1
|
Eng L, Collins DA, Alene KA, Bory S, Theng Y, Vann P, Meng S, Limsreng S, Clements ACA, Riley TV. Clostridioides ( Clostridium) difficile infection in hospitalized adult patients in Cambodia. Microbiol Spectr 2025; 13:e0274724. [PMID: 39969191 PMCID: PMC11960136 DOI: 10.1128/spectrum.02747-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025] Open
Abstract
Despite high levels of global concern, little is known about the epidemiology of Clostridioides (Clostridium) difficile infection (CDI) in Cambodia. This study aimed to identify the prevalence and risk factors for CDI, and molecular types of C. difficile in hospitalized adults at Calmette Hospital, Phnom Penh, Cambodia. Stool samples were collected from 263 hospitalized adults between June and September 2022 and tested for C. difficile using direct and enrichment cultures. PCR toxin genes tcdA, tcdB, cdtA, and cdtB, and amplification of the 16s-23s rRNA intergenic spacer region for ribotyping, were performed on all C. difficile isolates. C. difficile was isolated from 24% (63/263) of samples, and most isolates were non-toxigenic (67%, 42/63). The five most predominant toxigenic C. difficile ribotypes (RTs) were RTs 046 (8%, 5/63), 017 (6%, 4/63), 056 (5%, 3/63), 014/020 (5%, 3/63), and 012 (3%, 2/63), and prominent non-toxigenic RTs were QX011 (14%, 9/63), 010 (8%, 5/63), 009 (3%, 2/63), QX021 (3%, 2/63), and QX002 (3%, 2/63). Risk factors significantly associated with CDI included diabetes (odds ratio [OR] = 2.48, 95% confidence interval [CI]: 1.16-5.30) and hospitalization >24 h within the last 3 months before testing (OR = 3.89, 95% CI: 1.79-8.43). It was concluded that most participants from whom C. difficile was isolated were colonized only; however, a high prevalence of asymptomatic carriage could contribute to silent transmission in healthcare settings and communities. Genotypic identification of local C. difficile strains is necessary for a better understanding of the epidemiology of CDI and the importance of C. difficile. IMPORTANCE Clostridioides difficile is a significant cause of diarrhea worldwide, initially as a hospital-acquired infection and, more recently, as a community-associated infection. Risk factors for hospital-acquired C. difficile infection include antimicrobial consumption, extended hospitalization, age ≥ 65 years, and proton pump inhibitor treatment. While much is known about C. difficile in high-income countries, little is known and there has been less interest in this infection in Asia due to the lack of data. Thus, investigating the prevalence and risk factors for C. difficile and characterizing C. difficile strains from hospitalized adults is necessary in Asian countries such as Cambodia. Diabetes and hospitalization >24 h within the last 3 months were identified as risk factors for C. difficile colonization/infection. The high prevalence of non-toxigenic strains and asymptomatic carriage of C. difficile in this country were notable. Further studies are warranted to gain better insights into this infection in Cambodia.
Collapse
Affiliation(s)
- Lengsea Eng
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- Calmette Hospital, Phnom Penh, Cambodia
| | - Deirdre A. Collins
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kefyalew Addis Alene
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- The Kids Research Institute Australia, Perth, Western Australia, Australia
| | - Sotharith Bory
- Calmette Hospital, Phnom Penh, Cambodia
- The University of Health Sciences, Phnom Penh, Cambodia
| | - Youdaline Theng
- Calmette Hospital, Phnom Penh, Cambodia
- The University of Health Sciences, Phnom Penh, Cambodia
| | | | - Sreyhuoch Meng
- Calmette Hospital, Phnom Penh, Cambodia
- The University of Health Sciences, Phnom Penh, Cambodia
| | - Setha Limsreng
- Calmette Hospital, Phnom Penh, Cambodia
- The University of Health Sciences, Phnom Penh, Cambodia
| | - Archie C. A. Clements
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Thomas V. Riley
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Bejaoui S, Nielsen SH, Rasmussen A, Coia JE, Andersen DT, Pedersen TB, Møller MV, Kusk Nielsen MT, Frees D, Persson S. Comparison of Illumina and Oxford Nanopore sequencing data quality for Clostridioides difficile genome analysis and their application for epidemiological surveillance. BMC Genomics 2025; 26:92. [PMID: 39885402 PMCID: PMC11783910 DOI: 10.1186/s12864-025-11267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The burden of Clostridioides difficile as a nosocomial- and community-acquired pathogen has been increasing over the recent decades, including reports of severe outbreaks. Molecular and virulence genotyping are central for the epidemiological surveillance of this pathogen, but need to balance accuracy and rapid turnaround time of the results. While Illumina short-read sequencing has been adopted as the gold standard to investigate C. difficile virulence and transmission routes, little is known about the potential of Nanopore long-read sequencing in this field. The goal of our study was to compare sequencing and assembly quality of 37 C. difficile isolates using Illumina (SPAdes assembled) and Nanopore (Flye and Unicycler assembled) data alone, along with hybrid assemblies obtained with short-read polishing of long reads. RESULTS Illumina sequencing produced reads with an average quality of 99.68% (Q25), while Nanopore sequencing produced reads reaching an average quality of 96.84% (Q15), showing a tenfold difference in quality. Sequence type (ST) designation from Nanopore assemblies failed to detect ST5, ST7, ST8, ST13 and ST49, while ST designation based on unpolished Nanopore reads using Krocus was successful for all STs. Nanopore sequences exhibited an average of 640 base errors per genome (~ 0.015% substitution rate), which was reflected by the incorrect assignment of over 180 alleles in core genome multilocus sequence typing (cgMLST) analysis. As a result, Nanopore-derived phylogenies were not as accurate as the Illumina reference, and therefore inadequate for precise investigation of transmission events. Both sequencing platforms provided comparable, satisfactory results for the detection of virulence genes tcdA, tcdB, cdtAB and in-frame deletions in tcdC. CONCLUSION Compared to Illumina, Nanopore has higher error rate, which limits its application for high-resolution epidemiological surveillance. However, the short analysis time, lower cost and more simple procedure combined with correctly identified STs and virulence genes, makes it an alternative when fast and less detailed analyses are preferred.
Collapse
Affiliation(s)
- Semeh Bejaoui
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Astrid Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - John Eugenio Coia
- Department of Regional Health Research (Esbjerg), University of Southern Denmark, Odense, Denmark
- ESCMID Study Group for C. difficile infections (ESCGD), Basel, Switzerland
| | - Dorte Terp Andersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Tobias Bruun Pedersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Martin Vad Møller
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Marc Trunjer Kusk Nielsen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Søren Persson
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
3
|
Siroglavic M, Higgins PG, Kanizaj L, Ferencak I, Juric D, Augustin G, Budimir A. Whole-Genome Sequencing-Based Characterization of Clostridioides difficile Infection Cases at the University Hospital Centre Zagreb. Microorganisms 2024; 12:2434. [PMID: 39770637 PMCID: PMC11676685 DOI: 10.3390/microorganisms12122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
We investigated the intra-hospital distribution of C. difficile strains by whole-genome sequencing (WGS) of isolates collected in 2022 at the University Hospital Centre (UHC) Zagreb. In total, 103 patients with first-episode CDI in 2022 at UHC Zagreb were included, based on the screening stool antigen test for GDH (RidaQuick CD GDH; R-Biopharm AG, Germany), confirmed by Eazyplex C. difficile assays (Eazyplex CD assay; AmplexDiagnostics GmbH, Germany) specific for A, B, and binary toxins. Demographic and clinical data were retrospectively analyzed from electronic medical records. All samples were subjected to WGS analysis. Genetic clusters were formed from isolates with no more than six allelic differences according to core genome MLST. We identified six clusters containing 2-59 isolates with 15 singletons and 30 instances of possible intra-hospital transmission, mostly in the COVID-19 ward. WGS analysis proved useful in identifying clusters of isolates connecting various patient wards with possible transmission routes in the hospital setting. It could be used to support local and national surveillance of CDI infections and their transmission pathways.
Collapse
Affiliation(s)
- Marko Siroglavic
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia; (M.S.); (L.K.); (A.B.)
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany;
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Lucija Kanizaj
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia; (M.S.); (L.K.); (A.B.)
| | - Ivana Ferencak
- Department of Microbiology, Croatian Institute of Public Health, Rockefeller st. 7, 10000 Zagreb, Croatia; (I.F.); (D.J.)
| | - Dragan Juric
- Department of Microbiology, Croatian Institute of Public Health, Rockefeller st. 7, 10000 Zagreb, Croatia; (I.F.); (D.J.)
| | - Goran Augustin
- Department of Surgery, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia
| | - Ana Budimir
- Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Kispaticeva st. 12, 10000 Zagreb, Croatia; (M.S.); (L.K.); (A.B.)
- Department of Microbiology and Parasitology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Karthik K, Anbazhagan S, Priyadharshini MLM, Sharma RK, Manoharan S. Comparative genomics of zoonotic pathogen Clostridioides difficile of animal origin to understand its diversity. 3 Biotech 2024; 14:257. [PMID: 39372495 PMCID: PMC11452369 DOI: 10.1007/s13205-024-04102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Clostridioides difficile, a zoonotic pathogen causing enteric diseases in different animals and humans. A comprehensive study on the presence of toxin genes and antimicrobial resistance genes based on genome data of C. difficile in animals is scanty. In the present study, a total of 15 C. difficile isolates were recovered from dogs and isolates with toxin genes (D1, CD15 and CD26) along with two other non-toxigenic strains (CD28, CD32) were used for whole genome sequencing and comparative genomics. Sequence type-based clustering was noted in the whole genome phylogeny with 4 known multi-locus sequence typing (MLST) clades namely I, II, IV, and V and a cryptic clade. ST11 and ST54 were reported for the 2nd time worldwide in dogs. Out of 109 genomes used in the study, 29 genomes were predicted with all four toxin genes (toxA, toxB, cdtA, cdtB) while 22 did not have any of the toxin genes. ST11 of MLST clade V had the maximum number of 46 genomes predicted with at least one toxin gene. Among the genomes sequenced in this study, CD26 had a maximum of 5 AMR genes (aac(6')-aph(2″), ant(6)-Ia, catP, erm(B)_18, and tet(M)_11) and CD15 was predicted with 2 AMR genes (aac(6')-aph(2″), erm(B)_18). Tetracycline resistance genes were predicted most in the ST11 genome. Of the 22 non-toxigenic strains, 9 genomes (ST48 = 5, ST3 = 2, ST109 = 1, ST15 = 1) were predicted with a minimum of one AMR gene. Pangenome analysis indicated that the Bpan value is 0.12 showing that C. difficile has an open pangenome structure. This indicates that the organism can evolve by the addition of new genes. This study reports the circulation of clinically important ST11 and multidrug-resistant non-toxigenic strains among animals. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04102-7.
Collapse
Affiliation(s)
- Kumaragurubaran Karthik
- Veterinary College and Research Institute, Udumalpet, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600051 India
| | - Subbaiyan Anbazhagan
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, 500078 India
| | - Murugaiyan Latha Mala Priyadharshini
- Vaccine Research Centre-Bacterial Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600051 India
| | - Rajeev Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, AAU, Khanapara Campus, Guwahati, Assam India
| | - Seeralan Manoharan
- Vaccine Research Centre-Bacterial Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600051 India
| |
Collapse
|
5
|
Ramos CP, Siqueira WF, Viana LA, Cunha JLR, Fujiwara RT, Amarante VS, Souza TGV, Silva ROS. Development of two recombinant vaccines against Clostridioides difficile infection and immunogenicity in pregnant sows and neonatal piglets. Anaerobe 2024; 89:102896. [PMID: 39127403 DOI: 10.1016/j.anaerobe.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Clostridioides difficile is the main cause of antibiotic-associated diarrhea in humans and is a major enteropathogen in several animal species. In newborn piglets, colonic lesions caused by C. difficile A and B toxins (TcdA and TcdB, respectively) cause diarrhea and significant production losses. OBJECTIVE The present study aimed to develop two recombinant vaccines from immunogenic C-terminal fragments of TcdA and TcdB and evaluate the immune response in rabbits and in breeding sows. Two vaccines were produced: bivalent (rAB), consisting of recombinant fragments of TcdA and TcdB, and chimeric (rQAB), corresponding to the synthesis of the same fragments in a single protein. Groups of rabbits were inoculated with 10 or 50 μg of proteins adjuvanted with aluminum or 0.85 % sterile saline in a final volume of 1 mL/dose. Anti-TcdA and anti-TcdB IgG antibodies were detected in rabbits and sows immunized with both rAB and rQAB vaccines by ELISA. The vaccinated sows were inoculated intramuscularly with 20 μg/dose using a prime-boost approach. RESULTS Different antibody titers (p ≤ 0.05) were observed among the vaccinated groups of sows (rAB and rQAB) and control. Additionally, newborn piglets from vaccinated sows were also positive for anti-TcdA and anti-TcdB IgGs, in contrast to control piglets (p ≤ 0.05). Immunization of sows with the rQAB vaccine conferred higher anti-TcdA and anti-TcdB responses in piglets, suggesting the superiority of this compound over rAB. CONCLUSION The synthesized recombinant proteins were capable of inducing antibody titers against C. difficile toxins A and B in sows, and were passively transferred to piglets through colostrum.
Collapse
Affiliation(s)
- Carolina P Ramos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Williane F Siqueira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laila A Viana
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - João L R Cunha
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Ricardo T Fujiwara
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Victor S Amarante
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thayanne G V Souza
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo O S Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
7
|
Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, Deshpande A, Hevener KE, Freeman J, Wilcox MH, Palmer KL, Garey KW, Pepperell CS, Hurdle JG. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun 2023; 14:4130. [PMID: 37438331 DOI: 10.1038/s41467-023-39429-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Madison A Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline A Topf
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Wan-Jou Shen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aditi Deshpande
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jane Freeman
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Kelli L Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.
| |
Collapse
|
8
|
Abad-Fau A, Sevilla E, Martín-Burriel I, Moreno B, Bolea R. Update on Commonly Used Molecular Typing Methods for Clostridioides difficile. Microorganisms 2023; 11:1752. [PMID: 37512924 PMCID: PMC10384772 DOI: 10.3390/microorganisms11071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
This review aims to provide a comprehensive overview of the significant Clostridioides difficile molecular typing techniques currently employed in research and medical communities. The main objectives of this review are to describe the key molecular typing methods utilized in C. difficile studies and to highlight the epidemiological characteristics of the most prevalent strains on a global scale. Geographically distinct regions exhibit distinct strain types of C. difficile, with notable concordance observed among various typing methodologies. The advantages that next-generation sequencing (NGS) offers has changed epidemiology research, enabling high-resolution genomic analyses of this pathogen. NGS platforms offer an unprecedented opportunity to explore the genetic intricacies and evolutionary trajectories of C. difficile strains. It is relevant to acknowledge that novel routes of transmission are continually being unveiled and warrant further investigation, particularly in the context of zoonotic implications and environmental contamination.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Eloísa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
9
|
Williamson CHD, Roe CC, Terriquez J, Hornstra H, Lucero S, Nunnally AE, Vazquez AJ, Vinocur J, Plude C, Nienstadt L, Stone NE, Celona KR, Wagner DM, Keim P, Sahl JW. A local-scale One Health genomic surveillance of Clostridioides difficile demonstrates highly related strains from humans, canines, and the environment. Microb Genom 2023; 9. [PMID: 37347682 DOI: 10.1099/mgen.0.001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Although infections caused by Clostridioides difficile have historically been attributed to hospital acquisition, growing evidence supports the role of community acquisition in C. difficile infection (CDI). Symptoms of CDI can range from mild, self-resolving diarrhoea to toxic megacolon, pseudomembranous colitis, and death. In this study, we sampled C. difficile from clinical, environmental, and canine reservoirs in Flagstaff, Arizona, USA, to understand the distribution and transmission of the pathogen in a One Health framework; Flagstaff is a medium-sized, geographically isolated city with a single hospital system, making it an ideal site to characterize genomic overlap between sequenced C. difficile isolates across reservoirs. An analysis of 562 genomes from Flagstaff isolates identified 65 sequence types (STs), with eight STs being found across all three reservoirs and another nine found across two reservoirs. A screen of toxin genes in the pathogenicity locus identified nine STs where all isolates lost the toxin genes needed for CDI manifestation (tcdB, tcdA), demonstrating the widespread distribution of non-toxigenic C. difficile (NTCD) isolates in all three reservoirs; 15 NTCD genomes were sequenced from symptomatic, clinical samples, including two from mixed infections that contained both tcdB+ and tcdB- isolates. A comparative single nucleotide polymorphism (SNP) analysis of clinically derived isolates identified 78 genomes falling within clusters separated by ≤2 SNPs, indicating that ~19 % of clinical isolates are associated with potential healthcare-associated transmission clusters; only symptomatic cases were sampled in this study, and we did not sample asymptomatic transmission. Using this same SNP threshold, we identified genomic overlap between canine and soil isolates, as well as putative transmission between environmental and human reservoirs. The core genome of isolates sequenced in this study plus a representative set of public C. difficile genomes (n=136), was 2690 coding region sequences, which constitutes ~70 % of an individual C. difficile genome; this number is significantly higher than has been published in some other studies, suggesting that genome data quality is important in understanding the minimal number of genes needed by C. difficile. This study demonstrates the close genomic overlap among isolates sampled across reservoirs, which was facilitated by maximizing the genomic search space used for comprehensive identification of potential transmission events. Understanding the distribution of toxigenic and non-toxigenic C. difficile across reservoirs has implications for surveillance sampling strategies, characterizing routes of infections, and implementing mitigation measures to limit human infection.
Collapse
Affiliation(s)
| | - Chandler C Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Samantha Lucero
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Amalee E Nunnally
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam J Vazquez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | - Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
10
|
Etifa P, Rodríguez C, Harmanus C, Sanders IMJG, Sidorov IA, Mohammed OA, Savage E, Timms AR, Freeman J, Smits WK, Wilcox MH, Baines SD. Non-Toxigenic Clostridioides difficile Strain E4 (NTCD-E4) Prevents Establishment of Primary C. difficile Infection by Epidemic PCR Ribotype 027 in an In Vitro Human Gut Model. Antibiotics (Basel) 2023; 12:435. [PMID: 36978302 PMCID: PMC10044524 DOI: 10.3390/antibiotics12030435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant healthcare burden. Non-toxigenic C. difficile (NTCD) strains have shown a benefit in preventing porcine enteritis and in human recurrent CDI. In this study, we evaluated the efficacy of metronidazole-resistant NTCD-E4 in preventing CDI facilitated by a range of antimicrobials in an in vitro human gut model. NTCD-E4 spores (at a dose of 107) were instilled 7 days before a clinical ribotype (RT) 027 (at the same dose) strain (210). In separate experiments, four different antimicrobials were used to perturb gut microbiotas; bacterial populations and cytotoxin production were determined using viable counting and Vero cell cytotoxicity, respectively. RT027 and NTCD-E4 proliferated in the in vitro model when inoculated singly, with RT027 demonstrating high-level cytotoxin (3-5-log10-relative units) production. In experiments where the gut model was pre-inoculated with NTCD-E4, RT027 was remained quiescent and failed to produce cytotoxins. NTCD-E4 showed mutations in hsmA and a gene homologous to CD196-1331, previously linked to medium-dependent metronidazole resistance, but lacked other metronidazole resistance determinants. This study showed that RT027 was unable to elicit simulated infection in the presence of NTCD-E4 following stimulation by four different antimicrobials. These data complement animal and clinical studies in suggesting NTCD offer prophylactic potential in the management of human CDI.
Collapse
Affiliation(s)
- Perezimor Etifa
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Reading RG6 6DZ, UK
| | - César Rodríguez
- Facultad de Microbiología & CIET, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| | - Céline Harmanus
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ingrid M. J. G. Sanders
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Igor A. Sidorov
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Olufunmilayo A. Mohammed
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Emily Savage
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Andrew R. Timms
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jane Freeman
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Wiep Klaas Smits
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark H. Wilcox
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Simon D. Baines
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
11
|
Rashid SJ, Nale JY, Millard AD, Clokie MRJ. Novel ribotype/sequence type associations and diverse CRISPR-Cas systems in environmental Clostridioides difficile strains from northern Iraq. FEMS Microbiol Lett 2023; 370:fnad091. [PMID: 37723612 PMCID: PMC10806358 DOI: 10.1093/femsle/fnad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
The environment is a natural reservoir of Clostridioides difficile, and here, we aimed to isolate the pathogen from seven locations in northern Iraq. Four of the sites yielded thirty-one isolates (ten from soils, twenty-one from sediments), which together represent ribotypes (RTs) 001 (five), 010 (five), 011 (two), 035 (two), 091 (eight), and 604 (nine). Twenty-five of the isolates (∼81%) are non-toxigenic, while six (∼19%) encode the toxin A and B genes. The genomes of eleven selected isolates represent six sequence types (STs): ST-3 (two), ST-15 (one), ST-107 (five), ST-137 (one), ST-177 (one), and ST-181 (one). Five novel RT/ST associations: RT011/ST-137, RT035/ST-107, RT091/ST-107, RT604/ST-177, and RT604/ST-181 were identified, and the first three are linked to RTs previously uncharacterized by multilocus sequence typing (MLST). Nine of the genomes belong to Clade 1, and two are closely related to the cryptic C-I clade. Diverse multiple prophages and CRISPR-Cas systems (class 1 subtype I-B1 and class 2 type V CRISPR-Cas systems) with spacers identical to other C. difficile phages and plasmids were detected in the genomes. Our data show the broader diversity that exists within environmental C. difficile strains from a much less studied location and their potential role in the evolution and emergence of new strains.
Collapse
Affiliation(s)
- Srwa J Rashid
- Medical Laboratory Technology Department, Koya Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan, Iraq
| | - Janet Y Nale
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College, Inverness IV2 5NA, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
12
|
Tian S, Xiong X, Zeng J, Wang S, Tremblay BJM, Chen P, Chen B, Liu M, Chen P, Sheng K, Zeve D, Qi W, Breault DT, Rodríguez C, Gerhard R, Jin R, Doxey AC, Dong M. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants. Nat Commun 2022; 13:6786. [PMID: 36351897 PMCID: PMC9646764 DOI: 10.1038/s41467-022-33964-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Toxin B (TcdB) is a major exotoxin responsible for diseases associated with Clostridioides difficile infection. Its sequence variations among clinical isolates may contribute to the difficulty in developing effective therapeutics. Here, we investigate receptor-binding specificity of major TcdB subtypes (TcdB1 to TcdB12). We find that representative members of subtypes 2, 4, 7, 10, 11, and 12 do not recognize the established host receptor, frizzled proteins (FZDs). Using a genome-wide CRISPR-Cas9-mediated screen, we identify tissue factor pathway inhibitor (TFPI) as a host receptor for TcdB4. TFPI is recognized by a region in TcdB4 that is homologous to the FZD-binding site in TcdB1. Analysis of 206 TcdB variant sequences reveals a set of six residues within this receptor-binding site that defines a TFPI binding-associated haplotype (designated B4/B7) that is present in all TcdB4 members, a subset of TcdB7, and one member of TcdB2. Intragenic micro-recombination (IR) events have occurred around this receptor-binding region in TcdB7 and TcdB2 members, resulting in either TFPI- or FZD-binding capabilities. Introduction of B4/B7-haplotype residues into TcdB1 enables dual recognition of TFPI and FZDs. Finally, TcdB10 also recognizes TFPI, although it does not belong to the B4/B7 haplotype, and shows species selectivity: it recognizes TFPI of chicken and to a lesser degree mouse, but not human, dog, or cattle versions. These findings identify TFPI as a TcdB receptor and reveal IR-driven changes on receptor-specificity among TcdB variants.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaozhe Xiong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Benjamin Jean-Marie Tremblay
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Min Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kuanwei Sheng
- Wyss Institute for Bioinspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wanshu Qi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - César Rodríguez
- Faculty of Microbiology & CIET, University of Costa Rica, San José, Costa Rica
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Andrew C Doxey
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022; 11:1310. [PMID: 36365061 PMCID: PMC9695345 DOI: 10.3390/pathogens11111310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Despite an increased incidence of Clostridioides difficile infections, data on the reservoirs and dissemination routes of this bacterium are limited. This study examined the prevalence and characteristics of C. difficile isolates in spinach fields. C. difficile was detected in 2/60 (3.3%) of spinach and 6/60 (10%) of soil samples using culture-based techniques. Whole genome sequencing (WGS) analysis identified the spinach isolates as belonging to the hypervirulent clade 5, sequence type (ST) 11, ribotypes (RT) 078 and 126 and carried the genes encoding toxins A, B and CDT. The soil isolates belonged to clade 1 with different toxigenic ST/RT (ST19/RT614, ST12/RT003, ST46/RT087, ST16/RT050, ST49/RT014/0) strains and one non-toxigenic ST79/RT511 strain. Antimicrobial resistance to erythromycin (one spinach isolate), rifampicin (two soil isolates), clindamycin (one soil isolate), both moxifloxacin and rifampicin (one soil isolate), and multi-drug resistance to erythromycin, vancomycin and rifampicin (two soil isolates) were observed using the E test, although a broader range of resistance genes were detected using WGS. Although the sample size was limited, our results demonstrate the presence of C. difficile in horticulture and provide further evidence that there are multiple sources and dissemination routes for these bacteria.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
14
|
Azimirad M, Noori M, Azimirad F, Gholami F, Naseri K, Yadegar A, Asadzadeh Aghdaei H, Zali MR. Curcumin and capsaicin regulate apoptosis and alleviate intestinal inflammation induced by Clostridioides difficile in vitro. Ann Clin Microbiol Antimicrob 2022; 21:41. [PMID: 36155114 PMCID: PMC9511736 DOI: 10.1186/s12941-022-00533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The dramatic upsurge of Clostridioides difficile infection (CDI) by hypervirulent isolates along with the paucity of effective conventional treatment call for the development of new alternative medicines against CDI. The inhibitory effects of curcumin (CCM) and capsaicin (CAP) were investigated on the activity of toxigenic cell-free supernatants (Tox-S) of C. difficile RT 001, RT 126 and RT 084, and culture-filtrate of C. difficile ATCC 700057. METHODS Cell viability of HT-29 cells exposed to varying concentrations of CCM, CAP, C. difficile Tox-S and culture-filtrate was assessed by MTT assay. Anti-inflammatory and anti-apoptotic effects of CCM and CAP were examined by treatment of HT-29 cells with C. difficile Tox-S and culture-filtrate. Expression of BCL-2, SMAD3, NF-κB, TGF-β and TNF-α genes in stimulated HT-29 cells was measured using RT-qPCR. RESULTS C. difficile Tox-S significantly (P < 0.05) reduced the cell viability of HT-29 cells in comparison with untreated cells. Both CAP and CCM significantly (P < 0.05) downregulated the gene expression level of BCL-2, SMAD3, NF-κB and TNF-α in Tox-S treated HT-29 cells. Moreover, the gene expression of TGF-β decreased in Tox-S stimulated HT-29 cells by both CAP and CCM, although these reductions were not significantly different (P > 0.05). CONCLUSION The results of the present study highlighted that CCM and CAP can modulate the inflammatory response and apoptotic effects induced by Tox-S from different clinical C. difficile strains in vitro. Further studies are required to accurately explore the anti-toxin activity of natural components, and their probable adverse risks in clinical practice.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Finsterwalder SK, Loncaric I, Cabal A, Szostak MP, Barf LM, Marz M, Allerberger F, Burgener IA, Tichy A, Feßler AT, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Künzel F. Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile. Zoonoses Public Health 2022; 69:673-681. [PMID: 35546073 PMCID: PMC9544694 DOI: 10.1111/zph.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
While previous research on zoonotic transmission of community-acquired Clostridioides difficile infection (CA-CDI) focused on food-producing animals, the present study aimed to investigate whether dogs are carriers of resistant and/or virulent C. difficile strains. Rectal swabs were collected from 323 dogs and 38 C. difficile isolates (11.8%) were obtained. Isolates were characterized by antimicrobial susceptibility testing, whole-genome sequencing (WGS) and a DNA hybridization assay. Multilocus sequence typing (MLST), core genome MLST (cgMLST) and screening for virulence and antimicrobial resistance genes were performed based on WGS. Minimum inhibitory concentrations for erythromycin, clindamycin, tetracycline, vancomycin and metronidazole were determined by E-test. Out of 38 C. difficile isolates, 28 (73.7%) carried genes for toxins. The majority of isolates belonged to MLST sequence types (STs) of clade I and one to clade V. Several isolates belonged to STs previously associated with human CA-CDI. However, cgMLST showed low genetic relatedness between the isolates of this study and C. difficile strains isolated from humans in Austria for which genome sequences were publicly available. Four isolates (10.5%) displayed resistance to three of the tested antimicrobial agents. Isolates exhibited resistance to erythromycin, clindamycin, tetracycline and metronidazole. These phenotypic resistances were supported by the presence of the resistance genes erm(B), cfr(C) and tet(M). All isolates were susceptible to vancomycin. Our results indicate that dogs may carry virulent and antimicrobial-resistant C. difficile strains.
Collapse
Affiliation(s)
- SK Finsterwalder
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - I Loncaric
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Cabal
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - MP Szostak
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - LM Barf
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- Max Planck Institute for Science of Human HistoryJenaGermany
| | - M Marz
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- FLI Leibniz Institute for Age ResearchJenaGermany
- InfectoGnostics Research Campus JenaJenaGermany
| | - F Allerberger
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - IA Burgener
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Tichy
- Department of Biomedical ScienceUniversity of Veterinary Medicine ViennaViennaAustria
| | - AT Feßler
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Schwarz
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Monecke
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institut für Medizinische Mikrobiologie und HygieneUniversitätsklinik DresdenDresdenGermany
| | - R Ehricht
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany
| | - W Ruppitsch
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - J Spergser
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - F Künzel
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
16
|
Kachrimanidou M, Metallidis S, Tsachouridou O, Harmanus C, Lola V, Protonotariou E, Skoura L, Kuijper E. Predominance of Clostridioides difficile PCR ribotype 181 in northern Greece, 2016-2019. Anaerobe 2022; 76:102601. [PMID: 35688364 DOI: 10.1016/j.anaerobe.2022.102601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/22/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVES The epidemiology of Clostridioides difficile infection (CDI) has undergone many changes since the beginning of this century and continues to evolve based on recent studies. Here, we performed a molecular analysis of C. difficile isolates in northern Greece across 10 health-care facilities, spanning from 2016 to 2019. METHODS 221 C. difficile isolates were cultured from stool samples of hospitalized patients with diarrhea and screened by PCR for the presence of the toxin A (tcdA), toxin B (tcdB), the binary toxin (cdtA and cdtB) genes and the regulating gene of tcdC. PCR ribotyping of the cultured isolates was performed by a standardized protocol for capillary gel-based PCR ribotyping and an international database with well-documented reference strains. RESULTS Thirty-five different PCR ribotypes were identified. The most common RTs identified were: 181 (36%, 80/221), 017 (10%, 21/221), 126 (9%, 19/221), 078 (4%, 9/221) and 012 (4%, 8/221). Notably, the predominant RT181, with toxin profile tcdA+tcdB+cdtA+cdtB+, was identified in seven out of ten participating hospitals. CONCLUSIONS Multiple C. difficile ribotypes have been circulating in the northern Greece region with RTs 181 (closely related to 027), 017, 126 and 078 being predominant.
Collapse
Affiliation(s)
- Melina Kachrimanidou
- First Department of Microbiology, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece.
| | - Symeon Metallidis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - Olga Tsachouridou
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - Celine Harmanus
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, And National Institute of Public Health, Bilthoven, the Netherlands
| | - Vassiliki Lola
- First Department of Microbiology, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Efthymia Protonotariou
- Department of Microbiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ed Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, And National Institute of Public Health, Bilthoven, the Netherlands
| |
Collapse
|
17
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
18
|
Martínez-Meléndez A, Cruz-López F, Morfin-Otero R, Maldonado-Garza HJ, Garza-González E. An Update on Clostridioides difficile Binary Toxin. Toxins (Basel) 2022; 14:toxins14050305. [PMID: 35622552 PMCID: PMC9146464 DOI: 10.3390/toxins14050305] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Infection with Clostridioides difficile (CDI), a common healthcare-associated infection, includes symptoms ranging from mild diarrhea to severe cases of pseudomembranous colitis. Toxin A (TcdA) and toxin B (TcdB) cause cytotoxicity and cellular detachment from intestinal epithelium and are responsible for CDI symptomatology. Approximately 20% of C. difficile strains produce a binary toxin (CDT) encoded by the tcdA and tcdB genes, which is thought to enhance TcdA and TcdB toxicity; however, the role of CDT in CDI remains controversial. Here, we focused on describing the main features of CDT and its impact on the host, clinical relevance, epidemiology, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Hospital 308, Colonia el Retiro, Guadalajara 44280, Jalisco, Mexico;
| | - Héctor J. Maldonado-Garza
- Servicio de Gastroenterología, Facultad de Medicina/Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico;
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina y Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|
19
|
Chaudhry R, Sharma N, Bahadur T, Khullar S, Agarwal SK, Gahlowt A, Gupta N, Kumar L, Kabra SK, Dey AB. Molecular characterization of Clostridioides difficile by multi-locus sequence typing (MLST): A study from tertiary care center in India. Anaerobe 2022; 75:102545. [DOI: 10.1016/j.anaerobe.2022.102545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
|
20
|
Shivaperumal N, Knight DR, Imwattana K, Androga GO, Chang BJ, Riley TV. Esculin hydrolysis negative and TcdA‐only producing strains of
Clostridium (Clostridiodes) difficile
from the environment in Western Australia. J Appl Microbiol 2022; 133:1183-1196. [PMID: 35184359 PMCID: PMC9544920 DOI: 10.1111/jam.15500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022]
Abstract
Background and Aims Clostridium (Clostridiodes) difficile clade 3 ribotype (RT) 023 strains that fail to produce black colonies on bioMérieux ChromID agar have been reported, as well as variant strains of C. difficile that produce only toxin A. We have recently isolated strains of C. difficile from the environment in Western Australia (WA) with similar characteristics. The objective of this study was to characterize these strains. It was hypothesized that a putative β‐glucosidase gene was lacking in these strains of C. difficile, including RT 023, leading to white colonies. Methods and Results A total of 17 environmental isolates of C. difficile from garden soil and compost, and gardening shoe soles in Perth, WA, failed to produce black colonies on ChromID agar. MALDI‐TOF MS analysis confirmed these strains as C. difficile. Four strains contained only a tcdA gene (A+B−CDT−) by PCR and were a novel RT (QX 597). All isolates were susceptible to all antimicrobials tested except one with low‐level resistance to clindamycin (MIC = 8 mg/L). The four tcdA‐positive strains were motile. All isolates contained neither bgl locus but only bgl K or a putative β‐glucosidase gene by PCR. Whole‐genome sequencing showed the 17 strains belonged to novel multi‐locus sequence types 632, 848, 849, 850, 851, 852 and 853, part of the evolutionarily divergent clade C‐III. Four isolates carried a full‐length tcdA but not tcdB nor binary toxin genes. Conclusions ChromID C. difficile agar is used for the specific detection of C. difficile in the samples. To date, all strains except RT 023 strains from clinical samples hydrolyse esculin. This is the first report to provide insights into the identification of esculin hydrolysis negative and TcdA‐only producing (A+B−CDT−) strains of C. difficile from environmental samples. Significance and Impact of the Study White colonies of C. difficile from environmental samples could be overlooked when using ChromID C. difficile agar, leading to false‐negative results, however, whether these strains are truly pathogenic remains to be proven.
Collapse
Affiliation(s)
| | - Daniel R. Knight
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
| | | | - Grace O. Androga
- School of Biomedical Sciences Nedlands Western Australia Australia
- Current address: HIV, Inflammation and Microbiome Group Burnet Institute Melbourne Victoria Australia
| | - Barbara J. Chang
- School of Biomedical Sciences Nedlands Western Australia Australia
| | - Thomas V. Riley
- School of Biomedical Sciences Nedlands Western Australia Australia
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
- PathWest Laboratory Medicine, Department of Microbiology, Queen Elizabeth II Medical Centre Nedlands Western Australia Australia
- School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
| |
Collapse
|
21
|
Baktash A, Corver J, Harmanus C, Smits WK, Fawley W, Wilcox MH, Kumar N, Eyre DW, Indra A, Mellmann A, Kuijper EJ. Comparison of Whole-Genome Sequence-Based Methods and PCR Ribotyping for Subtyping of Clostridioides difficile. J Clin Microbiol 2022; 60:e0173721. [PMID: 34911367 PMCID: PMC8849210 DOI: 10.1128/jcm.01737-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile is the most common cause of antibiotic-associated gastrointestinal infections. Capillary electrophoresis (CE)-PCR ribotyping is currently the gold standard for C. difficile typing but lacks the discriminatory power to study transmission and outbreaks in detail. New molecular methods have the capacity to differentiate better and provide standardized and interlaboratory exchangeable data. Using a well-characterized collection of diverse strains (N = 630; 100 unique ribotypes [RTs]), we compared the discriminatory power of core genome multilocus sequence typing (cgMLST) (SeqSphere and EnteroBase), whole-genome MLST (wgMLST) (EnteroBase), and single-nucleotide polymorphism (SNP) analysis. A unique cgMLST profile (more than six allele differences) was observed in 82 of 100 RTs, indicating that cgMLST could distinguish most, but not all, RTs. Application of cgMLST in two outbreak settings with RT078 and RT181 (known to have low intra-RT allele differences) showed no distinction between outbreak and nonoutbreak strains in contrast to wgMLST and SNP analysis. We conclude that cgMLST has the potential to be an alternative to CE-PCR ribotyping. The method is reproducible, easy to standardize, and offers higher discrimination. However, adjusted cutoff thresholds and epidemiological data are necessary to recognize outbreaks of some specific RTs. We propose to use an allelic threshold of three alleles to identify outbreaks.
Collapse
Affiliation(s)
- A. Baktash
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Corver
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - C. Harmanus
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- National Reference Laboratory for Clostridioides difficile, National Institute of Public Health and the Environment, Leiden University Medical Center, Leiden, The Netherlands
| | - W. K. Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - W. Fawley
- National Infection Service, Public Health England, and University of Leeds, Leeds, United Kingdom
| | - M. H. Wilcox
- Department of Microbiology, Leeds Teaching Hospitals and University of Leeds, Leeds, United Kingdom
| | - N. Kumar
- Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - D. W. Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - A. Indra
- Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - A. Mellmann
- Institute of Hygiene, University Hospital Münster, and National Reference Center for C. difficile, Münster Branch, Münster, Germany
| | - E. J. Kuijper
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- National Reference Laboratory for Clostridioides difficile, National Institute of Public Health and the Environment, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Whole-Genome Sequencing Reveals the High Nosocomial Transmission and Antimicrobial Resistance of Clostridioides difficile in a Single Center in China, a Four-Year Retrospective Study. Microbiol Spectr 2022; 10:e0132221. [PMID: 35019676 PMCID: PMC8754133 DOI: 10.1128/spectrum.01322-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, presents an urgent threat to health care systems. In this study, we present a retrospective genomic and epidemiological analysis of C. difficile in a large teaching hospital. First, we collected 894 nonduplicate fecal samples from patients during a whole year to elucidate the C. difficile molecular epidemiology. We then presented a detailed description of the population structure of C. difficile based on 270 isolates separated between 2015 and 2020 and clarified the genetic and phenotypic features by MIC and whole-genome sequencing. We observed a high carriage rate (19.4%, 173/894) of C. difficile among patients in this hospital. The population structure of C. difficile was diverse with a total of 36 distinct STs assigned. In total, 64.8% (175/270) of the isolates were toxigenic, including four CDT-positive (C. difficile transferase) isolates, and 50.4% (135/268) of the isolates were multidrug-resistant. Statistically, the rates of resistance to erythromycin, moxifloxacin, and rifaximin were higher for nontoxigenic isolates. Although no vancomycin-resistant isolates were detected, the MIC for vancomycin was higher for toxigenic isolates (P < 0.01). The in-hospital transmission was observed, with 43.8% (110/251) of isolates being genetically linked to a prior case. However, no strong correlation was detected between the genetic linkage and epidemiological linkage. Asymptomatic colonized patients play the same role in nosocomial transmission as infected patients, raising the issue of routine screening of C. difficile on admission. This work provides an in-depth description of C. difficile in a hospital setting and paves the way for better surveillance and effective prevention of related diseases in China. IMPORTANCEClostridioides difficile infections (CDI) are the leading cause of healthcare-associated diarrhea and are known to be resistant to multiple antibiotics. In the past decade, C. difficile has emerged rapidly and has spread globally, causing great concern among American and European countries. However, research on CDI remains limited in China. Here, we characterized the comprehensive spectrum of C. difficile by whole-genome sequencing (WGS) in a Chinese hospital, showing a high detection rate among patients, diverse genome characteristics, a high level of antibiotic resistance, and an unknown nosocomial transmission risk of C. difficile. During the study period, two C. difficile transferase (CDT)-positive isolates belonging to a new multilocus sequence type (ST820) were detected, which have caused serious clinical symptoms. This work describes C. difficile integrally and provides new insight into C. difficile surveillance based on WGS in China.
Collapse
|
23
|
Smits WK, Roseboom AM, Corver J. Plasmids of Clostridioides difficile. Curr Opin Microbiol 2021; 65:87-94. [PMID: 34775173 DOI: 10.1016/j.mib.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Plasmids are ubiquitous in the bacterial world. In many microorganisms, plasmids have been implicated in important aspects of bacterial physiology and contribute to horizontal gene transfer. In contrast, knowledge on plasmids of the enteropathogen Clostridioides difficile is limited, and there appears to be no phenotypic consequence to carriage of many of the identified plasmids. Emerging evidence suggests, however, that plasmids are common in C. difficile and may encode functions relevant to pathogenesis, such as antimicrobial resistance and toxin production. Here, we review our current knowledge about the abundance, functions and clinical relevance of plasmids in C. difficile.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Experimental Bacteriology Group, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden, The Netherlands; Leiden University Center for Infectious Diseases (LU-CID), Leiden, The Netherlands.
| | - Anna Maria Roseboom
- Experimental Bacteriology Group, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Corver
- Experimental Bacteriology Group, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden, The Netherlands; Leiden University Center for Infectious Diseases (LU-CID), Leiden, The Netherlands
| |
Collapse
|
24
|
Hussain FA, Dubert J, Elsherbini J, Murphy M, VanInsberghe D, Arevalo P, Kauffman K, Rodino-Janeiro BK, Gavin H, Gomez A, Lopatina A, Le Roux F, Polz MF. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 2021; 374:488-492. [PMID: 34672730 DOI: 10.1126/science.abb1083] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fatima Aysha Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Javier Dubert
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Microbiology and Parasitology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joseph Elsherbini
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikayla Murphy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip Arevalo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruno Kotska Rodino-Janeiro
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hannah Gavin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annika Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Lopatina
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, CS 10070, F-29280 Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff Cedex, France
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Xu X, Bian Q, Luo Y, Song X, Lin S, Chen H, Liang Q, Wang M, Ye G, Zhu B, Chen L, Tang YW, Wang X, Jin D. Comparative Whole Genome Sequence Analysis and Biological Features of Clostridioides difficile Sequence Type 2 ‡. Front Microbiol 2021; 12:651520. [PMID: 34290677 PMCID: PMC8287029 DOI: 10.3389/fmicb.2021.651520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile sequence type 2 (ST2) has been increasingly recognized as one of the major genotypes in China, while the genomic characteristics and biological phenotypes of Chinese ST2 strains remain to be determined. We used whole-genome sequencing and phylogenetic analysis to investigate the genomic features of 182 ST2 strains, isolated between 2011 and 2017. PCR ribotyping (RT) was performed, and antibiotic resistance, toxin concentration, and sporulation capacity were measured. The core genome Maximum-likelihood phylogenetic analysis showed that ST2 strains were distinctly segregated into two genetically diverse lineages [L1 (67.0% from Northern America) and L2], while L2 further divided into two sub-lineages, SL2a and SL2b (73.5% from China). The 36 virulence-related genes were widely distributed in ST2 genomes, but in which only 11 antibiotic resistance-associated genes were dispersedly found. Among the 25 SL2b sequenced isolates, RT014 (40.0%, n = 10) and RT020 (28.0%, n = 7) were two main genotypes with no significant difference on antibiotic resistance (χ2 = 0.024-2.667, P > 0.05). A non-synonymous amino acid substitution was found in tcdB (Y1975D) which was specific to SL2b. Although there was no significant difference in sporulation capacity between the two lineages, the average toxin B concentration (5.11 ± 3.20 ng/μL) in SL2b was significantly lower in comparison to those in L1 (10.49 ± 15.82 ng/μL) and SL2a (13.92 ± 2.39 ng/μL) (χ2 = 12.30, P < 0.05). This study described the genomic characteristics of C. difficile ST2, with many virulence loci and few antibiotic resistance elements. The Chinese ST2 strains with the mutation in codon 1975 of the tcdB gene clustering in SL2b circulating in China express low toxin B, which may be associated with mild or moderate C. difficile infection.
Collapse
Affiliation(s)
- Xingxing Xu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qiao Bian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huan Chen
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Qian Liang
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Meixia Wang
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Guangyong Ye
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, Untied States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, Untied States
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, China
| | - Xianjun Wang
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China.,Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Seth-Smith HMB, Biggel M, Roloff T, Hinic V, Bodmer T, Risch M, Casanova C, Widmer A, Sommerstein R, Marschall J, Tschudin-Sutter S, Egli A. Transition From PCR-Ribotyping to Whole Genome Sequencing Based Typing of Clostridioides difficile. Front Cell Infect Microbiol 2021; 11:681518. [PMID: 34141631 PMCID: PMC8204696 DOI: 10.3389/fcimb.2021.681518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Vladimira Hinic
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Thomas Bodmer
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Martin Risch
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andreas Widmer
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland.,Infectious Diseases, Hirslanden Central Switzerland, Lucerne, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Global Landscape of Clostridioides Difficile Phylogeography, Antibiotic Susceptibility, and Toxin Polymorphisms by Post-Hoc Whole-Genome Sequencing from the MODIFY I/II Studies. Infect Dis Ther 2021; 10:853-870. [PMID: 33751421 PMCID: PMC8116447 DOI: 10.1007/s40121-021-00426-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Clostridioides (Clostridium) difficile infection, the leading cause of healthcare-associated diarrhea, represents a significant burden on global healthcare systems. Despite being a global issue, information on C. difficile from a global perspective is lacking. The aim of this study is to model the global phylogeography of clinical C. difficile. METHODS Using samples collected from the MODIFY I and II studies (NCT01241552, NCT01513239), we performed whole-genome sequencing of 1501 clinical isolates including 37 novel sequence types (STs), representing the largest worldwide collection to date. RESULTS Our data showed ribotypes, multi-locus sequence typing clades, and whole-genome phylogeny were in good accordance. The clinical C. difficile genome was found to be more conserved than previously reported (61% core genes), and modest recombination rates of 1.4-5.0 were observed across clades. We observed a significant continent distribution preference among five C. difficile clades (Benjamini-Hochberg corrected Fisher's exact test P < 0.01); moreover, weak association between geographic and genetic distance among ribotypes suggested sources beyond healthcare-related transmission. Markedly different trends of antibiotic susceptibility among lineages and regions were identified, and three novel mutations (in pyridoxamine 5'-phosphate oxidase family protein: Tyr130Ser, Tyr130Cys, and a promoter SNP) associated with metronidazole-reduced susceptibility were discovered on a nim-related gene and its promotor by genome-wide association study. Toxin gene polymorphisms were shown to vary within and between prevalent ribotypes, and novel severe mutations were found on the tcdC toxin regulator protein. CONCLUSION Our systematic characterization of a global set of clinical trial C. difficile isolates from infected individuals demonstrated the complexity of the genetic makeup of this pathogenic organism. The geographic variability of clades, variability in toxin genes, and mutations associated with antibiotic susceptibility indicate a highly complex interaction of C. difficile between host and environment. This dataset will provide a useful resource for validation of findings and future research of C. difficile.
Collapse
|
28
|
Badilla-Lobo A, Rodríguez C. Microbiological features, epidemiology, and clinical presentation of Clostridioidesdifficile strains from MLST Clade 2: A narrative review. Anaerobe 2021; 69:102355. [PMID: 33711422 DOI: 10.1016/j.anaerobe.2021.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is an emerging One Health pathogen and a common etiologic agent of diarrhea, both in healthcare settings and the community. This bacterial species is highly diverse, and its global population has been classified in eight clades by multilocus sequence typing (MLST). The C. difficile MLST Clade 2 includes the NAP1/RT027/ST01 strain, which is highly recognized due to its epidemicity and association with severe disease presentation and mortality. By contrast, the remaining 83 sequence types (STs) that compose this clade have received much less attention. In response to this shortcoming, we reviewed articles published in English between 1999 and 2020 and collected information for 27 Clade 2 STs, with an emphasis on STs 01, 67, 41 and 188/231/365. Our analysis provides evidence of large phenotypic differences that preclude support of the rather widespread notion that ST01 and Clade 2 strains are "hypervirulent". Moreover, it revealed a profound lack of (meta)data for nearly 70% of the Clade 2 STs that have been identified in surveillance efforts. Targeted studies aiming to relate wet-lab and bioinformatics results to patient and clinical parameters should be performed to gain a more in-depth insight into the biology of this intriguing group of C. difficile isolates.
Collapse
Affiliation(s)
- Adriana Badilla-Lobo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
29
|
Aguilar-Zamora E, Weimer BC, Torres RC, Gómez-Delgado A, Ortiz-Olvera N, Aparicio-Ozores G, Barbero-Becerra VJ, Torres J, Camorlinga-Ponce M. Molecular Epidemiology and Antimicrobial Resistance of Clostridioides difficile in Hospitalized Patients From Mexico. Front Microbiol 2021; 12:787451. [PMID: 35360652 PMCID: PMC8960119 DOI: 10.3389/fmicb.2021.787451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a global public health problem, which is a primary cause of antibiotic-associated diarrhea in humans. The emergence of hypervirulent and antibiotic-resistant strains is associated with the increased incidence and severity of the disease. There are limited studies on genomic characterization of C. difficile in Latin America. We aimed to learn about the molecular epidemiology and antimicrobial resistance in C. difficile strains from adults and children in hospitals of México. We studied 94 C. difficile isolates from seven hospitals in Mexico City from 2014 to 2018. Whole-genome sequencing (WGS) was used to determine the genotype and examine the toxigenic profiles. Susceptibility to antibiotics was determined by E-test. Multilocus sequence typing (MLST) was used to determine allelic profiles. Results identified 20 different sequence types (ST) in the 94 isolates, mostly clade 2 and clade 1. ST1 was predominant in isolates from adult and children. Toxigenic strains comprised 87.2% of the isolates that were combinations of tcdAB and cdtAB (tcdA+/tcdB+/cdtA+/cdtB+, followed by tcdA+/tcdB+/cdtA-/cdtB-, tcdA-/tcdB+/cdtA-/ cdtB-, and tcdA-/tcdB-/cdtA+/cdtB+). Toxin profiles were more diverse in isolates from children. All 94 isolates were susceptible to metronidazole and vancomycin, whereas a considerable number of isolates were resistant to clindamycin, fluroquinolones, rifampicin, meropenem, and linezolid. Multidrug-resistant isolates (≥3 antibiotics) comprised 65% of the isolates. The correlation between resistant genotypes and phenotypes was evaluated by the kappa test. Mutations in rpoB and rpoC showed moderate concordance with resistance to rifampicin and mutations in fusA substantial concordance with fusidic acid resistance. cfrE, a gene recently described in one Mexican isolate, was present in 65% of strains linezolid resistant, all ST1 organisms. WGS is a powerful tool to genotype and characterize virulence and antibiotic susceptibility patterns.
Collapse
Affiliation(s)
- Emmanuel Aguilar-Zamora
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Roberto C. Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Alejandro Gómez-Delgado
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Nayeli Ortiz-Olvera
- Departamento de Gastroenterología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- *Correspondence: Javier Torres,
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Margarita Camorlinga-Ponce,
| |
Collapse
|
30
|
Kodori M, Ghalavand Z, Yadegar A, Eslami G, Azimirad M, Krutova M, Abadi A, Zali MR. Molecular characterization of pathogenicity locus (PaLoc) and tcdC genetic diversity among tcdA +B +Clostridioides difficile clinical isolates in Tehran, Iran. Anaerobe 2020; 66:102294. [PMID: 33181348 DOI: 10.1016/j.anaerobe.2020.102294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile is the main cause of healthcare-associated diarrhea worldwide. It is proposed that certain C. difficile toxinotypes with distinct pathogenicity locus (PaLoc) variants are associated with disease severity and outcomes. Additionally, few studies have described the common C. difficile toxinotypes, and also little is known about the tcdC variants in Iranian isolates. We characterized the toxinotypes and the tcdC genotypes from a collection of Iranian clinical C. difficile tcdA+B+ isolates with known ribotypes (RTs). Fifty C. difficile isolates with known RTs and carrying the tcdA and tcdB toxin genes were analyzed. Toxinotyping was carried out based on a PCR-RFLP analysis of a 19.6 kb region encompassing the PaLoc. Genetic diversity of the tcdC gene was determined by the sequencing of the gene. Of the 50 C. difficile isolates investigated, five distinct toxinotypes were recognized. Toxinotypes 0 (33/50, 66%) and V (11/50, 22%) were the most frequently found. C. difficile isolates of the toxinotype 0 mostly belonged to RT 001 (12/33, 36.4%), whereas toxinotype V consisted of RT 126 (9/11, 81.8%). The tcdC sequencing showed six variants (35/50, 70%); tcdC-sc3 (24%), tcdC-A (22%), tcdC-sc9 (18%), tcdC-B (2%), tcdC-sc14 (2%), and tcdC-sc15 (2%). The remaining isolates were wild-types (15/50, 30%) in the tcdC gene. The present study demonstrates that the majority of clinical tcdA+B+ isolates of C. difficile frequently harbor tcdC genetic variants. We also found that the RT 001/toxinotype 0 and the RT 126/toxinotype V are the most common types among Iranian isolates. Further studies are needed to investigate the putative association of various tcdC genotypes with CDI severity and its recurrence.
Collapse
Affiliation(s)
- Mansoor Kodori
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Clostridioides Difficile (ESGCD), Basel, Switzerland
| | - Alireza Abadi
- Department of Health & Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Janezic S, Dingle K, Alvin J, Accetto T, Didelot X, Crook DW, Lacy DB, Rupnik M. Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution. Microb Genom 2020; 6:mgen000449. [PMID: 33030421 PMCID: PMC7660249 DOI: 10.1099/mgen.0.000449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile is a common cause of nosocomial diarrhoea. Toxins TcdA and TcdB are considered to be the main virulence factors and are encoded by the PaLoc region, while the binary toxin encoded in the CdtLoc region also contributes to pathogenicity. Variant toxinotypes reflect the genetic diversity of a key toxin-encoding 19 kb genetic element (the PaLoc). Here, we present analysis of a comprehensive collection of all known major C. difficile toxinotypes to address the evolutionary relationships of the toxin gene variants, the mechanisms underlying the origin and development of variability in toxin genes and the PaLoc, and the relationship between structure and function in TcdB variants. The structure of both toxin genes is modular, composed of interspersed blocks of sequences corresponding to functional domains and having different evolutionary histories, as shown by the distribution of mutations along the toxin genes and by incongruences of domain phylogenies compared to overall C. difficile cluster organization. In TcdB protein, four mutation patterns could be differentiated, which correlated very well with the type of TcdB cytopathic effect (CPE) on cultured cells. Mapping these mutations to the three-dimensional structure of the TcdB showed that the majority of the variation occurs in surface residues and that point mutation at residue 449 in alpha helix 16 differentiated strains with different types of CPE. In contrast to the PaLoc, phylogenetic trees of the CdtLoc were more consistent with the core genome phylogenies, but there were clues that CdtLoc can also be exchanged between strains.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Kate Dingle
- Oxford University, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | - Joseph Alvin
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomaž Accetto
- Biotechnical Faculty, Animal Science Department, University of Ljubljana, Domzale, Slovenia
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Derrick W. Crook
- Oxford University, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | - D. Borden Lacy
- Vanderbilt University School of Medicine, Nashville, TN, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
32
|
Orozco-Aguilar J, Alfaro-Alarcón A, Acuña-Amador L, Chaves-Olarte E, Rodríguez C, Quesada-Gómez C. In vivo animal models confirm an increased virulence potential and pathogenicity of the NAP1/RT027/ST01 genotype within the Clostridium difficile MLST Clade 2. Gut Pathog 2020; 12:45. [PMID: 32983262 PMCID: PMC7510272 DOI: 10.1186/s13099-020-00383-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background Based on MLST analyses the global population of C. difficile is distributed in eight clades, of which Clade 2 includes the “hypervirulent” NAP1/RT027/ST01 strain along with various unexplored sequence types (STs). Methods To clarify whether this clinically relevant phenotype is a widespread feature of C. difficile Clade 2, we used the murine ileal loop model to compare the in vivo pro-inflammatory (TNF-α, IL-1β, IL-6) and oxidative stress activities (MPO) of five Clade 2 clinical C. difficile isolates from sequence types (STs) 01, 41, 67, and 252. Besides, we infected Golden Syrian hamsters with spores from these strains to determine their lethality, and obtain a histological evaluation of tissue damage, WBC counts, and serum injury biomarkers (LDH, ALT, AST, albumin, BUN, creatinine, Na+, and Cl−). Genomic distances were calculated using Mash and FastANI to explore whether the responses were dictated by phylogeny. Results The ST01 isolate tested ranked first in all assays, as it induced the highest overall levels of pro-inflammatory cytokines, MPO activity, epithelial damage, biochemical markers, and mortality measured in both animal models. Statistically indistinguishable or rather similar outputs were obtained for a ST67 isolate in tests such as tissue damage, neutrophils count, and lethal activity. The results recorded for the two ST41 isolates tested were of intermediate magnitude and the ST252 isolate displayed the lowest pathogenic potential in all animal experiments. This ordering matched the genomic distance of the ST01 isolate to the non-ST01 isolates. Conclusions Despite their close phylogenic relatedness, our results demonstrate differences in pathogenicity and virulence levels in Clade 2 C. difficile strains, confirm the high severity of infections caused by the NAP1/RT027/ST01 strain, and highlight the importance of C. difficile typing.
Collapse
Affiliation(s)
- Josué Orozco-Aguilar
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica.,Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.,Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica
| | - Alejandro Alfaro-Alarcón
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Luis Acuña-Amador
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica.,Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
33
|
Johnson S, Citron DM, Gerding DN, Wilcox MH, Goldstein EJC, Sambol SP, Best EL, Eves K, Jansen E, Dorr MB. Efficacy of bezlotoxumab in trial participants infected with Clostridioides difficile strain BI associated with poor outcomes. Clin Infect Dis 2020; 73:e2616-e2624. [PMID: 32735653 DOI: 10.1093/cid/ciaa1035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bezlotoxumab reduced rates of recurrent Clostridioides difficile infection (rCDI) versus placebo in MODIFY I/II trial participants receiving antibacterial drug treatment for CDI. A secondary objective of MODIFY I/II was to assess bezlotoxumab's efficacy against C. difficile strains associated with increased rates of morbidity and mortality. METHODS In this post-hoc analysis of pooled MODIFY I/II data, efficacy endpoints were assessed in participants infected with restriction endonuclease analysis (REA) BI and non-BI strains of C. difficile at study entry. Treatment outcomes were compared between participants receiving bezlotoxumab (alone or with actoxumab: B, B+A) and those receiving no bezlotoxumab (placebo or actoxumab: P, A). RESULTS From 2559 randomized participants, C. difficile was isolated from 1588 (67.2%) baseline stool samples. Participants with BI strains (n=328) were older and had more risk factors for rCDI than non-BI strain participants (n=1260). There were no differences in initial clinical cure rate between BI and non-BI strains in either group. The rCDI rates for BI strains treated with bezlotoxumab was lower than for the no bezlotoxumab group (B, B+A vs P, A: 23.6% vs 43.9%) and was also lower for the non-BI strains (B, B+A vs P, A: 21.4% vs 36.1%). Rates of 30-day CDI-associated re-hospitalization were greater with BI versus non-BI strains in both groups. CONCLUSIONS Infection with BI strains of C. difficile predicted poor outcomes in the MODIFY I/II trials. Bezlotoxumab (B, B+A) treatment was effective both in BI and non-BI subpopulations.
Collapse
Affiliation(s)
- Stuart Johnson
- Edward Hines, Jr. VA Hospital, Hines, IL, USA.,Loyola University, Maywood, IL, USA
| | | | | | - Mark H Wilcox
- Leeds Teaching Hospital, Leeds, UK.,University of Leeds, Leeds, UK
| | | | - Susan P Sambol
- Edward Hines, Jr. VA Hospital, Hines, IL, USA.,Loyola University, Maywood, IL, USA
| | | | | | | | | |
Collapse
|
34
|
Li Z, Lee K, Rajyaguru U, Jones CH, Janezic S, Rupnik M, Anderson AS, Liberator P. Ribotype Classification of Clostridioides difficile Isolates Is Not Predictive of the Amino Acid Sequence Diversity of the Toxin Virulence Factors TcdA and TcdB. Front Microbiol 2020; 11:1310. [PMID: 32636819 PMCID: PMC7318873 DOI: 10.3389/fmicb.2020.01310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides (Clostridium) difficile is the most commonly recognized cause of infectious diarrhea in healthcare settings. Currently there is no vaccine to prevent initial or recurrent C. difficile infection (CDI). Two large clostridial toxins, TcdA and TcdB, are the primary virulence factors for CDI. Immunological approaches to prevent CDI include antibody-mediated neutralization of the cytotoxicity of these toxins. An understanding of the sequence diversity of the two toxins expressed by disease causing isolates is critical for the interpretation of the immune response to the toxins. In this study, we determined the whole genome sequence (WGS) of 478 C. difficile isolates collected in 12 countries between 2004 and 2018 to probe toxin variant diversity. A total of 44 unique TcdA variants and 37 unique TcdB variants were identified. The amino acid sequence conservation among the TcdA variants (≥98%) is considerably greater than among the TcdB variants (as low as 86.1%), suggesting that different selection pressures may have contributed to the evolution of the two toxins. Phylogenomic analysis of the WGS data demonstrate that isolates grouped together based on ribotype or MLST code for multiple different toxin variants. These findings illustrate the importance of determining not only the ribotype but also the toxin sequence when evaluating strain coverage using vaccine strategies that target these virulence factors. We recommend that toxin variant type and sequence type (ST), be used together with ribotype data to provide a more comprehensive strain classification scheme for C. difficile surveillance during vaccine development objectives.
Collapse
Affiliation(s)
- Zhenghui Li
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, United States
| | - Kwok Lee
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, United States
| | - Urvi Rajyaguru
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, United States
| | - C Hal Jones
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, United States
| | - Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, United States
| |
Collapse
|
35
|
Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, Baines SD, Camacho-Ortíz A, Garza-González E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J Microbiol Methods 2020; 175:105974. [PMID: 32531232 DOI: 10.1016/j.mimet.2020.105974] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
There has been an increase in the incidence and severity of Clostridioides difficile infection (CDI) worldwide, and strategies to control, monitor, and diminish the associated morbidity and mortality have been developed. Several typing methods have been used for typing of isolates and studying the epidemiology of CDI; serotyping was the first typing method, but then was replaced by pulsed-field gel electrophoresis (PFGE). PCR ribotyping is now the gold standard method; however, multi locus sequence typing (MLST) schemes have been developed. New sequencing technologies have allowed comparing whole bacterial genomes to address genetic relatedness with a high level of resolution and discriminatory power to distinguish between closely related strains. Here, we review the most frequent C. difficile ribotypes reported worldwide, with a focus on their epidemiology and genetic characteristics.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Sierra Mojada 950, Col. Independencia, CP 44350 Guadalajara, Jalisco, Mexico
| | - Licet Villarreal-Treviño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Simon D Baines
- University of Hertfordshire, School of Life and Medical Sciences, Department of Biological and Environmental Sciences, Hatfield AL10 9AB, UK
| | - Adrián Camacho-Ortíz
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
36
|
Genovese C, La Fauci V, D'Amato S, Squeri A, Anzalone C, Costa GB, Fedele F, Squeri R. Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: a review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:256-273. [PMID: 32420962 PMCID: PMC7569612 DOI: 10.23750/abm.v91i2.9176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Healthcare-associated infections (HAIs) are the most frequent and severe complication acquired in healthcare settings with high impact in terms of morbidity, mortality and costs. Many bacteria could be implicated in these infections, but, expecially multidrug resistance bacteria could play an important role. Many microbial typing technologies have been developed until to the the bacterial whole-genome sequencing and the choice of a molecular typing method therefore will depend on the skill level and resources of the laboratory and the aim and scale of the investigation. In several studies the molecular investigation of pathogens involved in HAIs was performed with many microorganisms identified as causative agents such as Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Clostridium difficile, Acinetobacter spp., Enterobacter spp., Enterococcus spp., Staphylococcus aureus and several more minor species. Here, we will describe the most and least frequently reported clonal complex, sequence types and ribotypes with their worldwide geographic distribution for the most important species involved in HAIs.
Collapse
Affiliation(s)
- Cristina Genovese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Vincenza La Fauci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Smeralda D'Amato
- Postgraduate Medical School in Hygiene and Preventive Medicine, University of Messina, Italy.
| | - Andrea Squeri
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Carmelina Anzalone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Gaetano Bruno Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Francesco Fedele
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | | |
Collapse
|
37
|
Shaw HA, Preston MD, Vendrik KEW, Cairns MD, Browne HP, Stabler RA, Crobach MJT, Corver J, Pituch H, Ingebretsen A, Pirmohamed M, Faulds-Pain A, Valiente E, Lawley TD, Fairweather NF, Kuijper EJ, Wren BW. The recent emergence of a highly related virulent Clostridium difficile clade with unique characteristics. Clin Microbiol Infect 2020; 26:492-498. [PMID: 31525517 PMCID: PMC7167513 DOI: 10.1016/j.cmi.2019.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Clostridium difficile is a major global human pathogen divided into five clades, of which clade 3 is the least characterized and consists predominantly of PCR ribotype (RT) 023 strains. Our aim was to analyse and characterize this clade. METHODS In this cohort study the clinical presentation of C. difficile RT023 infections was analysed in comparison with known 'hypervirulent' and non-hypervirulent strains, using data from the Netherlands national C. difficile surveillance programme. European RT023 strains of diverse origin were collected and whole-genome sequenced to determine the genetic similarity between isolates. Distinctive features were investigated and characterized. RESULTS Clinical presentation of C. difficile RT023 infections show severe infections akin to those seen with 'hypervirulent' strains from clades 2 (RT027) and 5 (RT078) (35%, 29% and 27% severe CDI, respectively), particularly with significantly more bloody diarrhoea than RT078 and non-hypervirulent strains (RT023 8%, other RTs 4%, p 0.036). The full genome sequence of strain CD305 is presented as a robust reference. Phylogenetic comparison of CD305 and a further 79 previously uncharacterized European RT023 strains of diverse origin revealed minor genetic divergence with >99.8% pairwise identity between strains. Analyses revealed distinctive features among clade 3 strains, including conserved pathogenicity locus, binary toxin and phage insertion toxin genotypes, glycosylation of S-layer proteins, presence of the RT078 four-gene trehalose cluster and an esculinase-negative genotype. CONCLUSIONS Given their recent emergence, virulence and genomic characteristics, the surveillance of clade 3 strains should be more highly prioritized.
Collapse
Affiliation(s)
- H A Shaw
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Division of Bacteriology, National Institute for Biological Standards and Controls, South Mimms, Potters Bar, UK
| | - M D Preston
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Analytical Biological Service Division, National Institute for Biological Standards and Controls, Potters Bar, UK
| | - K E W Vendrik
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - M D Cairns
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Public Health Laboratory London, Division of Infection, The Royal London Hospital, London, UK
| | - H P Browne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - R A Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - M J T Crobach
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Corver
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - H Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - A Ingebretsen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Infection Prevention, Oslo University Hospital, Oslo, Norway
| | - M Pirmohamed
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - A Faulds-Pain
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - E Valiente
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - T D Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - E J Kuijper
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - B W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
38
|
Saber T, Hawash YA, Ismail KA, Khalifa AS, Alsharif KF, Alghamdi SA, Saber T, Eed EM. Prevalence, toxin gene profile, genotypes and antibiotic susceptibility of Clostridium difficile in a tertiary care hospital in Taif, Saudi Arabia. Indian J Med Microbiol 2020; 38:176-182. [PMID: 32883931 DOI: 10.4103/ijmm.ijmm_20_300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Purpose Clostridium difficile (C. difficile) is an important causative agent of nosocomial diarrhoea and has become a major worldwide public health concern. The current study was conducted to determine the prevalence of C. difficile infection (CDI) amongst patients with nosocomial diarrhoea in a large tertiary care hospital in Taif, Saudi Arabia, and to define molecular characteristics and antimicrobial sensitivity profiles of C. difficile strains isolated from those patients. Materials and Methods Stool specimens were collected from 456 patients and were cultured for C. difficile isolation. The isolates were subjected to multiplex polymerase chain reaction (PCR) for detecting genes encoding the toxins (toxin A, toxin B and binary toxin [CDT]), genotyping by PCR ribotyping method and antimicrobial sensitivity testing using E test strips. Results Seventy-four C. difficile strains were recovered, of which 44 (59.5%) were A+B+CDT-, 14 (18.9%) were A-B+CDT-, 4 (5.4%) were A+B+CDT+ and 12 (16.2%) were A-B-CDT-. Toxigenic strains, and hence CDI, were detected in 13.6% of the patients (62/456). Fourteen different ribotypes were distinguished amongst bacterial isolates, of which ribotypes 002, 001, 017, 014 and 020 were the most prevalent (20.3%, 18.9%, 18.9%, 9.5% and 8.1%, respectively). Four isolates (5.4%) belonged to ribotype 027. All bacterial isolates showed sensitivity to metronidazole, vancomycin and piperacillin-tazobactam. The isolates exhibited resistance to linezolid (2.7%), chloramphenicol (5.4%), rifampicin (13.5%), tetracycline (21.6%), moxifloxacin (48.6%), clindamycin (54%) and imipenem (83.8%). Multiple drug resistance was observed in 56.8% of the isolates. Conclusion Further larger studies are required for an accurate understanding of CDI epidemiology in Saudi Arabia.
Collapse
Affiliation(s)
- Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yousry A Hawash
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Department of Molecular and Clinical Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Khadiga A Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany S Khalifa
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia; Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Tamer Saber
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Emad M Eed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
39
|
Schwartz R, Guichard A, Franc NC, Roy S, Bier E. A Drosophila Model for Clostridium difficile Toxin CDT Reveals Interactions with Multiple Effector Pathways. iScience 2020; 23:100865. [PMID: 32058973 PMCID: PMC7011083 DOI: 10.1016/j.isci.2020.100865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infections (CDIs) cause severe and occasionally life-threatening diarrhea. Hyper-virulent strains produce CDT, a toxin that ADP-ribosylates actin monomers and inhibits actin polymerization. We created transgenic Drosophila lines expressing the catalytic subunit CDTa to investigate its interaction with host signaling pathways in vivo. When expressed in the midgut, CDTa reduces body weight and fecal output and compromises survival, suggesting severe impairment of digestive functions. At the cellular level, CDTa induces F-actin network collapse, elimination of the intestinal brush border, and disruption of intercellular junctions. We confirm toxin-dependent re-distribution of Rab11 to enterocytes' apical surface and observe suppression of CDTa phenotypes by a Dominant-Negative form of Rab11 or RNAi of the dedicated Rab11GEF Crag (DENND4). We also report that Calmodulin (Cam) is required to mediate CDTa activity. In parallel, chemical inhibition of the Cam/Calcineurin pathway by Cyclosporin A or FK506 also reduces CDTa phenotypes, potentially opening new avenues for treating CDIs.
Collapse
Affiliation(s)
- Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA
| | - Nathalie C Franc
- Franc Consulting, San Diego, CA 92117-3314, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sitara Roy
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA.
| |
Collapse
|
40
|
Okada Y, Yagihara Y, Wakabayashi Y, Igawa G, Saito R, Higurashi Y, Ikeda M, Tatsuno K, Okugawa S, Moriya K. Epidemiology and virulence-associated genes of Clostridioides difficile isolates and factors associated with toxin EIA results at a university hospital in Japan. Access Microbiol 2019; 2:acmi000086. [PMID: 34568752 PMCID: PMC8459100 DOI: 10.1099/acmi.0.000086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Clostridioides difficile is one of the most important nosocomial pathogens; however, reports regarding its clinical and molecular characteristics from Japan are scarce. Aims We studied the multilocus sequence typing (MLST)-based epidemiology and virulence-associated genes of isolates and the clinical backgrounds of patients from whom the isolates had been recovered. Methods A total of 105 stool samples tested in a C. difficile toxin enzyme immune assay (EIA) were analysed at the University of Tokyo Hospital from March 2013 to July 2014. PCR for MLST and the virulence-associated genes tcdA, tcdB, cdtA, cdtB and tcdC was performed on C. difficile isolates meeting our inclusion criteria following retrospective review of medical records. EIA-positive and EIA-negative groups with toxigenic strains underwent clinical and molecular background comparison. Results The toxigenic strains ST17, ST81, ST2, ST54, ST8, ST3, ST37 and ST53 and the non-toxigenic strains ST109, ST15 and ST100 were frequently recovered. The prevalence rate of tcdA-negative ST81 and ST37, endemic in China and Korea, was higher (11.4%) than that reported in North America and Europe, and hypervirulent ST1(RT027) and ST11(RT078) strains that occur in North America and Europe were not recovered. The linkage between the EIA results and cdt A/B positivity, tcdC deletion, or tcdA variation was absent among toxigenic strains. Compared with the 38 EIA-negative cases, the 36 EIA-positive cases showed that the patients in EIA-positive cases were older and more frequently had chronic kidney disease, as well as a history of beta-lactam use and proton pump inhibitor therapy. Conclusion In Japan, the prevalence rates for tcdA-negative strains are high, whereas the cdtA/B-positive strains are rare. EIA positivity is linked to older age, chronic kidney disease and the use of beta-lactams and proton pump inhibitors.
Collapse
Affiliation(s)
- Yuta Okada
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yuka Yagihara
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yoshitaka Wakabayashi
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Gene Igawa
- Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshimi Higurashi
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mahoko Ikeda
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Keita Tatsuno
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shu Okugawa
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- *Correspondence: Shu Okugawa,
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
41
|
Tratulyte S, Miciuleviciene J, Kuisiene N. First genotypic characterization of toxigenic Clostridioides difficile in Lithuanian hospitals reveals the prevalence of the hypervirulent ribotype 027/ST1. Eur J Clin Microbiol Infect Dis 2019; 38:1953-1959. [DOI: 10.1007/s10096-019-03633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
|
42
|
Williamson CHD, Stone NE, Nunnally AE, Hornstra HM, Wagner DM, Roe CC, Vazquez AJ, Nandurkar N, Vinocur J, Terriquez J, Gillece J, Travis J, Lemmer D, Keim P, Sahl JW. A global to local genomics analysis of Clostridioides difficile ST1/RT027 identifies cryptic transmission events in a northern Arizona healthcare network. Microb Genom 2019; 5:e000271. [PMID: 31107202 PMCID: PMC6700662 DOI: 10.1099/mgen.0.000271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of C. difficile cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the C. difficile multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for C. difficile colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality C. difficile genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other C. difficile genomes; analyses of other toxigenic C. difficile sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with C. difficile infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical C. difficile isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of C. difficile and for assessing the performance of infection prevention and control strategies.
Collapse
Affiliation(s)
| | - Nathan E. Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Amalee E. Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Heidie M. Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Chandler C. Roe
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam J. Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nivedita Nandurkar
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Jacob Vinocur
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Joel Terriquez
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - John Gillece
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Jason Travis
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
43
|
Cao H, Wong SCY, Yam WC, Liu MCJ, Chow KH, Wu AKL, Ho PL. Genomic investigation of a sequence type 67 Clostridium difficile causing community-acquired fulminant colitis in Hong Kong. Int J Med Microbiol 2019; 309:270-273. [DOI: 10.1016/j.ijmm.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
|
44
|
Herbert R, Hatcher J, Jauneikaite E, Gharbi M, d'Arc S, Obaray N, Rickards T, Rebec M, Blandy O, Hope R, Thomas A, Bamford K, Jepson A, Sriskandan S. Two-year analysis of Clostridium difficile ribotypes associated with increased severity. J Hosp Infect 2019; 103:388-394. [PMID: 31220480 PMCID: PMC6926500 DOI: 10.1016/j.jhin.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
Background Certain Clostridium difficile ribotypes have been associated with complex disease phenotypes including recurrence and increased severity, especially the well-described hypervirulent RT027. This study aimed to determine the pattern of ribotypes causing infection and the association, if any, with severity. Methods All faecal samples submitted to a large diagnostic laboratory for C. difficile testing between 2011 and 2013 were subject to routine testing and culture. All C. difficile isolates were ribotyped, and associated clinical and demographic patient data were retrieved and linked to ribotyping data. Results In total, 86 distinct ribotypes were identified from 705 isolates of C. difficile. RT002 and RT015 were the most prevalent (22.5%, N=159). Only five isolates (0.7%) were hypervirulent RT027. Ninety of 450 (20%) patients with clinical information available died within 30 days of C. difficile isolation. RT220, one of the 10 most common ribotypes, was associated with elevated median C-reactive protein and significantly increased 30-day all-cause mortality compared with RT002 and RT015, and with all other ribotypes found in the study. Conclusions A wide range of C. difficile ribotypes were responsible for C. difficile infection presentations. Although C. difficile-associated mortality has reduced in recent years, expansion of lineages associated with increased severity could herald increases in future mortality. Enhanced surveillance for emerging lineages such as RT220 that are associated with more severe disease is required, with genomic approaches to dissect pathogenicity.
Collapse
Affiliation(s)
- R Herbert
- Imperial College Healthcare NHS Trust, London, UK
| | - J Hatcher
- Imperial College Healthcare NHS Trust, London, UK
| | - E Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - M Gharbi
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - S d'Arc
- Imperial College Healthcare NHS Trust, London, UK
| | - N Obaray
- Imperial College Healthcare NHS Trust, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - T Rickards
- Imperial College Healthcare NHS Trust, London, UK
| | - M Rebec
- Imperial College Healthcare NHS Trust, London, UK
| | - O Blandy
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - R Hope
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; National Infection Service, Public Health England, London, UK
| | - A Thomas
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - K Bamford
- Imperial College Healthcare NHS Trust, London, UK
| | - A Jepson
- Imperial College Healthcare NHS Trust, London, UK
| | - S Sriskandan
- Imperial College Healthcare NHS Trust, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK.
| |
Collapse
|
45
|
López-Ureña D, Orozco-Aguilar J, Chaves-Madrigal Y, Ramírez-Mata A, Villalobos-Jimenez A, Ost S, Quesada-Gómez C, Rodríguez C, Papatheodorou P, Chaves-Olarte E. Toxin B Variants from Clostridium difficile Strains VPI 10463 and NAP1/027 Share Similar Substrate Profile and Cellular Intoxication Kinetics but Use Different Host Cell Entry Factors. Toxins (Basel) 2019; 11:toxins11060348. [PMID: 31212980 PMCID: PMC6628394 DOI: 10.3390/toxins11060348] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile induces antibiotic-associated diarrhea due to the release of toxin A (TcdA) and toxin B (TcdB), the latter being its main virulence factor. The epidemic strain NAP1/027 has an increased virulence attributed to different factors. We compared cellular intoxication by TcdBNAP1 with that by the reference strain VPI 10463 (TcdBVPI). In a mouse ligated intestinal loop model, TcdBNAP1 induced higher neutrophil recruitment, cytokine release, and epithelial damage than TcdBVPI. Both toxins modified the same panel of small GTPases and exhibited similar in vitro autoprocessing kinetics. On the basis of sequence variations in the frizzled-binding domain (FBD), we reasoned that TcdBVPI and TcdBNAP1 might have different receptor specificities. To test this possibility, we used a TcdB from a NAP1 variant strain (TcdBNAP1v) unable to glucosylate RhoA but with the same receptor-binding domains as TcdBNAP1. Cells were preincubated with TcdBNAP1v to block cellular receptors, prior to intoxication with either TcdBVPI or TcdBNAP1. Preincubation with TcdBNAP1v blocked RhoA glucosylation by TcdBNAP1 but not by TcdBVPI, indicating that the toxins use different host factors for cell entry. This crucial difference might explain the increased biological activity of TcdBNAP1 in the intestine, representing a contributing factor for the increased virulence of the NAP1/027 strain.
Collapse
Affiliation(s)
- Diana López-Ureña
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Josué Orozco-Aguilar
- Facultad de Farmacia and Laboratorio de Ensayos Biológicos, Escuela de Medicina, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Yendry Chaves-Madrigal
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Andrea Ramírez-Mata
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Amanda Villalobos-Jimenez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Stefan Ost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
| | - Carlos Quesada-Gómez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | | | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| |
Collapse
|
46
|
Identification and Characterization of Escherichia coli, Salmonella Spp., Clostridium perfringens, and C. difficile Isolates from Reptiles in Brazil. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9530732. [PMID: 31263711 PMCID: PMC6556801 DOI: 10.1155/2019/9530732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Considering the increasing popularity of reptiles as pets and their possible role as reservoirs of pathogenic microorganisms, the aim of this study was to isolate Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile strains from reptiles in Brazil and to characterize the isolated strains. The characterization was based on phylogenetic typing of E. coli, identification of virulence genes of E. coli, C. perfringens, and C. difficile, serotyping of Salmonella spp., ribotyping and MLST of C. difficile and antimicrobial susceptibility test of pathogenic strains. Cloacal swabs were collected from 76 reptiles, of which 15 were lizards, 16 chelonians, and 45 snakes, either living in captivity, in the wild, or as companion animals. E. coli was isolated from 52 (68.4%) reptiles, of which 46 (88.4%) were characterized as phylogroup B1. The virulence factor CNF1 of E. coli was found in seven (9.2%) sampled animals, whereas the gene of EAST1 was found in isolates from two (2.6%) reptiles. Three isolates positive for CNF1 were resistant to cephalothin, one of which was also resistant to ciprofloxacin, trimethoprim/sulfamethoxazole, and chloramphenicol, being then classified as multidrug resistant strain (MDR). Salmonella enterica was identified in 26 (34.2%) reptiles, of which 13 belonged to the subspecies enterica. Serotypes such as S. Mbandaka, S. Panama, S. Infantis, S. Heidelberg, and S. Anatum were identified. One isolate of S. enterica subsp. houtenae was resistant to cephalothin and ciprofloxacin. C. perfringens type A was isolated from six (7.8%) animals. C. difficile was isolated from three (3.9%) reptiles. Two of these isolates were toxigenic and classified into ribotypes/MLST 081/ST9 and 106/ST42, which have been previously reported to infect humans. In conclusion, reptiles in Brazil can harbor toxigenic C. difficile and potentially pathogenic E. coli and Salmonella enterica subsp. enterica, thus representing a risk to human and animal health.
Collapse
|
47
|
Evolutionary and Genomic Insights into Clostridioides difficile Sequence Type 11: a Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. mBio 2019; 10:mBio.00446-19. [PMID: 30992351 PMCID: PMC6469969 DOI: 10.1128/mbio.00446-19] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Historically, Clostridioides difficile (Clostridium difficile) has been associated with life-threatening diarrhea in hospitalized patients. Increasing rates of C. difficile infection (CDI) in the community suggest exposure to C. difficile reservoirs outside the hospital, including animals, the environment, or food. C. difficile sequence type 11 (ST11) is known to infect/colonize livestock worldwide and comprises multiple ribotypes, many of which cause disease in humans, suggesting CDI may be a zoonosis. Using high-resolution genomics, we investigated the evolution and zoonotic potential of ST11 and a new closely related ST258 lineage sourced from diverse origins. We found multiple intra- and interspecies clonal transmission events in all ribotype sublineages. Clones were spread across multiple continents, often without any health care association, indicative of zoonotic/anthroponotic long-range dissemination in the community. ST11 possesses a massive pan-genome and numerous clinically important antimicrobial resistance elements and prophages, which likely contribute to the success of this globally disseminated lineage of One Health importance. Clostridioides difficile (Clostridium difficile) sequence type 11 (ST11) is well established in production animal populations worldwide and contributes considerably to the global burden of C. difficile infection (CDI) in humans. Increasing evidence of shared ancestry and genetic overlap of PCR ribotype 078 (RT078), the most common ST11 sublineage, between human and animal populations suggests that CDI may be a zoonosis. We performed whole-genome sequencing (WGS) on a collection of 207 ST11 and closely related ST258 isolates of human and veterinary/environmental origin, comprising 16 RTs collected from Australia, Asia, Europe, and North America. Core genome single nucleotide variant (SNV) analysis identified multiple intraspecies and interspecies clonal groups (isolates separated by ≤2 core genome SNVs) in all the major RT sublineages: 078, 126, 127, 033, and 288. Clonal groups comprised isolates spread across different states, countries, and continents, indicative of reciprocal long-range dissemination and possible zoonotic/anthroponotic transmission. Antimicrobial resistance genotypes and phenotypes varied across host species, geographic regions, and RTs and included macrolide/lincosamide resistance (Tn6194 [ermB]), tetracycline resistance (Tn6190 [tetM] and Tn6164 [tet44]), and fluoroquinolone resistance (gyrA/B mutations), as well as numerous aminoglycoside resistance cassettes. The population was defined by a large “open” pan-genome (10,378 genes), a remarkably small core genome of 2,058 genes (only 19.8% of the gene pool), and an accessory genome containing a large and diverse collection of important prophages of the Siphoviridae and Myoviridae. This study provides novel insights into strain relatedness and genetic variability of C. difficile ST11, a lineage of global One Health importance.
Collapse
|
48
|
Mau T, Eckley SS, Bergin IL, Saund K, Villano JS, Vendrov KC, Snitkin ES, Young VB, Yung R. Outbreak of Murine Infection with Clostridium difficile Associated with the Administration of a Pre- and Perinatal Methyl Donor Diet. mSphere 2019; 4:e00138-19. [PMID: 30894434 PMCID: PMC6429045 DOI: 10.1128/mspheredirect.00138-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Between October 2016 and June 2017, a C57BL/6J mouse colony that was undergoing a pre- and perinatal methyl donor supplementation diet intervention to study the impact of parental nutrition on offspring susceptibility to disease was found to suffer from an epizootic of unexpected deaths. Necropsy revealed the presence of severe colitis, and further investigation linked these outbreak deaths to a Clostridium difficile strain of ribotype 027 that we term 16N203. C. difficile infection (CDI) is associated with antibiotic use in humans. Current murine models of CDI rely on antibiotic pretreatment to establish clinical phenotypes. In this report, the C. difficile outbreak occurs in F1 mice linked to alterations in the parental diet. The diagnosis of CDI in the affected mice was confirmed by cecal/colonic histopathology, the presence of C. difficile bacteria in fecal/colonic culture, and detection of C. difficile toxins. F1 mice from parents fed the methyl supplementation diet also had significantly reduced survival (P < 0.0001) compared with F1 mice from parents fed the control diet. When we tested the 16N203 outbreak strain in an established mouse model of antibiotic-induced CDI, we confirmed that this strain is pathogenic. Our serendipitous observations from this spontaneous outbreak of C. difficile in association with a pre- and perinatal methyl donor diet suggest the important role that diet may play in host defense and CDI risk factors.IMPORTANCEClostridium difficile infection (CDI) has become the leading cause of infectious diarrhea in hospitals worldwide, owing its preeminence to the emergence of hyperendemic strains, such as ribotype 027 (RT027). A major CDI risk factor is antibiotic exposure, which alters gut microbiota, resulting in the loss of colonization resistance. Current murine models of CDI also depend on pretreatment of animals with antibiotics to establish disease. The outbreak that we report here is unique in that the CDI occurred in mice with no antibiotic exposure and is associated with a pre- and perinatal methyl supplementation donor diet intervention study. Our investigation subsequently reveals that the outbreak strain that we term 16N203 is an RT027 strain, and this isolated strain is also pathogenic in an established murine model of CDI (with antibiotics). Our report of this spontaneous outbreak offers additional insight into the importance of environmental factors, such as diet, and CDI susceptibility.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha S Eckley
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- In-Vivo Animal Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Katie Saund
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Villano
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatric Research, Education, and Clinical Care Center, VA Ann Arbor Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
49
|
Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Marwick CA, Coia J, Brown D, Buchanan S, Ijaz UZ, Goswami C, Douce G, Fawley WN, Wilcox MH, Peto TEA, Walker AS, Crook DW. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. mBio 2019; 10:e02790-18. [PMID: 30862754 PMCID: PMC6414706 DOI: 10.1128/mbio.02790-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 02/04/2023] Open
Abstract
The increasing clinical importance of human infections (frequently severe) caused by Clostridium difficile PCR ribotype 078 (RT078) was first reported in 2008. The severity of symptoms (mortality of ≤30%) and the higher proportion of infections among community and younger patients raised concerns. Farm animals, especially pigs, have been identified as RT078 reservoirs. We aimed to understand the recent changes in RT078 epidemiology by investigating a possible role for antimicrobial selection in its recent evolutionary history. Phylogenetic analysis of international RT078 genomes (isolates from 2006 to 2014, n = 400), using time-scaled, recombination-corrected, maximum likelihood phylogenies, revealed several recent clonal expansions. A common ancestor of each expansion had independently acquired a different allele of the tetracycline resistance gene tetM Consequently, an unusually high proportion (76.5%) of RT078 genomes were tetM positive. Multiple additional tetracycline resistance determinants were also identified (including efflux pump tet40), frequently sharing a high level of nucleotide sequence identity (up to 100%) with sequences found in the pig pathogen Streptococcus suis and in other zoonotic pathogens such as Campylobacter jejuni and Campylobacter coli Each RT078 tetM clonal expansion lacked geographic structure, indicating rapid, recent international spread. Resistance determinants for C. difficile infection-triggering antimicrobials, including fluoroquinolones and clindamycin, were comparatively rare in RT078. Tetracyclines are used intensively in agriculture; this selective pressure, plus rapid, international spread via the food chain, may explain the increased RT078 prevalence in humans. Our work indicates that the use of antimicrobials outside the health care environment has selected for resistant organisms, and in the case of RT078, has contributed to the emergence of a human pathogen.IMPORTANCEClostridium difficile PCR ribotype 078 (RT078) has multiple reservoirs; many are agricultural. Since 2005, this genotype has been increasingly associated with human infections in both clinical settings and the community. Investigations of RT078 whole-genome sequences revealed that tetracycline resistance had been acquired on multiple independent occasions. Phylogenetic analysis revealed a rapid, recent increase in numbers of closely related tetracycline-resistant RT078 (clonal expansions), suggesting that tetracycline selection has strongly influenced its recent evolutionary history. We demonstrate recent international spread of emergent, tetracycline-resistant RT078. A similar tetracycline-positive clonal expansion was also identified in unrelated nontoxigenic C. difficile, suggesting that this process may be widespread and may be independent of disease-causing ability. Resistance to typical C. difficile infection-associated antimicrobials (e.g., fluoroquinolones, clindamycin) occurred only sporadically within RT078. Selective pressure from tetracycline appears to be a key factor in the emergence of this human pathogen and the rapid international dissemination that followed, plausibly via the food chain.
Collapse
Affiliation(s)
- Kate E Dingle
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - T Phuong Quan
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - David W Eyre
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Nicole Stoesser
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Charis A Marwick
- Population Health Sciences, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - John Coia
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - Derek Brown
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | | | - Umer Z Ijaz
- University of Glasgow, Scotland, United Kingdom
| | | | - Gill Douce
- University of Glasgow, Scotland, United Kingdom
| | - Warren N Fawley
- Department of Microbiology, Leeds General Infirmary, Leeds Teaching Hospitals, University of Leeds, Leeds, United Kingdom
| | - Mark H Wilcox
- Department of Microbiology, Leeds General Infirmary, Leeds Teaching Hospitals, University of Leeds, Leeds, United Kingdom
| | - Timothy E A Peto
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| |
Collapse
|
50
|
Murillo T, Ramírez-Vargas G, Riedel T, Overmann J, Andersen JM, Guzmán-Verri C, Chaves-Olarte E, Rodríguez C. Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms. Genome Biol Evol 2018; 10:982-998. [PMID: 29617810 PMCID: PMC5888409 DOI: 10.1093/gbe/evy059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301–8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.
Collapse
Affiliation(s)
- Tatiana Murillo
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Ramírez-Vargas
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Joakim M Andersen
- Department of Food, Processing and Nutritional Sciences, North Carolina State University
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|