1
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Christiani E, Naumann N, Weiss C, Spiess B, Kleiner H, Fabarius A, Hofmann WK, Saussele S, Seifarth W. Gene Expression Pattern of ESPL1, PTTG1 and PTTG1IP Can Potentially Predict Response to TKI First-Line Treatment of Patients with Newly Diagnosed CML. Cancers (Basel) 2023; 15:cancers15092652. [PMID: 37174118 PMCID: PMC10177117 DOI: 10.3390/cancers15092652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The achievement of major molecular response (MMR, BCR::ABL1 ≤ 0.1% IS) within the first year of treatment with tyrosine kinase inhibitors (TKI) is a milestone in the therapeutic management of patients with newly diagnosed chronic myeloid leukemia (CML). We analyzed the predictive value of gene expression levels of ESPL1/Separase, PTTG1/Securin and PTTG1IP/Securin interacting protein for MMR achievement within 12 months. Relative expression levels (normalized to GUSB) of ESPL1, PTTG1 and PTTG1IP in white blood cells of patients (responders n = 46, non-responders n = 51) at the time of diagnosis were comparatively analyzed by qRT-PCR. 3D scatter plot analysis combined with a distance analysis performed with respect to a commonly calculated centroid center resulted in a trend to larger distances for non-responders compared to the responder cohort (p = 0.0187). Logistic regression and analysis of maximum likelihood estimates revealed a positive correlation of distance (cut-off) with non-achieving MMR within 12 months (p = 0.0388, odds ratio 1.479, 95%CI: 1.020 to 2.143). Thus, 10% of the tested non-responders (cut-off ≥ 5.9) could have been predicted already at the time of diagnosis. Future scoring of ESPL1, PTTG1 and PTTG1IP transcript levels may be a helpful tool in risk stratification of CML patients before initiation of TKI first = line treatment.
Collapse
Affiliation(s)
- Eva Christiani
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Birgit Spiess
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Helga Kleiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Susanne Saussele
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Boukaba A, Wu Q, Liu J, Chen C, Liang J, Li J, Strunnikov A. Mapping separase-mediated cleavage in situ. NAR Genom Bioinform 2022; 4:lqac085. [PMID: 36415827 PMCID: PMC9673495 DOI: 10.1093/nargab/lqac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Separase is a protease that performs critical functions in the maintenance of genetic homeostasis. Among them, the cleavage of the meiotic cohesin during meiosis is a key step in producing gametes in eukaryotes. However, the exact chromosomal localization of this proteolytic cleavage was not addressed due to the lack of experimental tools. To this end, we developed a method based on monoclonal antibodies capable of recognizing the predicted neo-epitopes produced by separase-mediated proteolysis in the RAD21 and REC8 cohesin subunits. To validate the epigenomic strategy of mapping cohesin proteolysis, anti-RAD21 neo-epitopes antibodies were used in ChIP-On-ChEPseq analysis of human cells undergoing mitotic anaphase. Second, a similar analysis applied for mapping of REC8 cleavage in germline cells in Macaque showed a correlation with a subset of alpha-satellites and other repeats, directly demonstrating that the site-specific mei-cohesin proteolysis hotspots are coincident but not identical with centromeres. The sequences for the corresponding immunoglobulin genes show a convergence of antibodies with close specificity. This approach could be potentially used to investigate cohesin ring opening events in other chromosomal locations, if applied to single cells.
Collapse
Affiliation(s)
- Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Cheng Chen
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jierong Liang
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jingjing Li
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Alexander V Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| |
Collapse
|
4
|
Liu X, Zeng W, Zheng D, Tang M, Zhou W. Let-7c-5p Restrains Cell Growth and Induces Apoptosis of Lung Adenocarcinoma Cells via Targeting ESPL1. Mol Biotechnol 2022; 64:1367-1375. [PMID: 35639278 DOI: 10.1007/s12033-022-00511-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Lung adenocarcinoma (LUAD) is a predominant malignancy, and its high mortality prompts us to incessantly probe the relevant targeted treatment. This work intended to study the molecular mechanism of ESPL1 in LUAD. Bioinformatics analysis was performed for pan-cancer and prognosis analysis as well as target gene prediction. Expression of ESPL1 mRNA and let-7c-5p was determined via qRT-PCR, and western blot was employed to detect protein level of ESPL1. Dual-luciferase reporter gene method verified the interaction between ESPL1 and let-7c-5p. Thereafter, CCK-8, wound healing, Transwell, and flow cytometry assays were utilized to investigate proliferation, migration, and apoptosis of LUAD cells. The results revealed that ESPL1 was upregulated in LUAD, which was associated with poor prognosis. Overexpressed ESPL1 promoted LUAD cells to invade, proliferate, and migrate. Furthermore, ESPL1 was a target gene of let-7c-5p. Let-7c-5p was downregulated in LUAD cells, and played a suppressive role in LUAD malignant development, while reversed by ESPL1. Taken together, it was posited that let-7c-5p/ESPL1 may be underlying therapeutic targets of LUAD.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Wei Zeng
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Dayang Zheng
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Min Tang
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Wangyan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Chuanshan Avenue 69, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
5
|
Ashrafi F, Ghezeldasht SA, Ghobadi MZ. Identification of joint gene players implicated in the pathogenesis of HTLV-1 and BLV through a comprehensive system biology analysis. Microb Pathog 2021; 160:105153. [PMID: 34419613 DOI: 10.1016/j.micpath.2021.105153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human T-cell lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV) are oncogenic viruses that induce adult T cell leukemia/lymphoma (ATLL) and enzootic bovine leukosis (EBL), respectively. HTLV-1 principally infects CD4+ T cells comprising regulatory T cells (Tregs), T helper 1 (Th1), and T helper 2 (Th2), while BLV infects B lymphocytes. Both viruses may impel cell proliferation and malignancy. METHODS To survey the transcriptomic variations due to HTLV-1 and BLV infection and further hematologic malignancies, differential expression genes (DEGs) were explored between leukemia and normal samples using the DESeq2 package. Gene set enrichment analyses (GSEA) were then performed to identify significant gene sets using the FGSEA package. Afterward, the protein-protein interaction (PPI) networks were reconstructed using the STRING online database. Eventually, the hub significant genes and modules were determined through network analysis and MCODE algorithm, respectively. RESULTS Our results uncloaked that four common functional gene sets including mitotic-spindle, G2M-checkpoint, E2F-targets, and MYC-targets-V1 are involved in the human and ovine hosts. Furthermore, twelve up-regulated hub genes including BIRC5, CCNA2, CCNB2, BUB1, DLGAP5, TOP2A, PBK, ASPM, UBE2C, CEP55, KIF20A, and NUSAP1 were identified which were similarly activated in both human and ovine hosts. They mostly participate in pathways including cell cycle, cell division, DNA damage responses, growth factors production, and p53 signaling pathway. The dysregulated hub genes and pathways seem to be involved in the development and progression of the infected cells toward malignancy. CONCLUSION There is common gene groups between HTLV-1 and BLV infections that promote viral malignancy through enhancing cell proliferation and overall survival of cancer cells. The dysregulated genes and pathways may be the efficient candidates for the therapy of the mentioned life-threatening diseases.
Collapse
Affiliation(s)
- Fereshteh Ashrafi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Zarei Ghobadi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran; Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer JM. Aneuploidy as a promoter and suppressor of malignant growth. Nat Rev Cancer 2021; 21:89-103. [PMID: 33432169 DOI: 10.1038/s41568-020-00321-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Aneuploidy has been recognized as a hallmark of tumorigenesis for more than 100 years, but the connection between chromosomal errors and malignant growth has remained obscure. New evidence emerging from both basic and clinical research has illuminated a complicated relationship: despite its frequency in human tumours, aneuploidy is not a universal driver of cancer development and instead can exert substantial tumour-suppressive effects. The specific consequences of aneuploidy are highly context dependent and are influenced by a cell's genetic and environmental milieu. In this Review, we discuss the diverse facets of cancer biology that are shaped by aneuploidy, including metastasis, drug resistance and immune recognition, and we highlight aneuploidy's distinct roles as both a tumour promoter and an anticancer vulnerability.
Collapse
|
7
|
Funk LC, Wan J, Ryan SD, Kaur C, Sullivan R, Roopra A, Weaver BA. p53 Is Not Required for High CIN to Induce Tumor Suppression. Mol Cancer Res 2021; 19:112-123. [PMID: 32948674 PMCID: PMC7810023 DOI: 10.1158/1541-7786.mcr-20-0488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 09/13/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer. While low levels of CIN can be tumor promoting, high levels of CIN cause cell death and tumor suppression. The widely used chemotherapeutic, paclitaxel (Taxol), exerts its anticancer effects by increasing CIN above a maximally tolerated threshold. One significant outstanding question is whether the p53 tumor suppressor is required for the cell death and tumor suppression caused by high CIN. Both p53 loss and reduction of the mitotic kinesin, centromere-associated protein-E, cause low CIN. Combining both genetic insults in the same cell leads to high CIN. Here, we test whether high CIN causes cell death and tumor suppression even in the absence p53. Despite a surprising sex-specific difference in tumor spectrum and latency in p53 heterozygous animals, these studies demonstrate that p53 is not required for high CIN to induce tumor suppression. Pharmacologic induction of high CIN results in equivalent levels of cell death due to loss of essential chromosomes in p53+/+ and p53-/- cells, further demonstrating that high CIN elicits cell death independently of p53 function. IMPLICATIONS: These results provide support for the efficacy of anticancer therapies that induce high CIN, even in tumors that lack functional p53.
Collapse
Affiliation(s)
- Laura C Funk
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charanjeet Kaur
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ruth Sullivan
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar Roopra
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
8
|
Wang R, Zang W, Hu B, Deng D, Ling X, Zhou H, Su M, Jiang J. Serum ESPL1 Can Be Used as a Biomarker for Patients With Hepatitis B Virus-Related Liver Cancer: A Chinese Case-Control Study. Technol Cancer Res Treat 2020; 19:1533033820980785. [PMID: 33308056 PMCID: PMC7739072 DOI: 10.1177/1533033820980785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIMS To investigate the feasibility of serum extra spindle pole bodies-like 1 (ESPL1) used as a biomarker for patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS 131 chronic HBV-infection patients were recruited and divided into HBV S gene integration, non-HBV S gene integration, chronic hepatitis B (CHB), HBV-related liver cirrhosis (LC) and HBV-related HCC group, 24 non-HBV-related HCC patients were selected as HCC control group, 30 people without HBV-infection as healthy control group. Serum ESPL1 were detected and compared. RESULTS ESPL1 level of integration group was significantly higher than that of non-integration group (346.7 vs 199.6 ng/ml, P = 0.000) and healthy control group (346.7 vs 41.3 ng/ml, P = 0.000). ESPL1 level of non-integration group was significantly higher than that of healthy control group (199.6 vs 41.3 ng/ml, P = 0.000); ESPL1 levels in chronic HBV-infection related groups were increased in turn according to CHB group (95.8 ng/ml), HBV-related LC group (268.2 ng/ml), HBV-related HCC group (279.9 ng/ml) and integration group (346.7 ng/ml). Except that there was no significant difference in ESPL1 levels between HBV-related LC and HCC group (P = 0.662), pairwise comparisons between other groups showed significant differences (P < 0.05). ESPL1 level of HBV-related HCC group was significantly higher than that of non-HBV-related HCC group (279.9 vs 46.6 ng/ml, P = 0.000), there was no noticeable difference between non-HBV-related HCC and healthy control group (46.6 vs 41.3 ng/ml, P = 0.848). ESPL1 level of HBV-related HCC group after resection was significantly lower than that of before resection (178.4 vs 260.8 ng/ml, P = 0.000). CONCLUSIONS Chronic HBV-infection patients with high ESPL1 level may indicate HBV S gene integration and is a high-risk population for HBV-related HCC. Serum ESPL1 can be used as a biomarker for screening HBV-related HCC high-risk population and monitoring recurrence.
Collapse
Affiliation(s)
- Rongming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Weiwei Zang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bobin Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Deli Deng
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaozhang Ling
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Huikun Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jianning Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
9
|
Kumar P, Cheng H, Paudyal S, Nakamura LV, Zhang N, Li JT, Sasidharan R, Jeong M, Pati D. Haploinsufficiency of cohesin protease, Separase, promotes regeneration of hematopoietic stem cells in mice. Stem Cells 2020; 38:1624-1636. [PMID: 32997844 DOI: 10.1002/stem.3280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022]
Abstract
Cohesin recently emerged as a new regulator of hematopoiesis and leukemia. In addition to cohesin, whether proteins that regulate cohesin's function have any direct role in hematopoiesis and hematologic diseases have not been fully examined. Separase, encoded by the ESPL1 gene, is an important regulator of cohesin's function. Canonically, protease activity of Separase resolves sister chromatid cohesion by cleaving cohesin subunit-Rad21 at the onset of anaphase. Using a Separase haploinsufficient mouse model, we have uncovered a novel role of Separase in hematopoiesis. We report that partial disruption of Separase distinctly alters the functional characteristics of hematopoietic stem/progenitor cells (HSPCs). Although analyses of peripheral blood and bone marrow of Espl1+/Hyp mice broadly displayed unperturbed hematopoietic parameters during normal hematopoiesis, further probing of the composition of early hematopoietic cells in Espl1+/Hyp bone marrow revealed a mild reduction in the frequencies of the Lin- Sca1+ Kit- (LSK) or LSK CD48+ CD150- multipotent hematopoietic progenitors population without a significant change in either long-term or short-term hematopoietic stem cells (HSCs) subsets at steady state. Surprisingly, however, we found that Separase haploinsufficiency promotes regeneration activity of HSCs in serial in vivo repopulation assays. In vitro colony formation assays also revealed an enhanced serial replating capacity of hematopoietic progenitors isolated from Espl1+/Hyp mice. Microarray analysis of differentially expressed genes showed that Separase haploinsufficiency in HSCs (SP-KSL) leads to enrichment of gene signatures that are upregulated in HSCs compared to committed progenitors and mature cells. Taken together, our findings demonstrate a key role of Separase in promoting hematopoietic regeneration of HSCs.
Collapse
Affiliation(s)
- Praveen Kumar
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Haizi Cheng
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Samridhdi Paudyal
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lanelle V Nakamura
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nenggang Zhang
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jessica T Li
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mira Jeong
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Debananda Pati
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Miller JB, Ward E, Staley LA, Stevens J, Teerlink CC, Tavana JP, Cloward M, Page M, Dayton L, Cannon-Albright LA, Kauwe JSK. Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. Neurobiol Dis 2020; 143:104972. [PMID: 32574725 PMCID: PMC7461696 DOI: 10.1016/j.nbd.2020.104972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Longevity as a phenotype entails living longer than average and typically includes living without chronic age-related diseases. Recently, several common genetic components to longevity have been identified. This study aims to identify additional genetic variants associated with longevity using unique and powerful analyses of pedigrees with a statistical excess of healthy elderly individuals identified in the Utah Population Database (UPDB). METHODS From an existing biorepository of Utah pedigrees, six independent cousin pairs were selected from four extended pedigrees that exhibited an excess of healthy elderly individuals; whole exome sequencing (WES) was performed on two elderly individuals from each pedigree who were either first cousins or first cousins once removed. Rare (<.01 population frequency) variants shared by at least one elderly cousin pair in a region likely to be identical by descent were identified as candidates. Ingenuity Variant Analysis was used to prioritize putative causal variants based on quality control, frequency, and gain or loss of function. The variant frequency was compared in healthy cohorts and in an Alzheimer's disease cohort. Remaining variants were filtered based on their presence in genes reported to have an effect on the aging process, aging of cells, or the longevity process. Validation of these candidate variants included tests of segregation on other elderly relatives. RESULTS Fifteen rare candidate genetic variants spanning 17 genes shared within cousins were identified as having passed prioritization criteria. Of those variants, six were present in genes that are known or predicted to affect the aging process: rs78408340 (PAM), rs112892337 (ZFAT), rs61737629 (ESPL1), rs141903485 (CEBPE), rs144369314 (UTP4), and rs61753103 (NUP88 and RABEP1). ESPL1 rs61737629 and CEBPE rs141903485 show additional evidence of segregation with longevity in expanded pedigree analyses (p-values = .001 and .0001, respectively). DISCUSSION This unique pedigree analysis efficiently identified several novel rare candidate variants that may affect the aging process and added support to seven genes that likely contribute to longevity. Further analyses showed evidence for segregation for two rare variants, ESPL1 rs61737629 and CEBPE rs141903485, in the original longevity pedigrees in which they were initially observed. These candidate genes and variants warrant further investigation.
Collapse
Affiliation(s)
- Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Elizabeth Ward
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lyndsay A Staley
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffrey Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Justina P Tavana
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Cloward
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Madeline Page
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Louisa Dayton
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Chromatin organization during interphase is nonrandom, and dictated by a delicate equilibrium between biophysics, transcription factor expression, and topological regulators of the chromatin. Emerging evidence demonstrate a role for chromosomal conformation at different stages of B-cell development. In the present review, we provide an updated picture of the current knowledge regarding how chromosomal conformation regulates the B-cell phenotype and how disruption of this architecture could lead to B-cell lymphoma. RECENT FINDINGS B-cell development requires proper assembly of a rearranged VDJ locus, which will determine antigen receptor specificity. Recently, evidence pointed to a role for topological regulators during VDJ recombination. Research studies also demonstrated a link between shifts in nuclear chromosomal architecture during B-cell activation and in formation of germinal centers, which is required for immunoglobulin affinity maturation. Class-switch recombination was shown to be dependent on the presence of topology regulators. Loss of topological insulation of enhancers may lead to oncogene activation, suggesting that misfolding of chromatin may constitute a new epigenetic mechanism of malignant transformation. Finally, CCCTC-binding factor and cohesin binding sites have shown a higher probability of mutations and translocations in lymphomas, lending further support to the potential role of chromatin architecture in cancer development. SUMMARY Chromosomal conformation is now recognized as a key feature in the development of a robust humoral immune response. Several examples from the literature show that dysregulation of chromosomal architecture may be a foundational event during malignancy. Therefore, understanding the mechanisms that regulate chromosomal folding and drive gene activation are instrumental for a better understanding of immune regulation and lymphomagenesis.
Collapse
Affiliation(s)
- Martin A Rivas
- Division of Hematology and Medical Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, New York, USA
| | | |
Collapse
|
12
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
13
|
Hellmuth S, Gutiérrez-Caballero C, Llano E, Pendás AM, Stemmann O. Local activation of mammalian separase in interphase promotes double-strand break repair and prevents oncogenic transformation. EMBO J 2018; 37:embj.201899184. [PMID: 30305303 DOI: 10.15252/embj.201899184] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Separase halves eukaryotic chromosomes in M-phase by cleaving cohesin complexes holding sister chromatids together. Whether this essential protease functions also in interphase and/or impacts carcinogenesis remains largely unknown. Here, we show that mammalian separase is recruited to DNA double-strand breaks (DSBs) where it is activated to locally cleave cohesin and facilitate homology-directed repair (HDR). Inactivating phosphorylation of its NES, arginine methylation of its RG-repeats, and sumoylation redirect separase from the cytosol to DSBs. In vitro assays suggest that DNA damage response-relevant ATM, PRMT1, and Mms21 represent the corresponding kinase, methyltransferase, and SUMO ligase, respectively. SEPARASE heterozygosity not only debilitates HDR but also predisposes primary embryonic fibroblasts to neoplasia and mice to chemically induced skin cancer. Thus, tethering of separase to DSBs and confined cohesin cleavage promote DSB repair in G2 cells. Importantly, this conserved interphase function of separase protects mammalian cells from oncogenic transformation.
Collapse
Affiliation(s)
| | | | - Elena Llano
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.,Departamento de Fisiología, Universidad de Salamanca, Salamanca, Spain
| | - Alberto M Pendás
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
14
|
Cuartero S, Merkenschlager M. Three-dimensional genome organization in normal and malignant haematopoiesis. Curr Opin Hematol 2018; 25:323-328. [PMID: 29702522 DOI: 10.1097/moh.0000000000000436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The three-dimensional organization of the genome inside the nucleus impacts on key aspects of genome function, including transcription, DNA replication and repair. The chromosome maintenance complex cohesin and the DNA binding protein CTCF cooperate to drive the formation of self-interacting topological domains. This facilitates transcriptional regulation via enhancer-promoter interactions, controls the distribution and release of torsional strain, and affects the frequency with which particular translocations arise, based on the spatial proximity of translocation partners. Here we discuss recent insights into the mechanisms of three-dimensional genome organization, their relationship to haematopoietic differentiation and malignant transformation. RECENT FINDINGS Cohesin mutations are frequently found in myeloid malignancies. Significantly, cohesin mutations can drive increased self-renewal of haematopoietic stem and progenitor cells, which may facilitate the accumulation of genetic lesions and leukaemic transformation. It is therefore important to elucidate the mechanisms that link cohesin to pathways that regulate the balance between self-renewal and differentiation. Chromosomal translocations are key to lymphoid malignancies, and recent findings link three-dimensional genome organization to the frequency and the genomic position of DNA double strand breaks. SUMMARY Three-dimensional genome organization can help explain genome function in normal and malignant haematopoiesis.
Collapse
Affiliation(s)
- Sergi Cuartero
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
15
|
Funk LC, Zasadil LM, Weaver BA. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression. Dev Cell 2017; 39:638-652. [PMID: 27997823 DOI: 10.1016/j.devcel.2016.10.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy.
Collapse
Affiliation(s)
- Laura C Funk
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lauren M Zasadil
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, 6109 WIMR I, Madison, WI 53705-2275, USA.
| |
Collapse
|
16
|
Zhang N, Pati D. Biology and insights into the role of cohesin protease separase in human malignancies. Biol Rev Camb Philos Soc 2017; 92:2070-2083. [PMID: 28177203 DOI: 10.1111/brv.12321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
Abstract
Separase, an enzyme that resolves sister chromatid cohesion during the metaphase-to-anaphase transition, plays a pivotal role in chromosomal segregation and cell division. Separase protein, encoded by the extra spindle pole bodies like 1 (ESPL1) gene, is overexpressed in numerous human cancers including breast, bone, brain, and prostate. Separase is oncogenic, and its overexpression is sufficient to induce mammary tumours in mice. Either acute or chronic overexpression of separase in mouse mammary glands leads to aneuploidy and tumorigenesis, and inhibition of separase enzymatic activity decreases the growth of human breast tumour xenografts in mice. This review focuses on the biology of and insights into the molecular mechanisms of separase as an oncogene, and its significance and implications for human cancers.
Collapse
Affiliation(s)
- Nenggang Zhang
- Departments of Pediatrics and Molecular and Cellular Biology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates St., FC1220, Houston, TX 77030, U.S.A
| | - Debananda Pati
- Departments of Pediatrics and Molecular and Cellular Biology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates St., FC1220, Houston, TX 77030, U.S.A
| |
Collapse
|
17
|
Kamenz J, Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol 2017; 27:42-54. [DOI: 10.1016/j.tcb.2016.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
|
18
|
Koltan S, Debski R, Koltan A, Grzesk E, Tejza B, Eljaszewicz A, Gackowska L, Kubicka M, Kolodziej B, Kurylo-Rafinska B, Kubiszewska I, Wiese M, Januszewska M, Michalkiewicz J, Wysocki M, Styczynski J, Grzesk G. Phenotype of NK Cells Determined on the Basis of Selected Immunological Parameters in Children Treated due to Acute Lymphoblastic Leukemia. Medicine (Baltimore) 2015; 94:e2369. [PMID: 26717380 PMCID: PMC5291621 DOI: 10.1097/md.0000000000002369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent pediatric malignancy. The chemotherapy for ALL is associated with a profound secondary immune deficiency.We evaluated the number and phenotype of natural killer (NK) cells at diagnosis, after the intensive chemotherapy and following the completion of the entire treatment for patients with ALL. The fraction, absolute number, and percentage of NK cells expressing interferon-γ were determined in full blood samples. The fraction of NK cells expressing CD158a, CD158b, perforin, A, B, and K granzymes was examined in isolated NK cells.We have shown that patients assessed at ALL diagnosis showed significantly lower values of the fraction of NK cells and percentage of NK cells with the granzyme A expression. Additionally, the absolute number of NK cells, the expression of CD158a, CD158b, perforin, and granzyme A were significantly lower in patients who completed intensive chemotherapy. Also, there was a significantly higher fraction of NK cells expressing granzyme K in patients who completed the therapy.Abnormalities of NK cells were found at all stages of the treatment; however, the most pronounced changes were found at the end of intensive chemotherapy.
Collapse
Affiliation(s)
- Sylwia Koltan
- From the Departments of Pediatrics, Hematology and Oncology; and Immunology (SK, RD, AK, EG, BT, AE, LG, MK, BK, BK-R, IK, M Wiese, MJ, JM, M Wysocki, JS), Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, and Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland (GG)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hellmuth S, Pöhlmann C, Brown A, Böttger F, Sprinzl M, Stemmann O. Positive and negative regulation of vertebrate separase by Cdk1-cyclin B1 may explain why securin is dispensable. J Biol Chem 2015; 290:8002-10. [PMID: 25659430 DOI: 10.1074/jbc.m114.615310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sister chromatid cohesion is established during replication by entrapment of both dsDNAs within the cohesin ring complex. It is dissolved in anaphase when separase, a giant cysteine endopeptidase, cleaves the Scc1/Rad21 subunit of cohesin, thereby triggering chromosome segregation. Separase is held inactive by association with securin until this anaphase inhibitor is destroyed at the metaphase-to-anaphase transition by ubiquitin-dependent degradation. The relevant ubiquitin ligase, the anaphase-promoting complex/cyclosome, also targets cyclin B1, thereby causing inactivation of Cdk1 and mitotic exit. Although separase is essential, securin knock-out mice are surprisingly viable and fertile. Capitalizing on our previous finding that Cdk1-cyclin B1 can also bind and inhibit separase, we investigated whether this kinase might be suitable to maintain faithful timing and execution of anaphase in the absence of securin. We found that, similar to securin, Cdk1-cyclin B1 regulates separase in both a positive and negative manner. Although securin associates with nascent separase to co-translationally assist proper folding, Cdk1-cyclin B1 acts on native state separase. Upon entry into mitosis, Cdk1-cyclin B1-dependent phosphorylation of Ser-1126 renders separase prone to inactivation by aggregation/precipitation. Stable association of Cdk1-cyclin B1 with phosphorylated separase counteracts this tendency and stabilizes separase in an inhibited yet activatable state. These opposing effects are suited to prevent premature cleavage of cohesin in early mitosis while ensuring timely activation of separase by anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. Coupling sister chromatid separation with subsequent exit from mitosis by this simplified mode might have been the common scheme of mitotic control prior to the evolution of securin.
Collapse
Affiliation(s)
| | | | | | | | - Mathias Sprinzl
- Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
20
|
Abstract
Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse models have been developed to explore the role of CIN in ageing and cancer. While these models reveal only a modest contribution of CIN to the initiation of cancer, they also clearly show that CIN is a powerful accelerator of cancer in a predisposed background. Other than cancer, CIN also appears to provoke premature ageing in some of the CIN models. In this review, we discuss the phenotypes of the various available mouse models, what we have learnt so far, and importantly, also which questions still need to be addressed.
Collapse
|
21
|
Abstract
Despite the widespread occurrence of aneuploidy in cancer cells, the molecular causes for chromosomal instability are not well established. Cyclin B2 is now shown to control a pathway - involving the centrosomal kinases aurora A and Plk1 and the tumour suppressor p53 - the alteration of which causes defective centrosome separation, aneuploidy and tumour development.
Collapse
|
22
|
Zhang N, Scorsone K, Ge G, Kaffes CC, Dobrolecki LE, Mukherjee M, Lewis MT, Berg S, Stephan CC, Pati D. Identification and Characterization of Separase Inhibitors (Sepins) for Cancer Therapy. ACTA ACUST UNITED AC 2014; 19:878-89. [PMID: 24525869 DOI: 10.1177/1087057114520972] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/03/2014] [Indexed: 11/15/2022]
Abstract
Separase is an endopeptidase that cleaves cohesin subunit Rad21, facilitating the repair of DNA damage during interphase and the resolution of sister chromatid cohesion at anaphase. Separase activity is negatively regulated by securin and Cdk1-cyclin B in vivo. Separase overexpression is reported in a broad range of human tumors, and its overexpression in mouse models results in tumorigenesis. To elucidate further the mechanism of separase function and to test if inhibition of overexpressed separase can be used as a strategy to inhibit tumor-cell proliferation, small-molecule inhibitors of separase enzyme are essential. Here, we report a high-throughput screening for separase inhibitors (Sepins). We developed a fluorogenic separase assay using rhodamine 110-conjugated Rad21 peptide as substrate and screened a small-molecule compound library. We identified a noncompetitive inhibitor of separase called Sepin-1 that inhibits separase enzymatic activity with a half maximal inhibitory concentration (IC50) of 14.8 µM. Sepin-1 can inhibit the growth of human cancer cell lines and breast cancer xenograft tumors in mice by inhibiting cell proliferation and inducing apoptosis. The sensitivity to Sepin-1 in most cases is positively correlated to the level of separase in both cancer cell lines and tumors.
Collapse
Affiliation(s)
- Nenggang Zhang
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen Scorsone
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gouqing Ge
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Caterina C Kaffes
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lacey E Dobrolecki
- Lester & Sue Smith Breast Center, and Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Malini Mukherjee
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Michael T Lewis
- Lester & Sue Smith Breast Center, and Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Stacey Berg
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Debananda Pati
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Mukherjee M, Ge G, Zhang N, Edwards DG, Sumazin P, Sharan SK, Rao PH, Medina D, Pati D. MMTV-Espl1 transgenic mice develop aneuploid, estrogen receptor alpha (ERα)-positive mammary adenocarcinomas. Oncogene 2013; 33:5511-5522. [PMID: 24276237 PMCID: PMC4032816 DOI: 10.1038/onc.2013.493] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Separase, a protease encoded by the ESPL1 gene, cleaves the chromosomal cohesin during mitosis. Separase protein and transcripts are overexpressed in a wide range of human cancers (Meyer et al., Clin Cancer Res 2009; 15: 2703-2710). To investigate the physiological consequence of Separase overexpression in animals, we have generated a transgenic MMTVEspl1 mouse model that overexpresses Separase protein in the mammary glands. MMTV-Espl1 mice in a C57BL/6 genetic background develop aggressive, highly aneuploid, and estrogen receptor alpha positive (ERα+) mammary adenocarcinomas with an 80% penetrance. The mammary tumors caused by overexpression of Separase, alone or combined with p53 heterozygosity, in mammary epithelium mimic several aspects of the most aggressive forms of human breast cancer, including high levels of genetic instability, cell cycle defects, poor differentiation, distant metastasis, and metaplasia. Histopathologically, MMTV-Espl1 tumors are highly heterogeneous showing features of both luminal as well as basal subtypes of breast cancers, with aggressive disease phenotype. In addition to aneuploidy, Separase overexpression results in chromosomal instability (CIN) including premature chromatid separation (PCS), lagging chromosomes, anaphase bridges, micronuclei, centrosome amplification, multi nucleated cells, gradual accumulation of DNA damage, and progressive loss of tumor suppressors p53 and cadherin gene loci. These results suggest that Separase overexpressing mammary cells are not only susceptible to chromosomal missegregation-induced aneuploidy but also other genetic instabilities including DNA damage and loss of key tumor suppressor gene loci, which in combination can initiate tumorigenesis and disease progression.
Collapse
Affiliation(s)
- Malini Mukherjee
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Houston, TX 77030
| | - Gouqing Ge
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Houston, TX 77030
| | - Nenggang Zhang
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Houston, TX 77030
| | - David G Edwards
- Molecular and Cellular Biology; Baylor College of Medicine, Houston, TX 77030
| | - Pavel Sumazin
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Houston, TX 77030
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Pulivarthi H Rao
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Houston, TX 77030
| | - Daniel Medina
- Molecular and Cellular Biology; Baylor College of Medicine, Houston, TX 77030
| | - Debananda Pati
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Houston, TX 77030.,Molecular and Cellular Biology; Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
24
|
Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc Natl Acad Sci U S A 2013; 110:E4134-41. [PMID: 24133140 DOI: 10.1073/pnas.1317042110] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aneuploidy, a chromosome content other than a multiple of the haploid number, is a common feature of cancer cells. Whole chromosomal aneuploidy accompanying ongoing chromosomal instability in mice resulting from reduced levels of the centromere-linked motor protein CENP-E has been reported to increase the incidence of spleen and lung tumors, but to suppress tumors in three other contexts. Exacerbating chromosome missegregation in CENP-E(+/-) mice by reducing levels of another mitotic checkpoint component, Mad2, is now shown to result in elevated cell death and decreased tumor formation compared with reduction of either protein alone. Furthermore, we determine that the additional contexts in which increased whole-chromosome missegregation resulting from reduced CENP-E suppresses tumor formation have a preexisting, elevated basal level of chromosome missegregation that is exacerbated by reduction of CENP-E. Tumors arising from primary causes that do not generate chromosomal instability, including loss of the INK4a tumor suppressor and microsatellite instability from reduction of the DNA mismatch repair protein MLH1, are unaffected by CENP-E-dependent chromosome missegregation. These findings support a model in which low rates of chromosome missegregation can promote tumorigenesis, whereas missegregation of high numbers of chromosomes leads to cell death and tumor suppression.
Collapse
|
25
|
Strunnikov A. Cohesin complexes with a potential to link mammalian meiosis to cancer. CELL REGENERATION 2013; 2:4. [PMID: 25408876 PMCID: PMC4230521 DOI: 10.1186/2045-9769-2-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/16/2013] [Indexed: 01/28/2023]
Abstract
Among multiple genes aberrantly activated in cancers, invariably, there is a group related to the capacity of cell to self-renewal. Some of these genes are related to the normal process of development, including the establishment of a germline. This group, a part of growing family of Cancer/Testis (CT) genes, now includes the meiosis specific subunits of cohesin complex. The first reports characterizing the SMC1 and RAD21 genes, encoding subunits of cohesin, were published 20 years ago; however the exact molecular mechanics of cohesin molecular machine in vivo remains rather obscure notwithstanding ample elegant experiments. The matters are complicated by the fact that the evolution of cohesin function, which is served by just two basic types of protein complexes in budding yeast, took an explosive turn in Metazoa. The recent characterization of a new set of genes encoding cohesin subunits specific for meiosis in vertebrates adds several levels of complexity to the task of structure-function analysis of specific cohesin pathways, even more so in relation to their aberrant functionality in cancers. These three proteins, SMC1β, RAD21L and STAG3 are likely involved in a specific function in the first meiotic prophase, genetic recombination, and segregation of homologues. However, at present, it is rather challenging to pinpoint the molecular role of these proteins, particularly in synaptonemal complex or centromere function, due to the multiplicity of different cohesins in meiosis. The roles of these proteins in cancer cell physiology, upon their aberrant activation in tumors, also remain to be elucidated. Nevertheless, as the existence of Cancer/Testis cohesin complexes in tumor cells appears to be all but certain, this brings a promise of a new target for cancer therapy and/or diagnostics.
Collapse
Affiliation(s)
- Alexander Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 China
| |
Collapse
|
26
|
Zasadil LM, Britigan EMC, Weaver BA. 2n or not 2n: Aneuploidy, polyploidy and chromosomal instability in primary and tumor cells. Semin Cell Dev Biol 2013; 24:370-9. [PMID: 23416057 DOI: 10.1016/j.semcdb.2013.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022]
Abstract
Mitotic defects leading to aneuploidy have been recognized as a hallmark of tumor cells for over 100 years. Current data indicate that ∼85% of human cancers have missegregated chromosomes to become aneuploid. Some maintain a stable aneuploid karyotype, while others consistently missegregate chromosomes over multiple divisions due to chromosomal instability (CIN). Both aneuploidy and CIN serve as markers of poor prognosis in diverse human cancers. Despite this, aneuploidy is generally incompatible with viability during development, and some aneuploid karyotypes cause a proliferative disadvantage in somatic cells. In vivo, the intentional introduction of aneuploidy can promote tumors, suppress them, or do neither. Here, we summarize current knowledge of the effects of aneuploidy and CIN on proliferation and cell death in nontransformed cells, as well as on tumor promotion, suppression, and prognosis.
Collapse
Affiliation(s)
- Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | | | | |
Collapse
|
27
|
The cancer biology of whole-chromosome instability. Oncogene 2013; 32:4727-36. [DOI: 10.1038/onc.2012.616] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022]
|
28
|
Panigrahi AK, Pati D. Higher-order orchestration of hematopoiesis: is cohesin a new player? Exp Hematol 2012; 40:967-73. [PMID: 23022223 PMCID: PMC3595174 DOI: 10.1016/j.exphem.2012.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/10/2012] [Accepted: 09/21/2012] [Indexed: 12/20/2022]
Abstract
Hematopoiesis-the process that generates distinct lineage-committed blood cells from a single multipotent hematopoietic stem cell-is a complex process of cellular differentiation regulated by a set of dynamic transcriptional programs. Cytokines and growth factors, transcription factors, chromatin remodeling, and modifying enzymes have been suggested to enact critical roles during hematopoiesis, leading to the development of myeloid, lymphoid, erythroid and platelet precursors. How is such a complex process orchestrated? Is there a higher order of hematopoiesis regulation? These are some of the unresolved questions in the field of hematopoiesis. Here, we suggest that cohesin, which is known to mediate chromosomal cohesion between sister chromatids, may have a central role in the orchestration of hematopoiesis and serve as a master transcriptional regulator.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
29
|
Abstract
The cohesin complex holds the sister chromatids together from S-phase until the metaphase-to-anaphase transition, and ensures both their proper cohesion and timely separation. In addition to its canonical function in chromosomal segregation, cohesin has been suggested by several lines of investigation in recent years to play additional roles in apoptosis, DNA-damage response, transcriptional regulation and haematopoiesis. To better understand the basis of the disparate cellular functions of cohesin in these various processes, we have characterized a comprehensive protein interactome of cohesin-RAD21 by using three independent approaches: Y2H (yeast two-hybrid) screening, immunoprecipitation-coupled-MS of cytoplasmic and nuclear extracts from MOLT-4 T-lymphocytes in the presence and absence of etoposide-induced apoptosis, and affinity pull-down assays of chromatographically purified nuclear extracts from pro-apoptotic MOLT-4 cells. Our analyses revealed 112 novel protein interactors of cohesin-RAD21 that function in different cellular processes, including mitosis, regulation of apoptosis, chromosome dynamics, replication, transcription regulation, RNA processing, DNA-damage response, protein modification and degradation, and cytoskeleton and cell motility. Identification of cohesin interactors provides a framework for explaining the various non-canonical functions of the cohesin complex.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Texas Children's Cancer Center, Department of Pediatric Hematology/Oncology, Baylor College of Medicine, Houston, 77030, USA
| | | | | | | |
Collapse
|