimization and often give poor ligation yields. We present an optimized strategy for segmental labeling of multi-domain proteins using the S. aureus transpeptidase Sortase A. Critical improvements compared to existing protocols are (1) the efficient removal of cleaved peptide fragments by centrifugal filtration and (2) a strategic design of cleavable and non-cleavable affinity tags for purification. Our approach enables routine production of milligram amounts of purified segmentally labeled protein for NMR and other biophysical studies.
Collapse
Affiliation(s)
- Lee Freiburger
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.
| | - Miriam Sonntag
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.
| | - Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.
| | - Jian Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Peijian Zou
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
50
|
|