1
|
Chen R, Wan R, Peng K, Liu X, Zhou B, He R, Yan Y, Zhao Y, Yin YS, Xu H, Yang X, Liang X. Equol Alleviates the In Vitro Aging-Induced Disruption of Porcine Oocytes. Reprod Domest Anim 2025; 60:e70007. [PMID: 39835729 DOI: 10.1111/rda.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Oocyte quality is crucial for determining the subsequent embryo developmental capacity and reproductive outcomes. However, aging is detrimental to oocyte quality. Previous studies have demonstrated that soy isoflavones have positive effects on the reproductive performance of female pigs. Equol, the primary metabolite of soy isoflavones, is renowned for its antioxidant properties and its ability to scavenge reactive oxygen species (ROS). However, the potential role of equol in reversing aging-mediated oocyte decline has not yet been elucidated. In this study, we treated the porcine oocytes with different concentrations of equol (2.5, 5 and 10 μM) during prolonged in vitro culture. Our findings showed that aging led to decreased embryonic developmental capacity, indicating the decline of oocyte quality. We further found that aging disrupted spindle assembly and chromosome arrangement, impaired actin polymerisation and reduced mitochondrial activity and function. Moreover, aging increased ROS levels; thereafter, DNA damage and apoptosis was induced in the porcine oocytes. Interestingly, treatment with 2.5 μM equol during the aging process significantly mitigated the above-mentioned defective parameters in porcine oocytes and finally improved embryo development rates. Collectively, these results imply that equol has potential benefits in attenuating the aging-mediated defects on porcine oocytes.
Collapse
Affiliation(s)
- Rui Chen
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Runtian Wan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Ke Peng
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Benliang Zhou
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Rijing He
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Yujun Yan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Yanan Zhao
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Ye-Shi Yin
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Huiyan Xu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Chang H, Huang C, Cheng S, Li J, Wang X. Fbxo28 is essential for spindle migration and morphology during mouse oocyte meiosis I. Int J Biol Macromol 2024; 275:133232. [PMID: 38960234 DOI: 10.1016/j.ijbiomac.2024.133232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Spindle migration and assembly regulates asymmetric oocyte division, which is essential for fertility. Fbxo28, as a member of SCF (Skp1-Cul1-F-box) ubiquitin E3 ligases complex, is specifically expressed in oocytes. However, little is known about the functions of Fbxo28 in spindle assembly and migration during oocyte meiosis I. In present study, microinjection with morpholino oligonucleotides and exogenous mRNA for knockdown and rescue experiments, and immunofluorescence staining, western blot, timelapse confocal microscopy and chromosome spreading were utilized to explore the roles of Fbxo28 in asymmetric division during meiotic maturation. Our data suggested that Fbxo28 mainly localized at chromosomes and acentriolar microtubule-organizing centers (aMTOCs). Depletion of Fbxo28 did not affect polar body extrusion but caused defects in spindle morphology and migration, indicative of the failure of asymmetric division. Moreover, absence of Fbxo28 disrupted both cortical and cytoplasmic actin assembly and decreased the expression of ARPC2 and ARP3. These defects could be rescued by exogenous Fbxo28-myc mRNA supplement. Collectively, this study demonstrated that Fbxo28 affects spindle morphology and actin-based spindle migration during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Haoya Chang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China; Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siyu Cheng
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
3
|
Ge R, Zhang L, Yang Y, Chen K, Li C. Arpc2 integrates ecdysone and juvenile hormone metabolism to influence metamorphosis and reproduction in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2024; 80:3734-3742. [PMID: 38477435 DOI: 10.1002/ps.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Actin-related protein 2/3 complex regulates actin polymerization and the formation of branched actin networks. However, the function and evolutionary relationship of this complex subunit 2 (Arpc2) has been poorly understood in insects. RESULTS To address these issues, we performed comprehensive analysis of Arpc2 in Tribolium castaneum. Phylogenetic analysis revealed that Arpc2 was originated from one ancestral gene in animals but evolved independently between vertebrates and insects after species differentiation. T. castaneum Arpc2 has a 906-bp coding sequence and consists of 4 exons. Arpc2 transcripts were abundantly detected in embryos and pupae but less so in larvae and adults, while it had high expression in the gut, fat body and head but low expression in the epidermis of late-stage larvae. Knockdown of it at the late larval stage inhibited the pupation and resulted in arrested larvae. Silencing it in 1-day pupae impaired eclosion, which caused adult wings to fail to close. Injection of Arpc2 dsRNAs into 5-day pupae made adults have smaller testis and ovary and could not lay eggs. The expression of vitellogenin 1 (Vg1), Vg2 and Vg receptor (VgR) was downregulated after knocking down Arpc2 5 days post-adult emergence. Arpc2 silencing reduced 20-hydroxyecdysone titer by affecting the enzymes of its biosynthesis and catabolism but increased juvenile biosynthesis via upregulating JHAMT3 expression. CONCLUSION Our results indicate that Arpc2 is associated with the metamorphosis and reproduction by integrating ecdysone and juvenile hormone metabolism in T. castaneum. This study provides theoretical basis for developing Arpc2 as a potential RNA interference target for pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Zhang J, Tian Y, Xu X, Wang B, Huang Z, Song K, Lou S, Kang J, Zhang N, Li J, Weng J, Liang Y, Ma W. PLD1 promotes spindle assembly and migration through regulating autophagy in mouse oocyte meiosis. Autophagy 2024; 20:1616-1638. [PMID: 38513669 PMCID: PMC11210919 DOI: 10.1080/15548627.2024.2333164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
PLD1 has been implicated in cytoskeletal reorganization and vesicle trafficking in somatic cells; however, its function remains unclear in oocyte meiosis. Herein, we found PLD1 stably expresses in mouse oocytes meiosis, with direct interaction with spindle, RAB11A+ vesicles and macroautophagic/autophagic vacuoles. The genetic or chemical inhibition of PLD1 disturbed MTOC clustering, spindle assembly and its cortical migration, also decreased PtdIns(4,5)P2, phosphorylated CFL1 (p-CFL1 [Ser3]) and ACTR2, and their local distribution on MTOC, spindle and vesicles. Furthermore in PLD1-suppressed oocytes, vesicle size was significantly reduced while F-actin density was dramatically increased in the cytoplasm, the asymmetric distribution of autophagic vacuoles was broken and the whole autophagic process was substantially enhanced, as illustrated with characteristic changes in autophagosomes, autolysosome formation and levels of ATG5, BECN1, LC3-II, SQSTM1 and UB. Exogenous administration of PtdIns(4,5)P2 or overexpression of CFL1 hyperphosphorylation mutant (CFL1S3E) could significantly improve polar MTOC focusing and spindle structure in PLD1-depleted oocytes, whereas overexpression of ACTR2 could rescue not only MTOC clustering, and spindle assembly but also its asymmetric positioning. Interestingly, autophagy activation induced similar defects in spindle structure and positioning; instead, its inhibition alleviated the alterations in PLD1-depleted oocytes, and this was highly attributed to the restored levels of PtdIns(4,5)P2, ACTR2 and p-CFL1 (Ser3). Together, PLD1 promotes spindle assembly and migration in oocyte meiosis, by maintaining rational levels of ACTR2, PtdIns(4,5)P2 and p-CFL1 (Ser3) in a manner of modulating autophagy flux. This study for the first time introduces a unique perspective on autophagic activity and function in oocyte meiotic development.Abbreviations: ACTR2/ARP2: actin related protein 2; ACTR3/ARP3: actin related protein 3; ATG5: autophagy related 5; Baf-A1: bafilomycin A1; BFA: brefeldin A; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GV: germinal vesicle; GVBD: germinal vesicle breakdown; IVM: in vitro maturation; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MI: metaphase of meiosis I; MII: metaphase of meiosis II; MO: morpholino; MTOC: microtubule-organizing center; MTOR: mechanistic target of rapamycin kinase; PB1: first polar body; PLA: proximity ligation assay; PLD1: phospholipase D1; PtdIns(4,5)P2/PIP2: phosphatidylinositol 4,5-bisphosphate; RAB11A: RAB11A, member RAS oncogene family; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin alpha; TUBG/γ-tubulin: tubulin gamma; UB: ubiquitin; WASL/N-WASP: WASP like actin nucleation promoting factor.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ke Song
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Shuo Lou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyi Kang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ningning Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyu Li
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Galatidou S, Petelski AA, Pujol A, Lattes K, Latorraca LB, Fair T, Popovic M, Vassena R, Slavov N, Barragán M. Single-cell proteomics reveals decreased abundance of proteostasis and meiosis proteins in advanced maternal age oocytes. Mol Hum Reprod 2024; 30:gaae023. [PMID: 38870523 DOI: 10.1093/molehr/gaae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed data-independent acquisition, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.
Collapse
Affiliation(s)
- Styliani Galatidou
- Research and Development, EUGIN Group, Barcelona, Spain
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Aleksandra A Petelski
- Department of Bioengineering, Single Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | | | - Lais B Latorraca
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Mina Popovic
- Research and Development, EUGIN Group, Barcelona, Spain
| | - Rita Vassena
- Research and Development, EUGIN Group, Barcelona, Spain
| | - Nikolai Slavov
- Department of Bioengineering, Single Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
6
|
Galatidou S, Petelski A, Pujol A, Lattes K, Latorraca LB, Fair T, Popovic M, Vassena R, Slavov N, Barragan M. Single-cell proteomics reveals decreased abundance of proteostasis and meiosis proteins in advanced maternal age oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595547. [PMID: 38903107 PMCID: PMC11188101 DOI: 10.1101/2024.05.23.595547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.
Collapse
|
7
|
Pan MH, Zhang KH, Wu SL, Pan ZN, Sun MH, Li XH, Ju JQ, Luo SM, Ou XH, Sun SC. FMNL2 regulates actin for endoplasmic reticulum and mitochondria distribution in oocyte meiosis. eLife 2024; 12:RP92732. [PMID: 38747713 PMCID: PMC11095938 DOI: 10.7554/elife.92732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
- College of Veterinary Medicine, Northwest A&F UniversityShaanxiChina
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
8
|
Li H, Liu J, Nong W, Shen M, Dou S, Sun S, Wang J. Aluminum exposure impairs oocyte quality via subcellular structure disruption and DNA damage-related apoptosis in mice. J Environ Sci (China) 2024; 139:308-319. [PMID: 38105057 DOI: 10.1016/j.jes.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 12/19/2023]
Abstract
Aluminum (Al) can lead to an exposure of creature in varieties ways for its universality, and it could disturb normal physiological metabolism, with the damage to multisystem including reproduction. Since the oocyte quality is critical for female reproduction, we inspected the toxicity of Al on mouse oocyte maturation. We constructed in vitro exposure mouse model, and we found that 5 mmol/L Al had adverse effects on oocyte maturation by impairing organelle and cytoskeleton. Aberrant spindle and misaligned chromosomes which might be considered to be caused by elevated levels of acetylation, as well as abnormal distribution of actin dynamics could hinder normal meiosis of oocytes. Organelle dysfunction indicated that Al affected proteins synthesis, transport and digestion, which would further damage oocyte maturation. In order to explore the mechanism of Al toxicity, our further investigation demonstrated that Al caused mitochondrial dysfunction and imbalance calcium homeostasis, resulting in limited energy supply. Moreover, high level of reactive oxygen species, DNA damage and apoptosis caused by oxidative stress were also the manifestation of Al toxicity on oocytes. In conclusion, our study provided the evidence that Al exposure affected oocyte quality through its effects on spindle organization, actin dynamics, organelle function and the induction of DNA damage-related apoptosis with mouse model.
Collapse
Affiliation(s)
- Hongge Li
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingcai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Nong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Mengying Shen
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Sheng Dou
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Shaochen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junli Wang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China; School of Medical Laboratory, Youjiang Medical University for Nationalities, Guangxi 533000, China; Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Guangxi 533000, China; Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China.
| |
Collapse
|
9
|
Yuen WS, Zhang QH, Bourdais A, Adhikari D, Halet G, Carroll J. Polo-like kinase 1 promotes Cdc42-induced actin polymerization for asymmetric division in oocytes. Open Biol 2023; 13:220326. [PMID: 36883283 PMCID: PMC9993042 DOI: 10.1098/rsob.220326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Polo-like kinase I (Plk1) is a highly conserved seronine/threonine kinase essential in meiosis and mitosis for spindle formation and cytokinesis. Here, through temporal application of Plk1 inhibitors, we identify a new role for Plk1 in the establishment of cortical polarity essential for highly asymmetric cell divisions of oocyte meiosis. Application of Plk1 inhibitors in late metaphase I abolishes pPlk1 from spindle poles and prevents the induction of actin polymerization at the cortex through inhibition of local recruitment of Cdc42 and Neuronal Wiskott-Aldrich Syndrome protein (N-WASP). By contrast, an already established polar actin cortex is insensitive to Plk1 inhibitors, but if the polar cortex is first depolymerized, Plk1 inhibitors completely prevent its restoration. Thus, Plk1 is essential for establishment but not maintenance of cortical actin polarity. These findings indicate that Plk1 regulates recruitment of Cdc42 and N-Wasp to coordinate cortical polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Wai Shan Yuen
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qing Hua Zhang
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Bourdais
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - John Carroll
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Pan MH, Xu R, Zhang Y, Yin L, Li R, Wen D, Lu S, Gao Y, Zhao X, Wei Q, Han B, Ma B. The Impact of Arp2/3 Complex Inhibition on Cytoskeleton Dynamics and Mitochondrial Function during Goat Oocyte Meiosis. Animals (Basel) 2023; 13:ani13020263. [PMID: 36670803 PMCID: PMC9854427 DOI: 10.3390/ani13020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
F-actin is of critical importance in oocyte meiotic maturation. Actin assembly and its dynamics are mainly regulated by actin nucleation factors. The actin-related protein complex 2/3 (Arp2/3) is responsible for the organization of F-actin filaments. However, the role of Arp2/3 complex in goat oocytes has not been fully elucidated. Our findings demonstrate that Arp2/3 complex activity is necessary for the maturation of goat oocytes. The Arp2/3 complex-specific inhibitor CK666 impairs the maturation of goat oocytes and alters the genes associated with cumulus expansion, both of which suggest that normal meiosis is affected. Arp2, one of the subunits of the Arp2/3 complex, was found to be mainly accumulated at the oocyte cortex and to co-localize with F-actin during goat oocyte maturation in our results. Thus, we further investigated the cytoskeleton dynamics and found that Arp2/3 complex inhibition disrupts the F-actin assembly and spindle organization. Further analysis revealed that, in addition to direct effects on the cytoskeleton, Arp2/3 complex could also induce ROS accumulation and oxidative stress by disrupting mitochondrial distribution and function, ultimately increasing the rate of early apoptosis in goat oocytes. Our study provides evidence that the Arp2/3 complex is a key regulator of goat oocyte maturation through its regulation of the cytoskeleton dynamics and mitochondrial function.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Yiqian Zhang
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Lu Yin
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Ruoyu Li
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Dongxu Wen
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin 719000, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin 719000, China
- Correspondence: (B.H.); (B.M.)
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (B.H.); (B.M.)
| |
Collapse
|
11
|
Jiao G, Lian H, Xing J, Chen L, Du Z, Liu X. MOS mutation causes female infertility with large polar body oocytes. Gynecol Endocrinol 2022; 38:1158-1163. [PMID: 36403623 DOI: 10.1080/09513590.2022.2147158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Moloney sarcoma oncogene (MOS) encodes a protein serine/threonine kinase and MOS is expressed at high levels in oocytes undergoing meiotic maturation. The MOS/MAPK pathway is normally required for the maintenance of microtubules and chromatin in a metaphasic state during the meiotic divisions. To determine the pathogenic genes in a female infertile patient due to large polar body oocytes, whole-exome sequencing was performed on the patient and available family members. We identified a novel homozygous missense mutation c.591T > G in MOS. Bioinformatics analysis showed that the mutation is harmful. These findings suggest that MOS mutation results in oocytes with a large polar body and poor embryonic development in patients. The MOS variant may regulate oocyte asymmetric division by MAPK/WAVE2/Arp2/3/actin signaling pathway. This will help to understand the comprehensive role of MOS in early human reproductive process and provide genetic markers for future genetic counseling for more individualized treatments.
Collapse
Affiliation(s)
- Guangzhong Jiao
- Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Huayu Lian
- Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinhao Xing
- Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Lili Chen
- Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhaoli Du
- Yinfeng Gene Technology Co., Ltd., Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
12
|
Wang Y, Li S, Yang S, Li X, Liu L, Ma X, Niu D, Duan X. Exposure to phenanthrene affects oocyte meiosis by inducing mitochondrial dysfunction and endoplasmic reticulum stress. Cell Prolif 2022; 56:e13335. [PMID: 36125441 PMCID: PMC9816937 DOI: 10.1111/cpr.13335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbons (PAHs), which is a widespread environmental contaminant. Various studies showed that PHE has adverse impacts on animals and human health. It has been shown that PHE exposure induced follicular atresia and endocrine dyscrasia in female mice. However, the potential mechanism regarding how PHE affects female reproductive system especially the oocyte quality has not been elucidated. METHODS AND RESULTS In this study, we set up PHE exposure model and found that PHE exposure compromised oocytes maturation competence by inhibiting spindle assembly and chromosomes alignment. Moreover, PHE exposure induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, leading to increased reactive oxygen species (ROS) and aberrant calcium levels in cytoplasm, eventually induced oxidative stress and DNA damage in oocytes. Furthermore, we found that oral administration of PHE caused the occurrence of oxidative stress and apoptosis in female ovary. In addition, the oocyte exhibited aberrant spindle morphology and failure of actin cap formation in metaphase II oocytes. CONCLUSIONS Taken together, our study demonstrated that mitochondrial dysfunction and ER stress-induced oxidative stress and DNA damage are the major cause of poor oocyte quality after PHE exposure.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Si‐Hong Li
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Shu‐Jie Yang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Xiao‐Qing Li
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Lu Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Dong Niu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| | - Xing Duan
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
13
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
14
|
Shan MM, Zou YJ, Pan ZN, Zhang HL, Xu Y, Ju JQ, Sun SC. Kinesin motor KIFC1 is required for tubulin acetylation and actin-dependent spindle migration in mouse oocyte meiosis. Development 2022; 149:274327. [DOI: 10.1242/dev.200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Pan MH, Wan X, Wang HH, Pan ZN, Zhang Y, Sun SC. FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis in mouse oocytes†. Biol Reprod 2021; 102:1203-1212. [PMID: 32167535 DOI: 10.1093/biolre/ioaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
Formin-like 3 (FMNL3) is a member of the formin-likes (FMNLs), which belong to the formin family. As an F-actin nucleator, FMNL3 is essential for several cellular functions, such as polarity control, invasion, and migration. However, the roles of FMNL3 during oocytes meiosis remain unclear. In this study, we investigated the functions of FMNL3 during mouse oocyte maturation. Our results showed that FMNL3 mainly concentrated in the oocyte cortex and spindle periphery. Depleting FMNL3 led to the failure of polar body extrusion, and we also found large polar bodies in the FMNL3-deleted oocytes, indicating the occurrence of symmetric meiotic division. There was no effect of FMNL3 on spindle organization; however, we observed spindle migration defects at late metaphase I, which might be due to the decreased cytoplasmic actin. Microinjecting Fmnl3-EGFP mRNA into Fmnl3-depleted oocytes significantly rescued these defects. In addition, the results of co-immunoprecipitation and the perturbation of protein expression experiments suggested that FMNL3 interacted with the actin-binding protein FASCIN for the regulation of actin filaments in oocytes. Thus, our results provide the evidence that FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| |
Collapse
|
16
|
Dehapiot B, Clément R, Bourdais A, Carrière V, Huet S, Halet G. RhoA- and Cdc42-induced antagonistic forces underlie symmetry breaking and spindle rotation in mouse oocytes. PLoS Biol 2021; 19:e3001376. [PMID: 34491981 PMCID: PMC8448345 DOI: 10.1371/journal.pbio.3001376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 09/17/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and 2 small polar bodies. This relies on the ability of the cell to break symmetry and position its spindle close to the cortex before anaphase occurs. In metaphase II–arrested mouse oocytes, the spindle is actively maintained close and parallel to the cortex, until fertilization triggers sister chromatid segregation and the rotation of the spindle. The latter must indeed reorient perpendicular to the cortex to enable cytokinesis ring closure at the base of the polar body. However, the mechanisms underlying symmetry breaking and spindle rotation have remained elusive. In this study, we show that spindle rotation results from 2 antagonistic forces. First, an inward contraction of the cytokinesis furrow dependent on RhoA signaling, and second, an outward attraction exerted on both sets of chromatids by a Ran/Cdc42-dependent polarization of the actomyosin cortex. By combining live segmentation and tracking with numerical modeling, we demonstrate that this configuration becomes unstable as the ingression progresses. This leads to spontaneous symmetry breaking, which implies that neither the rotation direction nor the set of chromatids that eventually gets discarded are biologically predetermined. Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and two small polar bodies, but the mechanisms underlying the required symmetry breaking and spindle rotation have remained elusive. This study shows that spindle rotation in activated mouse oocytes relies on spontaneous symmetry breaking resulting from an unstable configuration generated by cleavage furrow ingression and cortical chromosome attraction.
Collapse
Affiliation(s)
- Benoit Dehapiot
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
- Univ Rennes, CNRS, IGDR—UMR 6290, Rennes, France
- * E-mail: (BD); (GH)
| | - Raphaël Clément
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
| | | | | | | | - Guillaume Halet
- Univ Rennes, CNRS, IGDR—UMR 6290, Rennes, France
- * E-mail: (BD); (GH)
| |
Collapse
|
17
|
Abstract
Oxidative stress causes several diseases and dysfunctions in cells, including oocytes. Clearly, oxidative stress influences oocyte quality during in vitro maturation and fertilization. Here we tested the ability of coenzyme Q10 (CoQ10) to reduce reactive oxygen species (ROS) and improve mouse oocyte quality during in vitro culture. Treatment with 50 μM CoQ10 efficiently reduced ROS levels in oocytes cultured in vitro. The fertilizable form of an oocyte usually contains a cortical granule-free domain (CGFD). CoQ10 enhanced the ratio of CGFD-oocytes from 35% to 45%. However, the hardening of the zona pellucida in oocytes was not affected by CoQ10 treatment. The in vitro maturation capacity of oocytes, which was determined by the first polar body extrusion, was enhanced from 48.9% to 75.7% by the addition of CoQ10 to the culture medium. During the parthenogenesis process, the number of two-cell embryos was increased by CoQ10 from 43.5% to 67.3%. Additionally, treatment with CoQ10 increased the expression of Bcl2 and Sirt1 in cumulus cells. These results suggested that CoQ10 had a positive effect on ROS reduction, maturation rate and two-cell embryo formation in mouse oocyte culture.
Collapse
|
18
|
Liu CCS, Cheung PW, Dinesh A, Baylor N, Paunescu TC, Nair AV, Bouley R, Brown D. Actin-related protein 2/3 complex plays a critical role in the aquaporin-2 exocytotic pathway. Am J Physiol Renal Physiol 2021; 321:F179-F194. [PMID: 34180716 PMCID: PMC8424666 DOI: 10.1152/ajprenal.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.
Collapse
Affiliation(s)
- Chen-Chung Steven Liu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pui Wen Cheung
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anupama Dinesh
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodor C. Paunescu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V. Nair
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Zou YJ, Shan MM, Wang HH, Pan ZN, Pan MH, Xu Y, Ju JQ, Sun SC. RAB14 GTPase is essential for actin-based asymmetric division during mouse oocyte maturation. Cell Prolif 2021; 54:e13104. [PMID: 34323331 PMCID: PMC8450121 DOI: 10.1111/cpr.13104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives RAB14 is a member of small GTPase RAB family which localizes at the endoplasmic reticulum (ER), Golgi apparatus and endosomal compartments. RAB14 acts as molecular switches that shift between a GDP‐bound inactive state and a GTP‐bound active state and regulates circulation of vesicles between the Golgi and endosomal compartments. In present study, we investigated the roles of RAB14 during oocyte meiotic maturation. Materials and methods Microinjection with siRNA and exogenous mRNA for knock down and rescue, and immunofluorescence staining, Western blot and real‐time RT‐PCR were utilized for the study. Results Our results showed that RAB14 localized in the cytoplasm and accumulated at the cortex during mouse oocyte maturation, and it was also enriched at the spindle periphery. Depletion of RAB14 did not affect polar body extrusion but caused large polar bodies, indicating the failure of asymmetric division. We found that absence of RAB14 did not affect spindle organization but caused the spindle migration defects, and this might be due to the regulation on cytoplasmic actin assembly via the ROCK‐cofilin signalling pathway. We also found that RAB14 depletion led to aberrant Golgi apparatus distribution. Exogenous Myc‐Rab14 mRNA supplement could significantly rescue these defects caused by Rab14 siRNA injection. Conclusions Taken together, our results suggest that RAB14 affects ROCK‐cofilin pathway for actin‐based spindle migration and Golgi apparatus distribution during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,WEGO Holding Company Limited, Weihai, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Ral GTPase is essential for actin dynamics and Golgi apparatus distribution in mouse oocyte maturation. Cell Div 2021; 16:3. [PMID: 34112192 PMCID: PMC8194175 DOI: 10.1186/s13008-021-00071-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.
Collapse
|
21
|
Chánez-Paredes S, Montoya-García A, Castro-Ochoa KF, García-Cordero J, Cedillo-Barrón L, Shibayama M, Nava P, Flemming S, Schlegel N, Gautreau AM, Vargas-Robles H, Mondragón-Flores R, Schnoor M. The Arp2/3 Inhibitory Protein Arpin Is Required for Intestinal Epithelial Barrier Integrity. Front Cell Dev Biol 2021; 9:625719. [PMID: 34012961 PMCID: PMC8128147 DOI: 10.3389/fcell.2021.625719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | - Sven Flemming
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
22
|
Jo YJ, Kwon J, Jin ZL, Namgoong S, Kwon T, Yoon SB, Lee DH, Kim JS, Kim NH. WHAMM is essential for spindle formation and spindle actin polymerization in maturing mouse oocytes. Cell Cycle 2021; 20:225-235. [PMID: 33397186 DOI: 10.1080/15384101.2020.1867791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
WHAMM (WAS Protein Homolog Associated with Actin, Golgi Membranes, and Microtubules) is involved in Golgi membrane association, microtubule binding, and actin nucleation as a nucleation-promoting factor, which activates the actin-related protein 2/3 complex (the Arp2/3 complex). However, the role of WHAMM in mammalian oocyte maturation is poorly understood. The presence of WHAMM mRNA and protein during all stages of mouse oocyte maturation has been verified. It is mainly co-localized with the actin cage permeating the spindle during mouse oocyte maturation. Through the knockdown of WHAMM, we confirmed that it regulates spindle formation and affects the localization of the microtubule-organizing center (MTOC) during the early stages of spindle formation. Moreover, depletion of WHAMM impaired the formation of the spindle actin and chromosome alignment, which might be the cause of chromosomal aneuploidy and abnormal, asymmetric division. Treatment with brefeldin A (BFA), an inhibitor of vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus, induced abnormal and dispersed localization of WHAMM. Taken together, these findings show that WHAMM is an essential component of the actin cytoskeleton machinery and plays a crucial role in oocyte maturation, presumably by controlling the formation of spindles with normal length by activating the formation of the spindle actin via the Arp2/3 complex.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea.,Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea.,Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Zhe-Long Jin
- Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Dong-Ho Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| |
Collapse
|
23
|
Pal D, Ellis A, Sepúlveda-Ramírez SP, Salgado T, Terrazas I, Reyes G, De La Rosa R, Henson JH, Shuster CB. Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and Meiotic Cleavages. Front Cell Dev Biol 2020; 8:591141. [PMID: 33282870 PMCID: PMC7705106 DOI: 10.3389/fcell.2020.591141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
In motile cells, the activities of the different Rho family GTPases are spatially segregated within the cell, and during cytokinesis there is evidence that this may also be the case. But while Rho’s role as the central organizer for contractile ring assembly is well established, the role of Rac and the branched actin networks it promotes is less well understood. To characterize the contributions of these proteins during cytokinesis, we manipulated Rac and Arp2/3 activity during mitosis and meiosis in sea urchin embryos and sea star oocytes. While neither Rac nor Arp2/3 were essential for early embryonic divisions, loss of either Rac or Arp2/3 activity resulted in polar body defects. Expression of activated Rac resulted in cytokinesis failure as early as the first division, and in oocytes, activated Rac suppressed both the Rho wave that traverses the oocyte prior to polar body extrusion as well as polar body formation itself. However, the inhibitory effect of Rac on cytokinesis, polar body formation and the Rho wave could be suppressed by effector-binding mutations or direct inhibition of Arp2/3. Together, these results suggest that Rac- and Arp2/3 mediated actin networks may directly antagonize Rho signaling, thus providing a potential mechanism to explain why Arp2/3-nucleated branched actin networks must be suppressed at the cell equator for successful cytokinesis.
Collapse
Affiliation(s)
- Debadrita Pal
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Andrea Ellis
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Torey Salgado
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Isabella Terrazas
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Richard De La Rosa
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - John H Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
24
|
Microinjection induces changes in the transcriptome of bovine oocytes. Sci Rep 2020; 10:11211. [PMID: 32641751 PMCID: PMC7343835 DOI: 10.1038/s41598-020-67603-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
Gene knockdown techniques are widely used to examine the function of specific genes or proteins. While a variety of techniques are available, a technique commonly used on mammalian oocytes is mRNA knockdown by microinjection of small interfering RNA (siRNA), with non-specific siRNA injection used as a technical control. Here, we investigate whether and how the microinjection procedure itself affects the transcriptome of bovine oocytes. Injection of non-specific siRNA resulted in differential expression of 119 transcripts, of which 76 were down-regulated. Gene ontology analysis revealed that the differentially regulated genes were enriched in the biological processes of ATP synthesis, molecular transport and regulation of protein polyubiquitination. This study establishes a background effect of the microinjection procedure that should be borne in mind by those using microinjection to manipulate gene expression in oocytes.
Collapse
|
25
|
Nampt-mediated spindle sizing secures a post-anaphase increase in spindle speed required for extreme asymmetry. Nat Commun 2020; 11:3393. [PMID: 32636388 PMCID: PMC7341875 DOI: 10.1038/s41467-020-17088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Meiotic divisions in oocytes are extremely asymmetric and require pre- and post-anaphase-onset phases of spindle migration. The latter induces membrane protrusion that is moulded around the spindle thereby reducing cytoplasmic loss. Here, we find that depleting the NAD biosynthetic enzyme, nicotinamide phosphoribosyl-transferase (Nampt), in mouse oocytes results in markedly longer spindles and compromises asymmetry. By analysing spindle speed in live oocytes, we identify a striking and transient acceleration after anaphase-onset that is severely blunted following Nampt-depletion. Slow-moving midzones of elongated spindles induce cortical furrowing deep within the oocyte before protrusions can form, altogether resulting in larger oocyte fragments being cleaved off. Additionally, we find that Nampt-depletion lowers NAD and ATP levels and that reducing NAD using small molecule Nampt inhibitors also compromises asymmetry. These data show that rapid midzone displacement is critical for extreme asymmetry by delaying furrowing to enable protrusions to form and link metabolic status to asymmetric division. Meiotic cell division in oocytes is asymmetric and requires microtubule spindle migration after anaphase-onset. Here, the authors show that Nampt, an enzyme of the Nicotinamide adenine dinucleotide (NAD) biosynthetic pathway, contributes to post-anaphase spindle migration and oocyte division asymmetry by controlling spindle length.
Collapse
|
26
|
The Arp2/3 complex and the formin, Diaphanous, are both required to regulate the size of germline ring canals in the developing egg chamber. Dev Biol 2020; 461:75-85. [PMID: 31945342 DOI: 10.1016/j.ydbio.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/30/2023]
Abstract
Intercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and growth of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold growth that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and growth. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and growth throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain stability. Our data suggest that nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.
Collapse
|
27
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
28
|
β-carotene improves oocyte development and maturation under oxidative stress in vitro. In Vitro Cell Dev Biol Anim 2019; 55:548-558. [PMID: 31313007 DOI: 10.1007/s11626-019-00373-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Recently, the mean maternal age at first birth has been continuing to increase. The decline in the age-related fertility is due to the reduction in the number and the quality of the oocyte. An elevation in intra-ovarian reactive oxygen species (ROS) is correlated with the increase in maternal age, and the oxidative stress is involved in the decline in oocyte quality. Although β-carotene, a very effective quencher of ROS, has been found to have the beneficial contribution to the ovarian development and steroidogenesis, it is unknown the effect of β-carotene on the oocyte development especially oocyte maturation. This investigation aimed to explore the beneficial contribution of β-carotene on oocyte maturation under oxidative stress and the underlying mechanism. We found that the oxidative stress induced by ROS reagent Rosup inhibited oocyte development/maturation and parthenogenetic activation which could be dramatically rescued by β-carotene (57.1 ± 4.7% vs 78.9 ± 3.8%; p < 0.05) in vitro. The underlying mechanisms include that β-carotene not only reduces ROS formation and cell apoptosis, but also it can restore actin expression, cortical granule-free domain (CGFD) formation, mitochondria homogeneous distribution, and nuclear maturation. The data suggest that β-carotene acts as a potential antioxidant in the oocyte. Therefore, the findings from this investigation provide the fundamental 7knowledge for using β-carotene as an antioxidant to improve the oocyte quality and even the ovarian function.
Collapse
|
29
|
Zhang Y, Wan X, Wang HH, Pan MH, Pan ZN, Sun SC. RAB35 depletion affects spindle formation and actin-based spindle migration in mouse oocyte meiosis. ACTA ACUST UNITED AC 2019; 25:359-372. [DOI: 10.1093/molehr/gaz027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/28/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Mammalian oocyte maturation involves a unique asymmetric cell division, in which meiotic spindle formation and actin filament-mediated spindle migration to the oocyte cortex are key processes. Here, we report that the vesicle trafficking regulator, RAB35 GTPase, is involved in regulating cytoskeleton dynamics in mouse oocytes. RAB35 GTPase mainly accumulated at the meiotic spindle periphery and cortex during oocyte meiosis. Depletion of RAB35 by morpholino microinjection led to aberrant polar body extrusion and asymmetric division defects in almost half the treated oocytes. We also found that RAB35 affected SIRT2 and αTAT for tubulin acetylation, which further modulated microtubule stability and meiotic spindle formation. Additionally, we found that RAB35 associated with RHOA in oocytes and modulated the ROCK–cofilin pathway for actin assembly, which further facilitated spindle migration for oocyte asymmetric division. Importantly, microinjection of Myc-Rab35 cRNA into RAB35-depleted oocytes could significantly rescue these defects. In summary, our results suggest that RAB35 GTPase has multiple roles in spindle stability and actin-mediated spindle migration in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Zhang Y, Wu L, Wan X, Wang H, Li X, Pan Z, Sun S. Loss of PKC mu function induces cytoskeletal defects in mouse oocyte meiosis. J Cell Physiol 2019; 234:18513-18523. [DOI: 10.1002/jcp.28487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Lan‐Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Hong‐Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiao‐Han Li
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhen‐Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Shao‐Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
31
|
Wang HH, Zhang Y, Tang F, Pan MH, Wan X, Li XH, Sun SC. Rab23/Kif17 regulate oocyte meiotic progression by modulating tubulin acetylation and actin dynamics. Development 2019; 146:dev.171280. [DOI: 10.1242/dev.171280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Cytoskeletal dynamics are involved in multiple cellular processes during oocyte meiosis, including spindle organization, actin-based spindle migration, and polar body extrusion. Here, we report that the vesicle trafficking protein Rab23, a GTPase, drives the motor protein Kif17 and that this is important for spindle organization and actin dynamics during mouse oocyte meiosis. GTP-bound Rab23 accumulated at the spindle and promoted migration of Kif17 to the spindle poles. Depletion of Rab23 or Kif17 caused polar body extrusion failure. Further analysis showed that depletion of Rab23/Kif17 perturbed spindle formation and chromosome alignment, possibly by affecting tubulin acetylation. Kif17 regulated tubulin acetylation by associating with αTAT and Sirt2, and depletion of Kif17 altered expression of these proteins. Moreover, depletion of Kif17 decreased the level of cytoplasmic actin, which abrogated spindle migration to the cortex. The tail domain of Kif17 associated with constituents of the RhoA-ROCK-LIMK-cofilin pathway to modulate assembly of actin filaments. Taken together, our results demonstrate that the Rab23-Kif17-cargo complex regulates tubulin acetylation for spindle organization and drives actin-mediated spindle migration during meiosis.
Collapse
Affiliation(s)
- Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
32
|
Jo YJ, Lee IW, Jung SM, Kwon J, Kim NH, Namgoong S. Spire localization via zinc finger-containing domain is crucial for the asymmetric division of mouse oocyte. FASEB J 2018; 33:4432-4447. [PMID: 30557038 DOI: 10.1096/fj.201801905r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Zinc plays an essential role in mammalian oocyte maturation, fertilization, and early embryogenesis, and depletion of zinc impairs cell cycle control, asymmetric division, and cytokinesis in oocyte. We report that zinc, via the actin nucleator Spire, acts as an essential regulator of the actin cytoskeleton remodeling during mouse oocyte maturation and fertilization. Depletion of zinc in the mouse oocyte impaired cortical and cytoplasmic actin formation. Spire is colocalized with zinc-containing vesicles via its zinc finger-containing Fab1, YOTB, Vac 1, EEA1 (FYVE) domain. Improper localization of Spire by zinc depletion or mutations in the FYVE domain impair cytoplasmic actin mesh formations and asymmetric division and cytokinesis of oocyte. All 3 major domains of the Spire are required for its proper localization and activity. After fertilization or parthenogenetic activation, Spire localization was dramatically altered following zinc release from the oocyte. Collectively, our data reveal novel roles for zinc in the regulation of the actin nucleator Spire by controlling its localization in mammalian oocyte.-Jo, Y.-J., Lee, I.-W., Jung, S.-M., Kwon, J., Kim, N.-H., Namgoong, S. Spire localization via zinc finger-containing domain is crucial for the asymmetric division of mouse oocyte.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - In-Won Lee
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - Seung-Min Jung
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - JeongWoo Kwon
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - Suk Namgoong
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| |
Collapse
|
33
|
Uraji J, Scheffler K, Schuh M. Functions of actin in mouse oocytes at a glance. J Cell Sci 2018; 131:131/22/jcs218099. [PMID: 30467138 DOI: 10.1242/jcs.218099] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gametes undergo a specialized and reductional cell division termed meiosis. Female gametes (oocytes) undergo two rounds of meiosis; the first meiotic division produces the fertilizable egg, while the second meiotic division occurs upon fertilization. Both meiotic divisions are highly asymmetric, producing a large egg and small polar bodies. Actin takes over various essential function during oocyte meiosis, many of which commonly rely on microtubules in mitotic cells. Specifically, the actin network has been linked to long-range vesicle transport, nuclear positioning, spindle migration and anchorage, polar body extrusion and accurate chromosome segregation in mammalian oocytes. In this Cell Science at a Glance article and the accompanying poster, we summarize the many functions of the actin cytoskeleton in oocytes, with a focus on findings from the mouse model system.
Collapse
Affiliation(s)
- Julia Uraji
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
34
|
Lee HW, Hsiao YC, Young TH, Yang TL. Maintenance of the spheroid organization and properties of glandular progenitor cells by fabricated chitosan based biomaterials. Biomater Sci 2018; 6:1445-1456. [PMID: 29620098 DOI: 10.1039/c7bm00559h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dysfunctional salivary gland (SG) is an unsolved clinical challenge, which is presented as xerostomia. Cell therapy is a promising treatment for restoring SG function. Salispheres are spheroid cellular organizations derived from SG stem cells. Benefitting from these cellular organizations, SG stem cells can be expanded to regenerate SG. During in vitro culture, the spontaneous reorganization of salispheres may change the features of residing SG stem cells. Therefore, it is imperative to explore ways to maintain the spheroid structure of salispheres during cell expansion in vitro. Herein, we explored biomaterial approaches using chitosan. Chitosan based biomaterials were fabricated in different forms to offer distinct interactive surfaces for cultured salispheres. The number and size of the salispheres increase in the chitosan-containing systems without increasing the incidence of spheroid cavitation. The effect of chitosan increases with high chitosan concentrations, which is optimum when chitosan is fabricated in a soluble form. The chitosan effect contributes to the regulation of the intercellular interactions and polarization within the spheroid structures. By retarding the process of salisphere cavitation, chitosan preserves the features of salivary gland progenitor cells in the cultured salispheres. The results suggest that the chitosan-containing system could effectively maintain the primitive structures and properties of salispheres during in vitro expansion, which demonstrates the potential application of salispheres for cell therapy of dysfunctional SG.
Collapse
Affiliation(s)
- Hao-Wei Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
35
|
Abstract
Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.
Collapse
Affiliation(s)
- Binyam Mogessie
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Current affiliation: School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| |
Collapse
|
36
|
Wei Z, Greaney J, Zhou C, A Homer H. Cdk1 inactivation induces post-anaphase-onset spindle migration and membrane protrusion required for extreme asymmetry in mouse oocytes. Nat Commun 2018; 9:4029. [PMID: 30279413 PMCID: PMC6168559 DOI: 10.1038/s41467-018-06510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
Female meiotic divisions are extremely asymmetric, producing large oocytes and small polar bodies (PBs). In mouse oocytes, the spindle relocates to the cortex before anaphase of meiosis I (MI). It is presumed that by displacing the future midzone, pre-anaphase spindle repositioning alone ensures asymmetry. But how subsequent anaphase events might contribute to asymmetric PB extrusion (PBE) is unknown. Here, we find that inactivation of cyclin-dependent kinase 1 (Cdk1) induces anaphase and simultaneously triggers cytoplasmic formin-mediated F-actin polymerisation that propels the spindle into the cortex causing it to protrude while anaphase progresses. Significantly, if post-anaphase-onset spindle migration fails, protrusion and asymmetry are severely threatened even with intact pre-anaphase migration. Conversely, post-anaphase migration can completely compensate for failed pre-anaphase migration. These data identify a cell-cycle-triggered phase of spindle displacement occurring after anaphase-onset, which, by inducing protrusion, is necessary for extreme asymmetry in mouse oocytes and uncover a pathway for maximising unequal division.
Collapse
Affiliation(s)
- Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Chenxi Zhou
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| |
Collapse
|
37
|
Duan X, Zhang HL, Wu LL, Liu MY, Pan MH, Ou XH, Sun SC. Involvement of LIMK1/2 in actin assembly during mouse embryo development. Cell Cycle 2018; 17:1381-1389. [PMID: 29943641 DOI: 10.1080/15384101.2018.1482138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LIMKs (LIMK1 and LIMK2) are serine/threonine protein kinases that involve in various cellular activities such as cell migration, morphogenesis and cytokinesis. However, its roles during mammalian early embryo development are still unclear. In the present study, we disrupted LIMK1/2 activity to explore the functions of LIMK1/2 during mouse early embryo development. We found that p-LIMK1/2 mainly located at the cortex of each blastomeres from 2-cell to 8-cell stage, and p-LIMK1/2 also expressed at morula and blastocyst stage in mouse embryos. Inhibition of LIMK1/2 activity by LIMKi 3 (BMS-5) at the zygote stage caused the failure of embryo early cleavage, and the disruption of LIMK1/2 activity at 8-cell stage caused the defects of embryo compaction and blastocyst formation. Fluorescence staining and intensity analysis results demonstrated that the inhibition of LIMK1/2 activity caused aberrant cortex actin expression and the decrease of phosphorylated cofilin in mouse embryos. Taken together, we identified LIMK1/2 as an important regulator for cofilin phosphorylation and actin assembly during mouse early embryo development.
Collapse
Affiliation(s)
- Xing Duan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Hao-Lin Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Lan-Lan Wu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Yao Liu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Hao Pan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Xiang-Hong Ou
- b Fertility Preservation Lab, Reproductive Medicine Center , Guangdong Second Provincial General Hospital , Guangzhou , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
38
|
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis†. Biol Reprod 2018; 100:15-24. [DOI: 10.1093/biolre/ioy163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Exposure to podophyllotoxin inhibits oocyte meiosis by disturbing meiotic spindle formation. Sci Rep 2018; 8:10145. [PMID: 29976965 PMCID: PMC6033908 DOI: 10.1038/s41598-018-28544-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Podophyllotoxin is used as medical cream which is widely applied to genital warts and molluscum contagiosum. Although previous study showed that podophyllotoxin had minimal toxicity, it was forbidden to use during pregnancy since it might be toxic to the embryos. In present study we used mouse as the model and tried to examine whether podophyllotoxin exposure was toxic to oocyte maturation, which further affected embryo development. Our results showed that podophyllotoxin exposure inhibited mouse oocyte maturation, showing with the failure of polar body extrusion, and the inhibitory effects of podophyllotoxin on oocytes was dose-depended. Further studies showed that the meiotic spindle formation was disturbed, the chromosomes were misaligned and the fluorescence signal of microtubule was decreased, indicating that podophyllotoxin may affect microtubule dynamics for spindle organization. Moreover, the oocytes which reached metaphase II under podophyllotoxin exposure also showed aberrant spindle morphology and chromosome misalignment, and the embryos generated from these oocytes showed low developmental competence. We also found that the localization of p44/42 MAPK and gamma-tubulin was disrupted, which further confirmed the effects of podophyllotoxin on meiotic spindle formation. In all, our results indicated that podophyllotoxin exposure could affect mouse oocyte maturation by disturbing microtubule dynamics and meiotic spindle formation.
Collapse
|
40
|
Citrinin exposure affects oocyte maturation and embryo development by inducing oxidative stress-mediated apoptosis. Oncotarget 2018; 8:34525-34533. [PMID: 28404941 PMCID: PMC5470988 DOI: 10.18632/oncotarget.15776] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Citrinin is one of the mycotoxins and has been shown to have various toxic effects in animals and humans. Although previous study showed the toxic effects of citrinin on the female reproductive system, especially on oocyte maturation, however, the causes or mechanism of citrinin on oocyte quality is unclear. In present study we deeply investigated this topic. We found thatcitrinin toxin exposure inhibited mouse oocyte maturation and early embryo development. Further investigation showed that the actin distribution in oocytes and embryos was disrupted, and the reduced expression of actin nucleator ARP2 expression in the oocyte cortex further confirmed this. We also found that meiotic spindle morphology was abnormal after citrinin treatment. These results indicated that citrinin toxin exposure could disrupt cytoskeleton dynamics to affect oocyte maturation and early embryo development. We also examined the ROS level and early apoptosis marker Annexin signals, and the results showed that both levels increased, indicating that citrinin induced oxidative stress and further resulted in oocyte early apoptosis. Taken together, our results indicated that citrinin toxin exposure could reduce mouse oocyte maturation and early embryo development capability by affecting cytoskeletal dynamics, which may be due to the oxidative stress induced early apoptosis.
Collapse
|
41
|
Duan X, Zhang Y, Chen KL, Zhang HL, Wu LL, Liu HL, Wang ZB, Sun SC. The small GTPase RhoA regulates the LIMK1/2-cofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis. J Cell Physiol 2018; 233:6088-6097. [PMID: 29319181 DOI: 10.1002/jcp.26450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/05/2018] [Indexed: 01/30/2023]
Abstract
LIM kinases (LIMK1/2) are LIM domain-containing serine/threonine/tyrosine kinases that mediate multiple cellular processes in mitosis. In the present study, we explored the functional roles and potential signaling pathway of LIMK1/2 during mouse oocyte meiosis. Disruption of LIMK1/2 activity and expression significantly decreased oocyte polar body extrusion. Live-cell imaging revealed that spindle migration was disturbed after both LIMK1 and LIMK2 knock down, and this might be due to aberrant distribution of actin filaments in the oocyte cytoplasm and cortex. Meanwhile, our results demonstrated that the function of LIMK1 and LIMK2 in actin assembly was related to cofilin phosphorylation levels. In addition, disruption of LIMK1/2 activity significantly increased the percentage of oocytes with abnormal spindle morphologies, which was confirmed by the abnormal p-MAPK localization. We further, explored the upstream molecules of LIMK1/2, and we found that after depletion of ROCK, phosphorylation of LIMK1/2 and cofilin were significantly decreased. Moreover, RhoA inhibition caused the decreased expression of ROCK, p-LIMK1/2, and cofilin. In summary, our results indicated that the small GTPase RhoA regulated LIMK1/2-cofilin to modulate cytoskeletal dynamics during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lan-Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Jin ZL, Jo YJ, Namgoong S, Kim NH. CAP1 mediated actin cycling via ADF/cofilin is essential for asymmetric division in mouse oocytes. J Cell Sci 2018; 131:jcs.222356. [DOI: 10.1242/jcs.222356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cellular events, and various actin-regulatory proteins modulate actin polymerization and depolymerization. Cyclase-associated proteins (CAPs), highly conserved actin monomer-binding proteins, have been known to promote actin disassembly by enhancing the actin-severing activity of ADF/cofilin. In this study, we found that CAP1 regulated actin remodeling during mouse oocyte maturation. Efficient actin disassembly during oocyte maturation is essential for asymmetric division and cytokinesis. CAP1 knockdown impaired meiotic spindle migration and asymmetric division, and it resulted in an accumulation of excessive actin filaments near the spindles. In contrast, CAP1 overexpression reduced actin mesh levels. CAP1 knockdown also rescued the decrease in cofilin overexpression-mediated actin levels, and simultaneous expression of human CAP1 (hCAP1) and cofilin synergistically decreased cytoplasmic actin levels. Overexpression of hCAP1 decreased the amount of phosphorylated cofilin, indicating that CAP1 facilitated actin depolymerization via interaction with ADF/cofilin during mouse oocyte maturation. Taken together, our results provide evidence of the importance of dynamic actin recycling by CAP1 and cofilin in the asymmetric division of mouse female gametes.
Collapse
Affiliation(s)
- Zhe-Long Jin
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
43
|
He GF, Yang LL, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S, Sun QY. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 2017; 102:67-74. [PMID: 28750296 DOI: 10.1016/j.theriogenology.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Abstract
Calcium ion fluctuation is closely related to the transformation of cell cycle. However, little is known about the function of L-type calcium channel in mammalian oocyte and embryo development. We thus studied the roles of L-type calcium channel in mouse oocyte meiotic maturation, parthenogenetic activation and early embryonic development. We used the antagonist Amlodipine to block L-type calcium channel. Oocytes or zygotes were cultured to different time points with 0 μM, 10 μM, 30 μM and 50 μM Amlodipine. Then we checked the rate of first polar body extrusion, spindle formation, asymmetric division parthenogenetic activation and early embryo cleavage. The results showed that Amlodipine treatment did not affect germinal vesicle breakdown, but caused disruption of cytoskeleton organization, symmetric division, formation of mature oocytes with a large polar body, or reduced the first polar body extrusion, depending on its concentrations. Amlodipine treatment also resulted in decreased parthenogenetic activation and arrested early embryonic development. Overall, these data suggest that proper function of L-type calcium channel is critical for oocyte maturation, activation, and early embryonic development.
Collapse
Affiliation(s)
- Gui-Fang He
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; College of Life Science, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
He SW, Xu BH, Liu Y, Wang YL, Chen MH, Xu L, Liao BQ, Lui R, Li FP, Lin YH, Fu XP, Fu BB, Hong ZW, Liu YX, Qi ZQ, Wang HL. SKAP2 regulates Arp2/3 complex for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes. Cell Cycle 2017; 16:2272-2281. [PMID: 28933599 PMCID: PMC5788478 DOI: 10.1080/15384101.2017.1380126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.
Collapse
Affiliation(s)
- Shu-Wen He
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bai-Hui Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,g Department of Workshop 25, Shangdong new time Pharmaceutical Company Limited , Shangdong , China
| | - Yu Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ya-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ming-Huang Chen
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China
| | - Lin Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bao-Qiong Liao
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Rui Lui
- c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China.,d Department of Gynaecology and Obstetrics , Zhongxin Hospital , Qingdao, Shangdong , China
| | - Fei-Ping Li
- b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,f Department of Life Science, Biological College, Southwest Forestry University , Kunming , China
| | - Yan-Hong Lin
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,e Department of Gynaecology and Obstetrics , the First Clinical Medical College, Fujian Medical University , Fuzhou , China
| | - Xian-Pei Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bin-Bin Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zi-Wei Hong
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Yu-Xin Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zhong-Quan Qi
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Hai-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| |
Collapse
|
45
|
Pan MH, Wang F, Lu Y, Tang F, Duan X, Zhang Y, Xiong B, Sun SC. FHOD1 regulates cytoplasmic actin-based spindle migration for mouse oocyte asymmetric cell division. J Cell Physiol 2017; 233:2270-2278. [PMID: 28708292 DOI: 10.1002/jcp.26099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022]
Abstract
FHOD1 is a member of Diaphanous-related formins (DRFs) which belongs to the Formin family. Previous studies have shown that the DFRs might affect several cellular functions such as morphogenesis, cytokinesis, cell polarity, and embryonic differentiation. However, there is no evidence showing the functions of FHOD1 during oocyte meiosis. This study is aimed at exploring the roles of FHOD1 during the mammalian oocyte maturation. Immunofluorescent staining showed that FHOD1 was restricted to the nucleus in germinal vesicle (GV) stage of the oocytes, after the GV breakdown FHOD1 was primarily located at two poles of the spindle at both metaphases I and II stages. Knockdown of FHOD1 by siRNA injection did not affect polar body extrusion but generated the large polar bodies. In addition, we observed the spindle migration failure in metaphase I oocytes, with a large number of meiotic spindles anchoring in the center of cytoplasm. The expression level of cytoplasmic actin but not cortex actin was significantly reduced, indicating that FHOD1 regulates cytoplasmic actin distribution for the spindle movement. Furthermore, we found that the disruption of ROCK (the Rho-dependent protein kinase) with inhibitor Y-27632 caused the decreased FHOD1 protein expression. Therefore, our data indicate that FHOD1 is regulated by ROCK for cytoplasm actin assembly and spindle migration during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
46
|
Zhou D, Choi YJ, Kim JH. Histone deacetylase 6 (HDAC6) is an essential factor for oocyte maturation and asymmetric division in mice. Sci Rep 2017; 7:8131. [PMID: 28811599 PMCID: PMC5557833 DOI: 10.1038/s41598-017-08650-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Tubastatin A (Tub-A), a highly selective histone deacetylase 6 (HDAC6) inhibitor, has been widely used as a cytotoxic anticancer agent, or for the treatment of patients with asthma. However, the potential toxicity of Tub-A on oocyte maturation and asymmetric division is still unclear. Therefore, the present study was designed to examine the effect and potential regulatory role of Tub-A on the meiotic maturation of oocytes. We observed that Tub-A treatment induced an increased level of the acetylation of α-tubulin, and a failure of spindle migration and actin cap formation. Based on the spindle structure, most Tub-A treated oocytes were arrested in an MI-like or a GVBD-like stage and exhibited decondensed chromosomes in a dose dependent manner. Moreover, Tub-A treatment decreased the protein expression of mTOR, a factor responsible for spindle formation, and the expression of mDia1, an inhibitor of actin assembly, in an HDAC6 expression-dependent manner. Importantly, following Tub-A supplementation, most oocytes failed to extrude the first polar body, which indicates that these defects are closely linked to abnormal oocyte maturation. Taken together, our data demonstrates that HDAC6 is one of the essential factors for oocyte maturation and asymmetric division via the HDAC6/mTOR or mDia1 pathway in mice.
Collapse
Affiliation(s)
- Dongjie Zhou
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
47
|
Zhang Y, Wang QC, Liu J, Xiong B, Cui XS, Kim NH, Sun SC. The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation. J Reprod Dev 2017; 63:505-510. [PMID: 28781348 PMCID: PMC5649100 DOI: 10.1262/jrd.2017-034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian oocyte undergoes an asymmetric division during meiotic maturation, producing a small polar body and a haploid gamete. This process involves the dynamics of actin filaments, and the guanosine triphosphatase (GTPase) protein superfamily is a major regulator of actin assembly. In the present study, the small GTPase CDC42 was shown to participate in the meiotic maturation of porcine oocytes. Immunofluorescent staining showed that CDC42 was mainly localized at the periphery of the oocytes, and accumulated with microtubules. Deactivation of CDC42 protein activity with the effective inhibitor ML141 caused a decrease in actin distribution in the cortex, which resulted in a failure of polar body extrusion. Moreover, western blot analysis revealed that besides the Cdc42-N-WASP pathway previously reported in mouse oocytes, the expression of ROCK and p-cofilin, two molecules involved in actin dynamics, was also decreased after CDC42 inhibition during porcine oocyte maturation. Thus, our study demonstrates that CDC42 is an indispensable protein during porcine oocyte meiosis, and CDC42 may interact with N-WASP, ROCK, and cofilin in the assembly of actin filaments during porcine oocyte maturation.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
48
|
Zhang J, Ma R, Li L, Wang L, Hou X, Han L, Ge J, Li M, Wang Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway. FASEB J 2017. [PMID: 28626024 DOI: 10.1096/fj.201700179r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intersectins (ITSNs), an evolutionarily conserved adaptor protein family, have been implicated in multiple biologic processes; however, their functions in mammalian oocytes have not been addressed. Here, we report delayed meiotic resumption and defective cytokinesis upon specific depletion of ITSN2 in mouse oocytes. In particular, abnormal spindle, misaligned chromosomes, and loss of cortical actin cap are readily observed in ITSN2-depleted oocytes. Similarly, a small molecule that targets the Cdc42-ITSN interaction also disrupts oocyte maturation and actin polymerization. Moreover, we find that ITSN2 depletion reduces the activity of Cdc42 in oocytes and, of note, that forced expression of the dominant-positive mutant of Cdc42, in part, prevents the effects of ITSN2 knockdown on actin cap formation. In addition, the localization of WASP and Arp2, the downstream effector proteins of Cdc42, is altered in ITSN2-depleted oocytes accordingly. In summary, our data support a model in which ITSN2 depletion induces the inactivation of Cdc42, which, in turn, influences the distribution and function of Arp2/3 and WASP, consequently disrupting oocyte polarity establishment and meiotic division.-Zhang, J., Ma, R., Li, L., Wang, L., Hou, X., Han, L., Ge, J., Li, M., Wang, Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lina Wang
- Key Laboratory of Birth Defects Prevention, National Health and Family Planning Commission, Zhengzhou, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China;
| |
Collapse
|
49
|
Liu X, Liu X, Chen D, Jiang X, Ma W. PLD2 regulates microtubule stability and spindle migration in mouse oocytes during meiotic division. PeerJ 2017; 5:e3295. [PMID: 28533957 PMCID: PMC5436581 DOI: 10.7717/peerj.3295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023] Open
Abstract
Phospholipase D2 (PLD2) is involved in cytoskeletal reorganization, cell migration, cell cycle progression, transcriptional control and vesicle trafficking. There is no evidence about PLD2 function in oocytes during meiosis. Herein, we analyzed PLD2 expression and its relationship with spindle formation and positioning in mouse oocyte meiosis. High protein level of PLD2 was revealed in oocytes by Western blot, which remained consistently stable from prophase I with intact germinal vesicle (GV) up to metaphase II (MII) stage. Immunofluorescence showed that PLD2 appeared and gathered around the condensed chromosomesafter germinal vesicle breakdown (GVBD), and co-localized with spindle from pro-metaphase I (pro-MI) to metaphase I (MI) and at MII stage. During anaphase I (Ana I) to telophase I (Tel I) transition, PLD2 was concentrated in the spindle polar area but absent from the midbody. In oocytes incubated with NFOT, an allosteric and catalytic inhibitor to PLD2, the spindle was enlarged and center-positioned, microtubules were resistant to cold-induced depolymerization and, additionally, the meiotic progression was arrested at MI stage. However, spindle migration could not be totally prevented by PLD2 catalytic specific inhibitors, FIPI and 1-butanol, implying at least partially, that PLD2 effect on spindle migration needs non-catalytic domain participation. NFOT-induced defects also resulted in actin-related molecules’ distribution alteration, such as RhoA, phosphatidylinosital 4, 5- biphosphate (PIP2), phosphorylated Colifin and, consequently, unordered F-actin dynamics. Taken together, these data indicate PLD2 is required for the regulation of microtubule dynamics and spindle migration toward the cortex in mammalian oocytes during meiotic progression.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dandan Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Jiang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Rac1 is dispensable for oocyte maturation and female fertility in vivo. PLoS One 2017; 12:e0177202. [PMID: 28545113 PMCID: PMC5436689 DOI: 10.1371/journal.pone.0177202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023] Open
Abstract
Oocyte maturation, the important process to produce female haploid gamete, accompanies with polarity establishment and highly asymmetric cell division to emit minor polar body within little cytoplasm. Microfilaments play central roles in polarity establishment and asymmetric cell division. Several actin regulators like WASP protein family as well as small GTPases function in microfilament dynamics, involving the process. Rac1, one member of RhoGTPases, has been reported to regulate the polarity and asymmetric cell division in mouse oocytes in vitro. The physiological role of Rac1 in mouse oocyte remains unknown. By conditional knockout technology, we specifically deleted Rac1 gene in mouse oocyte, and found that Rac1 deletion exerted little effect on mouse oocyte maturation including polarity establishment and asymmetric division, and the mutant mice showed normal fertility.
Collapse
|