1
|
Borg AN, Vuts J, Caulfield JC, Withall DM, Foulkes MJ, Birkett MA. Characterisation of aphid antixenosis in aphid-resistant ancestor wheat, Triticum monococcum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39152728 DOI: 10.1002/ps.8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Due to the increasing presence of insecticide resistance across cereal aphid populations, new aphid management strategies, including the engineering of host resistance to aphids into commercial wheat varieties, are required. Previous studies have identified ancestor wheat, Triticum monococcum accessions MDR045 and MDR049, with resistance against the grain aphid, Sitobion avenae. To test the hypothesis that resistance can be accounted for by antixenosis (reduced attractiveness of host plants) via the release of repellent volatile organic compounds (VOCs), we explored the response of S. avenae to MDR045 and MDR049 following S. avenae herbivory, using behaviour and electrophysiology experiments. RESULTS In four-arm olfactometry assays, alate S. avenae showed aphid density-dependent reduced preference to VOC extracts from T. monococcum MDR045 and MDR049. By contrast, alate S. avenae showed aphid density-dependent increased preference to extracts from aphid-susceptible hexaploid wheat, Triticum aestivum var. Solstice and T. monococcum MDR037. Coupled gas chromatography-electroantennography (GC-EAG), using the antennae of alate S. avenae, located 24 electrophysiologically active compounds across all tested accessions. Synthetic blends created from 21 identified EAG-active compounds confirmed bioactivity of corresponding VOC extracts in four-arm olfactometry assays against alate S. avenae. CONCLUSION Our data suggest that resistance of T. monococcum MDR045 and MDR049 to S. avenae can be at least partially accounted for by antixenosis through antennal perception of specific repellent VOC blends induced by S. avenae feeding behaviour. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander N Borg
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - John C Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - David M Withall
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - M John Foulkes
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| |
Collapse
|
2
|
Meijer D, van der Vleut J, Weldegergis BT, Costaz T, Duarte MVA, Pekas A, van Loon JJA, Dicke M. Effects of far-red light on tritrophic interactions between the two-spotted spider mite (Tetranychus urticae) and the predatory mite Phytoseiulus persimilis on tomato. PEST MANAGEMENT SCIENCE 2023; 79:1820-1828. [PMID: 36641545 DOI: 10.1002/ps.7358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The use of light-emitting diode (LED) lights in horticulture allows growers to adjust the light spectrum to optimize crop production and quality. However, changes in light quality can also influence plant-arthropod interactions, with possible consequences for pest management. The addition of far-red light has been shown to interfere with plant immunity, thereby increasing plant susceptibility to biotic stress and increasing pest performance. Far-red light also influences plant emission of volatile organic compounds (VOCs) and might thus influence tritrophic interactions with biological control agents. We investigated how far-red light influences the VOC-mediated attraction of the predatory mite Phytoseiulus persimilis to tomato plants infested with Tetranychus urticae, and its ability to control T. urticae populations. RESULTS Far-red light significantly influences herbivore-induced VOC emissions of tomato plants, characterized by a change in relative abundance of terpenoids, but this did not influence the attraction of P. persimilis to herbivore-induced plants. Supplemental far-red light led to an increased population growth of T. urticae and increased numbers of P. persimilis. This resulted in a stronger suppression of T. urticae populations under supplemental far-red light, to similar T. urticae numbers as in control conditions without supplemental far-red light. CONCLUSION We conclude that supplemental far-red light can change herbivore-induced VOC emissions but does not interfere with the attraction of the predator P. persimilis. Moreover, far-red light stimulates biological control of spider mites in glasshouse tomatoes due to increased population build-up of the biocontrol agent. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Davy Meijer
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Jaimie van der Vleut
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Biobest Group N.V., R&D Department, Westerlo, Belgium
| | | | - Thibault Costaz
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
3
|
Auffray T, Arriaga-Jiménez A, Taudière A, Roy LJM, Lapeyre B, Roy L. Attractant Activity of Host-Related Chemical Blends on the Poultry Red Mite at Different Spatial Scales. J Chem Ecol 2023; 49:18-35. [PMID: 36534242 DOI: 10.1007/s10886-022-01399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Many blood-feeding arthropods use volatile organic compounds (VOCs) to detect their vertebrate hosts. The role of chemical interactions in mediating the behavior of hematophagous insects and ticks has been investigated before but remains poorly understood in hematophagous mesostigmatic mites. The poultry red mite Dermanyssus gallinae is an obligatory blood-sucking mesostigmatic mite that feeds on birds and causes damage in poultry farms. We characterized the attractive response of D. gallinae to candidate VOCs previously reported from the odor emitted by living hens. We performed in-vitro choice-test bioassays as well as semi-field and field trials using baited and unbaited traps, in the presence and absence of hens. Among different tested combinations of VOCs, a blend of 5 VOCs (mix1.0) was significantly attractive to our reference population of D. gallinae in vitro, whereas the same individual compounds tested alone were not attractive. Ammonia was attractive on its own and increased the mix1.0 attractiveness. The attractiveness of mix1.0 was confirmed at 'natural' spatial scales in the absence of hens both at the lab and on the farm that provided the reference population. The presence of hens inhibited the mix1.0 attractiveness. The attractive power of mix1.0 was not found in other farms. This research is an important step to advance our understanding of host-parasite interactions in hematophagous mesostigmatic mites and paves the way for developing alternative control tools against D. gallinae by interfering with chemical interactions. Moreover, it underlines the importance of assessing kairomonal activity on different pest populations when developing attract-and-kill systems.
Collapse
Affiliation(s)
- Thomas Auffray
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Alfonsina Arriaga-Jiménez
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Insect Ecology Lab, School of Environmental and Rural Sciences, University of New England, Armidale, NSW, 2350, Australia
| | - Adrien Taudière
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | | | - Benoît Lapeyre
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Lise Roy
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
4
|
Takabayashi J. Herbivory-Induced Plant Volatiles Mediate Multitrophic Relationships in Ecosystems. PLANT & CELL PHYSIOLOGY 2022; 63:1344-1355. [PMID: 35866611 DOI: 10.1093/pcp/pcac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Herbivory-induced plant volatiles (HIPVs) are involved in biotic interactions among plants as well as herbivorous and carnivorous arthropods. This review looks at the specificity in plant-carnivore communication mediated by specific blends of HIPVs as well as describes plant-herbivore and plant-plant communication mediated by specific HIPVs. Factors affecting the net benefits of HIPV production have also been examined. These specific means of communication results in high complexity in the 'interaction-information network', which should be explored further to elucidate the mechanism underlying the numerous species coexisting in ecosystems.
Collapse
Affiliation(s)
- Junji Takabayashi
- Center for Ecological Research, Kyoto University, 2-509-3, Hirano, Otsu, Shiga, 520-2113 Japan
| |
Collapse
|
5
|
Thöming G. Behavior Matters-Future Need for Insect Studies on Odor-Mediated Host Plant Recognition with the Aim of Making Use of Allelochemicals for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10469-10479. [PMID: 34482687 DOI: 10.1021/acs.jafc.1c03593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Allelochemicals, chemical cues that, among other things, mediate insect-plant interactions, such as host plant recognition, have attracted notable interest as tools for ecological control of pest insects. Advances have recently been made in methods for sampling and analyzing volatile compounds and technology for tracking insects in their natural habitat. However, progress in odor-mediated behavioral bioassays of insects has been relatively slow. This perspective highlights this odor-mediated insect behavior, particularly in a natural setting and considering the whole behavioral sequence involved in the host location, which is the key to understanding the mechanisms underlying host plant recognition. There is thus a need to focus on elaborate behavioral bioassays in future studies, particularly if the goal is to use allelochemicals in pest control. Future directions for research are discussed.
Collapse
Affiliation(s)
- Gunda Thöming
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, NO-1433 Ås, Norway
| |
Collapse
|
6
|
Ayelo PM, Pirk CWW, Yusuf AA, Chailleux A, Mohamed SA, Deletre E. Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.
Collapse
|
7
|
Komatsuzaki S, Piyasaengthong N, Matsuyama S, Kainoh Y. Effect of Leaf Maturity on Host Habitat Location by the Egg-Larval Parasitoid Ascogaster reticulata. J Chem Ecol 2021; 47:294-302. [PMID: 33523390 DOI: 10.1007/s10886-021-01250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Adoxophyes honmai, a serious pest of tea plants, prefers to lay eggs on mature tea leaves rather than young leaves. Here, we examined a hypothesis that Ascogaster reticulata, an egg-larval parasitoid of A. honmai, increases the likelihood of encountering host egg masses by searching mature tea leaves when host-derived cues are not available. In a dual-choice bioassay using a four-arm olfactometer, A. reticulata preferred odor from intact, mature leaves versus young leaves. Based on volatile analysis with gas chromatography-mass spectrometry (GC-MS), we identified 5 and 10 compounds from mature and young leaf volatiles, respectively. The 5 components in the extract from intact mature leaves included (Z)-3-hexenyl acetate, (E)-β-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and methyl salicylate. When each individual compound, or quaternary and quintenary blends of them, ratios of which were adjusted to match those of mature leaf volatiles, were provided, parasitoids preferred the full mixture and the quaternary blend devoid of DMNT to the solvent control. Methyl salicylate, one of the components of preferred blends, was not detected among young leaf volatiles. We concluded that the volatile composition of tea leaves changes, depending on their maturity, and that this composition affects foraging behavior of the parasitoid, which is closely related to the host herbivore's oviposition preference.
Collapse
Affiliation(s)
- Suguru Komatsuzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Narisara Piyasaengthong
- Department of Zoology, Faculty of Science, Kasetsart University, Phahonyothin Rd., Bangkok, 10900, Thailand
| | - Shigeru Matsuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yooichi Kainoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
8
|
Goelen T, Vuts J, Sobhy IS, Wäckers F, Caulfield JC, Birkett MA, Rediers H, Jacquemyn H, Lievens B. Identification and application of bacterial volatiles to attract a generalist aphid parasitoid: from laboratory to greenhouse assays. PEST MANAGEMENT SCIENCE 2021; 77:930-938. [PMID: 32975888 DOI: 10.1002/ps.6102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Recent studies have shown that microorganisms emit volatile compounds that affect insect behaviour. However, it remains largely unclear whether microbes can be exploited as a source of attractants to improve biological control of insect pests. In this study, we used a combination of coupled gas chromatography-electroantennography (GC-EAG) and Y-tube olfactometer bioassays to identify attractive compounds in the volatile extracts of three bacterial strains that are associated with the habitat of the generalist aphid parasitoid Aphidius colemani, and to create mixtures of synthetic compounds to find attractive blends for A. colemani. Subsequently, the most attractive blend was evaluated in two-choice cage experiments under greenhouse conditions. RESULTS GC-EAG analysis revealed 20 compounds that were linked to behaviourally attractive bacterial strains. A mixture of two EAG-active compounds, styrene and benzaldehyde applied at a respective dose of 1 μg and 10 ng, was more attractive than the single compounds or the culture medium of the bacteria in Y-tube olfactometer bioassays. Application of this synthetic mixture under greenhouse conditions resulted in significant attraction of the parasitoids, and outperformed application of the bacterial culture medium. CONCLUSION Compounds isolated from bacterial blends were capable of attracting parasitoids both in laboratory and greenhouse assays, indicating that microbial cultures are an effective source of insect attractants. This opens new opportunities to attract and retain natural enemies of pest species and to enhance biological pest control.
Collapse
Affiliation(s)
- Tim Goelen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
| | - József Vuts
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Islam S Sobhy
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Felix Wäckers
- Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - John C Caulfield
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Michael A Birkett
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
| | - Hans Jacquemyn
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), Leuven, Belgium
| |
Collapse
|
9
|
Takabayashi J, Shiojiri K. Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions. CURRENT OPINION IN INSECT SCIENCE 2019; 32:110-117. [PMID: 31113622 DOI: 10.1016/j.cois.2019.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 05/03/2023]
Abstract
Uninfested plants emit only trace quantities of volatiles (constitutively emitted plant volatiles). In contrast, some plants emit relatively large quantities of volatiles in response to herbivory (herbivory-Induced plant volatiles: HIPVs). Organisms belonging to different trophic levels use plant volatiles in context-dependent manners; consequently, volatiles can be adaptive, non-adaptive, or maladaptive to the emitter plants. In this review, we focus on the multifunctional aspects of HIPVs, which vary qualitatively and quantitatively in emitting plant species and infesting herbivore species, in plant-carnivore interactions, plant-herbivore interactions, and plant-omnivore interactions. Additionally, we review the evidence of plant-plant communication and its effects on tritrophic interactions involving plants, herbivores, and carnivores. Prospects on interactions mediated by plant volatiles induced by herbivorous arthropods are discussed.
Collapse
Affiliation(s)
- Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
| | - Kaori Shiojiri
- Department of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
10
|
Ninkovic V, Rensing M, Dahlin I, Markovic D. Who is my neighbor? Volatile cues in plant interactions. PLANT SIGNALING & BEHAVIOR 2019; 14:1634993. [PMID: 31267830 PMCID: PMC6768235 DOI: 10.1080/15592324.2019.1634993] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 05/19/2023]
Abstract
One of the most important challenges for individual plants is coexistence with their neighbors. To compensate for their sessile lifestyle, plants developed complex and sophisticated chemical systems of communication among each other. Site-specific biotic and abiotic factors constantly alter the physiological activity of plants, which causes them to release various secondary metabolites in their environments. Volatile organic compounds (VOCs) are the most common cues that reflect a plant's current physiological status. In this sense, the identity of its immediate neighbors may have the greatest impact for a plant, as they share the same available resources. Plants constantly monitor and respond to these cues with great sensitivity and discrimination, resulting in specific changes in their growth pattern and adjusting their physiology, morphology, and phenotype accordingly. Those typical competition responses in receivers may increase their fitness as they can be elicited even before the competition takes place. Plant-plant interactions are dynamic and complex as they can include many different and important surrounding cues. A major challenge for all individual plants is detecting and actively responding only to "true" cues that point to real upcoming threat. Such selective responses to highly specific cues embedded in volatile bouquets are of great ecological importance in understanding plant-plant interactions. We have reviewed recent research on the role of VOCs in complex plant-plant interactions in plant-cross kingdom and highlighted their influence on organisms at higher trophic levels.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- CONTACT Velemir Ninkovic Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Merlin Rensing
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Iris Dahlin
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dimitrije Markovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
11
|
Sobhy IS, Bruce TJ, Turlings TC. Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars. PEST MANAGEMENT SCIENCE 2018; 74:966-977. [PMID: 29155489 DOI: 10.1002/ps.4796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the application of the inducers benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) and laminarin (β-1,3-glucan) is known to enhance the attractiveness of caterpillar-damaged cotton and maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea (Vigna unguiculata var. unguiculata) with these inducers and studied the effects on HI-VOC emissions and the attraction of three generalist endoparasitoids. RESULTS After the inducers had been applied and the plants subjected to either real or mimicked herbivory by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis rufiventris showed a strong preference for BTH-treated plants, whereas Cotesia females were strongly attracted to both BTH- and laminarin-treated plants with real or mimicked herbivory. Treated plants emitted more of certain HI-VOCs, but considerably less indole and linalool and less of several sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no significant effect on leaf consumption by the caterpillars. CONCLUSION Our findings confirm that treating cowpea plants with inducers can enhance their attractiveness to biological control agents. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Islam S Sobhy
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Plant Protection, Public Service Center of Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Toby Ja Bruce
- School of Life Sciences, Keele University, Keele, UK
| | - Ted Cj Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
12
|
Pappas ML, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas GD, Papadopoulou KK. The Beneficial Endophytic Fungus Fusarium solani Strain K Alters Tomato Responses Against Spider Mites to the Benefit of the Plant. FRONTIERS IN PLANT SCIENCE 2018; 9:1603. [PMID: 30459791 PMCID: PMC6232530 DOI: 10.3389/fpls.2018.01603] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 05/23/2023]
Abstract
Beneficial microorganisms are known to promote plant growth and confer resistance to biotic and abiotic stressors. Soil-borne beneficial microbes in particular have shown potential in protecting plants against pathogens and herbivores via the elicitation of plant responses. In this study, we evaluated the role of Fusarium solani strain K (FsK) in altering plant responses to the two spotted spider mite Tetranychus urticae in tomato. We found evidence that FsK, a beneficial endophytic fungal strain isolated from the roots of tomato plants grown on suppressive compost, affects both direct and indirect tomato defenses against spider mites. Defense-related genes were differentially expressed on FsK-colonized plants after spider mite infestation compared to clean or spider mite-infested un-colonized plants. In accordance, spider mite performance was negatively affected on FsK-colonized plants and feeding damage was lower on these compared to control plants. Notably, FsK-colonization led to increased plant biomass to both spider mite-infested and un-infested plants. FsK was shown to enhance indirect tomato defense as FsK-colonized plants attracted more predators than un-colonized plants. In accordance, headspace volatile analysis revealed significant differences between the volatiles emitted by FsK-colonized plants in response to attack by spider mites. Our results highlight the role of endophytic fungi in shaping plant-mite interactions and may offer the opportunity for the development of a novel tool for spider mite control.
Collapse
Affiliation(s)
- Maria L. Pappas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Maria L. Pappas,
| | - Maria Liapoura
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Dimitra Papantoniou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Marianna Avramidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nektarios Kavroulakis
- Laboratory of Phytopathology, Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization – DEMETER, Chania, Greece
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - George D. Broufas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
13
|
Parasitoid wasps’ exposure to host-infested plant volatiles affects their olfactory cognition of host-infested plants. Anim Cogn 2017; 21:79-86. [DOI: 10.1007/s10071-017-1141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
|
14
|
Burrows M, Morawo T, Fadamiro H. Sugar Diet Affects Odor Reception but Variation in Sugar Concentration Plays Minimal Role in the Response of the Parasitoid, Microplitis croceipes (Hymenoptera: Braconidae), to Host-Related Plant Volatiles. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:971-977. [PMID: 28334180 DOI: 10.1093/jee/tox048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Parasitoids utilize various sugar resources in nature, and rely on odor cues from plants to locate their food and hosts. However, lack of sugar in the diet may negatively impact odor reception in parasitoids, thus affecting foraging efficiency. We used Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of Heliothis virescens (F.) (Lepidoptera: Noctuidae), as a model species to test the hypothesis that variation in sugar diet of parasitoids affects their olfactory response to host-related odors. Heliothis virescens is a major pest of cotton and other important crops. Response of female M. croceipes fed different diet treatments (i.e., 40%, 20%, 10%, or 0% sucrose/water solution [w/v]) to select cotton volatiles were tested in electroantennogram (EAG) and Y-tube olfactometer bioassays. The following cotton plant odors were tested: cis-3-hexenol, α-pinene, 50/50 v/v binary mixture of cis-3-hexenol and α-pinene, and H. virescens-infested cotton. Sucrose-fed parasitoids showed higher EAG response to the binary mixture and host-infested plant volatile extract, compared with sucrose-starved (0% sucrose) parasitoids. However, there was no significant difference in EAG response of parasitoids to odor treatments among individuals fed 40%, 20%, or 10% sucrose. In a Y-tube olfactometer, female M. croceipes fed 40% sucrose were significantly more attracted to host-infested cotton than to a control (no plant). However, parasitoids were not significantly attracted to other odor stimuli. These results suggest that the availability of sugar diet affects odor reception in M. croceipes but variation in sugar concentration probably plays a minimal role in olfactory response of M. croceipes to host-related odors.
Collapse
Affiliation(s)
- Matthew Burrows
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849 ( ; ; )
- New Address: Division of Parasitic Diseases and Malaria-Entomology, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329
| | - Tolulope Morawo
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849 (; ; )
| | - Henry Fadamiro
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849 ( ; ; )
- Corresponding author, e-mail:
| |
Collapse
|
15
|
Morawo T, Burrows M, Fadamiro H. Electroantennogram response of the parasitoid, Microplitis croceipes to host-related odors: The discrepancy between relative abundance and level of antennal responses to volatile compound. F1000Res 2017; 5:2725. [PMID: 28232862 PMCID: PMC5302146 DOI: 10.12688/f1000research.10104.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Herbivores emit volatile organic compounds (VOCs) after feeding on plants. Parasitoids exploit these VOCs as odor cues to locate their hosts. In nature, host-related odors are emitted as blends of various compounds occurring in different proportions, and minor blend components can sometimes have profound effects on parasitoid responses. In a previous related study, we identified and quantified VOCs emitted by cotton plant-fed Heliothis virescens (Lepidoptera: Noctuidae) larvae, an herbivore host of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). In the present study, the olfactory response of female M. croceipes to synthetic versions of 15 previously identified compounds was tested in electroantennogram (EAG) bioassays. Using M. croceipes as a model species, we further asked the question: does the relative abundance of a volatile compound match the level of antennal response in parasitoids? Female M. croceipes showed varying EAG responses to test compounds, indicating different levels of bioactivity in the insect antenna. Eight compounds, including decanal, 1-octen-3-ol, 3-octanone, 2-ethylhexanol, tridecane, tetradecane, α-farnesene and bisabolene, elicited EAG responses above or equal to the 50 th percentile rank of all responses. Interestingly, decanal, which represented only 1% of the total amount of odors emitted by cotton-fed hosts, elicited the highest (0.82 mV) EAG response in parasitoids. On the other hand, ( E)-β-caryophyllene, the most abundant (29%) blend component, elicited a relatively low (0.17 mV) EAG response. The results suggest that EAG response to host-related volatiles in parasitoids is probably more influenced by the ecological relevance or functional role of the compound in the blend, rather than its relative abundance.
Collapse
Affiliation(s)
- Tolulope Morawo
- Department of Entomology & Plant Pathology, Auburn University, Auburn, USA
| | - Matthew Burrows
- Department of Entomology & Plant Pathology, Auburn University, Auburn, USA; Division of Parasitic Diseases and Malaria- Entomology, Centers for Disease Control and Prevention, Atlanta, USA
| | - Henry Fadamiro
- Department of Entomology & Plant Pathology, Auburn University, Auburn, USA
| |
Collapse
|
16
|
Liu J, Zhu J, Zhang P, Han L, Reynolds OL, Zeng R, Wu J, Shao Y, You M, Gurr GM. Silicon Supplementation Alters the Composition of Herbivore Induced Plant Volatiles and Enhances Attraction of Parasitoids to Infested Rice Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1265. [PMID: 28769965 PMCID: PMC5515826 DOI: 10.3389/fpls.2017.01265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/05/2017] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is important in plant defenses that operate in a direct manner against herbivores, and work in rice (Oryza sativa) has established that this is mediated by the jasmonate signaling pathway. Plant defenses also operate indirectly, by the production of herbivore induced plant volatiles (HIPVs) that attract predators and parasitoids of herbivores. These indirect defenses too are mediated by the jasmonate pathway but no earlier work has demonstrated an effect of Si on HIPVs. In this study, we tested the effect of Si supplementation versus Si deprivation to rice plants on subsequent HIPV production following feeding by the important pest, rice leaffolder (Cnaphalocrocis medinalis). Gas chromatography-mass spectrometry analyses showed lower production of α-bergamotene, β-sesquiohellandrene, hexanal 2-ethyl, and cedrol from +Si herbivore-infested plants compared with -Si infested plants. These changes in plant chemistry were ecologically significant in altering the extent to which parasitoids were attracted to infested plants. Adult females of Trathala flavo-orbitalis and Microplitis mediator both exhibited greater attraction to the HIPV blend of +Si plants infested with their respective insect hosts compared to -Si infested plants. In equivalent studies using RNAi rice plants in which jasmonate perception was silenced there was no equivalent change to the HIPV blend associated with Si treatment; indicating that the effects of Si on HIPVs are modulated by the jasmonate pathway. Further, this work demonstrates that silicon alters the HIPV blend of herbivore-infested rice plants. The significance of this finding is that there are no earlier-published studies of this phenomenon in rice or any other plant species. Si treatment to crops offers scope for enhancing induced, indirect defenses and associated biological control of pests because parasitoids are more strongly attracted by the HIPVs produced by +Si plants.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, Charles Sturt University, OrangeNSW, Australia
| | - Jiwei Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang UniversityHangzhou, China
| | - Liwei Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Olivia L. Reynolds
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries, MenangleNSW, Australia
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jinhong Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yue Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, Charles Sturt University, OrangeNSW, Australia
- *Correspondence: Geoff M. Gurr,
| |
Collapse
|
17
|
Cortés LE, Weldegergis BT, Boccalandro HE, Dicke M, Ballaré CL. Trading direct for indirect defense? Phytochrome B inactivation in tomato attenuates direct anti-herbivore defenses whilst enhancing volatile-mediated attraction of predators. THE NEW PHYTOLOGIST 2016; 212:1057-1071. [PMID: 27689843 DOI: 10.1111/nph.14210] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 05/23/2023]
Abstract
Under conditions of competition for light, which lead to the inactivation of the photoreceptor phytochrome B (phyB), the growth of shade-intolerant plants is promoted and the accumulation of direct anti-herbivore defenses is down-regulated. Little is known about the effects of phyB on emissions of volatile organic compounds (VOCs), which play a major role as informational cues in indirect defense. We investigated the effects of phyB on direct and indirect defenses in tomato (Solanum lycopersicum) using two complementary approaches to inactivate phyB: illumination with a low red to far-red ratio, simulating competition, and mutation of the two PHYB genes present in the tomato genome. Inactivation of phyB resulted in low levels of constitutive defenses and down-regulation of direct defenses induced by methyl jasmonate (MeJA). Interestingly, phyB inactivation also had large effects on the blends of VOCs induced by MeJA. Moreover, in two-choice bioassays using MeJA-induced plants, the predatory mirid bug Macrolophus pygmaeus preferred VOCs from plants in which phyB was inactivated over VOCs from control plants. These results suggest that, in addition to repressing direct defense, phyB inactivation has consequences for VOC-mediated tritrophic interactions in canopies, presumably attracting predators to less defended plants, where they are likely to find more abundant prey.
Collapse
Affiliation(s)
- Leandro E Cortés
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Almirante Brown 500, Luján de Cuyo, 5500, Mendoza, Argentina
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, PO Box 16, NL-6700, AA Wageningen, the Netherlands
| | - Hernán E Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Almirante Brown 500, Luján de Cuyo, 5500, Mendoza, Argentina
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, NL-6700, AA Wageningen, the Netherlands
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| |
Collapse
|
18
|
Giunti G, Benelli G, Flamini G, Michaud JP, Canale A. Innate and Learned Responses of the Tephritid Parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to Olive Volatiles Induced by Bactrocera oleae (Diptera: Tephritidae) Infestation. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2272-2280. [PMID: 27616766 DOI: 10.1093/jee/tow184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Parasitic wasps can learn cues that alter their behavioral responses and increase their fitness, such as those that improve host location efficiency. Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) is a koinobiont endoparasitoid of 14 economically important tephritid species, including the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). In this research, we investigated the nature of olfactory cues mediating this tritrophic interaction. First, we identified the chemical stimuli emanating from uninfested and B. oleae-infested olive fruits via solid phase microextraction and gas chromatography-mass spectrometry analyses and identified >70 volatile organic compounds (VOCs). Two of these were increased by B. oleae infestation, (E)-β-ocimene and 2-methyl-6-methylene-1,7-octadien-3-one, and four were decreased, α-pinene, β-pine ne, limonene, and β-elemene. Innate positive chemotaxis of mated P. concolor females toward these VOCs was then tested in olfactometer assays. Females were attracted only by (E)-β-ocimene, at both tested dosages, indicating an intrinsic response to this compound as a short-range attractant. Next, we tested whether mated P. concolor females could learn to respond to innately unattractive VOCs if they were first presented with a food reward. Two nonassociative controls were conducted, i.e., "odor only" and "reward only." Following training, females showed positive chemotaxis toward these VOCs in all tested combinations, with the exception of limonene, a VOC commonly produced by flowers. Control females showed no significant preferences, indicating that positive associative learning had occurred. These results clarify how learned cues can fine-tune innate responses to B. oleae-induced VOCs in this generalist parasitoid of tephritid flies.
Collapse
Affiliation(s)
- Giulia Giunti
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy (; ; )
| | - Giovanni Benelli
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy (; ; )
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, 1232 240th Ave., Hays, KS 67601
| | - Angelo Canale
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy (; ; )
| |
Collapse
|
19
|
Identification of Key Plant-Associated Volatiles Emitted by Heliothis virescens Larvae that Attract the Parasitoid, Microplitis croceipes: Implications for Parasitoid Perception of Odor Blends. J Chem Ecol 2016; 42:1112-1121. [DOI: 10.1007/s10886-016-0779-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 10/20/2022]
|
20
|
Vuts J, Woodcock CM, Sumner ME, Caulfield JC, Reed K, Inward DJG, Leather SR, Pickett JA, Birkett MA, Denman S. Responses of the two-spotted oak buprestid, Agrilus biguttatus (Coleoptera: Buprestidae), to host tree volatiles. PEST MANAGEMENT SCIENCE 2016; 72:845-851. [PMID: 26663022 PMCID: PMC5066750 DOI: 10.1002/ps.4208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Agrilus bigutattus (Fabricius) is a forest pest of increasing importance in the United Kingdom. The larvae damage weakened native oaks and are thought to contribute to premature tree death. Suspected links with acute oak decline (AOD) are not yet confirmed, but AOD-predisposed trees appear to become more susceptible to A. biguttatus attack. Thus, management may be necessary for control of this insect. To explore the possibility of monitoring beetle populations by baited traps, the host tree volatiles regulating A. biguttatus-oak interactions were studied. RESULTS Biologically active volatile organic compounds in dynamic headspace extracts of oak foliage and bark were identified initially by coupled gas chromatography-electroantennography (GC-EAG) and GC-mass spectrometry (GC-MS), and the structures were confirmed by GC coinjection with authentic compounds. Of two synthetic blends of these compounds comprising the active leaf volatiles, the simpler one containing three components evoked strongly positive behavioural responses in four-arm olfactometer tests with virgin females and males, although fresh leaf material was more efficient than the blend. The other blend, comprising a five-component mixture made up of bark volatiles, proved to be as behaviourally active for gravid females as bark tissue. CONCLUSIONS These initial results on A. biguttatus chemical ecology reveal aspects of the role of attractive tree volatiles in the host-finding of beetles and underpin the development of semiochemically based surveillance strategies for this forest insect.
Collapse
Affiliation(s)
- József Vuts
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, UK
| | - Christine M Woodcock
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, UK
| | - Mary E Sumner
- Centre for Ecosystems, Society and Biosecurity, Forest Research, UK
- Department of Crop and Environment Sciences, Harper Adams University, UK
| | - John C Caulfield
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, UK
| | - Katy Reed
- Centre for Ecosystems, Society and Biosecurity, Forest Research, UK
- Department of Crop and Environment Sciences, Harper Adams University, UK
| | | | - Simon R Leather
- Department of Crop and Environment Sciences, Harper Adams University, UK
| | - John A Pickett
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, UK
| | - Michael A Birkett
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, UK
| | - Sandra Denman
- Centre for Ecosystems, Society and Biosecurity, Forest Research, UK
| |
Collapse
|
21
|
Becker C, Desneux N, Monticelli L, Fernandez X, Michel T, Lavoir AV. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342982. [PMID: 26788501 PMCID: PMC4692980 DOI: 10.1155/2015/342982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Abstract
In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and "green leaf volatiles." Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change.
Collapse
Affiliation(s)
- Christine Becker
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Lucie Monticelli
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Xavier Fernandez
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Thomas Michel
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Anne-Violette Lavoir
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| |
Collapse
|
22
|
Takemoto H, Takabayashi J. Parasitic Wasps Aphidius ervi are More Attracted to a Blend of Host-Induced Plant Volatiles than to the Independent Compounds. J Chem Ecol 2015; 41:801-7. [PMID: 26302986 DOI: 10.1007/s10886-015-0615-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/09/2015] [Accepted: 08/07/2015] [Indexed: 11/26/2022]
Abstract
Arthropodal natural enemies respond to volatiles from plants infested by their prey/host herbivores (herbivore-induced plant volatiles; HIPVs). However, the relative importance of HIPV blends vs. each compound in the blend in attracting natural enemies is not fully understood. In this study, we investigated the response of a parasitic wasp, Aphidius ervi, to HIPVs that were specific or nonspecific to infestations by its host aphid, Acyrthosiphon pisum. To select such compounds, we compared the volatiles emitted from broad bean plants infested by either A. pisum (host) or by Aphis craccivora (nonhost), and selected the host-specific HIPVs β-myrcene, n-octanal, and α-phellandrene, and host-nonspecific HIPVs (E)-β-ocimene, γ-terpinene, and linalool as test compounds. For each compound, we used a range that covered the amounts emitted from infested broad bean plants for bioassays. Female wasps preferred n-octanal and (E)-β-ocimene at 10-ng and 30-ng doses over clean air. Interestingly, the wasps preferred α-phellandrene at 0.1-ng and 30-ng doses, but not at 1-ng and 10-ng doses. The wasps repelled linalool over clean air at 1-ng and 0.1-ng doses. We then mixed the equivalent amounts of the six compounds to test the effect of the blend. The wasps responded to a blend of six HIPV components at all concentrations tested (0.001 ng each to 5 ng each). These results suggested that the blend provided more useful information for female wasps than the individual compounds. The possible use of the single component and the blend for the biological control of A. ervi is discussed.
Collapse
Affiliation(s)
- Hiroyuki Takemoto
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan.
| |
Collapse
|
23
|
Pangesti N, Weldegergis BT, Langendorf B, van Loon JJA, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 2015. [PMID: 25783487 DOI: 10.1007/s00442-015-3277-3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beneficial root-associated microbes modify the physiological status of their host plants and affect direct and indirect plant defense against insect herbivores. While the effects of these microbes on direct plant defense against insect herbivores are well described, knowledge of the effect of the microbes on indirect plant defense against insect herbivores is still limited. In this study, we evaluate the role of the rhizobacterium Pseudomonas fluorescens WCS417r in indirect plant defense against the generalist leaf-chewing insect Mamestra brassicae through a combination of behavioral, chemical, and gene-transcriptional approaches. We show that rhizobacterial colonization of Arabidopsis thaliana roots results in an increased attraction of the parasitoid Microplitis mediator to caterpillar-infested plants. Volatile analysis revealed that rhizobacterial colonization suppressed the emission of the terpene (E)-α-bergamotene and the aromatics methyl salicylate and lilial in response to caterpillar feeding. Rhizobacterial colonization decreased the caterpillar-induced transcription of the terpene synthase genes TPS03 and TPS04. Rhizobacteria enhanced both the growth and the indirect defense of plants under caterpillar attack. This study shows that rhizobacteria have a high potential to enhance the biocontrol of leaf-chewing herbivores based on enhanced attraction of parasitoids.
Collapse
Affiliation(s)
- Nurmi Pangesti
- Laboratory of Entomology, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
24
|
Pangesti N, Weldegergis BT, Langendorf B, van Loon JJA, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 2015; 178:1169-80. [PMID: 25783487 PMCID: PMC4506461 DOI: 10.1007/s00442-015-3277-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Beneficial root-associated microbes modify the physiological status of their host plants and affect direct and indirect plant defense against insect herbivores. While the effects of these microbes on direct plant defense against insect herbivores are well described, knowledge of the effect of the microbes on indirect plant defense against insect herbivores is still limited. In this study, we evaluate the role of the rhizobacterium Pseudomonas fluorescens WCS417r in indirect plant defense against the generalist leaf-chewing insect Mamestra brassicae through a combination of behavioral, chemical, and gene-transcriptional approaches. We show that rhizobacterial colonization of Arabidopsis thaliana roots results in an increased attraction of the parasitoid Microplitis mediator to caterpillar-infested plants. Volatile analysis revealed that rhizobacterial colonization suppressed the emission of the terpene (E)-α-bergamotene and the aromatics methyl salicylate and lilial in response to caterpillar feeding. Rhizobacterial colonization decreased the caterpillar-induced transcription of the terpene synthase genes TPS03 and TPS04. Rhizobacteria enhanced both the growth and the indirect defense of plants under caterpillar attack. This study shows that rhizobacteria have a high potential to enhance the biocontrol of leaf-chewing herbivores based on enhanced attraction of parasitoids.
Collapse
Affiliation(s)
- Nurmi Pangesti
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | | | - Benjamin Langendorf
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Ana Pineda
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
25
|
Thöming G, Norli HR. Olfactory cues from different plant species in host selection by female pea moths. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2127-36. [PMID: 25675276 DOI: 10.1021/jf505934q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In herbivorous insects specialized on few plant species, attraction to host odor may be mediated by volatiles common to all host species, by specific compounds, or combinations of both. The pea moth Cydia nigricana is an important pest of the pea. Volatile signatures of four host plant species were studied to identify compounds involved in pea moth host selection and to improve previously reported attractive volatile blends. P. sativum and alternative Fabaceae host species were compared regarding female attraction, oviposition, and larval performance. Pea moth females were strongly attracted to the sweet pea Lathyrus odoratus, but larval performance on that species was moderate. Chemical analyses of sweet pea odor and electrophysiological responses of moth antennae led to identification of seven sweet-pea-specific compounds and ten compounds common to all tested host species. Blends of these specific and common cues were highly attractive to mated pea moth females in wind tunnel and field experiments.
Collapse
Affiliation(s)
- Gunda Thöming
- Division of Plant Health and Plant Protection, Bioforsk - Norwegian Institute for Agricultural and Environmental Research , Høgskoleveien 7, NO-1430 Ås, Norway
| | | |
Collapse
|
26
|
Duration of Plant Damage by Host Larvae Affects Attraction of Two Parasitoid Species (Microplitis croceipes and Cotesia marginiventris) to Cotton: Implications for Interspecific Competition. J Chem Ecol 2014; 40:1176-85. [DOI: 10.1007/s10886-014-0525-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/27/2022]
|
27
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
28
|
Clavijo McCormick A, Gershenzon J, Unsicker SB. Little peaks with big effects: establishing the role of minor plant volatiles in plant-insect interactions. PLANT, CELL & ENVIRONMENT 2014; 37:1836-44. [PMID: 24749758 DOI: 10.1111/pce.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 05/04/2023]
Abstract
Plants emit complex mixtures of volatile organic compounds from floral and vegetative tissue, especially after herbivore damage, so it is difficult to associate individual compounds with activity towards pollinators, herbivores or herbivore enemies. Attention has usually focused upon the biological activity of the most abundant compounds; but here, we detail a number of reports implicating minor volatiles in attractant or deterrent roles. This is not surprising given the exquisite sensitivity of insect olfactory systems for certain substances. In this context, it is worth reconsidering the methods involved in sampling volatile compounds from plants, measuring their abundance and determining their biological activity to ensure that minor compounds are not overlooked. Here, we describe various experimental approaches and chemical and statistical methods that should increase the chance of detecting minor compounds with major biological activities.
Collapse
|
29
|
Janssen A, Fonseca JO, Colares F, Silva L, Pedrosa ARP, Lima ER, van Wijk M, Pallini A, Oliveira CM, Sabelis MW, Lesna I. Time scales of associating food and odor by predator communities in the field. Behav Ecol 2014. [DOI: 10.1093/beheco/aru094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Tahmasebi Z, Mohammadi H, Arimura GI, Muroi A, Kant MR. Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:217-39. [PMID: 24531863 DOI: 10.1007/s10493-014-9770-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/25/2014] [Indexed: 05/14/2023]
Abstract
We tested the extent to which resistance of common bean (Phaseolus vulgaris) cultivars to the spider mite Tetranychus urticae parallels the extent to which these plants display indirect defenses via the induced attraction of the predatory mite Phytoseiulus persimilis. First, via field and greenhouse trials on 19 commercial bean cultivars, we selected two spider mite-resistant (Naz and Ks41128) and two susceptible (Akthar and G11867) cultivars and measured the spider mite-induced volatiles and the subsequently induced attraction of predatory mites via olfactory choice assays. The two major volatiles, 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) and (Z)-3-hexenyl-acetate, were induced in the resistant but not in the susceptible cultivars. However, uninfested susceptible cultivars emitted these volatiles at levels similar to those of mite-infested resistant cultivars. Significant induction of several minor components was observed for all four cultivars except for the infested-susceptible cultivar G11867. Both, the spider mite-resistant cultivar Naz and the susceptible cultivar G11867, attracted more predatory mites when they were infested. In contrast, spider mites induced increased emission of two major and five minor volatiles in Ks41128, but predatory mites did not discriminate between infested and uninfested plants. Overall, the attraction of predatory mites appeared to correlate positively with the presence of TMTT and (Z)-3-hexenyl acetate and negatively with β-caryophyllene and α-pinene in the bean headspace. Taken together, our data suggest that resistance and attraction of natural enemies via induced volatiles are independent traits. We argue that it should be possible to cross predator-attraction promoting traits into resistant cultivars that lack sufficiently inducible indirect defenses.
Collapse
Affiliation(s)
- Zahra Tahmasebi
- Department of Agronomy and Plant Breeding, Agricultural College, Ilam University, Ilam, Iran,
| | | | | | | | | |
Collapse
|
31
|
Vuts J, Furlan L, Csonka ÉB, Woodcock CM, Caulfield JC, Mayon P, Pickett JA, Birkett MA, Tóth M. Development of a female attractant for the click beetle pest Agriotes brevis. PEST MANAGEMENT SCIENCE 2014; 70:610-614. [PMID: 23749439 DOI: 10.1002/ps.3589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/22/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Traps suitable for catching female Agriotes click beetles may provide better reconnaissance than pheromone-baited traps which catch only males, thereby contributing to more efficient crop protection. The basis for this study came from (i) observations of female Agriotes brevis (Candeze) aggregating beneath foliage of Medicago sativa (L.) and Lolium italicum (A. Br.) placed on plastic sheets on bare soil, and (ii) field tests demonstrating attraction of females to traps baited with foliage from these plants. The aim was to identify and field test volatile compounds from M. sativa and L. italicum leaves. RESULTS A number of electrophysiologically active chemicals were identified from headspace extracts of M. sativa and L. italicum. Three different synthetic blends of the identified compounds, comprising four, seven and nine components, were field tested. The four- and nine-component blends caught more female A. brevis than unbaited traps, with the proportion of females not differing between blends. CONCLUSION The plant-derived blends were shown to catch female A. brevis under field conditions when applied in traps. Of these, the four-component blend, given its relatively simple composition [(Z)-3-hexenyl acetate:methyl benzoate:(Z)-3-hexen-1-ol:methyl salicylate 300:5:30:30 mg bait(-1)], may be a suitable 'standard' blend for bait optimisation.
Collapse
|
32
|
Thöming G, Knudsen GK. Attraction of pea moth Cydia nigricana to pea flower volatiles. PHYTOCHEMISTRY 2014; 100:66-75. [PMID: 24508043 DOI: 10.1016/j.phytochem.2014.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/22/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
The pea moth Cydia nigricana causes major crop losses in pea (Pisum sativum) production. We investigated attraction of C. nigricana females to synthetic pea flower volatiles in a wind tunnel and in the field. We performed electroantennogram analysis on 27 previously identified pea plant volatiles, which confirmed antennal responses to nine of the compounds identified in pea flowers. A dose-dependent response was found to eight of the compounds. Various blends of the nine pea flower volatiles eliciting antennal responses were subsequently studied in a wind tunnel. A four-compound blend comprising hexan-1-ol, (E)-2-hexen-1-ol, (Z)-β-ocimene and (E)-β-ocimene was equally attractive to mated C. nigricana females as the full pea flower mimic blend. We conducted wind-tunnel tests on different blends of these four pea flower compounds mixed with a headspace sample of non-flowering pea plants. By considering the effects of such green leaf background odour, we were able to identify (Z)- and (E)-β-ocimene as fundamental for host location by the pea moths, and hexan-1-ol and (E)-2-hexen-1-ol as being of secondary importance in that context. In the field, the two isomers of β-ocimene resulted in trap catches similar to those obtained with the full pea flower mimic and the four-compound blend, which clearly demonstrated the prime significance of the β-ocimenes as attractants of C. nigricana. The high level of the trap catches of female C. nigricana noted in this first field experiment gives a first indication of the potential use of such artificial kairomones in pea moth control.
Collapse
Affiliation(s)
- Gunda Thöming
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Division of Plant Health and Plant Protection, Høgskoleveien 7, NO-1430 Ås, Norway.
| | - Geir K Knudsen
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Division of Plant Health and Plant Protection, Høgskoleveien 7, NO-1430 Ås, Norway.
| |
Collapse
|
33
|
Morawo T, Fadamiro H. Attraction of two larval parasitoids with varying degree of host specificity to single components and a binary mixture of host-related plant volatiles. CHEMOECOLOGY 2014. [DOI: 10.1007/s00049-014-0154-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. PLANT SIGNALING & BEHAVIOR 2014; 9:e29517. [PMID: 25763628 PMCID: PMC4203647 DOI: 10.4161/psb.29517] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 05/20/2023]
Abstract
Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats.
Collapse
Affiliation(s)
- Andja Vucetic
- Department of Crop Production Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
- Faculty of Agriculture; University of Belgrade; Belgrade, Serbia
| | - Iris Dahlin
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| | | | - Robert Glinwood
- Department of Crop Production Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| | - Ben Webster
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| | - Velemir Ninkovic
- Department of Crop Production Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
- Correspondence to: Velemir Ninkovic,
| |
Collapse
|
35
|
Kegge W, Weldegergis BT, Soler R, Eijk MVV, Dicke M, Voesenek LACJ, Pierik R. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 200:861-874. [PMID: 23845065 PMCID: PMC4283982 DOI: 10.1111/nph.12407] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/05/2013] [Indexed: 05/18/2023]
Abstract
The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia (Col-0) plants and Pieris brassicae caterpillars were used as a biological system to study the effects of light quality manipulations on VOC emissions and attraction of herbivores. VOCs were analysed using gas chromatography-mass spectrometry and the effects of light quality, notably the red : far red light ratio (R : FR), on expression of genes associated with VOC production were studied using reverse transcriptase-quantitative PCR. The emissions of both constitutive and methyl-jasmonate-induced green leaf volatiles and terpenoids were partially suppressed under low R : FR and severe shading conditions. Accordingly, the VOC-based preference of neonates of the specialist lepidopteran herbivore P. brassicae was significantly affected by the R : FR ratio. We conclude that VOC-mediated interactions among plants and between plants and organisms at higher trophic levels probably depend on light alterations caused by nearby vegetation. Studies on plant-plant and plant-insect interactions through VOCs should take into account the light quality within dense stands when extrapolating to natural and agricultural field conditions.
Collapse
Affiliation(s)
- Wouter Kegge
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University3584 CH, Utrecht, the Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen UniversityPO Box 8031, 6700 EH, Wageningen, the Netherlands
| | - Roxina Soler
- Laboratory of Entomology, Wageningen UniversityPO Box 8031, 6700 EH, Wageningen, the Netherlands
| | - Marleen Vergeer-Van Eijk
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University3584 CH, Utrecht, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen UniversityPO Box 8031, 6700 EH, Wageningen, the Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University3584 CH, Utrecht, the Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University3584 CH, Utrecht, the Netherlands
| |
Collapse
|
36
|
A tritrophic approach to the preference–performance hypothesis involving an exotic and a native plant. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0459-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Uefune M, Kugimiya S, Ozawa R, Takabayashi J. Parasitic wasp females are attracted to blends of host-induced plant volatiles: do qualitative and quantitative differences in the blend matter? F1000Res 2013; 2:57. [PMID: 24358892 PMCID: PMC3829125 DOI: 10.12688/f1000research.2-57.v2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
Naïve
Cotesia vestalis wasps, parasitoids of diamondback moth (DBM) larvae, are attracted to a synthetic blend (Blend A) of host-induced plant volatiles composed of sabinene,
n-heptanal, α-pinene, and (
Z)-3-hexenyl acetate, in a ratio of 1.8:1.3:2.0:3.0. We studied whether qualitative (adding (
R)-limonene: Blend B) or quantitative changes (changing ratios: Blend C) to Blend A affected the olfactory response of
C. vestalis in the background of intact komatsuna plant volatiles. Naïve wasps showed equal preference to Blends A and B and Blends A and C in two-choice tests. Wasps with oviposition experience in the presence of Blend B preferred Blend B over Blend A, while wasps that had oviposited without a volatile blend showed no preference between the two. Likewise, wasps that had starvation experience in the presence of Blend B preferred Blend A over Blend B, while wasps that had starved without a volatile blend showed no preference between the two. Wasps that had oviposition experience either with or without Blend A showed equal preferences between Blends C and A. However, wasps that had starvation experience in the presence of Blend A preferred Blend C over Blend A, while those that starved without a volatile blend showed equal preferences between the two. By manipulating quality and quantity of the synthetic attractants, we showed to what extent
C. vestalis could discriminate/learn slight differences between blends that were all, in principle, attractive.
Collapse
Affiliation(s)
- Masayoshi Uefune
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Soichi Kugimiya
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan ; National Institute for Agro-Environmental Science (NIAES), Tsukuba, Ibaraki, 305-8604, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
38
|
Pearse IS, Gee WS, Beck JJ. Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense. J Chem Ecol 2012; 39:90-100. [PMID: 23264100 DOI: 10.1007/s10886-012-0224-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/12/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
Leaf volatiles convey information about a plant to other organisms in their proximity. Despite increasing interest in understanding the relevance of volatile emissions for particular ecological interactions, there has been relatively little effort to assess generally what information volatile profiles transmit. We surveyed the volatile profiles of wounded and unwounded leaves of 52 oak (Quercus) species. We used phylogenetic comparison and multivariate techniques to assess in what circumstances oak individuals advertised their species identity, evolutionary history, direct defenses, or damage. We found that both species identity and evolutionary history were advertised when leaves were wounded, but species could not be differentiated by odor when leaves were not wounded. Various fatty-acid derivative compounds showed the strongest phylogenetic signal suggesting that they may best disclose taxonomic affiliations in oaks. We tested whether oak volatile composition or diversity advertised high defensive investment, but we found no evidence for this. Wounded leaves disclose much about an oak species' identity and taxonomic affiliation, but unwounded leaves do not. This is consistent with the idea that volatile information is targeted toward natural enemy recruitment.
Collapse
Affiliation(s)
- Ian S Pearse
- Department Entomology, UC Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
39
|
Onzo A, Hanna R, Sabelis MW. The predatory mite Typhlodromalus aripo prefers green-mite induced plant odours from pubescent cassava varieties. EXPERIMENTAL & APPLIED ACAROLOGY 2012; 58:359-70. [PMID: 22744197 PMCID: PMC3487005 DOI: 10.1007/s10493-012-9595-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 06/19/2012] [Indexed: 05/25/2023]
Abstract
It is well known that plant-inhabiting predators use herbivore-induced plant volatiles to locate herbivores being their prey. Much less known, however, is the phenomenon that genotypes of the same host plant species vary in the attractiveness of these induced chemical signals, whereas they also differ in characteristics that affect the predator's foraging success, such as leaf pubescence. In a series of two-choice experiments (using a Y-tube olfactometer) we determined the preference of Typhlodromalus aripo for pubescent versus glabrous cassava cultivars infested with the cassava green mite Mononychellus tanajoa and also the preference for cultivars within each of the two groups. We found that when offered a choice between pubescent and glabrous cassava cultivars (either apex or leaves), T. aripo was significantly more attracted to pubescent cultivars. For each cultivar, M. tanajoa infested leaves and apices were equally attractive to T. aripo. There was however some variation in the response of T. aripo to M. tanajoa-infested plant parts within the group of pubescent cultivars, as well as within the group of glabrous cultivars. Our study confirms not only that T. aripo uses herbivore-induced plant volatiles to search for prey in cassava fields, but it also shows that it can discriminate between glabrous and pubescent cultivars and prefers the latter. This knowledge can be useful in selecting cultivars that are attractive and suitable to T. aripo, which, in turn, may promote biological control of the cassava green mite.
Collapse
Affiliation(s)
- Alexis Onzo
- Biological Control Centre for Africa, International Institute of Tropical Agriculture, 08 B.P. 0932, Cotonou, Benin, West Africa.
| | | | | |
Collapse
|
40
|
Braasch J, Wimp GM, Kaplan I. Testing for phytochemical synergism: arthropod community responses to induced plant volatile blends across crops. J Chem Ecol 2012; 38:1264-75. [PMID: 23090849 DOI: 10.1007/s10886-012-0202-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
Using herbivore-induced plant volatiles (HIPVs) to attract specific natural enemies in the field has proven challenging, partly because of a poor understanding of: (i) which compound(s) to manipulate to attract specific taxa, and (ii) the ecological conditions over which HIPVs are effective. To address these issues, we quantified the response of a complex arthropod community to three common HIPVs (methyl salicylate, cis-3-hexen-1-ol, and phenylethyl alcohol) as individual compounds and equal part blends in corn and soybean fields. Of 119 arthropod taxa surveyed, we found significant responses by four species in corn fields (2 parasitoids, 1 herbivore, and 1 detritivore) and 16 in soybean fields (8 parasitoids, 3 predators, 4 herbivores, and 1 detritivore), with both attractive and repellent effects of the HIPVs observed. For example, tachinid flies were highly attracted to cis-3-hexen-1-ol (ca. 3-fold increase), but repelled by methyl salicylate (ca. 60 % decrease). Surprisingly, we found very few cases in which HIPVs acted synergistically; only two arthropod groups (ichneumonid wasps and phorid flies) were more attracted by a blend of the HIPVs than by the individual compounds composing the blend. Crop type, however, had a strong impact on the strength of arthropod responses to HIPVs. A few arthropod species were broadly affected across both crops (i.e., the herbivore Halticus bractatus was repelled by most of our treatments, regardless of crop background), but overall more arthropod groups responded to HIPVs released in soybean fields compared with corn. This was true despite the fact that taxa responding to HIPVs were present and abundant in both systems, suggesting that crop-based outcomes were likely driven by the plant matrix rather than mere differences in taxonomic composition of the arthropod community in corn vs. soybean fields. As a whole, these results suggest that: (i) repellent effects of HIPVs on natural enemies of herbivorous insects can be observed as frequently as attractive effects; (ii) odor blends may be no more effective than single-compound lures for some taxa; and (iii) crop background alters the magnitude of attraction to HIPVs, depending on the species being targeted.
Collapse
Affiliation(s)
- Joseph Braasch
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
41
|
Herrmann A. Dynamic Mixtures: Challenges and Opportunities for the Amplification and Sensing of Scents. Chemistry 2012; 18:8568-77. [DOI: 10.1002/chem.201200668] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Gols R, Veenemans C, Potting RP, Smid HM, Dicke M, Harvey JA, Bukovinszky T. Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Clavijo McCormick A, Unsicker SB, Gershenzon J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. TRENDS IN PLANT SCIENCE 2012; 17:303-10. [PMID: 22503606 DOI: 10.1016/j.tplants.2012.03.012] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 05/18/2023]
Abstract
Plants respond to herbivore attack by emitting complex mixtures of volatile compounds that attract herbivore enemies, both predators and parasitoids. Here, we explore whether these mixtures provide significant value as information cues in herbivore enemy attraction. Our survey indicates that blends of volatiles released from damaged plants are frequently specific depending on the type of herbivore and its age, abundance and feeding guild. The sensory perception of plant volatiles by herbivore enemies is also specific, according to the latest evidence from studies of insect olfaction. Thus, enemies do exploit the detailed information provided by plant volatile mixtures in searching for their prey or hosts, but this varies with the diet breadth of the enemy.
Collapse
Affiliation(s)
- Andrea Clavijo McCormick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
44
|
Sinding C, Thomas-Danguin T, Crepeaux G, Schaal B, Coureaud G. Experience influences elemental and configural perception of certain binary odour mixtures in newborn rabbits. J Exp Biol 2011; 214:4171-8. [DOI: 10.1242/jeb.063610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Elemental and configural olfactory perception allows interaction with the environment from very early in life. To evaluate how newborn rabbits can extract and respond to information from the highly complex chemical surroundings, and how experience acts on this sensory, cognitive and behavioural capability, we ran a study in four steps including a total of eight experiments. We mainly used a binary AB mixture comprising ethyl isobutyrate (component A) and ethyl maltol (component B), previously shown as a bearer of blending properties; in rabbit pups (as in human adults), the mixture elicits a weak configural perception, i.e. the perception of a configural odour different from the odours of the components. First, a repeated exposure to one component of AB led to a more elemental perception of this mixture; conversely, a repeated exposure to AB facilitated its configural processing. Second, similar impact of experience did not appear with a non-blending AC mixture (ethyl isobutyrate-guaïacol). Third, repeated exposure to AB impacted not only the perception of AB, but also and in the same way the perception of the AC mixture sharing one component, and reciprocally. However, facilitation to perceive one mixture in one mode (configural/elemental) was not generalized to a mixture sharing no components with the experienced mixture [AB versus DE (damascenone and vanillin)]. Thus, experience contributes to the neonatal perception of odour mixtures and adds plasticity to the perceptual system. However, this impact remains dependent on the chemical composition of the mixtures.
Collapse
Affiliation(s)
- Charlotte Sinding
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Guillemette Crepeaux
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Benoist Schaal
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| |
Collapse
|
45
|
Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 2011; 13:3047-58. [PMID: 21933319 DOI: 10.1111/j.1462-2920.2011.02582.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that bacterial volatiles play an important role in bacterial-plant interactions. However, few reports of bacterial species that produce plant growth modulating volatiles have been published, raising the question whether this is just an anecdotal phenomenon. To address this question, we performed a large screen of strains originating from the soil for volatile-mediated effects on Arabidopsis thaliana. All of the 42 strains tested showed significant volatile-mediated plant growth modulation, with effects ranging from plant death to a sixfold increase in plant biomass. The effects of bacterial volatiles were highly dependent on the cultivation medium and the inoculum quantity. GC-MS analysis of the tested strains revealed over 130 bacterial volatile compounds. Indole, 1-hexanol and pentadecane were selected for further studies because they appeared to promote plant growth. None of these compounds triggered a typical defence response, using production of ethylene and of reactive oxygen species (ROS) as read-outs. However, when plants were challenged with the flg-22 epitope of bacterial flagellin, a prototypical elicitor of defence responses, additional exposure to the volatiles reduced the flg-22-induced production of ethylene and ROS in a dose-dependent manner, suggesting that bacterial volatiles may act as effectors to inhibit the plant's defence response.
Collapse
Affiliation(s)
- D Blom
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|