1
|
Zung JL, McBride CS. Sebaceous origins of human odor. Curr Biol 2025; 35:R303-R313. [PMID: 40262540 DOI: 10.1016/j.cub.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The compounds that make up human body odor have been catalogued by researchers in many fields. Yet few are aware of exactly where these molecules come from. Volatile body-odor compounds are often cited as being produced primarily via microbial activity from precursors in sweat. While this is a source of many human volatiles, here we synthesize data showing that some of the most distinctive and abundant components of human odor instead originate from precursors in sebum, via reactions that do not involve the skin microbiome. We also review the unique biochemistry of human sebaceous glands and discuss evolutionary hypotheses that may partly explain why human sebum is so unique. Finally, we discuss how sebum-derived volatiles intersect with human health and disease, for example, via attraction of disease-vector mosquitoes or use in medical diagnostics. Our review draws insights from multiple fields, which together provide surprising clarity on some of the proximate and ultimate mechanisms underlying the distinctive composition of human odor.
Collapse
Affiliation(s)
- Jessica L Zung
- Department of Ecology and Evolutionary Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Present affiliations: Howard Hughes Medical Institute and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
2
|
Vainer Y, Wang Y, Huff RM, Perets D, Sar-Shalom E, Yakir E, Ghaninia M, Coutinho-Abreu Gomes IV, Ruiz C, Rajamanickam D, Warburg A, Akbari OS, Papathanos PA, Ignell R, Riffell JA, Pitts RJ, Bohbot JD. A conserved odorant receptor underpins borneol-mediated repellency in culicine mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.548337. [PMID: 37577635 PMCID: PMC10418152 DOI: 10.1101/2023.08.01.548337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The use of essential oils derived from the camphor tree to repel mosquitoes is an ancient practice that originated in Southeast Asia and gradually spread to China and across Europe via the Maritime Silk Road. The olfactory mechanisms by which these oils elicit avoidance behavior are unclear. Here we show that plant bicyclic monoterpenoids and borneol specifically activate a neural pathway that originates in the orphan olfactory receptor neuron of the capitate peg sensillum in the maxillary palp, and projects to the mediodorsal glomerulus 3 in the antennal lobe. This neuron co-locates with two olfactory receptor neurons tuned to carbon dioxide and octenol that mediate human-host detection. We also confirm that borneol elicits repellency against human-seeking female mosquitoes. Understanding the functional role of the mosquito maxillary palp is essential to investigating olfactory signal integration and host-selection behavior.
Collapse
Affiliation(s)
- Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | - Yinliang Wang
- Department of Entomology, The Hebrew University of Jerusalem, Israel
- Northeast Normal University, China
| | | | - Dor Perets
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | | | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | - Majid Ghaninia
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden
| | | | - Carlos Ruiz
- Department of Biology, University of Washington, USA
| | | | - A. Warburg
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Israel
| | - Omar S. Akbari
- Division of Biological Sciences, University of California, USA
| | | | - R. Ignell
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden
| | | | | | | |
Collapse
|
3
|
Pullmann-Lindsley H, Huff RM, Boyi J, Pitts RJ. Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). PLoS One 2024; 19:e0302496. [PMID: 38709760 PMCID: PMC11073699 DOI: 10.1371/journal.pone.0302496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.
Collapse
Affiliation(s)
| | - Robert Mark Huff
- Department of Biology, Baylor University, Waco, TX, United States of America
| | - John Boyi
- Department of Biology, Baylor University, Waco, TX, United States of America
| | - Ronald Jason Pitts
- Department of Biology, Baylor University, Waco, TX, United States of America
| |
Collapse
|
4
|
Mappin F, Bellantuono AJ, Ebrahimi B, DeGennaro M. Odor-evoked transcriptomics of Aedes aegypti mosquitoes. PLoS One 2023; 18:e0293018. [PMID: 37874813 PMCID: PMC10597520 DOI: 10.1371/journal.pone.0293018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents an intriguing initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation of olfactory receptors caused by prolonged odor exposure is pervasive across taxa and can be accompanied by the activation of xenobiotic responses.
Collapse
Affiliation(s)
- Fredis Mappin
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Babak Ebrahimi
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
5
|
Liu Y, Ge D, Zhou J, Chu Y, Zheng X, Ke L, Li P, Lu Y, Zou X, Xia L, Liu Y, Huang C, Shen C, Chu Y. HS-SPME-GC-MS Untargeted Analysis of Normal Rat Organs Ex Vivo: Differential VOC Discrimination and Fingerprint VOC Identification. Anal Chem 2023. [PMID: 37392185 DOI: 10.1021/acs.analchem.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The investigation of volatile organic compounds (VOCs) in human metabolites has been a topic of interest as it holds the potential for the development of non-invasive technologies to screen for organ lesions in vivo. However, it remains unclear whether VOCs differ among healthy organs. Consequently, a study was conducted to analyze VOCs in ex vivo organ tissues obtained from 16 Wistar rats, comprising 12 different organs. The VOCs released from each organ tissue were detected by the headspace-solid phase microextraction-gas chromatography-mass spectrometry technique. In the untargeted analysis of 147 chromatographic peaks, the differential volatiles of rat organs were explored based on the Mann-Whitney U test and fold change (FC > 2.0) compared with other organs. It was found that there were differential VOCs in seven organs. A discussion on the possible metabolic pathways and related biomarkers of organ differential VOCs was conducted. Based on the orthogonal partial least squares discriminant analysis and receiver operating characteristic curve, we found that differential VOCs in the liver, cecum, spleen, and kidney can be used as the unique identification of the corresponding organ. In this study, differential VOCs of organs in rats were systematically reported for the first time. Profiles of VOCs produced by healthy organs can serve as a reference or baseline that may indicate the presence of disease or abnormalities in the organ's function. Differential VOCs can be used as the fingerprint of organs, and future integration with metabolic research may contribute to the development of healthcare.
Collapse
Affiliation(s)
- Yue Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Dianlong Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jijuan Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yajing Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiangxue Zheng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Li Ke
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Pan Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yawei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
6
|
Boonyuan W, Tisgratog R, Ahebwa A, Leepasert T, Thanispong K, Chareonviriyaphap T. Spatial repellency and attractancy responses of some chemical lures against Aedes albopictus (Diptera: Culicidae) and Anopheles minimus (Diptera: Culicidae) using the high-throughput screening system. JOURNAL OF MEDICAL ENTOMOLOGY 2023:7160368. [PMID: 37167551 DOI: 10.1093/jme/tjad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
We evaluated the behavioral responses of Aedes albopictus and Anopheles minimus to 3 isovaleric acid and lactic acid-based chemical lure blends and 2 individual alcohols, using Spatial Repellency Assay in a high-throughput screening system (HITSS). Five doses of 0.0002, 0.001, 0.0025, 0.005, and 0.01 g were tested per lure. A BG-lure was used as a reference standard. After 10-min exposure, the number of mosquitoes moving toward or away from the treated chamber was calculated. The results showed that all lures were repellent against Ae. albopictus except for Lure-4 (4% w/v isovaleric acid + 2% w/v lactic acid + 0.0025% w/v myristic acid + 2.5% w/v ammonium hydroxide) which showed a nonsignificant attractancy at the lowest dose. Significantly high spatial repellency was observed at the highest dose of all the tested lures including BG-lure. Lure-2 (isoamyl alcohol) was significantly repellent at all the tested doses. Against An. minimus, Lure-5 (0.02% w/v isovaleric acid + 2% w/v lactic acid) showed significant spatial repellency while Lure-4 was significantly attractant, at all the tested doses. All lures, except Lure-4, showed strong spatial repellency at high doses and attractancy or weak spatial repellency at the lowest dose of 0.0002 g. In summary, our study demonstrated that spatial repellency and attractancy of the tested lures were influenced by both the dose tested and the mosquito species. Lure-2 and Lure-4 are potential spatial repellents and attractants, respectively, for malaria and dengue vectors. However, further studies are necessary to confirm these results at a semifield and open field level.
Collapse
Affiliation(s)
- Wasana Boonyuan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakhon Nayok 26120, Thailand
| | - Rungarun Tisgratog
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Alex Ahebwa
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Theerachart Leepasert
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kanutcharee Thanispong
- Bureau of Vector-Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Royal Society of Thailand, Thailand
| |
Collapse
|
7
|
Mappin F, Bellantuono AJ, Ebrahimi B, DeGennaro M. Odor-evoked transcriptomics of Aedes aegypti mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532230. [PMID: 36993705 PMCID: PMC10055012 DOI: 10.1101/2023.03.12.532230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents a potentially potent initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation caused by prolonged odor exposure is pervasive across taxa and accompanied by the activation of xenobiotic responses. Furthermore, odor-evoked transcriptomics create a potential screening tool for filtering and identification of chemosensory and xenobiotic targets of interest.
Collapse
Affiliation(s)
- Fredis Mappin
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Babak Ebrahimi
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Wolff GH, Lahondère C, Vinauger C, Rylance E, Riffell JA. Neuromodulation and differential learning across mosquito species. Proc Biol Sci 2023; 290:20222118. [PMID: 36629098 PMCID: PMC9832544 DOI: 10.1098/rspb.2022.2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Mosquitoes can change their feeding behaviours based on past experiences, such as shifting from biting animals to biting humans or avoiding defensive hosts (Wolff & Riffell 2018 J. Exp. Biol. 221, jeb157131. (doi:10.1242/jeb.157131)). Dopamine is a critical neuromodulator for insects, allowing flexibility in their feeding preferences, but its role in the primary olfactory centre, the antennal lobe (AL), remains unclear (Vinauger et al. 2018 Curr. Biol. 28, 333-344.e8. (doi:10.1016/j.cub.2017.12.015)). It is also unknown whether mosquitoes can learn some odours and not others, or whether different species learn the same odour cues. We assayed aversive olfactory learning in four mosquito species with different host preferences, and found that they differentially learn odours salient to their preferred host. Mosquitoes that prefer humans learned odours found in mammalian skin, but not a flower odour, and a nectar-feeding species only learned a floral odour. Comparing the brains of these four species revealed significantly different innervation patterns in the AL by dopaminergic neurons. Calcium imaging in the Aedes aegypti AL and three-dimensional image analyses of dopaminergic innervation show that glomeruli tuned to learnable odours have significantly higher dopaminergic innervation. Changes in dopamine expression in the insect AL may be an evolutionary mechanism to adapt olfactory learning circuitry without changing brain structure and confer to mosquitoes an ability to adapt to new hosts.
Collapse
Affiliation(s)
- Gabriella H. Wolff
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Chloé Lahondère
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Clément Vinauger
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Elizabeth Rylance
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| |
Collapse
|
9
|
Ortega-Insaurralde I, Barrozo RB. The closer the better: Sensory tools and host-association in blood-sucking insects. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104346. [PMID: 34896372 DOI: 10.1016/j.jinsphys.2021.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Many hematophagous insects acquire medical and veterinary relevance because they transmit disease causing pathogens to humans. Hematophagy is only fulfilled once a blood feeder successfully locates a vertebrate host by means of fine sensory systems. In nature, blood-sucking insects can exploit environments with differential association with their hosts. Given the relevance of the sensory systems during host searching, we review the current state of knowledge of the sensory machinery of four blood-sucking insects: human lice, bed bugs, kissing bugs and mosquitoes. Each one is representative of highly anthropophilic behaviours and a different degree of association with human hosts. We compare the number, arrangement and functional type of cuticular sensory structures dispersed on the main sensory organs. We also compare the genetic machinery potentially involved in the detection of host stimuli. Finally, we discuss the sensory diversity of the insects studied here.
Collapse
Affiliation(s)
- Isabel Ortega-Insaurralde
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET), Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Romina B Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET), Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Speth Z, Kaur G, Mazolewski D, Sisomphou R, Siao DDC, Pooraiiouby R, Vasquez-Gross H, Petereit J, Gulia-Nuss M, Mathew D, Nuss AB. Characterization of Anopheles stephensi Odorant Receptor 8, an Abundant Component of the Mouthpart Chemosensory Transcriptome. INSECTS 2021; 12:593. [PMID: 34208911 PMCID: PMC8304465 DOI: 10.3390/insects12070593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/25/2023]
Abstract
Several mosquito species within the genus Anopheles are vectors for human malaria, and the spread of this disease is driven by the propensity of certain species to feed preferentially on humans. The study of olfaction in mosquitoes is important to understand dynamics of host-seeking and host-selection; however, the majority of these studies focus on Anopheles gambiae or An. coluzzii, both vectors of malaria in Sub-Saharan Africa. Other malaria vectors may recognize different chemical cues from potential hosts; therefore, in this study, we investigated An. stephensi, the south Asian malaria mosquito. We specifically focused on the mouthparts (primarily the maxillary palp and labella) that have been much less investigated compared to the antennae but are also important for host-seeking. To provide a broad view of chemoreceptor expression, RNAseq was used to examine the transcriptomes from the mouthparts of host-seeking females, blood-fed females, and males. Notably, AsOr8 had a high transcript abundance in all transcriptomes and was, therefore, cloned and expressed in the Drosophila empty neuron system. This permitted characterization with a panel of odorants that were selected, in part, for their presence in the human odor profile. The responsiveness of AsOr8 to odorants was highly similar to An. gambiae Or8 (AgOr8), except for sulcatone, which was detected by AsOr8 but not AgOr8. Subtle differences in the receptor sensitivity to specific odorants may provide clues to species- or strain-specific approaches to host-seeking and host selection. Further exploration of the profile of An. stephensi chemosensory proteins may yield a better understanding of how different malaria vectors navigate host-finding and host-choice.
Collapse
Affiliation(s)
- Zachary Speth
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Devin Mazolewski
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rayden Sisomphou
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Danielle Denise C. Siao
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rana Pooraiiouby
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
11
|
Yang L, Agramonte N, Linthicum KJ, Bloomquist JR. A Survey of Chemoreceptive Responses on Different Mosquito Appendages. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:475-479. [PMID: 32740665 DOI: 10.1093/jme/tjaa154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Research on the functions of insect chemoreceptors have primarily focused on antennae (olfactory receptors) and mouthparts (gustatory receptors). However, chemoreceptive sensilla are also present on other appendages, such as the leg tarsi and the anterior wing margin, and their specific roles in chemoreception and mosquito behavior remain largely unknown. In this study, electrophysiological analyses in an electroantennogram recording format were performed on Aedes aegypti (L., Diptera: Culicidae) antennae, mouthparts, tarsi, and wings during exposure to a variety of insect repellent and attractant compounds. The results provide evidence that the tarsi and wings can sense chemicals in a gaseous form, and that the odors produce differing responses on different appendages. The most consistent and strongest response occurred when exposed to triethylamine (TEA). Antennae and mouthparts showed nearly identical responses pattern to all tested compounds, and their rank orders of effectiveness were similar to those of fore- and mid-leg tarsi. Hindleg tarsi only responded to TEA, indicating that the hind legs are not as chemoreceptive. Wings responded to a range of odorants, but with a different rank order and voltage amplitude. Insights gleaned into the function of these appendages in insect chemoreception are discussed.
Collapse
Affiliation(s)
- Liu Yang
- Neurotoxicology Laboratory, Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Natasha Agramonte
- Neurotoxicology Laboratory, Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Kenneth J Linthicum
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL
| | - Jeffrey R Bloomquist
- Neurotoxicology Laboratory, Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL
| |
Collapse
|
12
|
Hill SR, Ghaninia M, Ignell R. Blood Meal Induced Regulation of Gene Expression in the Maxillary Palps, a Chemosensory Organ of the Mosquito Aedes aegypti. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Influence of R and S enantiomers of 1-octen-3-ol on gene expression of Penicillium chrysogenum. J Ind Microbiol Biotechnol 2019; 46:977-991. [PMID: 30923972 DOI: 10.1007/s10295-019-02168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 03/23/2019] [Indexed: 01/18/2023]
Abstract
Inhibition of spore germination offers an attractive and effective target for controlling fungal species involved in food spoilage. Mushroom alcohol (1-octen-3-ol) functions as a natural self-inhibitor of spore germination for many fungi and, therefore, provides a useful tool for probing the molecular events controlling the early stages of fungal growth. In Penicillium spp., the R and S enantiomers of 1-octen-3-ol delayed spore germination and sporulation in four species of Penicillium involved in soils of fruit and grains, but to different degrees. Because of its well-annotated genome, we used Penicillium chrysogenum to perform a comprehensive comparative transcriptomic analysis of cultures treated with the two enantiomers. Altogether, about 80% of the high-quality reads could be mapped to 11,396 genes in the reference genome. The top three active pathways were metabolic (978 transcripts), biosynthesis of secondary metabolites (420 transcripts), and microbial metabolism in diverse environments (318 transcripts). When compared to the control, treatment with (R)-(-)-1-octen-3-ol affected the transcription levels of 91 genes, while (S)-(+)-1-octen-3-ol affected only 41 genes. Most of the affected transcripts were annotated and predicted to be involved in transport, establishment of localization, and transmembrane transport. Alternative splicing and SNPs' analyses indicated that, compared to the control, the R enantiomer had greater effects on the gene expression pattern of Penicillium chrysogenum than the S enantiomer. A qRT-PCR analysis of 28 randomly selected differentially expressed genes confirmed the transcriptome data. The transcriptomic data have been deposited in NCBI SRA under the accession number SRX1065226.
Collapse
|
14
|
Odor-Specific Daily Rhythms in the Olfactory Sensitivity and Behavior of Aedes aegypti Mosquitoes. INSECTS 2018; 9:insects9040147. [PMID: 30360532 PMCID: PMC6316392 DOI: 10.3390/insects9040147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
Abstract
Many biological processes and behaviors in mosquitoes display rhythmic patterns, allowing for fine tuning to cyclic environmental conditions. In mosquitoes, vector-host interactions are primarily mediated by olfactory signals. Previous studies have established that, in the malaria vector Anopheles gambiae, rhythmic expression of odorant binding proteins and takeout proteins in the antenna resulted in a corresponding rhythm in olfactory sensitivity to relevant host odors. However, it remained unclear how rhythms observed in olfactory sensitivity affect or explain rhythms in behavioral output, which ultimately impacts disease transmission. In order to address this knowledge gap, we quantified and compared patterns in locomotor activity, olfactory sensitivity, and olfactory behaviors in adult female Aedes aegypti mosquitoes. Here, we demonstrate an odorant-specific modulation of olfactory sensitivity in Ae. aegypti, decoupled from rhythms in olfactory behavior. Additionally, behavioral assays performed herein represent the first evidence of a time-dependence of the olfactory activation of behavior in Ae. aegypti mosquitoes. Results suggest that olfactory behavior of Aedes mosquitoes is modulated at both the peripheral (antenna) and central levels. As such, this work serves as a foundation for future studies aimed at further understanding the neural and molecular mechanisms underlying behavioral plasticity.
Collapse
|
15
|
Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference. ACTA ACUST UNITED AC 2018; 221:221/4/jeb157131. [PMID: 29487141 DOI: 10.1242/jeb.157131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mosquitoes are best known for their proclivity towards biting humans and transmitting bloodborne pathogens, but there are over 3500 species, including both blood-feeding and non-blood-feeding taxa. The diversity of host preference in mosquitoes is exemplified by the feeding habits of mosquitoes in the genus Malaya that feed on ant regurgitation or those from the genus Uranotaenia that favor amphibian hosts. Host preference is also by no means static, but is characterized by behavioral plasticity that allows mosquitoes to switch hosts when their preferred host is unavailable and by learning host cues associated with positive or negative experiences. Here we review the diverse range of host-preference behaviors across the family Culicidae, which includes all mosquitoes, and how adaptations in neural circuitry might affect changes in preference both within the life history of a mosquito and across evolutionary time-scales.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Sparks JT, Bohbot JD, Ristic M, Mišic D, Skoric M, Mattoo A, Dickens JC. Chemosensory Responses to the Repellent Nepeta Essential Oil and Its Major Component Nepetalactone by Aedes aegypti (Diptera: Culicidae), a Vector of Zika Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:957-963. [PMID: 28407077 DOI: 10.1093/jme/tjx059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 06/07/2023]
Abstract
Nepeta essential oil (Neo; catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti (L.), an important vector of Zika virus, were poorly understood. Here we show that Neo volatiles activate olfactory receptor neurons within the basiconic sensilla on the maxillary palps of female Ae. aegypti. A gustatory receptor neuron sensitive to the feeding deterrent quinine and housed within sensilla on the labella of females was activated by both Neo and nepetalactone. Activity of a second gustatory receptor neuron sensitive to the feeding stimulant sucrose was suppressed by both repellents. Our results provide neural pathways for the reported spatial repellency and feeding deterrence of these repellents. A better understanding of the neural input through which female mosquitoes make decisions to feed will facilitate design of new repellents and management strategies involving their use.
Collapse
Affiliation(s)
- Jackson T Sparks
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD
- Department of Biology, High Point University, High Point, NC
| | - Jonathan D Bohbot
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mihailo Ristic
- Institute for Medicinal Plants Research "Dr Josif Pancic," University of Belgrade, Tadeuša Košcuška 1, 11000 Belgrade, Serbia
| | - Danijela Mišic
- Institute for Biological Research "Siniša Stankovic," University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marijana Skoric
- Institute for Biological Research "Siniša Stankovic," University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Autar Mattoo
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Sustainable Agricultural Systems Laboratory, Beltsville, MD
| | - Joseph C Dickens
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD
| |
Collapse
|
17
|
Dekel A, Pitts RJ, Yakir E, Bohbot JD. Evolutionarily conserved odorant receptor function questions ecological context of octenol role in mosquitoes. Sci Rep 2016; 6:37330. [PMID: 27849027 PMCID: PMC5110965 DOI: 10.1038/srep37330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/11/2016] [Indexed: 11/08/2022] Open
Abstract
Olfaction is a key insect adaptation to a wide range of habitats. In the last thirty years, the detection of octenol by blood-feeding insects has been primarily understood in the context of animal host-seeking. The recent discovery of a conserved octenol receptor gene in the strictly nectar-feeding elephant mosquito Toxorhynchites amboinensis (TaOr8) suggests a different biological role. Here, we show that TaOR8 is a functional ortholog of its counterparts in blood-feeding mosquitoes displaying selectivity towards the (R)-enantiomer of octenol and susceptibility to the insect repellent DEET. These findings suggest that while the function of OR8 has been maintained throughout mosquito evolution, the context in which this receptor is operating has diverged in blood and nectar-feeding mosquitoes.
Collapse
Affiliation(s)
- Amir Dekel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ronald J. Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jonathan D. Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
18
|
Liu F, Liu N. Human Odorant Reception in the Common Bed Bug, Cimex lectularius. Sci Rep 2015; 5:15558. [PMID: 26522967 PMCID: PMC4629130 DOI: 10.1038/srep15558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/29/2015] [Indexed: 01/28/2023] Open
Abstract
The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptors to human odorants with the Xenopus expression system. The results showed that the D type of olfactory sensilla play a predominant role in detecting the human odorants tested. Different human odorants elicited different neuronal responses with different firing frequencies and temporal dynamics. Particularly, aldehydes and alcohols are the most effective stimuli in triggering strong response while none of the carboxylic acids showed a strong stimulation. Functional characterization of two bed bug odorant receptors and co-receptors in response to human odorants revealed their specific responses to the aldehyde human odorants. Taken together, the findings of this study not only provide exciting new insights into the human odorant detection of bed bugs, but also offer valuable information for developing new reagents (attractants or repellents) for the bed bug control.
Collapse
Affiliation(s)
- Feng Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
19
|
A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes. Sci Rep 2015; 5:13444. [PMID: 26306800 PMCID: PMC4549640 DOI: 10.1038/srep13444] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/27/2015] [Indexed: 01/02/2023] Open
Abstract
In mosquitoes, precise and efficient finding of a host animal is crucial for survival. One of the poorly understood aspects of mosquito blood-feeding behavior is how these insects target an optimal site in order to penetrate the skin and blood vessels without alerting the host animal. Here we provide new findings that a piercing structure of the mouthpart of the mosquitoes, the stylet, is an essential apparatus for the stage in blood feeding. Indeed, the stylet possesses a number of sensory hairs located at the tip of the stylet. These hairs house olfactory receptor neurons that express two conventional olfactory receptors of Aedes aegypti (AaOrs), AaOr8 and AaOr49, together with the odorant co-receptor (AaOrco). In vivo calcium imaging using transfected cell lines demonstrated that AaOr8 and AaOr49 were activated by volatile compounds present in blood. Inhibition of gene expression of these AaOrs delayed blood feeding behaviors of the mosquito. Taken together, we identified olfactory receptor neurons in the stylet involved in mosquito blood feeding behaviors, which in turn indicates that olfactory perception in the stylet is necessary and sufficient for mosquitoes to find host blood in order to rapidly acquire blood meals from a host animal.
Collapse
|
20
|
Hill SR, Majeed S, Ignell R. Molecular basis for odorant receptor tuning: a short C-terminal sequence is necessary and sufficient for selectivity of mosquito Or8. INSECT MOLECULAR BIOLOGY 2015; 24:491-501. [PMID: 26033210 DOI: 10.1111/imb.12176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 05/23/2023]
Abstract
A birth-and-death evolutionary model for odorant receptor gene repertoires presumes the creation of repertoires with the capacity for high-level diversity and rapid ligand specificity change. This changes the recognised odour space, directly affecting fitness-related behaviours and ultimately affecting adaptation to new environments and resources. The proximate molecular mechanisms underlying the tuning of odorant receptor repertoires, and thus peripheral olfaction, are unclear. In the present study, we report a concrete example of this model of odorant receptor evolution leading to rapid changes in receptor tuning that leave the peripheral neuronal circuitry intact. We identified a conserved odorant receptor gene in mosquitoes, Or8, which in Culex quinquefasciatus underwent a duplication and inversion event. The paralogues differ in only minor structural changes manifesting at the C-terminus. We assessed the specificity of the paralogous odorant receptors and receptor neurones. We found that the functional tuning of the receptor was indeed reflected in minor differences in amino acid structure. Specifically, we found that enantiomeric specificity of these mosquito Or8 paralogues relies on eight C-terminal amino acids encoded in the final exon of the gene; thus, the birth of a paralogous odorant receptor can change the tuning of the peripheral olfactory system.
Collapse
Affiliation(s)
- S R Hill
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 230 52 Alnarp, Sweden
| | - S Majeed
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 230 52 Alnarp, Sweden
| | - R Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 230 52 Alnarp, Sweden
| |
Collapse
|
21
|
Effects of Three Volatile Oxylipins on Colony Development in Two Species of Fungi and on Drosophila Larval Metamorphosis. Curr Microbiol 2015; 71:347-56. [PMID: 26126831 DOI: 10.1007/s00284-015-0864-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/19/2015] [Indexed: 02/03/2023]
Abstract
The aim of this study is to investigate the effects of three volatile oxylipins on colony development in two fungi and on Drosophila larval metamorphosis. Using an airborne exposure technique, three common and volatile oxylipins (1-octen-3-ol, (E)-2-hexenal, and 1-hexanol) were compared for their effects on spore germination and colony growth in Aspergillus niger and Penicillium chrysogenum, as well as for their effects on the morphogenesis of larvae of Drosophila melanogaster. Conidia of both A. niger and P. chrysogenum plated in the presence of low concentrations (50 ppm) of these three volatile organic compounds (VOCs) formed fewer colony-forming units (CFUs) and exhibited reduced radial growth of colonies as compared to controls. When A. niger and P. chrysogenum spores were germinated in the presence of the enantiomers of 1-octen-3-ol, (R)-(-)-1-octen-3-ol had the greatest impact on colony morphology (decreased sporulation and colony diameter), while (S)-(+)-1-octen-3-ol and the racemic form yielded similar morphological changes but to a lesser extent. In addition, Drosophila larvae exposed to vapors of these oxylipins exhibited serious delays in metamorphosis and toxic effects on pupae and adult stages. Low concentration of these three VOCs can significantly inhibit the formation of CFUs and the growth of fungi. (R)-(-)-1-octen-3-ol imposed the greatest impact on fungal morphology compared to (S)-(+)-1-octen-3-ol and the racemic form. The three volatile oxylipins could also delay the metamorphosis of Drosophila and impose toxic effects on its pupae and adult stages.
Collapse
|
22
|
Abstract
Since the discovery in the early 1980s that 1-octen-3-ol, isolated from oxen breath, attracts tsetse fly, there has been growing interest in exploring the use of this semiochemical as a possible generic lure for trapping host-seeking mosquitoes. Intriguingly, traps baited with 1-octen-3-ol captured significantly more females of the malaria mosquito, Anopheles gambiae, and the yellow fever mosquito, Aedes aegypti, than control traps, but failed to attract the southern house mosquito, Culex quinquefasciatus. Additionally, it has been demonstrated that this attractant is detected with enantioselective odorant receptors (ORs) expressed only in maxillary palps. On the basis of indoor behavioral assays it has even been suggested that 1-octen-3-ol might be a repellent to the southern house mosquito. Our approach was two-prong, i.e., to isolate 1-octen-3-ol-sensitive ORs expressed in maxillary palps and antennae of southern house female mosquito, and test the hypothesis that this semiochemical is a repellent. An OR with high transcript levels in maxillary palps, CquiOR118b, showed remarkable selectivity towards ( R)-1-octen-3-ol, whereas an OR expressed in antennae, CquiOR114b, showed higher preference for ( S)-1-octen-3-ol than its antipode. Repellency by a surface landing and feeding assay showed that not only racemic, but enantiopure ( R)- and ( S)-1-octen-3-ol are repellents at 1% dose thus suggesting the occurrence of other ( S)-1-octen-3-ol-sensitive OR(s). Female mosquitoes with ablated maxillary palps were repelled by 1-octen-3-ol, which implies that in addition to OR(s) in the maxillary palps, antennal OR(s) are essential for repellency activity.
Collapse
Affiliation(s)
- Pingxi Xu
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Fen Zhu
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Garrison K Buss
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
23
|
DeGennaro M. The mysterious multi-modal repellency of DEET. Fly (Austin) 2015; 9:45-51. [PMID: 26252744 PMCID: PMC4594586 DOI: 10.1080/19336934.2015.1079360] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/03/2015] [Accepted: 07/20/2015] [Indexed: 01/01/2023] Open
Abstract
DEET is the most effective insect repellent available and has been widely used for more than half a century. Here, I review what is known about the olfactory and contact mechanisms of DEET repellency. For mosquitoes, DEET has at least two molecular targets: Odorant Receptors (ORs) mediate the effect of DEET at a distance, while unknown chemoreceptors mediate repellency upon contact. Additionally, the ionotropic receptor Ir40a has recently been identified as a putative DEET chemosensor in Drosophila. The mechanism of how DEET manipulates these molecular targets to induce insect avoidance in the vapor phase is also contested. Two hypotheses are the most likely: DEET activates an innate olfactory neural circuit leading to avoidance of hosts (smell and avoid hypothesis) or DEET has no behavioral effect on its own, but instead acts cooperatively with host odors to drive repellency (confusant hypothesis). Resolving this mystery will inform the search for a new generation of insect repellents.
Collapse
Affiliation(s)
- Matthew DeGennaro
- Biomolecular Sciences Institute & Department of Biological Sciences; Florida International University; Miami, FL USA
| |
Collapse
|
24
|
Bohbot JD, Sparks JT, Dickens JC. The maxillary palp of Aedes aegypti, a model of multisensory integration. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 48:29-39. [PMID: 24613607 DOI: 10.1016/j.ibmb.2014.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary palps play a major role in host detection and other sensory-mediated behaviors. Compared to the antennae, the maxillary palps are a relatively simple organ and thus an attractive model for exploration of the neuromolecular networks underlying chemo- and mechanosensation. In this study, we surveyed the expressed genetic components and examined their potential involvement with these sensory modalities. Using Illumina sequencing, we identified the transcriptome of the maxillary palps of physiologically mature female Ae. aegypti. Genes expressed in the maxillary palps included those involved in sensory reception, signal transduction and neuromodulation. In addition to previously reported chemosensory genes, we identified candidate transcripts potentially involved in mechanosensation and thermosensation. This survey lays the groundwork to explore sensory networks in an insect appendage. The identification of genes involved in thermosensation provides prospective molecular targets for the development of chemicals aimed at disrupting the behavior of this medically important insect.
Collapse
Affiliation(s)
- Jonathan D Bohbot
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Jackson T Sparks
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Joseph C Dickens
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA.
| |
Collapse
|
25
|
orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 2013; 498:487-91. [PMID: 23719379 PMCID: PMC3696029 DOI: 10.1038/nature12206] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022]
Abstract
Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever1. Specific host odours likely drive this strong preference since other attractive cues, including body heat and exhaled carbon dioxide (CO2) are common to all warm-blooded hosts2, 3. Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs). ORs are membrane proteins that form heteromeric odour-gated ion channels4, 5 comprised of a variable ligand-selective subunit and an obligate co-receptor called Orco6. Here we use zinc-finger nucleases to generate targeted mutations in the Ae. aegypti orco gene to examine the contribution of Orco and the OR pathway to mosquito host selection and sensitivity to the insect repellent DEET. orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO2. However, in the presence of CO2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the OR pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.
Collapse
|
26
|
Mysore K, Flannery EM, Tomchaney M, Severson DW, Duman-Scheel M. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a. PLoS Negl Trop Dis 2013; 7:e2215. [PMID: 23696908 PMCID: PMC3656119 DOI: 10.1371/journal.pntd.0002215] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Ellen M. Flannery
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael Tomchaney
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David W. Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bohbot JD, Durand NF, Vinyard BT, Dickens JC. Functional Development of the Octenol Response in Aedes aegypti. Front Physiol 2013; 4:39. [PMID: 23471139 PMCID: PMC3590643 DOI: 10.3389/fphys.2013.00039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/14/2013] [Indexed: 11/13/2022] Open
Abstract
Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect's physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol + CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes.
Collapse
Affiliation(s)
- Jonathan D. Bohbot
- Invasive Insect Biocontrol and Behavior Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Nicolas F. Durand
- Invasive Insect Biocontrol and Behavior Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Bryan T. Vinyard
- Biometrical Counseling Service, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Joseph C. Dickens
- Invasive Insect Biocontrol and Behavior Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
28
|
Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti. Naturwissenschaften 2013; 100:269-73. [PMID: 23407786 DOI: 10.1007/s00114-013-1021-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow-fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as N,N-diethyl-3-methylbenzamide and other insect repellents. Two other neurons with differing spikes responded to salt (NaCl) and sucrose. This is the first report of a gustatory receptor neuron specific for insect repellents in mosquitoes and may provide a tool for screening chemicals to discover novel or improved feeding deterrents and repellents for use in the management of arthropod disease vectors.
Collapse
|
29
|
Chaisson KE, Hallem EA. Chemosensory behaviors of parasites. Trends Parasitol 2012; 28:427-36. [PMID: 22921895 PMCID: PMC5663455 DOI: 10.1016/j.pt.2012.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
Abstract
Many multicellular parasites seek out hosts by following trails of host-emitted chemicals. Host seeking is a characteristic of endoparasites such as parasitic worms as well as of ectoparasites such as mosquitoes and ticks. For host location, many of these parasites use CO(2), a respiration byproduct, in combination with host-specific chemicals. Recent work has begun to elucidate the behavioral responses of parasites to CO(2) and other host chemicals, and to unravel the mechanisms of these responses. Here we discuss recent findings that have greatly advanced our understanding of the chemosensory behaviors of host-seeking parasites. We focus primarily on well-studied parasites such as nematodes and insects, but also note broadly relevant findings in a few less well studied parasites.
Collapse
Affiliation(s)
- Keely E Chaisson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
30
|
Menda G, Uhr JH, Wyttenbach RA, Vermeylen FM, Smith DM, Harrington LC, Hoy RR. Associative learning in the dengue vector mosquito, Aedes aegypti: avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus. ACTA ACUST UNITED AC 2012; 216:218-23. [PMID: 22996441 DOI: 10.1242/jeb.074898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Associative learning has been shown in a variety of insects, including the mosquitoes Culex quinquefasciatus and Anopheles gambiae. This study demonstrates associative learning for the first time in Aedes aegypti, an important vector of dengue, yellow fever and chikungunya viruses. This species prefers to rest on dark surfaces and is attracted to the odor of 1-octen-3-ol. After training in which a dark surface alone or a dark surface with odor was paired with electric shock, mosquitoes avoided the previously attractive area. The association was stronger when odor was included in training, was retained for at least 60 min but not for 24 h, and was equal for males and females. These results demonstrate the utility of a bulk-training paradigm for mosquitoes similar to that used with Drosophila melanogaster.
Collapse
Affiliation(s)
- Gil Menda
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bohbot JD, Dickens JC. Selectivity of odorant receptors in insects. Front Cell Neurosci 2012; 6:29. [PMID: 22811659 PMCID: PMC3396151 DOI: 10.3389/fncel.2012.00029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Insect olfactory receptors (ORs) detect chemicals, shape neuronal physiology, and regulate behavior. Although ORs have been categorized as "generalists" and "specialists" based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs specifically recognize non-pheromonal compounds, and that our understanding of odorant-selectivity mirrors our knowledge of insect chemical ecology. As we are progressively becoming aware that ORs are activated through a variety of mechanisms, the molecular basis of odorant-selectivity and the corollary notion of broad-tuning need to be re-examined from a pharmacological and evolutionary perspective.
Collapse
Affiliation(s)
| | - Joseph C. Dickens
- Invasive Insect Biocontrol and Behavior Laboratory, Plant Sciences Institute, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville,MD, USA
| |
Collapse
|
32
|
Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents. Neuropharmacology 2012; 62:2086-95. [DOI: 10.1016/j.neuropharm.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/12/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022]
|