1
|
Wu S, Gao J, Han Y, Zhang W, Li X, Kong D, Wang H, Zuo L. Balancing act: The dual role of claudin-2 in disease. Ann N Y Acad Sci 2025; 1546:75-89. [PMID: 40101185 DOI: 10.1111/nyas.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Claudin-2 (CLDN2), a tight junction protein, is predominantly found in leaky epithelial cell layers where it plays a pivotal role in forming paracellular pores necessary for the efficient transport of cations and water. Its abundance is intricately regulated by upstream signals, modulating its synthesis, transport, and localization to adapt to diverse environmental changes. Aberrant expression levels of CLDN2 are observed in numerous pathological conditions including cancer, inflammation, immune disorders, fibrosis, and kidney and biliary stones. Recent advances have uncovered the mechanisms by which the loss or restoration of CLDN2 affects functions such as epithelial barrier, cell proliferation, renewal, migration, invasion, and tissue regeneration. This exerts a dual-directional influence on the pathogenesis, perpetuation, and progression of diseases, indicating the potential to both accelerate and decelerate the course of disease evolution. Here, we discuss these nuanced bidirectional regulatory effects mediated by CLDN2, and how it may contribute to the progression or regression of disease when it becomes unbalanced.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jia Gao
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiran Han
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xue Li
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Wang A, Zhai Z, Ding Y, Wei J, Wei Z, Cao H. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight. Front Immunol 2024; 15:1430001. [PMID: 39131163 PMCID: PMC11310172 DOI: 10.3389/fimmu.2024.1430001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic and persistent inflammatory illness of the bowels, leading to a substantial burden on both society and patients due to its high incidence and recurrence. The pathogenesis of IBD is multifaceted, partly attributed to the imbalance of immune responses toward the gut microbiota. There is a correlation between the severity of the disease and the imbalance in the oral microbiota, which has been discovered in recent research highlighting the role of oral microbes in the development of IBD. In addition, various oral conditions, such as angular cheilitis and periodontitis, are common extraintestinal manifestations (EIMs) of IBD and are associated with the severity of colonic inflammation. However, it is still unclear exactly how the oral microbiota contributes to the pathogenesis of IBD. This review sheds light on the probable causal involvement of oral microbiota in intestinal inflammation by providing an overview of the evidence, developments, and future directions regarding the relationship between oral microbiota and IBD. Changes in the oral microbiota can serve as markers for IBD, aiding in early diagnosis and predicting disease progression. Promising advances in probiotic-mediated oral microbiome modification and antibiotic-targeted eradication of specific oral pathogens hold potential to prevent IBD recurrence.
Collapse
Affiliation(s)
- Aili Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Wei
- Department of Orthodontics, Tianjin Stomatological Hospital School of Medicine, Nankai University, Tianjin, China
- Tianjin Key laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Kato I, Minkevitch J, Sun J. Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review. Scand J Gastroenterol 2023; 58:1453-1465. [PMID: 37366241 DOI: 10.1080/00365521.2023.2228954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of zoonotic gastroenteritis. The other emerging group of Campylobacters spp. are part of human oral commensal, represented by C. concisus (CC), which has been recently linked to non-oral conditions. Although long-term gastrointestinal (GI) complications from these two groups of Campylobacters have been previously reviewed individually, overall impact of Campylobacter infection on GI carcinogenesis and their inflammatory precursor lesions has not been assessed collectively. AIMS To evaluate the available evidence concerning the association between Campylobacter infection/colonization and inflammatory bowel disease (IBD), reflux esophagitis/metaplasia colorectal cancer (CRC) and esophageal cancer (EC). METHODS We performed a comprehensive literature search of PubMed for relevant original publications and systematic reviews/meta-analyses of epidemiological and clinical studies. In addition, we gathered additional information concerning microbiological data, animal models and mechanistic data from in vitro studies. RESULTS Both retrospective and prospective studies on IBD showed relatively consistent increased risk associated with Campylobacter infection. Despite lack of supporting prospective studies, retrospective studies based on tissue/fecal microbiome revealed consistent enrichment of Campylobacter in CRC samples. Studies on EC precursor lesions (esophagitis and metaplasia) were generally supportive for the association with Campylobacter, while inconsistent observations on EC. Studies on both IBD and EC precursors suggested the predominant role of CC, but studies on CRC were not informative of species. CONCLUSIONS There is sufficient evidence calling for concerted effort in unveiling direct and indirect connection of this organism to colorectal and esophageal cancer in humans.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Minkevitch
- Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago (UIC), Chicago, IL, USA
- UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
5
|
Friebel J, Schinnerling K, Weigt K, Heldt C, Fromm A, Bojarski C, Siegmund B, Epple HJ, Kikhney J, Moter A, Schneider T, Schulzke JD, Moos V, Schumann M. Uptake of Tropheryma whipplei by Intestinal Epithelia. Int J Mol Sci 2023; 24:ijms24076197. [PMID: 37047170 PMCID: PMC10094206 DOI: 10.3390/ijms24076197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Tropheryma whipplei (TW) can cause different pathologies, e.g., Whipple’s disease and transient gastroenteritis. The mechanism by which the bacteria pass the intestinal epithelial barrier, and the mechanism of TW-induced gastroenteritis are currently unknown. Methods: Using ex vivo disease models comprising human duodenal mucosa exposed to TW in Ussing chambers, various intestinal epithelial cell (IEC) cultures exposed to TW and a macrophage/IEC coculture model served to characterize endocytic uptake mechanisms and barrier function. Results: TW exposed ex vivo to human small intestinal mucosae is capable of autonomously entering IECs, thereby invading the mucosa. Using dominant-negative mutants, TW uptake was shown to be dynamin- and caveolin-dependent but independent of clathrin-mediated endocytosis. Complementary inhibitor experiments suggested a role for the activation of the Ras/Rac1 pathway and actin polymerization. TW-invaded IECs underwent apoptosis, thereby causing an epithelial barrier defect, and were subsequently subject to phagocytosis by macrophages. Conclusions: TW enters epithelia via an actin-, dynamin-, caveolin-, and Ras-Rac1-dependent endocytosis mechanism and consecutively causes IEC apoptosis primarily in IECs invaded by multiple TW bacteria. This results in a barrier leak. Moreover, we propose that TW-packed IECs can be subject to phagocytic uptake by macrophages, thereby opening a potential entry point of TW into intestinal macrophages.
Collapse
Affiliation(s)
- Julian Friebel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Katina Schinnerling
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Kathleen Weigt
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Claudia Heldt
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Judith Kikhney
- Institute for Microbiology, Infectious Diseases, and Immunology, Biofilmcenter, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- MoKi Analytics GmbH, 12207 Berlin, Germany
| | - Annette Moter
- Institute for Microbiology, Infectious Diseases, and Immunology, Biofilmcenter, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- German Konsiliarlabor for Tropheryma whipplei, 10117 Berlin, Germany
- Moter Diagnostics, 12207 Berlin, Germany
| | - Thomas Schneider
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Jörg D. Schulzke
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513536
| |
Collapse
|
6
|
Kitamoto S, Kamada N. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontol 2000 2022; 89:142-153. [PMID: 35244953 PMCID: PMC9018512 DOI: 10.1111/prd.12424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans have coevolved with the trillions of resident microbes that populate every nook and cranny of the body. At each site, the resident microbiota creates a unique ecosystem specialized to its environment, benefiting the development and maintenance of human physiology through harmonious symbiotic relationships with the host. However, when the resident microbiota is perturbed, significant complications may arise with disastrous consequences that affect the local and distant ecosystems. In this context, periodontal disease results in inflammation beyond the oral cavity, such as in the gastrointestinal tract. Accumulating evidence indicates that potentially harmful oral resident bacteria (referred to as pathobionts) and pathogenic immune cells in the oral mucosa can migrate to the lower gastrointestinal tract and contribute to intestinal inflammation. We will review the most recent advances concerning the periodontal connection with intestinal inflammation from microbiological and immunological perspectives. Potential therapeutic approaches that target the connection between the mouth and the gut to treat gastrointestinal diseases, such as inflammatory bowel disease, will be examined. Deciphering the complex interplay between microbes and immunity along the mouth-gut axis will provide a better understanding of the pathogenesis of both oral and gut pathologies and present therapeutic opportunities.
Collapse
Affiliation(s)
- Sho Kitamoto
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nobuhiko Kamada
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
7
|
St. Charles JL, Brooks PT, Bell JA, Ahmed H, Van Allen M, Manning SD, Mansfield LS. Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front Microbiol 2022; 13:800269. [PMID: 35591997 PMCID: PMC9112162 DOI: 10.3389/fmicb.2022.800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.
Collapse
Affiliation(s)
- Jessica L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip T. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Husnain Ahmed
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mia Van Allen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- *Correspondence: Linda S. Mansfield,
| |
Collapse
|
8
|
Xia K, Gao R, Wu X, Sun J, Wan J, Wu T, Fichna J, Yin L, Chen C. Characterization of Specific Signatures of the Oral Cavity, Sputum, and Ileum Microbiota in Patients With Crohn’s Disease. Front Cell Infect Microbiol 2022; 12:864944. [PMID: 35493739 PMCID: PMC9045729 DOI: 10.3389/fcimb.2022.864944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Crohn’s disease (CD) is a chronic nonspecific inflammatory bowel disease (IBD) with an increasing incidence worldwide. The etiology of CD is still obscure, but microbial dysbiosis has been recognized as an essential factor contributing to CD. However, few studies have revealed the microbiome’s signatures and reciprocal correlations between multiple sites in patients with CD over different disease stages. This study investigated the specific microbial architectures of the oral cavity, sputum, and ileum in patients with CD in the active and remission stages. Methods Microbial samples from the oral cavity, sputum, and ileum were collected from patients with CD in the active and remission stages and healthy controls. The microbial composition was assessed by 16S ribosomal RNA (rRNA) gene sequencing. In addition, bioinformatics methods were used to demonstrate the microbial signatures, functional changes, and correlations between microbiota and clinical data in CD. Results Compared with healthy controls, a distinct microbiota dysbiosis in the oral cavity, sputum, and ileum of patients with CD was identified, characterized by alterations in microbiota biodiversity and composition. The oral cavity and sputum microbiota showed significantly lower microbial diversity in patients with CD than in healthy controls. In terms of microbiota composition, the microbiota changes in the oral cavity of patients with CD were similar to those in the sputum, while they were different from those in the ileum. In the oral cavity and sputum of patients with CD, a lower relative abundance of Firmicutes and Actinobacteria was observed compared to healthy controls, which was most prominent in the active stage. In contrast, an increased relative abundance of Fusobacteria, Porphyromonas, and Haemophilus was observed in patients with CD. The predicted metabolic pathways involved in the oral cavity, sputum, and ileum were similar, predominantly involving metabolism, environmental information processing, and genetic information processing. Conclusion The results revealed the alterations of microbiota architecture in the oral cavity, sputum, and ileum of patients with CD, which varied across disease stages. Studying microbiota dysbiosis may bring new insights into the etiology of CD and lead to novel treatments.
Collapse
Affiliation(s)
- Kai Xia
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Kai Xia, ; Lu Yin, ; Chunqiu Chen,
| | - Renyuan Gao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaocai Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Sun
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Wan
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Kai Xia, ; Lu Yin, ; Chunqiu Chen,
| | - Chunqiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Kai Xia, ; Lu Yin, ; Chunqiu Chen,
| |
Collapse
|
9
|
Wan Y, Yang L, Jiang S, Qian D, Duan J. Excessive Apoptosis in Ulcerative Colitis: Crosstalk Between Apoptosis, ROS, ER Stress, and Intestinal Homeostasis. Inflamm Bowel Dis 2022; 28:639-648. [PMID: 34871402 DOI: 10.1093/ibd/izab277] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC), an etiologically complicated and relapsing gastrointestinal disease, is characterized by the damage of mucosal epithelium and destruction of the intestinal homeostasis, which has caused a huge social and economic burden on the health system all over the world. Its pathogenesis is multifactorial, including environmental factors, genetic susceptibility, epithelial barrier defect, symbiotic flora imbalance, and dysregulated immune response. Thus far, although immune cells have become the focus of most research, it is increasingly clear that intestinal epithelial cells play an important role in the pathogenesis and progression of UC. Notably, apoptosis is a vital catabolic process in cells, which is crucial to maintain the stability of intestinal environment and regulate intestinal ecology. In this review, the mechanism of apoptosis induced by reactive oxygen species and endoplasmic reticulum stress, as well as excessive apoptosis in intestinal epithelial dysfunction and gut microbiology imbalance are systematically and comprehensively summarized. Further understanding the role of apoptosis in the pathogenesis of UC may provide a novel strategy for its therapy in clinical practices and the development of new drugs.
Collapse
Affiliation(s)
- Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | | |
Collapse
|
10
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
11
|
Zhang L, Liu F, Xue J, Lee SA, Liu L, Riordan SM. Bacterial Species Associated With Human Inflammatory Bowel Disease and Their Pathogenic Mechanisms. Front Microbiol 2022; 13:801892. [PMID: 35283816 PMCID: PMC8908260 DOI: 10.3389/fmicb.2022.801892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with unknown etiology. The pathogenesis of IBD results from immune responses to microbes in the gastrointestinal tract. Various bacterial species that are associated with human IBD have been identified. However, the microbes that trigger the development of human IBD are still not clear. Here we review bacterial species that are associated with human IBD and their pathogenic mechanisms to provide an updated broad understanding of this research field. IBD is an inflammatory syndrome rather than a single disease. We propose a three-stage pathogenesis model to illustrate the roles of different IBD-associated bacterial species and gut commensal bacteria in the development of human IBD. Finally, we recommend microbe-targeted therapeutic strategies based on the three-stage pathogenesis model.
Collapse
Affiliation(s)
- Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Xue
- Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Kerkhof PJ, On SLW, Houf K. Arcobacter vandammei sp. nov., isolated from the rectal mucus of a healthy pig. Int J Syst Evol Microbiol 2021; 71. [PMID: 34797211 DOI: 10.1099/ijsem.0.005113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A study on the polyphasic taxonomic classification of an Arcobacter strain, R-73987T, isolated from the rectal mucus of a porcine intestinal tract, was performed. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain could be assigned to the genus Arcobacter and suggested that strain R-73987T belongs to a novel undescribed species. Comparative analysis of the rpoB gene sequence confirmed the findings. Arcobacter faecis LMG 28519T was identified as its closest neighbour in a multigene analysis based on 107 protein- encoding genes. Further, whole-genome sequence comparisons by means of average nucleotide identity and in silico DNA-DNA hybridization between the genome of strain R-73987T and the genomes of validly named Arcobacter species resulted in values below 95-96 and 70 %, respectively. In addition, a phenotypic analysis further corroborated the conclusion that strain R-73987T represents a novel Arcobacter species, for which the name Arcobacter vandammei sp. nov. is proposed. The type strain is R-73987T (=LMG 31429T=CCUG 75005T). This appears to be the first Arcobacter species recovered from porcine intestinal mucus.
Collapse
Affiliation(s)
- Pieter-Jan Kerkhof
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Springs Road, Lincoln 7467, New Zealand
| | - Kurt Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.,Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Minowa E, Kurashige Y, Islam ST, Yoshida K, Sakakibara S, Okada Y, Fujita Y, Bolortsetseg D, Murai Y, Abiko Y, Saitoh M. Increased integrity of cell-cell junctions accompanied by increased expression of claudin 4 in keratinocytes stimulated with vitamin D3. Med Mol Morphol 2021; 54:346-355. [PMID: 34324049 DOI: 10.1007/s00795-021-00299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The stratified squamous epithelium has a multilayer structure formed by the differentiation of the keratinized epithelium, which covers the skin and oral mucosa. The epithelium plays a central role in regulating the interactions between the immune system and pathogens. The tight junction (TJ) barrier, which is composed of adhesion molecules called claudins (CLDN), is critical for the homeostasis of the skin and oral mucosa. Furthermore, the crucial roles of vitamin D3 (VD3) in the pathogeneses of skin and oral mucosal disease have been suggested. The aim of this in vitro study was to observe the correlations between the integrity of the keratinocyte population and the expression levels of CLDN1 and CLDN4 in gingival epithelial cells, stimulated with VD3. CLDN 1 and 4 expression levels were down and upregulated, respectively, in the cells stimulated with VD3. Additionally, transepithelial electrical resistance (TEER) levels were increased in the stimulated cells when compared to the controls. These findings indicate that CLDN 4 may play a more important role in the TJ barrier than CLDN 1. Hence, the therapeutic effect of VD3 in skin and oral diseases may be regulated by the increase in the expression of CLDN 4.
Collapse
Affiliation(s)
- Erika Minowa
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Yoshihito Kurashige
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Syed Taufiqul Islam
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Sayaka Sakakibara
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Yunosuke Okada
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Yusuke Fujita
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Dembereldorj Bolortsetseg
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Yuji Murai
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Masato Saitoh
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 0610293, Japan.
| |
Collapse
|
14
|
Lobo de Sá FD, Schulzke JD, Bücker R. Diarrheal Mechanisms and the Role of Intestinal Barrier Dysfunction in Campylobacter Infections. Curr Top Microbiol Immunol 2021; 431:203-231. [PMID: 33620653 DOI: 10.1007/978-3-030-65481-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter enteritis is the most common cause of foodborne bacterial diarrhea in humans. Although various studies have been performed to clarify the pathomechanism in Campylobacter infection, the mechanism itself and bacterial virulence factors are yet not completely understood. The purpose of this chapter is to (i) give an overview on Campylobacter-induced diarrheal mechanisms, (ii) illustrate underlying barrier defects, (iii) explain the role of the mucosal immune response and (iv) weigh preventive and therapeutic approaches. Our present knowledge of pathogenetic and diarrheal mechanisms of Campylobacter jejuni is explained in the first part of this chapter. In the second part, the molecular basis for the Campylobacter-induced barrier dysfunction is compared with that of other species in the Campylobacter genus. The bacteria are capable of overcoming the intestinal epithelial barrier. The invasion into the intestinal mucosa is the initial step of the infection, followed by a second step, the epithelial barrier impairment. The extent of the impairment depends on various factors, including tight junction dysregulation and epithelial apoptosis. The disturbed intestinal epithelium leads to a loss of water and solutes, the leak flux type of diarrhea, and facilitates the uptake of harmful antigens, the leaky gut phenomenon. The barrier dysfunction is accompanied by increased pro-inflammatory cytokine secretion, which is partially responsible for the dysfunction. Moreover, cytokines also mediate ion channel dysregulation (e.g., epithelial sodium channel, ENaC), leading to another diarrheal mechanism, which is sodium malabsorption. Future perspectives of Campylobacter research are the clarification of molecular pathomechanisms and the characterization of therapeutic and preventive compounds to combat and prevent Campylobacter infections.
Collapse
Affiliation(s)
- Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
15
|
Nattramilarasu PK, Lobo de Sá FD, Schulzke JD, Bücker R. Immune-Mediated Aggravation of the Campylobacter concisus-Induced Epithelial Barrier Dysfunction. Int J Mol Sci 2021; 22:ijms22042043. [PMID: 33669494 PMCID: PMC7922099 DOI: 10.3390/ijms22042043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Campylobacter concisus is a human-pathogenic bacterium of the gastrointestinal tract. This study aimed at the contribution of the mucosal immune system in the context of intestinal epithelial barrier dysfunction induced by C. concisus. As an experimental leaky gut model, we used in vitro co-cultures of colonic epithelial cell monolayers (HT-29/B6-GR/MR) with M1-macrophage-like THP-1 cells on the basal side. Forty-eight hours after C. concisus infection, the decrease in the transepithelial electrical resistance in cell monolayers was more pronounced in co-culture condition and 22 ± 2% (p < 0.001) higher than the monoculture condition without THP-1 cells. Concomitantly, we observed a reduction in the expression of the tight junction proteins occludin and tricellulin. We also detected a profound increase in 4 kDa FITC-dextran permeability in C. concisus-infected cell monolayers only in co-culture conditions. This is explained by loss of tricellulin from tricellular tight junctions (tTJs) after C. concisus infection. As an underlying mechanism, we observed an inflammatory response after C. concisus infection through pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) released from THP-1 cells in the co-culture condition. In conclusion, the activation of subepithelial immune cells exacerbates colonic epithelial barrier dysfunction by C. concisus through tricellulin disruption in tTJs, leading to increased antigen permeability (leaky gut concept).
Collapse
|
16
|
Butkevych E, Lobo de Sá FD, Nattramilarasu PK, Bücker R. Contribution of Epithelial Apoptosis and Subepithelial Immune Responses in Campylobacter jejuni- Induced Barrier Disruption. Front Microbiol 2020; 11:344. [PMID: 32210941 PMCID: PMC7067706 DOI: 10.3389/fmicb.2020.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni is a widespread zoonotic pathogen and the leading bacterial cause of foodborne gastroenteritis in humans. Previous infection studies showed disruption of intercellular contacts, induction of epithelial apoptosis, and immune activation, all three contributing to intestinal barrier dysfunction leading to diarrhea. The present study aims to determine the impact of subepithelial immune cells on intestinal barrier dysfunction during Campylobacter jejuni infection and the underlying pathological mechanisms. Infection was performed in a co-culture of confluent monolayers of the human colon cell line HT-29/B6-GR/MR and THP-1 immune cells. Twenty-two hours after infection, transepithelial electrical resistance (TER) was decreased by 58 ± 6% compared to controls. The infection resulted in an increase in permeability for fluorescein (332 Da; 4.5-fold) and for FITC-dextran (4 kDa; 3.5-fold), respectively. In contrast, incubation of the co-culture with the pan-caspase inhibitor Q-VD-OPh during the infection resulted in a complete recovery of the decrease in TER and a normalization of flux values. Fluorescence microscopy showed apoptotic fragmentation in infected cell monolayers resulting in a 5-fold increase of the apoptotic ratio, accompanied by an increased caspase-3 cleavage and caspase-3/7 activity, which both were not present after Q-VD-OPh treatment. Western blot analysis revealed increased claudin-1 and claudin-2 protein expression. Inhibition of apoptosis induction did not normalize these tight junction changes. TNFα concentration was increased during the infection in the co-culture. In conclusion, Campylobacter jejuni infection and the consequent subepithelial immune activation cause intestinal barrier dysfunction mainly through caspase-3-dependent epithelial apoptosis. Concomitant tight junction changes were caspase-independent. Anti-apoptotic and immune-modulatory substances appear to be promising agents for treatment of campylobacteriosis.
Collapse
Affiliation(s)
- Eduard Butkevych
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Praveen Kumar Nattramilarasu
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Nattramilarasu PK, Bücker R, Lobo de Sá FD, Fromm A, Nagel O, Lee IFM, Butkevych E, Mousavi S, Genger C, Kløve S, Heimesaat MM, Bereswill S, Schweiger MR, Nielsen HL, Troeger H, Schulzke JD. Campylobacter concisus Impairs Sodium Absorption in Colonic Epithelium via ENaC Dysfunction and Claudin-8 Disruption. Int J Mol Sci 2020; 21:ijms21020373. [PMID: 31936044 PMCID: PMC7013563 DOI: 10.3390/ijms21020373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short circuit current (−55%, n = 15, p < 0.001). This occurred via down-regulation of β- and γ-ENaC mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2 activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2, as well as claudin-8-dependent barrier dysfunction—both of which contribute to Na+ malabsorption and diarrhea.
Collapse
Affiliation(s)
- Praveen Kumar Nattramilarasu
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Oliver Nagel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - In-Fah Maria Lee
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Eduard Butkevych
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Claudia Genger
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Sigri Kløve
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | - Michal R. Schweiger
- Laboratory for Epigenetics and Tumour genetics, University Hospital Cologne and Centre for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hanno Troeger
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
- Correspondence:
| |
Collapse
|
18
|
Hering NA, Fromm A, Bücker R, Gorkiewicz G, Zechner E, Högenauer C, Fromm M, Schulzke JD, Troeger H. Tilivalline- and Tilimycin-Independent Effects of Klebsiella oxytoca on Tight Junction-Mediated Intestinal Barrier Impairment. Int J Mol Sci 2019; 20:E5595. [PMID: 31717457 PMCID: PMC6888351 DOI: 10.3390/ijms20225595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Klebsiella oxytoca causes antibiotic-associated hemorrhagic colitis and diarrhea. This was attributed largely to its secreted cytotoxins tilivalline and tilimycin, inductors of epithelial apoptosis. To study whether Klebsiella oxytoca exerts further barrier effects, T84 monolayers were challenged with bacterial supernatants derived from tilivalline/tilimycin-producing AHC6 or its isogeneic tilivalline/tilimycin-deficient strain Mut-89. Both preparations decreased transepithelial resistance, enhanced fluorescein and FITC-dextran-4kDa permeabilities, and reduced expression of barrier-forming tight junction proteins claudin-5 and -8. Laser scanning microscopy indicated redistribution of both claudins off the tight junction region in T84 monolayers as well as in colon crypts of mice infected with AHC6 or Mut-89, indicating that these effects are tilivalline/tilimycin-independent. Furthermore, claudin-1 was affected, but only in a tilivalline/tilimycin-dependent manner. In conclusion, Klebsiella oxytoca induced intestinal barrier impairment by two mechanisms: the tilivalline/tilimycin-dependent one, acting by increasing cellular apoptosis and a tilivalline/tilimycin-independent one, acting by weakening the paracellular pathway through the tight junction proteins claudin-5 and -8.
Collapse
Affiliation(s)
- Nina A. Hering
- Medical Department of General, Visceral and Vascular Surgery, Charité – Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité – Universitätsmedizin Berlin, 12203 Berlin, Germany; (A.F.); (R.B.); (M.F.); (J.-D.S.)
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité – Universitätsmedizin Berlin, 12203 Berlin, Germany; (A.F.); (R.B.); (M.F.); (J.-D.S.)
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria;
| | - Ellen Zechner
- BioTechMed-Graz, Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria;
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Medical University of Graz, A-8036 Graz, Austria;
| | - Michael Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité – Universitätsmedizin Berlin, 12203 Berlin, Germany; (A.F.); (R.B.); (M.F.); (J.-D.S.)
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité – Universitätsmedizin Berlin, 12203 Berlin, Germany; (A.F.); (R.B.); (M.F.); (J.-D.S.)
| | - Hanno Troeger
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité – Universitätsmedizin Berlin, 12203 Berlin, Germany;
| |
Collapse
|
19
|
Zhang HN, Zhou XD, Xu X, Wang Y. [Oral microbiota and inflammatory bowel disease]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:443-449. [PMID: 31512842 DOI: 10.7518/hxkq.2019.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract with a high incidence but a poor therapeutic outcome. However, IBD is generally caused by complicated interactions between environmental factors and gut microflora in genetically susceptible individuals. In view of a series of oral manifestations in patients with IBD and a high detection rate of oral bacteria among this population, oral microbiota may play an important role in the development of IBD. This article reviews the relationship between oral microbiota and IBD.
Collapse
Affiliation(s)
- Hao-Nan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
King SJ, McCole DF. Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflammatory bowel disease. Intest Res 2019; 17:177-191. [PMID: 30836737 PMCID: PMC6505084 DOI: 10.5217/ir.2018.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic conditions of the gastrointestinal tract-the main site of host-microbial interaction in the body. Development of IBD is not due to a single event but rather is a multifactorial process where a patient’s genetic background, behavioral habits, and environmental exposures contribute to disease pathogenesis. IBD patients exhibit alterations to gut bacterial populations “dysbiosis” due to the inflammatory microenvironment, however whether this alteration of the gut microbiota precedes inflammation has not been confirmed. Emerging evidence has highlighted the important role of gut microbes in developing measured immune responses and modulating other host responses such as metabolism. Much of the work on the gut microbiota has been correlative and there is an increasing need to understand the intimate relationship between host and microbe. In this review, we highlight how commensal and pathogenic bacteria interact with host intestinal epithelial cells and explore how altered microenvironments impact these connections.
Collapse
Affiliation(s)
- Stephanie J King
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Declan F McCole
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
21
|
Nielsen HL, Dalager-Pedersen M, Nielsen H. Risk of inflammatory bowel disease after Campylobacter jejuni and Campylobacter concisus infection: a population-based cohort study. Scand J Gastroenterol 2019; 54:265-272. [PMID: 30905214 DOI: 10.1080/00365521.2019.1578406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: In this population-based cohort study, we aimed to examine the risk of IBD following a positive stool culture with Campylobacter jejuni or Campylobacter concisus, as well as following culture-negative stool testing. Materials and methods: Patients with a first-time positive stool culture with C. jejuni or C. concisus, as well as negative stool testing, from 2009 through 2013 in North Denmark Region, Denmark, were identified. Patients diagnosed with IBD during follow-up (to 1 March 2018) were identified using national registries. For each case, we selected ten population comparisons matched by age, gender, and calendar-time. Results: We identified 1693 patients with C. jejuni, 910 C. concisus-positive patients, and 11,383 patients with culture-negative stools. During the first year of follow-up C. jejuni-positive patients had higher risk of IBD (HR 2.2, 95% CI 1.3-3.7) compared to population comparisons, but not after exclusion of the first year (HR 1.1, 95% CI 0.5-2.3). Campylobacter concisus-positive patients and culture-negative patients had similar risk of IBD (HR 12.9, 95% CI 7.2-22.9 and HR 8.7, 95% CI 7.5-10.2), during the first year, which decreased to (HR 3.3, 95% CI 1.3-8.5 and HR 3.2, 95% CI 2.6-4.0) after exclusion of the first year. Conclusions: This study does not support exposure of C. jejuni or C. concisus infection as a causal trigger in subsequent development of IBD, since culture-negative patients had similar risk for IBD on long term follow-up. Additional studies including C. concisus exposures for an evaluation of the specific risk of IBD are needed.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- a Department of Clinical Microbiology , Aalborg University Hospital , Aalborg , Denmark.,b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| | - Michael Dalager-Pedersen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| | - Henrik Nielsen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| |
Collapse
|
22
|
Shariati A, Fallah F, Pormohammad A, Taghipour A, Safari H, Chirani AS, Sabour S, Alizadeh-Sani M, Azimi T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J Cell Physiol 2018; 234:8550-8569. [PMID: 30480810 DOI: 10.1002/jcp.27828] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a prolonged and disabling functional gastrointestinal disorder with the incidence rate of 18% in the world. IBS could seriously affect lifetime of patients and cause high economic burden on the community. The pathophysiology of the IBS is hardly understood, whereas several possible mechanisms, such as visceral hypersensitivity, irregular gut motility, abnormal brain-gut relations, and the role of infectious agents, are implicated in initiation and development of this syndrome. Different studies demonstrated an alteration in B-lymphocytes, mast cells (MC), T-lymphocytes, and cytokine concentrations in intestinal mucosa or systemic circulation that are likely to contribute to the formation of the IBS. Therefore, IBS could be developed in those with genetic predisposition. Infections' role in initiation and exacerbation of IBS has been investigated by quite several clinical studies; moreover, the possible role of some pathogens in development and exacerbation of this disease has been described. It appears that the main obligatory pathogens correspond with the IBS disease, Clostridium difficile, Escherichia coli, Mycobacterium avium subspecies paratuberculosis, Campylobacter concisus, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Pseudomonas aeruginosa, Salmonella spp, Shigella spp, and viruses, particularly noroviruses. A number of pathogenic parasites (Blastocystis, Dientamoeba fragilis, and Giardia lamblia) may also be involved in the progression and exacerbation of the disease. Based on the current knowledge, the current study concludes that the most common bacterial, viral, and parasitic pathogens may be involved in the development and progression of IBS.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Taghipour
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Salami Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardebil University of Medical Science, Ardebil, Iran
| | - Mahmood Alizadeh-Sani
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Rahman M, Goff B, Zhang L, Roujeinikova A. Refolding, Characterization, and Preliminary X-ray Crystallographic Studies on the Campylobacter concisus Plasmid-Encoded Secreted Protein Csep1p Associated with Crohn’s Disease. CRYSTALS 2018; 8:391. [DOI: 10.3390/cryst8100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Colonization of Campylobacter concisus in the gastrointestinal tract can lead to the development of inflammatory bowel disease (IBD). Plasmid-encoded C. concisus-secreted protein 1 (Csep1p) was recently identified as a putative pathogenicity marker associated with active Crohn’s disease, a clinical form of IBD. Csep1p shows no significant full-length sequence similarity to proteins of known structure, and its role in pathogenesis is not yet known. This study reports a method for extraction of recombinantly expressed Csep1p from Escherichia coli inclusion bodies, refolding, and purification to produce crystallizable protein. Purified recombinant Csep1p behaved as a monomer in solution. Crystals of Csep1p were grown by the hanging drop vapour diffusion method, using polyethylene glycol (PEG) 4000 as the precipitating agent. A complete data set has been collected to 1.4 Å resolution, using cryocooling conditions and synchrotron radiation. The crystals belong to space group P62 or P64, with unit cell parameters a = b = 85.8, c = 55.2 Å, α = β = 90, and γ = 120°. The asymmetric unit appears to contain one subunit, corresponding to a packing density of 2.47 Å3 Da−1.
Collapse
Affiliation(s)
- Mohammad Rahman
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Bradley Goff
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Ovesen S, Durack J, Kirk KF, Nielsen HL, Nielsen H, Lynch SV. Motility and biofilm formation of the emerging gastrointestinal pathogen Campylobacter concisus differs under microaerophilic and anaerobic environments. Gut Microbes 2018; 10:34-44. [PMID: 30252590 PMCID: PMC6363072 DOI: 10.1080/19490976.2018.1472201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Campylobacter concisus has been isolated from patients with gastroenteritis and inflammatory bowel disease (IBD), as well as healthy subjects. While strain differences may plausibly explain virulence differentials, an alternative hypothesis posits that the pathogenic potential of this species may depend on altered ecosystem conditions in the inflamed gut. One potential difference is oxygen availability, which is frequently increased under conditions of inflammation and is known to regulate bacterial virulence. Hence, we hypothesized that oxygen influences C. concisus physiology. We therefore characterized the effect of microaerophilic or anaerobic environments on C. concisus motility and biofilm formation, two important determinants of host colonization and dissemination. C. concisus isolates (n = 46) sourced from saliva, gut mucosal biopsies and feces of patients with IBD (n = 23), gastroenteritis (n = 8) and healthy subjects (n = 13), were used for this study. Capacity to form biofilms was determined using crystal violet assay, while assessment of dispersion through soft agar permitted motility to be assessed. No association existed between GI disease and either motility or biofilm forming capacity. Oral isolates exhibited significantly greater capacity for biofilm formation compared to fecal isolates (p<0.03), and showed a strong negative correlation between motility and biofilm formation (r = -0.7; p = 0.01). Motility significantly increased when strains were cultured under microaerophilic compared to anaerobic conditions (p<0.001). Increased biofilm formation under microaerophillic conditions was also observed for a subset of isolates. Hence, differences in oxygen availability appear to influence key physiological aspects of the opportunistic gastrointestinal pathogen C. concisus.
Collapse
Affiliation(s)
- Sandra Ovesen
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA,Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Juliana Durack
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Susan V. Lynch
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA,CONTACT: Susan Lynch, ., Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Liu F, Ma R, Wang Y, Zhang L. The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Front Cell Infect Microbiol 2018; 8:243. [PMID: 30087857 PMCID: PMC6066527 DOI: 10.3389/fcimb.2018.00243] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Historically, Campylobacteriosis has been considered to be zoonotic; the Campylobacter species that cause human acute intestinal disease such as Campylobacter jejuni and Campylobacter coli originate from animals. Over the past decade, studies on human hosted Campylobacter species strongly suggest that Campylobacter concisus plays a role in the development of inflammatory bowel disease (IBD). C. concisus primarily colonizes the human oral cavity and some strains can be translocated to the intestinal tract. Genome analysis of C. concisus strains isolated from saliva samples has identified a bacterial marker that is associated with active Crohn's disease (one major form of IBD). In addition to C. concisus, humans are also colonized by a number of other Campylobacter species, most of which are in the oral cavity. Here we review the most recent advancements on C. concisus and other human hosted Campylobacter species including their clinical relevance, transmission, virulence factors, disease associated genes, interactions with the human immune system and pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
26
|
Comparative genomics of Campylobacter concisus: Analysis of clinical strains reveals genome diversity and pathogenic potential. Emerg Microbes Infect 2018; 7:116. [PMID: 29946138 PMCID: PMC6018663 DOI: 10.1038/s41426-018-0118-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/20/2018] [Accepted: 05/24/2018] [Indexed: 01/10/2023]
Abstract
In recent years, an increasing number of Campylobacter species have been associated with human gastrointestinal (GI) diseases including gastroenteritis, inflammatory bowel disease, and colorectal cancer. Campylobacter concisus, an oral commensal historically linked to gingivitis and periodontitis, has been increasingly detected in the lower GI tract. In the present study, we generated robust genome sequence data from C. concisus strains and undertook a comprehensive pangenome assessment to identify C. concisus virulence properties and to explain potential adaptations acquired while residing in specific ecological niche(s) of the GI tract. Genomes of 53 new C. concisus strains were sequenced, assembled, and annotated including 36 strains from gastroenteritis patients, 13 strains from Crohn’s disease patients and four strains from colitis patients (three collagenous colitis and one lymphocytic colitis). When compared with previous published sequences, strains clustered into two main groups/genomospecies (GS) with phylogenetic clustering explained neither by disease phenotype nor sample location. Paired oral/faecal isolates, from the same patient, indicated that there are few genetic differences between oral and gut isolates which suggests that gut isolates most likely reflect oral strain relocation. Type IV and VI secretion systems genes, genes known to be important for pathogenicity in the Campylobacter genus, were present in the genomes assemblies, with 82% containing Type VI secretion system genes. Our findings indicate that C. concisus strains are genetically diverse, and the variability in bacterial secretion system content may play an important role in their virulence potential.
Collapse
|
27
|
Ma R, Liu F, Yap SF, Lee H, Leong RW, Riordan SM, Grimm MC, Zhang L. The Growth and Protein Expression of Inflammatory Bowel Disease-Associated Campylobacter concisus Is Affected by the Derivatives of the Food Additive Fumaric Acid. Front Microbiol 2018; 9:896. [PMID: 29867807 PMCID: PMC5966568 DOI: 10.3389/fmicb.2018.00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract with multifactorial etiology. Both dietary factors and the microbe Campylobacter concisus have been found to be associated with the condition. The current study examined the effects of sodium fumarate, a neutralized product of the food additives fumaric acid and monosodium fumarate when in the intestinal environment, on the growth of C. concisus to determine the effects of these food additives on IBD-associated bacterial species. Through culture methods and quantification, it was found that neutralized fumaric acid, neutralized monosodium fumarate, and sodium fumarate increased the growth of C. concisus, with the greatest increase in growth at a concentration of 0.4%. Further examination of 50 C. concisus strains on media with added sodium fumarate showed that greatest growth was also achieved at a concentration of 0.4%. At a concentration of 2% sodium fumarate, all strains examined displayed less growth in comparison with those cultured on media without sodium fumarate. Using mass spectrometry, multiple C. concisus proteins showed significant differential expression when cultured on media with and without 0.4% sodium fumarate. The findings presented suggest that patients with IBD should consider avoiding excessive consumption of foods with fumaric acid or its sodium salts, and that the addition of 0.4% sodium fumarate alone to media may assist in the isolation of C. concisus from clinical samples.
Collapse
Affiliation(s)
- Rena Ma
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fang Liu
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soe F. Yap
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Hoyul Lee
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rupert W. Leong
- Concord Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, The Prince of Wales Hospital, Sydney, NSW, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Bücker R, Krug SM, Moos V, Bojarski C, Schweiger MR, Kerick M, Fromm A, Janßen S, Fromm M, Hering NA, Siegmund B, Schneider T, Barmeyer C, Schulzke JD. Campylobacter jejuni impairs sodium transport and epithelial barrier function via cytokine release in human colon. Mucosal Immunol 2018; 11:575-577. [PMID: 29091080 DOI: 10.1038/mi.2017.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This corrects the article DOI: 10.1038/mi.2017.66.
Collapse
|
29
|
Campylobacter jejuni impairs sodium transport and epithelial barrier function via cytokine release in human colon. Mucosal Immunol 2018; 11:474-485. [PMID: 28766554 DOI: 10.1038/mi.2017.66] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/13/2017] [Indexed: 02/04/2023]
Abstract
Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. Patients present with diarrhea and immune responses lead to complications like arthritis and irritable bowel syndrome. Although studies exist in animal and cell models, we aimed at a functional and structural characterization of intestinal dysfunction and the involved regulatory mechanisms in human colon. First, in patients' colonic biopsies, sodium malabsorption was identified as an important diarrheal mechanism resulting from hampered epithelial ion transport via impaired epithelial sodium channel (ENaC) β- and γ-subunit. In addition, barrier dysfunction from disrupted epithelial tight junction proteins (claudin-1, -3, -4, -5, and -8), epithelial apoptosis, and appearance of lesions was detected, which cause leak-flux diarrhea and can perpetuate immune responses. Importantly, these effects in human biopsies either represent direct action of Campylobacter jejuni (ENaC impairment) or are caused by proinflammatory signaling (barrier dysfunction). This was revealed by regulator analysis from RNA-sequencing (cytometric bead array-checked) and confirmed in cell models, which identified interferon-γ, TNFα, IL-13, and IL-1β. Finally, bioinformatics' predictions yielded additional information on protective influences like vitamin D, which was confirmed in cell models. Thus, these are candidates for intervention strategies against C. jejuni infection and post-infectious sequelae, which result from the permissive barrier defect along the leaky gut.
Collapse
|
30
|
Molecular epidemiology and comparative genomics of Campylobacter concisus strains from saliva, faeces and gut mucosal biopsies in inflammatory bowel disease. Sci Rep 2018; 8:1902. [PMID: 29382867 PMCID: PMC5790007 DOI: 10.1038/s41598-018-20135-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Campylobacter concisus is an emerging pathogen associated with inflammatory bowel disease (IBD), yet little is known about the genetic diversity of C. concisus in relation to host niches and disease. We isolated 104 C. concisus isolates from saliva, mucosal biopsies and faecal samples from 41 individuals (26 IBD, 3 Gastroenteritis (GE), 12 Healthy controls (HC)). Whole genomes were sequenced and the dataset pan-genome examined, and genomic information was used for typing using multi-locus-sequence typing (MLST). C. concisus isolates clustered into two main groups/genomospecies (GS) with 71 distinct sequence types (STs) represented. Sampling site (p < 0.001), rather than disease phenotype (p = 1.00) was associated with particular GS. We identified 97 candidate genes associated with increase or decrease in prevalence during the anatomical descent from the oral cavity to mucosal biopsies to faeces. Genes related to cell wall/membrane biogenesis were more common in oral isolates, whereas genes involved in cell transport, metabolism and secretory pathways were more prevalent in enteric isolates. Furthermore, there was no correlation between individual genetic diversity and clinical phenotype. This study confirms the genetic heterogeneity of C. concisus and provides evidence that genomic variation is related to the source of isolation, but not clinical phenotype.
Collapse
|
31
|
Wang Y, Liu F, Zhang X, Chung HKL, Riordan SM, Grimm MC, Zhang S, Ma R, Lee SA, Zhang L. Campylobacter concisus Genomospecies 2 Is Better Adapted to the Human Gastrointestinal Tract as Compared with Campylobacter concisus Genomospecies 1. Front Physiol 2017; 8:543. [PMID: 28824443 PMCID: PMC5541300 DOI: 10.3389/fphys.2017.00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Campylobacter concisus was previously shown to be associated with inflammatory bowel disease including Crohn's disease (CD) and ulcerative colitis (UC). C. concisus has two genomospecies (GS). This study systematically examined the colonization of GS1 and GS2 C. concisus in the human gastrointestinal tract. GS1 and GS2 specific polymorphisms in 23S rRNA gene were identified by comparison of the 23S rRNA genes of 49 C. concisus strains. Two newly designed PCR methods, based on the polymorphisms of 23S rRNA gene, were developed and validated. These PCR methods were used to detect and quantify GS1 and GS2 C. concisus in 56 oral and enteric samples collected from the gastrointestinal tract of patients with IBD and healthy controls. Meta-analysis of the composition of the isolated GS1 and GS2 C. concisus strains in previous studies was also conducted. The quantitative PCR methods revealed that there was more GS2 than GS1 C. concisus in samples collected from the upper and lower gastrointestinal tract of both patients with IBD and healthy controls, showing that GS2 C. concisus is better adapted to the human gastrointestinal tract. Analysis of GS1 and GS2 composition of isolated C. concisus strains in previous studies showed similar findings except that in healthy individuals a significantly lower GS2 than GS1 C. concisus strains were isolated from fecal samples, suggesting a potential difference in the C. concisus strains or the enteric environment between patients with gastrointestinal diseases and healthy controls. This study provides novel information regarding the adaptation of different genomospecies of C. concisus in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Xiang Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South WalesSydney, NSW, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South WalesSydney, NSW, Australia
| | - Shu Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
32
|
Bücker R, Krug SM, Fromm A, Nielsen HL, Fromm M, Nielsen H, Schulzke JD. Campylobacter fetus impairs barrier function in HT-29/B6 cells through focal tight junction alterations and leaks. Ann N Y Acad Sci 2017; 1405:189-201. [PMID: 28662272 DOI: 10.1111/nyas.13406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Infections by Campylobacter species are the most common foodborne zoonotic disease worldwide. Campylobacter jejuni and C. coli are isolated most frequently from human stool samples, but severe infections by C. fetus (Cf), which can cause gastroenteritis, septicemia, and abortion, are also found. This study aims at the characterization of pathological changes in Cf infection using an intestinal epithelial cell model. The Cf-induced epithelial barrier defects appeared earlier than those of avian Campylobacter species like C. jejuni/C. coli. Two-path impedance spectroscopy (2PI) distinguished transcellular and paracellular resistance contributions to the overall epithelial barrier impairment. Both transcellular and paracellular resistance of Cf-infected HT-29/B6 monolayers were reduced. The latter was attributed to activation of active anion secretion. Western blot analysis showed no decrease in tight junction (TJ) protein expression (claudin-1, -2, -3, and -4) but showed redistribution of claudin-1 off the TJ domain. In addition, Cf induced epithelial cell death, cell detachment, and lesions (focal leaks), as the result of which macromolecule flux (10-kDa dextran) was increased in Cf-invaded cell monolayers. In conclusion, barrier dysfunction from Cf infection was due to TJ protein redistribution, cell death induction, and leak formation, resulting in bacterial translocation, ion leak flux, and antigen uptake (leaky gut).
Collapse
Affiliation(s)
- Roland Bücker
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne M Krug
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Fromm
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Fromm
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Jörg-Dieter Schulzke
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Hering NA, Luettig J, Krug SM, Wiegand S, Gross G, van Tol EA, Schulzke JD, Rosenthal R. Lactoferrin protects against intestinal inflammation and bacteria-induced barrier dysfunction in vitro. Ann N Y Acad Sci 2017; 1405:177-188. [PMID: 28614589 DOI: 10.1111/nyas.13405] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
The iron-binding glycoprotein lactoferrin (LF) is naturally present in human breast milk. Several studies suggest that LF contributes to infant health and development owing to a variety of protective effects, including antimicrobial and anti-inflammatory features. Therefore, we aimed to elucidate its protective properties on intestinal epithelial barrier dysfunction induced by infection or inflammation using the human epithelial cell culture models HT-29/B6 and T84. During barrier perturbation induced by the proinflammatory cytokine tumor necrosis factor α (TNF-α), bovine LF restored tight junction (TJ) morphometry and inhibited TNF-α-induced epithelial apoptosis. This resulted in an attenuation of the TNF-α-induced decrease in transepithelial resistance (TER) and increases in permeability of fluorescein and FITC-dextran (4 kDa) and was as effective as the apoptosis inhibitor Q-VD-Oph. The enteropathogenic bacterium Yersinia enterocolitica is a frequent cause of diarrhea in early childhood. This involves focal changes in TJ protein expression and localization. LF diminished the Y. enterocolitica-induced drop in TER in the present in vitro model, which was paralleled by an inhibition of the Yersinia-induced reduction of claudin-8 expression via c-Jun kinase signaling. In conclusion, LF exerts protective effects against inflammation- or infection-induced barrier dysfunction in human intestinal cell lines, supporting its relevance for healthy infant development.
Collapse
Affiliation(s)
- Nina A Hering
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Luettig
- Institute of Clinical Physiology, Department of Gastroenterology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology, Department of Gastroenterology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Wiegand
- Institute of Clinical Physiology, Department of Gastroenterology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Gross
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Eric A van Tol
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Jörg D Schulzke
- Institute of Clinical Physiology, Department of Gastroenterology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rita Rosenthal
- Institute of Clinical Physiology, Department of Gastroenterology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Liu F, Ma R, Riordan SM, Grimm MC, Liu L, Wang Y, Zhang L. Azathioprine, Mercaptopurine, and 5-Aminosalicylic Acid Affect the Growth of IBD-Associated Campylobacter Species and Other Enteric Microbes. Front Microbiol 2017; 8:527. [PMID: 28424670 PMCID: PMC5372805 DOI: 10.3389/fmicb.2017.00527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Campylobacter concisus is a bacterium that is associated with inflammatory bowel disease (IBD). Immunosuppressive drugs including azathioprine (AZA) and mercaptopurine (MP), and anti-inflammatory drug such as 5-aminosalicylic acid (5-ASA) are commonly used to treat patients with IBD. This study aimed to examine the effects of AZA, MP, and 5-ASA on the growth of IBD-associated bacterial species and to identify bacterial enzymes involved in immunosuppressive drug metabolism. A total of 15 bacterial strains of five species including 11 C. concisus strains, Bacteroides fragilis, Bacteroides vulgatus, Enterococcus faecalis, and Escherichia coli were examined. The impact of AZA, MP, and 5-ASA on the growth of these bacterial species was examined quantitatively using a plate counting method. The presence of enzymes involved in AZA and MP metabolism in these bacterial species was identified using bioinformatics tools. AZA and MP significantly inhibited the growth of all 11 C. concisus strains. C. concisus strains were more sensitive to AZA than MP. 5-ASA showed inhibitory effects to some C. concisus strains, while it promoted the growth of other C. concisus strains. AZA and MP also significantly inhibited the growth of B. fragilis and B. vulgatus. The growth of E. coli was significantly inhibited by 200 μg/ml of AZA as well as 100 and 200 μg/ml of 5-ASA. Bacterial enzymes related to AZA and MP metabolism were found, which varied in different bacterial species. In conclusion, AZA and MP have inhibitory effects to IBD-associated C. concisus and other enteric microbes, suggesting an additional therapeutic mechanism of these drugs in the treatment of IBD. The strain dependent differential impact of 5-ASA on the growth of C. concisus may also have clinical implication given that in some cases 5-ASA medications were found to cause exacerbations of colitis.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South WalesSydney, NSW, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South WalesSydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
35
|
Ovesen S, Kirk KF, Nielsen HL, Nielsen H. Motility of Campylobacter concisus isolated from saliva, feces, and gut mucosal biopsies. APMIS 2017; 125:230-235. [PMID: 28116789 DOI: 10.1111/apm.12655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
Campylobacter concisus is an emerging pathogen associated with gastrointestinal disorders such as gastroenteritis and inflammatory bowel diseases (IBD), but the species is also found in healthy subjects. The heterogeneous genome of C. concisus increases the likelihood of varying virulence between strains. Flagella motility is a crucial virulence factor for the well-recognized Campylobacter jejuni; therefore, this study aimed to analyze the motility of C. concisus isolated from saliva, gut biopsies, and feces of patients with IBD, gastroenteritis, and healthy subjects. The motility zones of 63 isolates from 52 patients were measured after microaerobic growth in soft-agar plates for 72 hours. The motility of C. concisus was significantly lower than that of Campylobacter jejuni and Campylobacter fetus subsp. fetus. The motility of C. concisus varied between isolates (4-22 mm), but there was no statistical significant difference between isolates from IBD patients and healthy subjects (p = 0.14). A tendency of a larger motility zones was observed for IBD gut mucosa isolates, although it did not reach statistical significance (p = 0.13), and no difference was found between oral or fecal isolates between groups. In conclusion, the varying motility of C. concisus could not be related to disease outcome or colonization sites.
Collapse
Affiliation(s)
- Sandra Ovesen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
36
|
Chung HKL, Tay A, Octavia S, Chen J, Liu F, Ma R, Lan R, Riordan SM, Grimm MC, Zhang L. Genome analysis of Campylobacter concisus strains from patients with inflammatory bowel disease and gastroenteritis provides new insights into pathogenicity. Sci Rep 2016; 6:38442. [PMID: 27910936 PMCID: PMC5133609 DOI: 10.1038/srep38442] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease. C. concisus has two major genomospecies, which appear to have different enteric pathogenic potential. Currently, no studies have compared the genomes of C. concisus strains from different genomospecies. In this study, a comparative genome analysis of 36 C. concisus strains was conducted including 27 C. concisus strains sequenced in this study and nine publically available C. concisus genomes. The C. concisus core-genome was defined and genomospecies-specific genes were identified. The C. concisus core-genome, housekeeping genes and 23S rRNA gene consistently divided the 36 strains into two genomospecies. Two novel genomic islands, CON_PiiA and CON_PiiB, were identified. CON_PiiA and CON_PiiB islands contained proteins homologous to the type IV secretion system, LepB-like and CagA-like effector proteins. CON_PiiA islands were found in 37.5% of enteric C. concisus strains (3/8) isolated from patients with enteric diseases and none of the oral strains (0/27), which was statistically significant. This study reports the findings of C. concisus genomospecies-specific genes, novel genomic islands that contain type IV secretion system and putative effector proteins, and other new genomic features. These data provide novel insights into understanding of the pathogenicity of this emerging opportunistic pathogen.
Collapse
Affiliation(s)
- Heung Kit Leslie Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jieqiong Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Michael C. Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Barmeyer C, Fromm M, Schulzke JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch 2016; 469:15-26. [PMID: 27904960 DOI: 10.1007/s00424-016-1914-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022]
Abstract
Intestinal inflammatory diseases, four of which are discussed here, are associated with alterations of claudins. In ulcerative colitis, diarrhea and antigen entry into the mucosa occurs. Claudin-2 is upregulated but data on other claudins are still limited or vary (e.g., claudin-1 and -4). Apart from that, tight junction changes contribute to diarrhea via a leak flux mechanism, while protection against antigen entry disappears behind epithelial gross lesions (erosions) and apoptotic foci. Crohn's disease is additionally characterized by a claudin-5 and claudin-8 reduction which plays an active role in antigen uptake already before gross lesions appear. In microscopic colitis (MC), upregulation of claudin-2 expression is weak and a reduction in claudin-4 may be only passively involved, while sodium malabsorption represents the main diarrheal mechanism. However, claudin-5 is removed from MC tight junctions which may be an active trigger for inflammation through antigen uptake along the so-called leaky gut concept. In celiac disease, primary barrier defects are discussed in the context of candidate genes as PARD3 which regulate cell polarity and tight junctions. The loss of claudin-5 allows small antigens to invade, while the reductions in others like claudin-3 are rather passive events. Taken together, the specific role of single tight junction proteins for the onset and perpetuation of inflammation and the recovery from these diseases is far from being fully understood and is clearly dependent on the stage of the disease, the background of the other tight junction components, the transport activity of the mucosa, and the presence of other barrier features like gross lesions, an orchestral interplay which is discussed in this article.
Collapse
Affiliation(s)
- Christian Barmeyer
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany.
| |
Collapse
|
38
|
Nielsen HL, Kirk KF, Bodilsen J, Ejlertsen T, Nielsen H. Azithromycin vs. Placebo for the Clinical Outcome in Campylobacter concisus Diarrhoea in Adults: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. PLoS One 2016; 11:e0166395. [PMID: 27893820 PMCID: PMC5125586 DOI: 10.1371/journal.pone.0166395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022] Open
Abstract
Campylobacter concisus has been associated with prolonged mild diarrhoea, but investigations regarding the efficacy of antimicrobial treatment have not been reported previously. We initiated a phase 3, single-centre, randomized, double-blinded, placebo-controlled study comparing the efficacy of 500 mg once-daily dose of azithromycin with a 500 mg once-daily dose of placebo for three days, for the treatment of C. concisus diarrhoea in adult patients with a follow-up period of ten days. If symptoms persisted at day ten, the patient was offered cross-over study treatment of three days and another ten-day follow-up period. The primary efficacy endpoint was the clinical response, defined as time to cessation of diarrhoea (<3 stools/day or reversal of accompanying symptoms). Our estimated sample size was 100 patients. We investigated a total of 10,036 diarrheic stool samples from 7,089 adult patients. Five-hundred and eighty-eight C. concisus positive patients were assessed for eligibility, of which 559 were excluded prior to randomization. The three main reasons for exclusion were duration of diarrhoea longer than 21 days (n = 124), previous antibiotic treatment (n = 113), and co-pathogens in stools (n = 87). Therefore, 24 patients completed the trial with either azithromycin (n = 12) or placebo (n = 12). Both groups presented symptoms of mild, prolonged diarrhoea with a mean duration of 18 days (95% CI: 16-19). One person in the azithromycin group and four from the placebo group chose to continue with crossover medication after the initial ten-day period. In the azithromycin group, there was a mean of seven days (95% CI: 5-9) to clinical cure and for the placebo group it was ten days (95% CI: 6-14) (OR-3 (95% CI: -7-1). We observed no differences in all examined outcomes between azithromycin treatment and placebo. However, due to unforeseen recruitment difficulties we did not reach our estimated sample size of 100 patients and statistical power to conclude on an effect of azithromycin treatment was not obtained. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT01531218.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
- * E-mail:
| | - Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Tove Ejlertsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Campylobacter concisus pathotypes induce distinct global responses in intestinal epithelial cells. Sci Rep 2016; 6:34288. [PMID: 27677841 PMCID: PMC5039708 DOI: 10.1038/srep34288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022] Open
Abstract
The epithelial response to the opportunistic pathogen Campylobacter concisus is poorly characterised. Here, we assessed the intestinal epithelial responses to two C. concisus strains with different virulence characteristics in Caco-2 cells using RNAseq, and validated a subset of the response using qPCR arrays. C. concisus strains induced distinct response patterns from intestinal epithelial cells, with the toxigenic strain inducing a significantly more amplified response. A range of cellular functions were significantly regulated in a strain-specific manner, including epithelial-to-mesenchymal transition (NOTCH and Hedgehog), cytoskeletal remodeling, tight junctions, inflammatory responses and autophagy. Pattern recognition receptors were regulated, including TLR3 and IFI16, suggesting that nucleic acid sensing was important for epithelial recognition of C. concisus. C. concisus zonula occludens toxin (ZOT) was expressed and purified, and the epithelial response to the toxin was analysed using RNAseq. ZOT upregulated PAR2 expression, as well as processes related to tight junctions and cytoskeletal remodeling. C. concisus ZOT also induced upregulation of TLR3, pro-inflammatory cytokines IL6, IL8 and chemokine CXCL16, as well as the executioner caspase CASP7. Here, we characterise distinct global epithelial responses to C. concisus strains, and the virulence factor ZOT, and provide novel information on mechanisms by which this bacterium may affect the host.
Collapse
|
40
|
Nielsen HL, Nielsen H, Torpdahl M. Multilocus sequence typing of Campylobacter concisus from Danish diarrheic patients. Gut Pathog 2016; 8:44. [PMID: 27688814 PMCID: PMC5034547 DOI: 10.1186/s13099-016-0126-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
The emerging enteric pathogen Campylobacter concisus is associated with prolonged diarrhea and inflammatory bowel disease. Previous studies have shown that C. concisus strains are very genetically diverse. Nevertheless, C. concisus strains have been divided into two genomospecies, where GS1 strains have been isolated predominantly from healthy individuals, while the GS2 cluster consists of isolates primarily from diarrheic individuals. The aim of the present study was to determine the genetic diversity of C. concisus isolates from Danish diarrheic patients. Multilocus sequence typing using the loci aspA, atpA, glnA, gltA, glyA, ilvD and pgm, as well as genomospecies based on specific differences in the 23S rRNA, was used to characterize 67 isolates (63 fecal and 4 oral), from 49 patients with different clinical presentations (29 with diarrhea, eight with bloody diarrhea, seven with collagenous colitis and five with Crohn’s disease). MLST revealed a high diversity of C. concisus with 53 sequence types (STs), of which 52 were identified as ‘new’ STs. Allele sequences showed more than 90 % similarity between isolates, with only four outliers. Dendrogram profiles of each allele showed a division into two groups, which more or less correlated with genomospecies A and genomospecies B. However, in contrary to previous results, this subgrouping had no association to the clinical severity of disease.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark ; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mia Torpdahl
- Department of Microbiology and Infection Control, Statens Serum Institut (SSI), Copenhagen, Denmark
| |
Collapse
|
41
|
Yuan B, Zhou S, Lu Y, Liu J, Jin X, Wan H, Wang F. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis. Gut Liver 2016; 9:734-40. [PMID: 25717051 PMCID: PMC4625702 DOI: 10.5009/gnl14155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability.
Collapse
Affiliation(s)
- Bosi Yuan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuping Zhou
- Department of Gastroenterology and Hepatology, The First People's Hospital of Huainan, Huainan, China
| | - Youke Lu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jiong Liu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinxin Jin
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Haijun Wan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
42
|
Chiodini RJ, Dowd SE, Galandiuk S, Davis B, Glassing A. The predominant site of bacterial translocation across the intestinal mucosal barrier occurs at the advancing disease margin in Crohn's disease. MICROBIOLOGY-SGM 2016; 162:1608-1619. [PMID: 27418066 DOI: 10.1099/mic.0.000336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crohn's disease is characterized by increased permeability of the intestinal mucosal barriers and an abnormal or dysregulated immune response to specific and/or commensal bacteria arising from the intestinal lumen. To determine the types of bacteria that are transgressing the mucosal barrier and colonizing the intestinal submucosal tissues, we performed 16S rRNA gene microbiota sequencing of the submucosal and mucosal tissues at the advancing disease margin in ileal Crohn's disease. Microbial populations were compared between mucosa and submucosa and non-inflammatory bowel disease (non-IBD) controls, as well as to microbial populations previously found at the centre of the disease lesion. There was no significant increase in bacteria within the submucosa of non-IBD controls at any taxonomic level when compared to the corresponding superjacent mucosa, indicating an effective mucosal barrier within the non-IBD population. In contrast, there was a statistically significant increase in 13 bacterial families and 16 bacterial genera within the submucosa at the advancing disease margin in Crohn's disease when compared to the superjacent mucosa. Major increases within the submucosa included bacteria of the Families Sphingomonadaceae, Alicyclobacillaceae, Methylobacteriaceae, Pseudomonadaceae and Prevotellaceae. Data suggest that the primary site of bacterial translocation across the mucosal barrier occurs at the margin between diseased and normal tissue, the advancing disease margin. The heterogeneity of the bacterial populations penetrating the mucosal barrier and colonizing the submucosal intestinal tissues and, therefore, contributing to the inflammatory processes, suggests that bacterial translocation is secondary to a primary event leading to a breakdown of the mucosal barrier.
Collapse
Affiliation(s)
- Rodrick J Chiodini
- St Vincent Healthcare, Sisters of Charity of Leavenworth Health System, Billings, MT, USA.,Department of Biological and Physical Sciences, Montana State University-Billings, Billings, MT, USA
| | - Scot E Dowd
- Molecular Research (Mr. DNA), Shallowater, TX, USA
| | - Susan Galandiuk
- Hiram C. Polk, Jr. MD, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Brian Davis
- Department of Surgery, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Angela Glassing
- Department of Biological and Physical Sciences, Montana State University-Billings, Billings, MT, USA
| |
Collapse
|
43
|
Mahendran V, Liu F, Riordan SM, Grimm MC, Tanaka MM, Zhang L. Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathog 2016; 8:18. [PMID: 27195022 PMCID: PMC4870807 DOI: 10.1186/s13099-016-0101-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/20/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Campylobacter concisus is a Gram-negative bacterium that is associated with inflammatory bowel disease (IBD). Some C. concisus strains carry zonula occludens toxin (zot) gene which has polymorphisms. This study investigated the effects of C. concisus Zot on intestinal epithelial cells and macrophages using cell line models. METHODS Campylobacter concisus zot (808T) gene, a polymorphism that is associated with active IBD, was cloned and expressed in Escherichia coli. The effects of C. concisus Zot on intestinal epithelial barrier were examined using Caco-2 cell model. Apoptosis induced by C. concisus Zot in Caco-2 cells was assessed by measuring the levels of caspase 3/7. The production of pro-inflammatory cytokines induced by C. concisus Zot in HT-29 cells and in THP-1 macrophage-like cells was measured using ELISA kits. Whether exposure to C. concisus Zot can affect the responses of macrophages to E. coli K12 was also investigated. RESULTS Campylobacter concisus Zot caused prolonged intestinal epithelial barrier damage, induced intestinal epithelial cell apoptosis, induced epithelial production of TNF-α and IL-8 and upregulated TNF-α in THP-1 macrophage-like cells. Pre-exposure to C. concisus Zot significantly enhanced the production of TNF-α and IL-8 as well as phagocytosis by THP-1 macrophage-like cells in response to E. coli K12. CONCLUSION This study suggests that C. concisus Zot may have enteric pathogenic potential by damaging intestinal epithelial barrier, inducing intestinal epithelial and macrophage production of proinflammatory cytokines in particular TNF-α and enhancing the responses of macrophages to other enteric bacterial species.
Collapse
Affiliation(s)
- Vikneswari Mahendran
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Fang Liu
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Stephen M. Riordan
- />Gastrointestinal and Liver Unit, The Prince of Wales Hospital, Sydney, Australia
- />Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052 Australia
| | - Michael C. Grimm
- />St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052 Australia
| | - Mark M. Tanaka
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Li Zhang
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| |
Collapse
|
44
|
Karadas G, Bücker R, Sharbati S, Schulzke JD, Alter T, Gölz G. Arcobacter butzleri
isolates exhibit pathogenic potential in intestinal epithelial cell models. J Appl Microbiol 2015; 120:218-25. [DOI: 10.1111/jam.12979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- G. Karadas
- Institute of Food Hygiene; Freie Universität Berlin; Berlin Germany
| | - R. Bücker
- Institute of Clinical Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - S. Sharbati
- Institute of Veterinary Biochemistry; Freie Universität Berlin; Berlin Germany
| | - J.-D. Schulzke
- Institute of Clinical Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - T. Alter
- Institute of Food Hygiene; Freie Universität Berlin; Berlin Germany
| | - G. Gölz
- Institute of Food Hygiene; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
45
|
Nielsen HL, Kaakoush NO, Mitchell HM, Nielsen H. Immunoglobulin G response in patients with Campylobacter concisus diarrhea. Diagn Microbiol Infect Dis 2015; 84:151-4. [PMID: 26643061 DOI: 10.1016/j.diagmicrobio.2015.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/23/2015] [Accepted: 10/31/2015] [Indexed: 11/25/2022]
Abstract
Limited information is available on the systemic immunoglobulin response in patients infected with the emerging pathogen Campylobacter concisus. The aim of the present study was to detect anti-C. concisus antibodies in serum of 88 patients with C. concisus gastroenteritis. Specific IgG antibodies to C. concisus were measured in serum using an in-house enzyme-linked immunosorbent assay, and pooled donor serum was used as a control. The mean optical density was 0.135 (SEM: 0.020) for the 88 adult patients and 0.100 (SEM: 0.011) in controls. When using an optical density value equal to the mean +3 SEM for the control serum, 22 (25%) C. concisus-positive patients had increased IgG antibodies. Patients with high IgG levels more often reported headache, and they had a trend toward more mucus in stools, whereas IgG levels were unrelated to age, duration of diarrhea, number of stools per day, and weight loss.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark.
| | - Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
46
|
Mahendran V, Octavia S, Demirbas OF, Sabrina S, Ma R, Lan R, Riordan SM, Grimm MC, Zhang L. Delineation of genetic relatedness and population structure of oral and enteric Campylobacter concisus strains by analysis of housekeeping genes. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1600-1612. [PMID: 26002953 DOI: 10.1099/mic.0.000112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Campylobacter concisus is an oral bacterium that has been shown to be associated with inflammatory bowel disease (IBD). In this study we examined clusters of oral C. concisus strains isolated from patients with IBD and healthy controls by analysing six housekeeping genes. In addition, we investigated the population structure of C. concisus strains. Whether oral and enteric strains form distinct clusters based on the sequences of these housekeeping genes was also investigated. The oral C. concisus strains were found to contain two genomospecies, which belong to the two genomospecies previously found in enteric C. concisus strains. C. concisus clusters formed based on the sequences of a single aspA gene were the same as that formed by using previously reported MLST schemes. The analysis of combined oral and enteric C. concisus strains found that enteric C. concisus strains did not form distinct clusters. Genetic structure analysis identified five subpopulations of C. concisus and showed that genetic recombination between C. concisus strains was common. However, genetic recombination was significantly less in oral strains isolated from patients with IBD than from healthy individuals. Previously reported oral and enteric intestinal epithelial invasive C. concisus strains were in cluster II and subpopulation III. Furthermore, this study shows that there are no distinct enteric C. concisus strain clusters or subpopulations.
Collapse
Affiliation(s)
- Vikneswari Mahendran
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Omer Faruk Demirbas
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sheryl Sabrina
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, Sydney, Australia
| | - Michael C Grimm
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
47
|
Claudin-related intestinal diseases. Semin Cell Dev Biol 2015; 42:30-8. [PMID: 25999319 DOI: 10.1016/j.semcdb.2015.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
With up to 200 m(2) the human intestine is the organ with the largest absorptive surface of the body. It is lined by a single layer of epithelial cells that separates the host from the environment. The intestinal epithelium provides both, selective absorption of nutrients, ions, and water but also a highly effective barrier function which includes the first line of defense against environmental antigens. The paracellular part of this barrier function is provided by tight junction (TJ) proteins, especially the large family of claudins. Changes in abundance or molecular structure of claudins can generally result in three typical effects, (i) decreased absorptive passage, (ii) increased secretory passage of small solutes and water causing leak flux diarrhea and (iii) increased absorptive passage of macromolecules which may induce inflammatory processes. Several intestinal diseases are associated with such changes that can result in intestinal inflammation and symptoms like weight loss, abdominal pain or diarrhea. This review summarizes our current knowledge on barrier dysfunction and claudin dysregulation in several intestinal diseases gastroenterologists are often faced with, like inflammatory bowel disease, microscopic colitis, celiac disease, irritable bowel syndrome, gallstones and infectious diseases like HIV enteropathy, Campylobacter jejuni and Clostridium perfringens infection.
Collapse
|
48
|
Kaakoush NO, Castaño-Rodríguez N, Day AS, Lemberg DA, Leach ST, Mitchell HM. Faecal levels of zonula occludens toxin in paediatric patients with Crohn's disease and their association with the intestinal microbiota. J Med Microbiol 2015; 64:303-306. [PMID: 25587080 DOI: 10.1099/jmm.0.000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew S Day
- School of Women's and Children's Health, The University of New South Wales, Sydney, Australia
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
- Department of Gastroenterology, Sydney Children's Hospital, Sydney, Australia
| | - Daniel A Lemberg
- Department of Gastroenterology, Sydney Children's Hospital, Sydney, Australia
| | - Steven T Leach
- School of Women's and Children's Health, The University of New South Wales, Sydney, Australia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
Kirk KF, Nielsen HL, Nielsen H. The susceptibility of Campylobacter concisus to the bactericidal effects of normal human serum. APMIS 2015; 123:269-74. [PMID: 25627875 DOI: 10.1111/apm.12346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
Abstract
Campylobacter concisus is an emerging pathogen of the gastrointestinal tract that has been associated with Barrett's oesophagus, enteritis and inflammatory bowel disease. Despite having invasive potential in intestinal epithelial cells in-vitro, bacteraemic cases with C. concisus are extremely scarce, having only been reported once. Therefore, we conducted a serum resistance assay to investigate the bactericidal effects of human complement on C. concisus in comparison to some other Campylobacter species. In total, 22 Campylobacter strains were tested by incubation with normal human serum and subsequent cultivation in microaerobic conditions for 48 hours. Killing time was evaluated by decrease in total CFU over time for incubation with different serum concentrations. Faecal isolates of C. concisus showed inoculum reduction to less than 50% after 30 min. Campylobacter jejuni was sensitive to serum, but killing was delayed and a bacteraemic Campylobacter fetus subsp. fetus isolate was completely serum resistant. Interestingly, sensitivity of enteric C. concisus to human serum was not associated to different faecal-calprotectin levels. We find that faecal isolates of C. concisus are sensitive to the bactericidal effects of serum, which may explain why C. concisus is not associated to bacteraemia.
Collapse
Affiliation(s)
- Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | | | | |
Collapse
|
50
|
Abstract
The gut microbiota is a central player in the etiology of inflammatory bowel diseases. As such, there is intense scientific interest in elucidating the specific group/s of bacteria responsible for driving barrier damage and perpetuating the chronic inflammation that results in disease. Because of their ability to colonize close to the surface of the host intestinal epithelium, mucosa-associated bacteria are considered key players in the initiation and development of both Crohn's disease and ulcerative colitis. The leading bacterial candidates include adherent and invasive Escherichia coli, Helicobacter, Fusobacteria, Mycobacteria, and Campylobacter species. Of these, a member of the Campylobacter genus, Campylobacter concisus, has recently emerged as a putative player in the pathogenesis of inflammatory bowel diseases. Current research indicates that this bacterium possesses extraordinarily diverse pathogenic capacities as well as unique genetic and functional signatures that are defined by their ability to adhere to and invade host cells, secrete toxins, and the presence of a virulence-associated restriction-modification system. These characteristics enable the potential classification of C. concisus into distinct pathotypes, which we have named adherent and invasive C. concisus and adherent and toxinogenic C. concisus. In this review, we evaluate evidence for the role of emerging Campylobacter species in the pathogenesis of inflammatory bowel diseases.
Collapse
|