1
|
Li S, Wang Y, Yang Y, Yu X, Liu J, Jiang M, Zhang J, Yun G, Han Y, Wang H, Xie Q, Chen G. Impact of Human Body Temperature on Stress Tolerance and Transcriptome of Cronobacter sakazakii. Pathogens 2025; 14:281. [PMID: 40137766 PMCID: PMC11946066 DOI: 10.3390/pathogens14030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Cronobacter sakazakii is a food-borne pathogen that can thrive in various environments, including the human body. The human body's physiological temperature exceeds that of the environment (22-30 °C), necessitating adaptations to heat stress during this transition. Managing heat stress is crucial when transitioning from the environment to the human body. In this study, we explored the effect of human body temperature on the growth of planktonic C. sakazakii, as well as its acid resistance, osmotic stress resistance, autoaggregation, and cell surface hydrophobicity. Our study demonstrated that human body temperature facilitated the growth, acid resistance, and osmotic resistance of C. sakazakii, compared to 28 °C. The relationship between human body temperature and phenotypes was studied by comparing gene expression at human and environmental temperatures (37 to 28 °C) using high-throughput sequencing. The results revealed up-regulation in the expression of 626 genes, including genes involved in arginine and proline metabolism, carbon fixation pathways, and nitrogen metabolism. Further analysis showed that human body temperature is essential for the environmental stress resistance of C. sakazakii. It boosts denitrification, betaine transport, and universal stress proteins, supporting membrane integrity and osmoprotectant transport. This study enhances our understanding of the strategies employed by C. sakazakii during its adaptation to the human body.
Collapse
Affiliation(s)
- Siqi Li
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Yuanyuan Wang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Yahao Yang
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Xinlu Yu
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Jiajia Liu
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Meiling Jiang
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Jing Zhang
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Ge Yun
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Yufei Han
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Heng Wang
- China Astronaut Research and Training Center, Beijing 100086, China;
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing 100086, China;
| | - Gukui Chen
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
- ShaanXi Provincial Key Laboratory of Biotechnology, Xi’an 710069, China
| |
Collapse
|
2
|
Isokpehi RD, Simmons SS, Makolo AU, Hollman AL, Adesida SA, Ojo OO, Abioye AO. Insights into Functions of Universal Stress Proteins Encoded by Genomes of Gastric Cancer Pathogen Helicobacter pylori and Related Bacteria. Pathogens 2025; 14:275. [PMID: 40137760 PMCID: PMC11944479 DOI: 10.3390/pathogens14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
The genes that encode the universal stress protein (USP) family domain (pfam00582) aid the survival of bacteria in specific host or habitat-induced stress conditions. Genome sequencing revealed that the genome of Helicobacter pylori, a gastric cancer pathogen, typically contains one USP gene, while related helicobacters have one or two distinct USP genes. However, insights into the functions of Helicobacteraceae (Helicobacter and Wolinella) USP genes are still limited to inferences from large-scale genome sequencing. Thus, we have combined bioinformatics and visual analytics approaches to conduct a more comprehensive data investigation of a set of 1045 universal stress protein sequences encoded in 1014 genomes including 785 Helicobacter pylori genomes. The study generated a representative set of 183 USP sequences consisting of 180 Helicobacter sequences, two Wolinella succinogenes sequences, and a sequence from a related campylobacteria. We used the amino acid residues and positions of the 12 possible functional sites in 1030 sequences to identify 25 functional sites patterns for guiding studies on functional interactions of Helicobacteraceae USPs with ATP and other molecules. Genomic context searches and analysis identified USP genes of gastric and enterohepatic helicobacters that are adjacent or in operons with genes for proteins responsive to DNA-damaging oxidative stress (ATP-dependent proteases: ClpS and ClpA); and DNA uptake proteins (natural competence for transformation proteins: ComB6, ComB7, ComB8, ComB9, ComB10, ComBE, and conjugative transfer signal peptidase TraF). Since transcriptomic evidence indicates that oxidative stress and the presence of virulence-associated genes regulate the transcription of H. pylori USP gene, we recommend further research on Helicobacter USP genes and their neighboring genes in oxidative stress response and virulence of helicobacters. To facilitate the reuse of data and research, we produced interactive analytics resources of a dataset composed of values for variables including phylogeography of H. pylori strains, protein sequence features, and gene neighborhood.
Collapse
Affiliation(s)
- Raphael D. Isokpehi
- Transdisciplinary Data Scholars Development Program, Bethune-Cookman University, Daytona Beach, FL 32114, USA
| | - Shaneka S. Simmons
- Division of Arts and Sciences, Jarvis Christian University, Hawkins, TX 75765, USA
| | - Angela U. Makolo
- University of Ibadan Bioinformatics Group, Department of Computer Science, University of Ibadan, Ibadan 200005, Oyo State, Nigeria
| | | | - Solayide A. Adesida
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka 101017, Lagos State, Nigeria
| | - Olabisi O. Ojo
- Department of Natural Sciences, Albany State University, Albany, GA 31721, USA
| | - Amos O. Abioye
- College of Pharmacy & Health Sciences, Belmont University, Nashville, TN 37212, USA;
| |
Collapse
|
3
|
Domingo-Serrano L, Sanchis-López C, Alejandre C, Soldek J, Palacios JM, Albareda M. A microaerobically induced small heat shock protein contributes to Rhizobium leguminosarum/ Pisum sativum symbiosis and interacts with a wide range of bacteroid proteins. Appl Environ Microbiol 2025; 91:e0138524. [PMID: 39714151 PMCID: PMC11784457 DOI: 10.1128/aem.01385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by Rhizobium leguminosarum bv. viciae UPM791 in different hosts. In this work, we undertook a functional analysis of the host-dependent sHSP RLV_1399. A rlv_1399-deleted mutant strain was impaired in the symbiotic performance with peas but not with lentil plants. Expression of rlv_1399 gene was induced under microaerobic conditions in a FnrN-dependent manner consistent with the presence of an anaerobox in its regulatory region. Overexpression of this sHSP improves the viability of bacterial cultures following exposure to hydrogen peroxide and to cationic nodule-specific cysteine-rich (NCR) antimicrobial peptides. Co-purification experiments have identified proteins related to nitrogenase synthesis, stress response, carbon and nitrogen metabolism, and to other relevant cellular functions as potential substrates for RLV_1399 in pea bacteroids. These results, along with the presence of unusually high number of copies of shsp genes in rhizobial genomes, indicate that sHSPs might play a relevant role in the adaptation of the bacteria against stress conditions inside their host.IMPORTANCEThe identification and analysis of the mechanisms involved in host-dependent bacterial stress response is important to develop optimal Rhizobium/legume combinations to maximize nitrogen fixation for inoculant development and might have also applications to extend nitrogen fixation to other crops. The data presented in this work indicate that sHSP RLV_1399 is part of the bacterial stress response to face specific stress conditions offered by each legume host. The identification of a wide diversity of sHSP potential targets reveals the potential of this protein to protect essential bacteroid functions. The finding that nitrogenase is the most abundant RLV_1399 substrate suggests that this protein is required to obtain an optimal nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Lucía Domingo-Serrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Claudia Sanchis-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Carla Alejandre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Joanna Soldek
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Arvaniti M, Gaballa A, Orsi RH, Skandamis P, Wiedmann M. Deciphering the Molecular Mechanism of Peracetic Acid Response in Listeria monocytogenes. J Food Prot 2025; 88:100401. [PMID: 39515609 DOI: 10.1016/j.jfp.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to a sub-lethal concentration of PAA (2.5 ppm) was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed protein-coding genes, of which nine were upregulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and three were down-regulated (argG, lmo0604 and lmo2156) in PAA-treated samples compared to the control samples. A non-coding small RNA gene (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA, including the expression of the peroxide detoxification system and fine-tuning the levels of redox-active metals in the cell. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as residual PAA can lead to stress tolerance in pathogens.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Ahmed Gaballa
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Nabi B, Kumawat M, Ahlawat N, Ahlawat S. Molecular, Structural, and Functional Diversity of Universal Stress Proteins (USPs) in Bacteria, Plants, and Their Biotechnological Applications. Protein J 2024; 43:437-446. [PMID: 38492187 DOI: 10.1007/s10930-024-10192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Universal stress proteins (USPs) are widely distributed and play crucial roles in cellular responses to biotic and abiotic stresses. These roles include regulating cell growth and development, cell motility, hypoxia responses, and ion sequestration. With the increasing frequency and intensity of extreme weather events due to climate change, pathogens have developed different strategies to withstand environmental stresses, in which USPs play a significant role in their survival and virulence. In this study, we analyzed the importance of USPs in various organisms, such as archaea, plants, and fungi, as a parameter that influences their survival. We discussed the different types Of USPs and their role, aiming to carry out fundamental research in this field to identify significant constraints for better understanding of USP functions at molecular level. Additionally, we discussed concepts and research techniques that could help overcome these hurdles and facilitate new molecular approaches to better understand and target USPs as important stress adaptation and survival regulators. Although the precise characteristics of USPs are still unclear, numerous innovative uses have already been developed, tested, and implemented. Complementary approaches to basic research and applications, as well as new technology and analytical techniques, may offer insights into the cryptic but crucial activities of USPs in various living systems.
Collapse
Affiliation(s)
- Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, Madhya Pradesh, India.
| | - Neeraj Ahlawat
- Department of Animal Husbandry and Dairying, SHUATS, Allahabad, 211007, India
| | - Sushma Ahlawat
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India.
| |
Collapse
|
6
|
Fan M, Gao S, Yang Y, Yang S, Wang H, Shi L. Genome-wide identification and expression analysis of the universal stress protein (USP) gene family in Arabidopsis thaliana, Zea mays, and Oryza sativa. Genetica 2024; 152:119-132. [PMID: 38789817 DOI: 10.1007/s10709-024-00209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
The Universal Stress Protein (USP) primarily participates in cellular responses to biotic and abiotic stressors, playing a pivotal role in plant growth, development, and Stress responses to adverse environmental conditions. Totals of 23, 26 and 26 USP genes were recognized in Arabidopsis thaliana, Zea mays, and Oryza sativa, respectively. According to USP genes physicochemical properties, proteins from USP I class were identified as hydrophilic proteins with high stability. Based on phylogenetic analysis, USP genes family were classified into nine groups, USP II were rich in motifs. Additionally, members of the same subgroup exhibited similar numbers of introns/exons, and shared conserved domains, indicating close evolutionary relationships. Motif analysis results demonstrated a high degree of conservation among USP genes. Chromosomal distribution suggested that USP genes might have undergone gene expansion through segmental duplication in Arabidopsis thaliana, Zea mays, and Oryza sativa. Most Ka/Ks ratios were found to be less than 1, suggesting that USP genes in Arabidopsis thaliana, Zea mays, and Oryza sativa have experienced purifying selection. Expression profile analysis revealed that USP genes primarily respond to drought stress in Oryza sativa, temperature, and drought stress in Zea mays, and cold stress in Arabidopsis thaliana. Gene collinearity analysis can reveal correlations between genes, aiding subsequent in-depth investigations. This study sheds new light on the evolution of USP genes in monocots and dicots and lays the foundation for a better understanding of the biological functions of the USP genes family.
Collapse
Affiliation(s)
- Mingxia Fan
- College of Life Sciences and Engineering, Shenyang University, Shenyang, 110000, China.
| | - Song Gao
- College of Life Sciences and Engineering, Shenyang University, Shenyang, 110000, China
| | - Yating Yang
- College of Life Sciences and Engineering, Shenyang University, Shenyang, 110000, China
| | - Shuang Yang
- Shenyang Institute of Agricultural Science and Technology, Shenyang, 110161, China
| | - He Wang
- Shenyang Rural Revitalization and Development Center, Shenyang, 110121, China
| | - Lei Shi
- Zea Mays Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| |
Collapse
|
7
|
Yan T, Li M, Wang Q, Wang M, Liu L, Ma C, Xiang X, Zhou Q, Liu Z, Gong Z. Structures, functions, and regulatory networks of universal stress proteins in clinically relevant pathogenic Bacteria. Cell Signal 2024; 116:111032. [PMID: 38185228 DOI: 10.1016/j.cellsig.2023.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Universal stress proteins are a class of proteins widely present in bacteria, archaea, plants, and invertebrates, playing essential roles in bacterial adaptation to various environmental stresses. The functions of bacterial universal stress proteins are versatile, including resistance to oxidative stress, maintenance of cell wall integrity, DNA damage repair, regulation of cell division and growth, among others. When facing stresses such as temperature changes, pH shifts, fluctuations in oxygen concentration, and exposure to toxins, these proteins can bind to specific DNA sequences and rapidly adjust bacterial metabolic pathways and gene expression patterns to adapt to the new environment. In summary, bacterial universal stress proteins play a crucial role in bacterial adaptability and survival. A comprehensive understanding of bacterial stress response mechanisms and the development of new antibacterial strategies are of great significance. This review summarizes the research progress on the structure, function, and regulatory factors of universal stress proteins in clinically relevant bacteria, aiming to facilitate deeper investigations by clinicians and researchers into universal stress proteins.
Collapse
Affiliation(s)
- Tao Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiuyan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengcheng Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Pracser N, Zaiser A, Ying HMK, Pietzka A, Wagner M, Rychli K. Diverse Listeria monocytogenes in-house clones are present in a dynamic frozen vegetable processing environment. Int J Food Microbiol 2024; 410:110479. [PMID: 37977080 DOI: 10.1016/j.ijfoodmicro.2023.110479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria.
| | - Andreas Zaiser
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Hui Min Katharina Ying
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Beethovenstrasse 6, 8010 Graz, Austria.
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Kathrin Rychli
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
9
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
10
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
11
|
O'Connor A, Jurado‐Martín I, Mysior MM, Manzira AL, Drabinska J, Simpson JC, Lucey M, Schaffer K, Berisio R, McClean S. A universal stress protein upregulated by hypoxia has a role in Burkholderia cenocepacia intramacrophage survival: Implications for chronic infection in cystic fibrosis. Microbiologyopen 2023; 12:e1311. [PMID: 36825886 PMCID: PMC9733578 DOI: 10.1002/mbo3.1311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Universal stress proteins (USPs) are ubiquitously expressed in bacteria, archaea, and eukaryotes and play a lead role in adaptation to environmental conditions. They enable adaptation of bacterial pathogens to the conditions encountered in the human niche, including hypoxia, oxidative stress, osmotic stress, nutrient deficiency, or acid stress, thereby facilitating colonization. We previously reported that all six USP proteins encoded within a low-oxygen activated (lxa) locus in Burkholderia cenocepacia showed increased abundance during chronic colonization of the cystic fibrosis (CF) lung. However, the role of USPs in chronic cystic fibrosis infection is not well understood. Structural modeling identified surface arginines on one lxa-encoded USP, USP76, which suggested it mediated interactions with heparan sulfate. Using mutants derived from the B. cenocepacia strain, K56-2, we show that USP76 is involved in host cell attachment. Pretreatment of lung epithelial cells with heparanase reduced the binding of the wild-type and complement strains but not the Δusp76 mutant strain, indicating that USP76 is directly or indirectly involved in receptor recognition on the surface of epithelial cells. We also show that USP76 is required for growth and survival in many conditions associated with the CF lung, including acidic conditions and oxidative stress. Moreover, USP76 also has a role in survival in macrophages isolated from people with CF. Overall, while further elucidation of the exact mechanism(s) is required, we can conclude that USP76, which is upregulated during chronic infection, is involved in bacterial survival within CF macrophages, a hallmark of Burkholderia infection.
Collapse
Affiliation(s)
- Andrew O'Connor
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
| | - Irene Jurado‐Martín
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| | - Margaritha M. Mysior
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
- Cell Screening Laboratory, School of Biology and Environmental ScienceUniversity College DublinBelfieldDublinIreland
| | - Anotidaishe L. Manzira
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| | - Jeremy C. Simpson
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
- Cell Screening Laboratory, School of Biology and Environmental ScienceUniversity College DublinBelfieldDublinIreland
| | - Mary Lucey
- Department of MicrobiologySt. Vincent's University HospitalElm ParkDublinIreland
| | - Kirsten Schaffer
- Department of MicrobiologySt. Vincent's University HospitalElm ParkDublinIreland
| | - Rita Berisio
- Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly
| | - Siobhán McClean
- School of Biomolecular and Biomedical SciencesUniversity College DublinBelfieldDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ScienceBefieldDublinIreland
| |
Collapse
|
12
|
Mazhar S, Khokhlova E, Colom J, Simon A, Deaton J, Rea K. In vitro and in silico assessment of probiotic and functional properties of Bacillus subtilis DE111 ®. Front Microbiol 2023; 13:1101144. [PMID: 36713219 PMCID: PMC9880548 DOI: 10.3389/fmicb.2022.1101144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Bacillus subtilis DE111® is a safe, well-tolerated commercially available spore-forming probiotic that has been clinically shown to support a healthy gut microbiome, and to promote digestive and immune health in both adults and children. Recently it was shown that this spore-forming probiotic was capable of germinating in the gastrointestinal tract as early as 3 h after ingestion. However, a better understanding of the mechanisms involved in the efficacy of DE111® is required. Therefore, the present investigation was undertaken to elucidate the functional properties of DE111® through employing a combination of in vitro functional assays and genome analysis. DE111® genome mining revealed the presence of several genes encoding acid and stress tolerance mechanisms in addition to adhesion proteins required to survive and colonize harsh gastrointestinal environment including multi subunit ATPases, arginine deiminase (ADI) pathway genes (argBDR), stress (GroES/GroEL and DnaK/DnaJ) and extracellular polymeric substances (EPS) biosynthesis genes (pgsBCA). DE111® harbors several genes encoding enzymes involved in the metabolism of dietary molecules (protease, lipases, and carbohyrolases), antioxidant activity and genes associated with the synthesis of several B-vitamins (thiamine, riboflavin, pyridoxin, biotin, and folate), vitamin K2 (menaquinone) and seven amino acids including five essential amino acids (threonine, tryptophan, methionine, leucine, and lysine). Furthermore, a combined in silico analysis of bacteriocin producing genes with in vitro analysis highlighted a broad antagonistic activity of DE111® toward numerous urinary tract, intestinal, and skin pathogens. Enzymatic activities included proteases, peptidases, esterase's, and carbohydrate metabolism coupled with metabolomic analysis of DE111® fermented ultra-high temperature milk, revealed a high release of amino acids and beneficial short chain fatty acids (SCFAs). Together, this study demonstrates the genetic and phenotypic ability of DE111® for surviving harsh gastric transit and conferring health benefits to the host, in particular its efficacy in the metabolism of dietary molecules, and its potential to generate beneficial SCFAs, casein-derived bioactive peptides, as well as its high antioxidant and antimicrobial potential. Thus, supporting the use of DE111® as a nutrient supplement and its pottential use in the preparation of functional foods.
Collapse
Affiliation(s)
- Shahneela Mazhar
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Ekaterina Khokhlova
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Joan Colom
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Annie Simon
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - John Deaton
- Deerland Probiotics and Enzymes, ADM, Kennesaw, GA, United States
| | - Kieran Rea
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Roux AE, Robert S, Bastat M, Rosinski-Chupin I, Rong V, Holbert S, Mereghetti L, Camiade E. The Role of Regulator Catabolite Control Protein A (CcpA) in Streptococcus agalactiae Physiology and Stress Response. Microbiol Spectr 2022; 10:e0208022. [PMID: 36264242 PMCID: PMC9784791 DOI: 10.1128/spectrum.02080-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus agalactiae is a leading cause of infections in neonates. This opportunistic pathogen colonizes the vagina, where it has to cope with acidic pH and hydrogen peroxide produced by lactobacilli. Thus, in the host, this bacterium possesses numerous adaptation mechanisms in which the pleiotropic regulators play a major role. The transcriptional regulator CcpA (catabolite control protein A) has previously been shown to be the major regulator involved in carbon catabolite repression in Gram-positive bacteria but is also involved in other functions. By transcriptomic analysis, we characterized the CcpA-dependent gene regulation in S. agalactiae. Approximately 13.5% of the genome of S. agalactiae depends on CcpA for regulation and comprises genes involved in sugar uptake and fermentation, confirming the role of CcpA in carbon metabolism. We confirmed by electrophoretic mobility shift assays (EMSAs) that the DNA binding site called cis-acting catabolite responsive element (cre) determined for other streptococci was effective in S. agalactiae. We also showed that CcpA is of capital importance for survival under acidic and oxidative stresses and is implicated in macrophage survival by regulating several genes putatively or already described as involved in stress response. Among them, we focused our study on SAK_1689, which codes a putative UspA protein. We demonstrated that SAK_1689, highly downregulated by CcpA, is overexpressed under oxidative stress conditions, this overexpression being harmful for the bacterium in a ΔccpA mutant. IMPORTANCE Streptococcus agalactiae is a major cause of disease burden leading to morbidity and mortality in neonates worldwide. Deciphering its adaptation mechanisms is essential to understand how this bacterium manages to colonize its host. Here, we determined the regulon of the pleiotropic regulator CcpA in S. agalactiae. Our findings reveal that CcpA is not only involved in carbon catabolite repression, but is also important for acidic and oxidative stress resistance and survival in macrophages.
Collapse
Affiliation(s)
| | | | | | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | | | | | - Laurent Mereghetti
- ISP, Université de Tours, INRAE, Tours, France
- CHRU Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | | |
Collapse
|
14
|
Sayed M, Griffin M, Ware C, Ozdemir O, Tekedar HC, Essa M, Karsi A, Lawrence ML, Abdelhamed H. Evaluation of Edwardsiella piscicida basS and basR mutants as vaccine candidates in catfish against edwardsiellosis. JOURNAL OF FISH DISEASES 2022; 45:1817-1829. [PMID: 36053889 DOI: 10.1111/jfd.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Catfish farming is the largest aquaculture industry in the United States and an important economic driver in several southeastern states. Edwardsiella piscicida is a Gram-negative pathogen associated with significant losses in catfish aquaculture. Several Gram-negative bacteria use the BasS/BasR two-component system (TCS) to adapt to environmental changes and the host immune system. Currently, the role of BasS/BasR system in E. piscicida virulence has not been characterized. In the present study, two mutants were constructed by deleting the basS and basR genes in E. piscicida strain C07-087. Both mutant strains were characterized for virulence and immune protection in catfish hosts. The EpΔbasS and EpΔbasR mutants were more sensitive to acidic environments and produced significantly less biofilm than the wild-type. In vivo studies in channel catfish (Ictalurus punctatus) revealed that both EpΔbasS and EpΔbasR were significantly attenuated compared with the parental wild-type (3.57% and 4.17% vs. 49.16% mortalities). Moreover, there was significant protection, 95.2% and 92.3% relative percent survival (RPS), in channel catfish vaccinated with EpΔbasS and EpΔbasR against E. piscicida infection. Protection in channel catfish was associated with a significantly higher level of antibodies and upregulation of immune-related genes (IgM, IL-8 and CD8-α) in channel catfish vaccinated with EpΔbasS and EpΔbasR strains compared with non-vaccinated fish. Hybrid catfish (channel catfish ♀ × blue catfish ♂) challenges demonstrated long-term protection against subsequent challenges with E. piscicida and E. ictaluri. Our findings demonstrate BasS and BasR contribute to acid tolerance and biofilm formation, which may facilitate E. piscicida survival in harsh environments. Further, our results show that EpΔbasS and EpΔbasR mutants were safe and protective in channel catfish fingerlings, although their virulence and efficacy in hybrid catfish warrant further investigation. These data provide information regarding an important mechanism of E. piscicida virulence, and it suggests EpΔbasS and EpΔbasR strains have potential as vaccines against this emergent catfish pathogen.
Collapse
Affiliation(s)
- Mohamed Sayed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Matt Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Cynthia Ware
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Ozan Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Hasan C Tekedar
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Manal Essa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| |
Collapse
|
15
|
Zhang M, Wu N, Fan Y, Xu C, Luo J, Wang Y, Yu K, Wang M. Proteomic Profiling and Stress Response in Pediococcus acidilactici under Acetic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12708-12721. [PMID: 36125361 DOI: 10.1021/acs.jafc.2c04160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactic acid bacteria are indispensable functional microorganisms for cereal vinegar brewing, but cell activities are inhibited by the dominant acetic acid stress. Herein, an acetic-acid-tolerant strain isolated previously was identified as Pediococcus acidilactici, which also exhibited good resistance to other stresses during vinegar brewing. Proteomics analysis evidenced that differentially expressed proteins involved in the glycolysis and gluconeogenesis pathway, pyruvate metabolism, and sugar phosphotransferase system were all downregulated. Meanwhile, saturation of fatty acids and antioxidant enzymes was strengthened. The effects of several proteins on the resistance of P. acidilactici and Lactobacillus lactis relied on the types of strain and stress. AccA and AcpP participating in fatty acid metabolism and biosynthesis and Mnc related to stress response were found to protect cells by modifying fatty acid compositions and reinforcing the antioxidant defense system. Our works deepen the mechanisms of P. acidilactici under acetic acid and offer targets for engineering cell tolerance.
Collapse
Affiliation(s)
- Menghan Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Nan Wu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yaqi Fan
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Chaoye Xu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - JianMei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yuxuan Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Kaihui Yu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
16
|
Cheng C, Liu F, Jin H, Xu X, Xu J, Deng S, Xia J, Han Y, Lei L, Zhang X, Song H. The DegU Orphan Response Regulator Contributes to Heat Stress Resistance in Listeria monocytogenes. Front Cell Infect Microbiol 2021; 11:761335. [PMID: 34966695 PMCID: PMC8711649 DOI: 10.3389/fcimb.2021.761335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is more heat-resistant than most other non-spore-forming foodborne pathogens, posing a severe threat to food safety and human health, particularly during chilled food processing. The DegU orphan response regulator is known to control heat resistance in L. monocytogenes; however, the underlying regulatory mechanism is poorly understood. Here, we show that DegU contributes to L. monocytogenes exponential growth under mild heat-shock stress. We further demonstrate that DegU directly senses heat stress through autoregulation and upregulates the hrcA-grpE-dnaK-dnaJ operon, leading to increased production of heat-shock proteins. We also show that DegU can directly regulate the expression of the hrcA-grpE-dnaK-dnaJ operon. In conclusion, our results shed light on the regulatory mechanisms underlying how DegU directly activates the hrcA-grpE-dnaK-dnaJ operon, thereby regulating heat resistance in L. monocytogenes.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Feng Liu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Haobo Jin
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiangfei Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jiali Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Simin Deng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jing Xia
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Yue Han
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Lei Lei
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xian Zhang
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
17
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
18
|
Sayed M, Ozdemir O, Essa M, Olivier A, Karsi A, Lawrence ML, Abdelhamed H. Virulence and live vaccine potential of Edwardsiella piscicida phoP and phoQ mutants in catfish against edwardsiellosis. JOURNAL OF FISH DISEASES 2021; 44:1463-1474. [PMID: 34037985 DOI: 10.1111/jfd.13453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Edwardsiella piscicida is a Gram-negative facultative intracellular bacterium causing edwardsiellosis in catfish, the largest aquaculture industry in the United States. A safe and effective vaccine is an urgent need to avoid economic losses associated with E. piscicida outbreaks. PhoP/PhoQ is a two-component signal transduction system (TCS) that plays an important role in bacterial pathogenesis through sense and response to environmental and host stress signals. This study aimed to explore the contribution of PhoQ/PhoP in E. piscicida virulence and develop live attenuated vaccines against E. piscicida infection in channel catfish (Ictalurus punctatus) and hybrid catfish (channel catfish ♀ × blue catfish (I. furcatus) ♂). In the current study, two in-frame deletion mutants were constructed by deleting phoP (ETAC_09785) and phoQ (ETAC_09790) genes in E. piscicida strain C07-087, and the virulence and protection efficacy of the constructed strains were evaluated in catfish following intraperitoneal injection. Both EpΔphoP and EpΔphoQ strains had a delayed adaptation to oxidative stress (0.2% H2 O2 ) compared to E. piscicida wild type. The EpΔphoP and EpΔphoQ mutants produced significantly less biofilm compared to wild-type E. piscicida. Notably, EpΔphoP and EpΔphoQ mutants were significantly attenuated in channel catfish compared with wild-type E. piscicida (6.63% and 4.17% versus 49.16% mortalities), and channel catfish vaccinated with EpΔphoP and EpΔphoQ were significantly protected (95.65% and 97.92% survival) against E. piscicida infection at 21 days post-vaccination. In hybrid catfish, EpΔphoP was significantly more attenuated than EpΔphoQ, but EpΔphoQ provided significantly better protection than EpΔphoP. EpΔphoP and EpΔphoQ strains both induced specific antibodies in channel catfish against E. piscicida at 14 and 21 days post-vaccination. This result indicated that EpΔphoP and EpΔphoQ mutants were safe and protective in channel catfish fingerlings, while EpΔphoP was safe in hybrid catfish. Our findings show that PhoP and PhoQ are required for adaptation to oxidative stress and biofilm formation and may help E. piscicida face tough environmental challenges; thus, functional PhoP and PhoQ are critical for a successful infection.
Collapse
Affiliation(s)
- Mohamed Sayed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ozan Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Manal Essa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
19
|
Alternative σ Factors Regulate Overlapping as Well as Distinct Stress Response and Metabolic Functions in Listeria monocytogenes under Stationary Phase Stress Condition. Pathogens 2021; 10:pathogens10040411. [PMID: 33915780 PMCID: PMC8066629 DOI: 10.3390/pathogens10040411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes can regulate and fine-tune gene expression, to adapt to diverse stress conditions encountered during foodborne transmission. To further understand the contributions of alternative sigma (σ) factors to the regulation of L. monocytogenes gene expression, RNA-Seq was performed on L. monocytogenes strain 10403S and five isogenic mutants (four strains bearing in-frame null mutations in three out of four alternative σ factor genes, ΔCHL, ΔBHL, ΔBCL, and ΔBCH, and one strain bearing null mutations in all four genes, ΔBCHL), grown to stationary phase. Our data showed that 184, 35, 34, and 20 genes were positively regulated by σB, σL, σH, and σC (posterior probability > 0.9 and Fold Change (FC) > 5.0), respectively. Moreover, σB-dependent genes showed the highest FC (based on comparisons between the ΔCHL and the ΔBCHL strain), with 44 genes showing an FC > 100; only four σL-dependent, and no σH- or σC-dependent genes showed FC >100. While σB-regulated genes identified in this study are involved in stress-associated functions and metabolic pathways, σL appears to largely regulate genes involved in a few specific metabolic pathways, including positive regulation of operons encoding phosphoenolpyruvate (PEP)-dependent phosphotransferase systems (PTSs). Overall, our data show that (i) σB and σL directly and indirectly regulate genes involved in several energy metabolism-related functions; (ii) alternative σ factors are involved in complex regulatory networks and appear to have epistatic effects in stationary phase cells; and (iii) σB regulates multiple stress response pathways, while σL and σH positively regulate a smaller number of specific pathways.
Collapse
|
20
|
de Maat V, Arredondo-Alonso S, Willems RJL, van Schaik W. Conditionally essential genes for survival during starvation in Enterococcus faecium E745. BMC Genomics 2020; 21:568. [PMID: 32811437 PMCID: PMC7437932 DOI: 10.1186/s12864-020-06984-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The nosocomial pathogen Enterococcus faecium can survive for prolonged periods of time on surfaces in the absence of nutrients. This trait is thought to contribute to the ability of E. faecium to spread among patients in hospitals. There is currently a lack of data on the mechanisms that are responsible for the ability of E. faecium to survive in the absence of nutrients. RESULTS We performed a high-throughput transposon mutant library screening (Tn-seq) to identify genes that have a role in long-term survival during incubation in phosphate-buffered saline (PBS) at 20 °C. A total of 24 genes were identified by Tn-seq to contribute to survival in PBS, with functions associated with the general stress response, DNA repair, metabolism, and membrane homeostasis. The gene which was quantitatively most important for survival in PBS was usp (locus tag: EfmE745_02439), which is predicted to encode a 17.4 kDa universal stress protein. After generating a targeted deletion mutant in usp, we were able to confirm that usp significantly contributes to survival in PBS and this defect was restored by in trans complementation. The usp gene is present in 99% of a set of 1644 E. faecium genomes that collectively span the diversity of the species. CONCLUSIONS We postulate that usp is a key determinant for the remarkable environmental robustness of E. faecium. Further mechanistic studies into usp and other genes identified in this study may shed further light on the mechanisms by which E. faecium can survive in the absence of nutrients for prolonged periods of time.
Collapse
Affiliation(s)
- Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands. .,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
21
|
Pombinho R, Vieira A, Camejo A, Archambaud C, Cossart P, Sousa S, Cabanes D. Virulence gene repression promotes Listeria monocytogenes systemic infection. Gut Microbes 2020; 11:868-881. [PMID: 31955655 PMCID: PMC7524345 DOI: 10.1080/19490976.2020.1712983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The capacity of bacterial pathogens to infect their hosts depends on the tight spatiotemporal regulation of virulence genes. The Listeria monocytogenes (Lm) metal efflux pump repressor CadC is highly expressed during late infection stages, modulating lipoprotein processing and host immune response. Here we investigate the potential of CadC as broad repressor of virulence genes. We show that CadC represses the expression of the bile salt hydrolase impairing Lm resistance to bile. During late infection, in absence of CadC-dependent repression, the constitutive bile salt hydrolase expression induces the overexpression of the cholic acid efflux pump MdrT that is unfavorable to Lm virulence. We establish the CadC regulon and show that CadC represses additional virulence factors activated by σB during colonization of the intestinal lumen. CadC is thus a general repressor that promotes Lm virulence by down-regulating, at late infection stages, genes required for survival in the gastrointestinal tract. This demonstrates for the first time how bacterial pathogens can repurpose regulators to spatiotemporally repress virulence genes and optimize their infectious capacity.
Collapse
Affiliation(s)
- Rita Pombinho
- Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | - Ana Vieira
- Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | - Ana Camejo
- Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | - Cristel Archambaud
- Unité des Interactions Bactéries-Cellules, INSERM U604 and INRA USC2020, Institut Pasteur, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, INSERM U604 and INRA USC2020, Institut Pasteur, Paris, France
| | - Sandra Sousa
- Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Cell Biology of Bacterial Infections, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde – i3S, Universidade do Porto, Porto, Portugal,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal,CONTACT Didier Cabanes i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Rua do Campo Rua Alfredo Allen, 2084200-135Porto, Portugal
| |
Collapse
|
22
|
Bandyopadhyay D, Mukherjee M. Reactive oxygen species and uspA overexpession: an alternative bacterial response toward selection and maintenance of multidrug resistance in clinical isolates of uropathogenic E. coli. Eur J Clin Microbiol Infect Dis 2020; 39:1753-1760. [PMID: 32399681 DOI: 10.1007/s10096-020-03903-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Emergence of multidrug resistance (MDR) in uropathogenic E. coli (UPEC) demands alternative therapeutic interventions. Bactericidal antibiotics at their sub-inhibitory concentration stimulate production of reactive oxygen species (ROS) that results in oxidative stress, generates mutations, and alters transcription of different genes. Sub-inhibitory concentration of antibiotics facilitates selection of highly resistant population. Universal stress protein A (uspA) overexpression in MDR-UPEC at sub-inhibitory bactericidal antibiotics concentration was investigated to explore alternative survival strategy against them. Fifty clinical UPEC isolates were screened. Minimum inhibitory concentration (MIC) against three different bactericidal antibiotics (ciprofloxacin, CIP; ceftazidime, CAZ; gentamycin, GEN) was determined by broth dilution method; ROS production by DCFDA and overexpression of uspA by real-time PCR were determined at the sub-inhibitory concentration of antibiotics. DNA ladder formation and SEM studies were performed with drug untreated and treated samples. Statistical analysis was done by Student's t test and Pearson's correlation analysis; 25 out of 50 UPEC exhibited high MIC against CIP (> 200 μg/ml), CAZ (> 500 μg/ml), GEN (> 500 μg/ml), with varied ROS production (p ≤ 0.001) in treated than untreated controls. DNA ladder formation confirmed ROS production in drug-treated samples. SEM analysis revealed unaltered cell morphology in both untreated and drug-treated bacteria. uspA was universally overexpressed in all 25 UPEC. A significant correlation (p ≤ 0.001) between ROS production and uspA overexpression was observed in 19 out of 25 MDR isolates at sub-inhibitory doses of the bactericidal antibiotics. Therefore, this study highlights an alternative strategy that the MDR isolates may acquire when exposed to sub-inhibitory drug concentration for their survival.
Collapse
Affiliation(s)
- Debojyoty Bandyopadhyay
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, 700073, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
23
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
24
|
Khatri I, Sharma G, Subramanian S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina ®, and insights into its probiotic properties. BMC Microbiol 2019; 19:307. [PMID: 31888501 PMCID: PMC6937992 DOI: 10.1186/s12866-019-1680-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Some of the spore-forming strains of Bacillus probiotics are marketed commercially as they survive harsh gastrointestinal conditions and bestow health benefits to the host. RESULTS We report the composite genome of Bacillus clausii ENTPro from a commercially available probiotic Enterogermina® and compare it with the genomes of other Bacillus probiotics. We find that the members of B. clausii species harbor high heterogeneity at the species as well as genus level. The genes conferring resistance to chloramphenicol, streptomycin, rifampicin, and tetracycline in the B. clausii ENTPro strain could be identified. The genes coding for the bacteriocin gallidermin, which prevents biofilm formation in the pathogens Staphylococcus aureus and S. epidermidis, were also identified. KEGG Pathway analysis suggested that the folate biosynthesis pathway, which depicts one of the important roles of probiotics in the host, is conserved completely in B. subtilis and minimally in B. clausii and other probiotics. CONCLUSIONS We identified various antibiotic resistance, bacteriocins, stress-related, and adhesion-related domains, and industrially-relevant pathways, in the genomes of these probiotic bacteria that are likely to help them survive in the harsh gastrointestinal tract, facilitating adhesion to host epithelial cells, persistence during antibiotic treatment and combating bacterial infections.
Collapse
Affiliation(s)
- Indu Khatri
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India.,Leiden University Medical Center, Leiden, the Netherlands
| | - Gaurav Sharma
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India.,Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | |
Collapse
|
25
|
Salmon-Divon M, Kornspan D. Transcriptomic analysis of smooth versus rough Brucella melitensis Rev.1 vaccine strains reveals insights into virulence attenuation. Int J Med Microbiol 2019; 310:151363. [PMID: 31699441 DOI: 10.1016/j.ijmm.2019.151363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Brucella melitensis Rev.1 is the live attenuated Elberg-originated vaccine strain of the facultative intracellular Brucella species, and is widely used to control brucellosis in small ruminants. However, Rev.1 may cause abortions in small ruminants that have been vaccinated during the last trimester of gestation, it is pathogenic to humans, and it induces antibodies directed at the O-polysaccharide (O-PS) of the smooth lipopolysaccharide, thus making it difficult to distinguish between vaccinated and infected animals. Rough Brucella strains, which lack O-PS and are considered less pathogenic, have been introduced to address these drawbacks; however, as Rev.1 confers a much better immunity than the rough mutants, it is still considered the reference vaccine for the prophylaxis of brucellosis in small ruminants. Therefore, developing an improved vaccine strain, which lacks the Rev.1 drawbacks, is a highly evaluated task, which requires a better understanding of the molecular mechanisms underlying the virulence attenuation of Rev.1 smooth strains and of natural Rev.1 rough strains, which are currently only partly understood. As the acidification of the Brucella-containing vacuole during the initial stages of infection is crucial for their survival, identifying the genes that contribute to their survival in an acidic environment versus a normal environment will greatly assist our understanding of the molecular pathogenic mechanisms and the attenuated virulence of the Rev.1 strain. Here, we compared the transcriptomes of the smooth and natural rough Rev.1 strains, each grown under either normal or acidic conditions. We found 12 key genes that are significantly downregulated in the Rev.1 rough strains under normal pH, as compared with Rev.1 smooth strains, and six highly important genes that are significantly upregulated in the smooth strains under acidic conditions, as compared with Rev.1 rough strains. All 18 differentially expressed genes are associated with bacterial virulence and survival and may explain the attenuated virulence of the rough Rev.1 strains versus smooth Rev.1 strains, thus providing new insights into the virulence attenuation mechanisms of Brucella. These highly important candidate genes may facilitate the design of new and improved brucellosis vaccines.
Collapse
Affiliation(s)
- Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel; Adelson School of Medicine, Ariel University, Israel.
| | - David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel.
| |
Collapse
|
26
|
Liu Y, Orsi RH, Gaballa A, Wiedmann M, Boor KJ, Guariglia-Oropeza V. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol 2019; 14:801-828. [DOI: 10.2217/fmb-2019-0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Among the alternative sigma factors of Listeria monocytogenes, σB controls the largest regulon. The aim of this study was to perform a comprehensive review of σB-regulated genes, and the functions they confer. Materials & methods: A systematic search of PubMed and Web of Knowledge was carried out to identify members of the σB regulon based on experimental evidence of σB-dependent transcription and presence of a consensus σB-dependent promoter. Results: The literature review identified σB-dependent transcription units encompassing 304 genes encoding different functions including stress response and virulence. Conclusion: Our review supports the well-known roles of σB in virulence and stress response and provides new insight into novel roles for σB in metabolism and overall resilience of L. monocytogenes.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
27
|
Noster J, Chao TC, Sander N, Schulte M, Reuter T, Hansmeier N, Hensel M. Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense. PLoS Pathog 2019; 15:e1007741. [PMID: 31009521 PMCID: PMC6497321 DOI: 10.1371/journal.ppat.1007741] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/02/2019] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
Intracellular Salmonella enterica serovar Typhimurium (STM) deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) for the massive remodeling of the endosomal system for host cells. This activity results in formation of an extensive interconnected tubular network of Salmonella-induced filaments (SIFs) connected to the Salmonella-containing vacuole (SCV). Such network is absent in cells infected with SPI2-T3SS-deficient mutant strains such as ΔssaV. A tubular network with reduced dimensions is formed if SPI2-T3SS effector protein SseF is absent. Previous single cell live microscopy-based analyses revealed that intracellular proliferation of STM is directly correlated to the ability to transform the host cell endosomal system into a complex tubular network. This network may also abrogate host defense mechanisms such as delivery of antimicrobial effectors to the SCV. To test the role of SIFs in STM patho-metabolism, we performed quantitative comparative proteomics of STM recovered from infected murine macrophages. We infected RAW264.7 cells with STM wild type (WT), ΔsseF or ΔssaV strains, recovered bacteria 12 h after infection and determined proteome compositions. Increased numbers of proteins characteristic for nutritional starvation were detected in STM ΔsseF and ΔssaV compared to WT. In addition, STM ΔssaV, but not ΔsseF showed signatures of increased exposure to stress by antimicrobial defenses, in particular reactive oxygen species, of the host cells. The proteomics analyses presented here support and extend the role of SIFs for the intracellular lifestyle of STM. We conclude that efficient manipulation of the host cell endosomal system by effector proteins of the SPI2-T3SS contributes to nutrition, as well as to resistance against antimicrobial host defense mechanisms. The facultative intracellular bacterium Salmonella enterica has evolved sophisticated mechanisms to adapt to life inside a pathogen-containing vacuole in mammalian host cells. Intracellular Salmonella manipulate the host cell endosomal system resulting in formation of a complex network of tubular vesicles, termed Salmonella-induced filaments (SIFs). We applied quantitative proteomics to intracellular Salmonella in murine macrophages and compared the wild-type strain to mutant strains with aberrant SIF architecture, or no capacity for induction of SIF. We determined that those mutant strains contain higher amounts of transporters for nutrient uptake, and lower amounts of proteins for central carbon metabolism. These observations indicate response to nutrient restriction in absence of fully established SIF. In addition, the mutant strain unable to induce SIF formation showed increased amounts of proteins required for response to antimicrobial factors of the host cells. These data show that the massive remodeling of the endosomal system of host cells by intracellular Salmonella serves to essential needs, i.e. to enable access to nutrients for efficient proliferation of the pathogen, and to withstand hostile conditions within the pathogen-containing vacuole.
Collapse
Affiliation(s)
- Janina Noster
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Tzu-Chiao Chao
- Institute of Environmental Change & Society, University of Regina, Regina, Canada
| | - Nathalie Sander
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Tatjana Reuter
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Nicole Hansmeier
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,Institute of Environmental Change & Society, University of Regina, Regina, Canada
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
28
|
Kalindamar S, Lu J, Abdelhamed H, Tekedar HC, Lawrence ML, Karsi A. Transposon mutagenesis and identification of mutated genes in growth-delayed Edwardsiella ictaluri. BMC Microbiol 2019; 19:55. [PMID: 30849940 PMCID: PMC6408766 DOI: 10.1186/s12866-019-1429-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/27/2019] [Indexed: 01/23/2023] Open
Abstract
Background Edwardsiella ictaluri is a Gram-negative facultative intracellular anaerobe and the etiologic agent of enteric septicemia of channel catfish (ESC). To the catfish industry, ESC is a devastating disease due to production losses and treatment costs. Identification of virulence mechanisms of E. ictaluri is critical to developing novel therapeutic approaches for the disease. Here, we report construction of a transposon insertion library and identification of mutated genes in growth-delayed E. ictaluri colonies. We also provide safety and efficacy of transposon insertion mutants in catfish. Results An E. ictaluri transposon insertion library with 45,000 transposants and saturating 30.92% of the TA locations present in the E. ictaluri genome was constructed. Transposon end mapping of 250 growth-delayed E. ictaluri colonies and bioinformatic analysis of sequences revealed 56 unique E. ictaluri genes interrupted by the MAR2xT7 transposon, which are involved in metabolic and cellular processes and mostly localized in the cytoplasm or cytoplasmic membrane. Of the 56 genes, 30 were associated with bacterial virulence. Safety and vaccine efficacy testing of 19 mutants showed that mutants containing transposon insertions in hypothetical protein (Eis::004), and Fe-S cluster assembly protein (IscX, Eis::039), sulfurtransferase (TusA, Eis::158), and universal stress protein A (UspA, Eis::194) were safe and provided significant protection (p < 0.05) against wild-type E. ictaluri. Conclusions The results indicate that random transposon mutagenesis causing growth-delayed phenotype results in identification bacterial virulence genes, and attenuated strains with transposon interrupted virulence genes could be used as vaccine to activate fish immune system.
Collapse
Affiliation(s)
- Safak Kalindamar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Jingjun Lu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hasan C Tekedar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
29
|
Chi YH, Koo SS, Oh HT, Lee ES, Park JH, Phan KAT, Wi SD, Bae SB, Paeng SK, Chae HB, Kang CH, Kim MG, Kim WY, Yun DJ, Lee SY. The Physiological Functions of Universal Stress Proteins and Their Molecular Mechanism to Protect Plants From Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:750. [PMID: 31231414 PMCID: PMC6560075 DOI: 10.3389/fpls.2019.00750] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
Since the original discovery of a Universal Stress Protein (USP) in Escherichia coli, a number of USPs have been identified from diverse sources including archaea, bacteria, plants, and metazoans. As their name implies, these proteins participate in a broad range of cellular responses to biotic and abiotic stresses. Their physiological functions are associated with ion scavenging, hypoxia responses, cellular mobility, and regulation of cell growth and development. Consistent with their roles in resistance to multiple stresses, USPs show a wide range of structural diversity that results from the diverse range of other functional motifs fused with the USP domain. As well as providing structural diversity, these catalytic motifs are responsible for the diverse biochemical properties of USPs and enable them to act in a number of cellular signaling transducers and metabolic regulators. Despite the importance of USP function in many organisms, the molecular mechanisms by which USPs protect cells and provide stress resistance remain largely unknown. This review addresses the diverse roles of USPs in plants and how the proteins enable plants to resist against multiple stresses in ever-changing environment. Bioinformatic tools used for the collection of a set of USPs from various plant species provide more than 2,100 USPs and their functional diversity in plant physiology. Data from previous studies are used to understand how the biochemical activity of plant USPs modulates biotic and abiotic stress signaling. As USPs interact with the redox protein, thioredoxin, in Arabidopsis and reactive oxygen species (ROS) regulates the activity of USPs, the involvement of USPs in redox-mediated defense signaling is also considered. Finally, this review discusses the biotechnological application of USPs in an agricultural context by considering the development of novel stress-resistant crops through manipulating the expression of USP genes.
Collapse
Affiliation(s)
- Yong Hun Chi
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sung Sun Koo
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Hun Taek Oh
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Eun Seon Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Seong Dong Wi
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Su Bin Bae
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Yeol Lee,
| |
Collapse
|
30
|
Role and regulation of the stress activated sigma factor sigma B (σ B) in the saprophytic and host-associated life stages of Listeria monocytogenes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:1-48. [PMID: 30798801 DOI: 10.1016/bs.aambs.2018.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stress activated sigma factor sigma B (σB) plays a pivotal role in allowing the food-borne bacterial pathogen Listeria monocytogenes to modulate its transcriptional landscape in order to survive in a variety of harsh environments both outside and within the host. While we have a comparatively good understanding of the systems under the control of this sigma factor much less is known about how the activity of σB is controlled. In this review, we present a current model describing how this sigma factor is thought to be controlled including an overview of what is known about stress sensing and the early signal transduction events that trigger its activation. We discuss the known regulatory overlaps between σB and other protein and RNA regulators in the cell. Finally, we describe the role of σB in surviving both saprophytic and host-associated stresses. The complexity of the regulation of this sigma factor reflects the significant role that it plays in the persistence of this important pathogen in the natural environment, the food chain as well as within the host during the early stages of an infection. Understanding its regulation will be a critical step in helping to develop rational strategies to prevent its growth and survival in the food destined for human consumption and in the prevention of listeriosis.
Collapse
|
31
|
Akgul A, Nho SW, Kalindamar S, Tekedar HC, Abdalhamed H, Lawrence ML, Karsi A. Universal Stress Proteins Contribute Edwardsiella ictaluri Virulence in Catfish. Front Microbiol 2018; 9:2931. [PMID: 30546354 PMCID: PMC6279896 DOI: 10.3389/fmicb.2018.02931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Edwardsiella ictaluri is an intracellular Gram-negative facultative pathogen causing enteric septicemia of catfish (ESC), a common disease resulting in substantial economic losses in the U.S. catfish industry. Previously, we demonstrated that several universal stress proteins (USPs) are highly expressed under in vitro and in vivo stress conditions, indicating their importance for E. ictaluri survival. However, the roles of these USPs in E. ictaluri virulence is not known yet. In this work, 10 usp genes of E. ictaluri were in-frame deleted and characterized in vitro and in vivo. Results show that all USP mutants were sensitive to acidic condition (pH 5.5), and EiΔusp05 and EiΔusp08 were very sensitive to oxidative stress (0.1% H2O2). Virulence studies indicated that EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 were attenuated significantly compared to E. ictaluri wild-type (EiWT; 20, 45, 20, 20, 55, and 10% vs. 74.1% mortality, respectively). Efficacy experiments showed that vaccination of catfish fingerlings with EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 provided complete protection against EiWT compared to sham-vaccinated fish (0% vs. 58.33% mortality). Our results support that USPs contribute E. ictaluri virulence in catfish.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Seong Won Nho
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Safak Kalindamar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hasan C Tekedar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdalhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
32
|
Pirone-Davies C, Chen Y, Pightling A, Ryan G, Wang Y, Yao K, Hoffmann M, Allard MW. Genes significantly associated with lineage II food isolates of Listeria monocytogenes. BMC Genomics 2018; 19:708. [PMID: 30253738 PMCID: PMC6157050 DOI: 10.1186/s12864-018-5074-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023] Open
Abstract
Background Listeria monocytogenes is a widespread foodborne pathogen that can cause listeriosis, a potentially fatal infection. L. monocytogenes is subdivided into four phylogenetic lineages, with the highest incidence of listeriosis occurring within lineage I followed by lineage II. Strains of L. monocytogenes differ in their phenotypic characteristics, including virulence. However, the genetic bases for these observed differences are not well understood, and current efforts to monitor L. monocytogenes in food consider all strains to be equally virulent. We use a comparative genomics approach to identify genes and single nucleotide polymorphisms (SNPs) in 174 clinical and food isolates of L. monocytogenes that potentially contribute to virulence or the capacity to adapt to food environments. Results No SNPs are significantly associated with food or clinical isolates. No genes are significantly associated with food or clinical isolates from lineage I, but eight genes consisting of multiple homologues are associated with lineage II food isolates. These include three genes which encode hypothetical proteins, the cadmium resistance genes cadA and cadC, the multi-drug resistance gene ebrB, a quaternary ammonium compound resistance gene qac, and a regulatory gene. All eight genes are plasmid-borne, and most closed L. monocytogenes plasmids carry at least five of the genes (24/27). In addition, plasmids are more frequently associated with lineage II food isolates than with lineage II clinical isolates. Conclusions We identify eight genes that are significantly associated with food isolates in lineage II. Interestingly, the eight genes are virtually absent in lineage II outbreak isolates, are composed of homologues which show a nonrandom distribution among lineage I serotypes, and the sequences are highly conserved across 27 closed Listeria plasmids. The functions of these genes should be explored further and will contribute to our understanding of how L. monocytogenes adapts to the host and food environments. Moreover, these genes may also be useful as markers for risk assessment models of either pathogenicity or the ability to proliferate in food and the food processing environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-5074-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cary Pirone-Davies
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA.
| | - Yi Chen
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Arthur Pightling
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Gina Ryan
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Yu Wang
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Kuan Yao
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Maria Hoffmann
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Marc W Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
33
|
Vollmer AC, Bark SJ. Twenty-Five Years of Investigating the Universal Stress Protein: Function, Structure, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:1-36. [PMID: 29680123 DOI: 10.1016/bs.aambs.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the initial discovery of universal stress protein A (UspA) 25 years ago, remarkable advances in molecular and biochemical technologies have revolutionized our understanding of biology. Many studies using these technologies have focused on characterization of the uspA gene and Usp-type proteins. These studies have identified the conservation of Usp-like proteins across bacteria, archaea, plants, and even some invertebrate animals. Regulation of these proteins under diverse stresses has been associated with different stress-response genes including spoT and relA in the stringent response and the dosR two-component signaling pathways. These and other foundational studies suggest Usps serve regulatory and protective roles to enable adaptation and survival under external stresses. Despite these foundational studies, many bacterial species have multiple paralogs of genes encoding these proteins and ablation of the genes does not provide a distinct phenotype. This outcome has limited our understanding of the biochemical functions of these proteins. Here, we summarize the current knowledge of Usps in general and UspA in particular across different genera as well as conclusions about their functions from seminal studies in diverse organisms. Our objective has been to organize the foundational studies in this field to identify the significant impediments to further understanding of Usp functions at the molecular level. We propose ideas and experimental approaches that may overcome these impediments and drive future development of molecular approaches to understand and target Usps as central regulators of stress adaptation and survival. Despite the fact that the full functions of Usps are still not known, creative many applications have already been proposed, tested, and used. The complementary approaches of basic research and applications, along with new technology and analytic tools, may yield the elusive yet critical functions of universal stress proteins in diverse systems.
Collapse
|
34
|
Liu Y, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Home Alone: Elimination of All but One Alternative Sigma Factor in Listeria monocytogenes Allows Prediction of New Roles for σ B. Front Microbiol 2017; 8:1910. [PMID: 29075236 PMCID: PMC5641562 DOI: 10.3389/fmicb.2017.01910] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Among Listeria monocytogenes' four alternative σ factors, σB controls the largest regulon. As σB-dependent transcription of some genes may be masked by overlaps among regulons, and as some σB-dependent genes are expressed only under very specific conditions, we hypothesized that the σB regulon is not yet fully defined. To further extend our understanding of the σB regulon, we used RNA-seq to identify σB-dependent genes in an L. monocytogenes strain that expresses σB following rhamnose induction, and in which genes encoding the other alternative sigma factors have been deleted. Analysis of RNA-seq data with multiple bioinformatics approaches, including a sliding window method that detects differentially transcribed 5' untranslated regions (UTRs), identified 105 σB-dependent transcription units (TUs) comprising 201 genes preceded by σB-dependent promoters. Of these 105 TUs, 7 TUs comprising 15 genes had not been identified previously as σB-dependent. An additional 23 genes not reported previously as σB-dependent were identified in 9 previously recognized σB-dependent TUs. Overall, 38 of these 201 genes had not been identified previously as members of the L. monocytogenes σB regulon. These newly identified σB-dependent genes encode proteins annotated as being involved in transcriptional regulation, oxidative and osmotic stress response, and in metabolism of energy, carbon and nucleotides. In total, 18 putative σB-dependent promoters were newly identified. Interestingly, a number of genes previously identified as σB-dependent did not show significant evidence for σB-dependent transcription in our experiments. Based on promoter analyses, a number of these genes showed evidence for co-regulation by σB and other transcriptional factors, suggesting that some σB-dependent genes require additional transcriptional regulators along with σB for transcription. Over-expression of a single alternative sigma factor in the absence of all other alternative sigma factors allowed us to: (i) identify new σB-dependent functions in L. monocytogenes, such as regulation of genes involved in 1,2-propanediol utilization (LMRG_00594-LMRG_00611) and biosynthesis of pyrimidine nucleotides (LMRG_00978-LMRG_00985); and (ii) identify new σB-dependent genes involved in stress response and pathogenesis functions. These data further support that σB not only regulates stress response functions, but also plays a broad role in L. monocytogenes homeostasis and resilience.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
35
|
Millan-Oropeza A, Henry C, Blein-Nicolas M, Aubert-Frambourg A, Moussa F, Bleton J, Virolle MJ. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans. J Proteome Res 2017; 16:2597-2613. [DOI: 10.1021/acs.jproteome.7b00163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron Millan-Oropeza
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Céline Henry
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mélisande Blein-Nicolas
- Génétique
Quantitative et Évolution (GQE) - Le Moulon, INRA, Univ Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Anne Aubert-Frambourg
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Fathi Moussa
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Jean Bleton
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Marie-Jöelle Virolle
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
36
|
Gutiérrez-Beltrán E, Personat JM, de la Torre F, Del Pozo O. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK6. PLANT PHYSIOLOGY 2017; 173:836-852. [PMID: 27899535 PMCID: PMC5210712 DOI: 10.1104/pp.16.00949] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/26/2016] [Indexed: 05/27/2023]
Abstract
Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named "SlRd2". SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H2O2 treatment. Finally, transient expression of SlCipk6 in transgenic N benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation.
Collapse
Affiliation(s)
- Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - José María Personat
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Fernando de la Torre
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Olga Del Pozo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| |
Collapse
|
37
|
Bhuria M, Goel P, Kumar S, Singh AK. The Promoter of AtUSP Is Co-regulated by Phytohormones and Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1957. [PMID: 28083000 PMCID: PMC5183650 DOI: 10.3389/fpls.2016.01957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/09/2016] [Indexed: 05/29/2023]
Abstract
Universal stress proteins (USPs) are known to be expressed in response to various abiotic stresses in a wide variety of organisms, such as bacteria, archaebacteria, protists, algae, fungi, plants, and animals. However, in plants, biological function of most of the USPs still remains obscure. In the present study, Arabidopsis USP gene (AtUSP) showed induction in response to abscisic acid (ABA) and various abiotic stresses viz. heat, dehydration, salt, osmotic, and cold stresses. Additionally, in silico analysis of AtUSP promoter identified several cis-elements responsive to phytohormones and abiotic stresses such as ABRE, ERE, DRE, and HSE, etc. To functionally validate the AtUSP promoter, the 1115 bp region of promoter was characterized under phytohormone and abiotic stress treatments. Deletion analysis of promoter was carried out by cloning the full length promoter (D0) and its three 5' deletion derivatives, D1 (964 bp), D2 (660 bp), and D3 (503 bp) upstream of the β-glucuronidase (GUS) reporter gene, which were then stably transformed in Arabidopsis plants. The AtUSP promoter (D0) showed minimal activity under non-stress conditions which was enhanced in response to phytohormone treatments (ABA and ACC) and abiotic stresses such as dehydration, heat, cold, salt, and osmotic stresses. The seedlings harboring D1 and D2 deletion fragments showed constitutive GUS expression even under control condition with increased activity almost under all the treatments. However, D3 seedlings exhibited complete loss of activity under control condition with induction under ACC treatment, dehydration, heat, oxidative, salt, and osmotic stresses. Thus, present study clearly showed that AtUSP promoter is highly inducible by phytohormones and multiple abiotic stresses and it can be exploited as stress inducible promoter to generate multi-stress tolerant crops with minimal effects on their other important traits.
Collapse
Affiliation(s)
- Monika Bhuria
- Council of Scientific and Industrial Research – Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Parul Goel
- Council of Scientific and Industrial Research – Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Sanjay Kumar
- Council of Scientific and Industrial Research – Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Anil K. Singh
- Council of Scientific and Industrial Research – Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
38
|
Tremonte P, Succi M, Coppola R, Sorrentino E, Tipaldi L, Picariello G, Pannella G, Fraternali F. Homology-Based Modeling of Universal Stress Protein from Listeria innocua Up-Regulated under Acid Stress Conditions. Front Microbiol 2016; 7:1998. [PMID: 28066336 PMCID: PMC5168468 DOI: 10.3389/fmicb.2016.01998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/29/2016] [Indexed: 01/31/2023] Open
Abstract
An Universal Stress Protein (USP) expressed under acid stress condition by Listeria innocua ATCC 33090 was investigated. The USP was up-regulated not only in the stationary phase but also during the exponential growth phase. The three dimensional (3D) structure of USP was predicted using a combined proteomic and bioinformatics approach. Phylogenetic analysis showed that the USP from Listeria detected in our study was distant from the USPs of other bacteria (such as Pseudomonas spp., Escherichia coli, Salmonella spp.) and clustered in a separate and heterogeneous class including several USPs from Listeria spp. and Lactobacillus spp. An important information on the studied USP was obtained from the 3D-structure established through the homology modeling procedure. In detail, the Model_USP-691 suggested that the investigated USP had a homo-tetrameric quaternary structure. Each monomer presented an architecture analogous to the Rossmann-like α/β-fold with five parallel β-strands, and four α-helices. The analysis of monomer-monomer interfaces and quality of the structure alignments confirmed the model reliability. In fact, the structurally and sequentially conserved hydrophobic residues of the β-strand 5 (in particular the residues V146 and V148) were involved in the inter-chains contact. Moreover, the highly conserved residues I139 and H141 in the region α4 were involved in the dimer association and functioned as hot spots into monomer–monomer interface assembly. The hypothetical assembly of dimers was also supported by the large interface area and by the negative value of solvation free energy gain upon interface interaction. Finally, the structurally conserved ATP-binding motif G-2X-G-9X-G(S/T-N) suggested for a putative role of ATP in stabilizing the tetrameric assembly of the USP. Therefore, the results obtained from a multiple approach, consisting in the application of kinetic, proteomic, phylogenetic and modeling analyses, suggest that Listeria USP could be considered a new type of ATP-binding USP involved in the response to acid stress condition during the exponential growth phase.
Collapse
Affiliation(s)
- Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Luca Tipaldi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Gianluca Picariello
- Institute of Food Science, National Research Council (ISA-CNR) Avellino, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Franca Fraternali
- Randall Division of Cellular and Molecular Biophysics, New Hunt's House King's College London, UK
| |
Collapse
|
39
|
Quereda JJ, García-Del Portillo F, Pucciarelli MG. Listeria monocytogenes remodels the cell surface in the blood-stage. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:641-648. [PMID: 27085096 DOI: 10.1111/1758-2229.12416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
After crossing the intestinal barrier, the bacterial pathogen Listeria monocytogenes disseminates via the blood to the liver, spleen, brain and placenta. Transcriptomic studies have shown that L. monocytogenes changes expression of many genes during this blood-stage. However, no comparable data at the protein level are known. As main interactors with the environment, we focused in surface proteins produced by L. monocytogenes in an ex vivo bovine blood model. Bacteria exposed to blood alter selectively the amount of several surface proteins compared with bacteria grown in laboratory media. Increased levels were detected for Lmo0514 and Internalin A, two surface proteins covalently bound to peptidoglycan, and the moonlighting protein alcohol-acetaldehyde dehydrogenase, also known as Lap for 'Listeria adhesion protein'. Lmo0514, induced by L. monocytogenes inside epithelial cells, is required for survival in plasma and for virulence in mice at early infection stages. Lmo0514 is also important to cope with low pH stress. By contrast, L. monocytogenes down-regulates other surface proteins following exposure to blood and plasma such as Internalin I. These data provide evidence for remodelling of the L. monocytogenes cell surface during the blood-stage, which it could facilitate pathogen dissemination to deep organs.
Collapse
Affiliation(s)
- Juan J Quereda
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
40
|
Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. J Proteomics 2016; 150:216-229. [PMID: 27585996 DOI: 10.1016/j.jprot.2016.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. BIOLOGICAL SIGNIFICANCE L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius.
Collapse
|
41
|
Rossi F, Zotta T, Iacumin L, Reale A. Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L. rhamnosus. J Theor Biol 2016; 402:21-37. [DOI: 10.1016/j.jtbi.2016.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023]
|
42
|
Wang K, del Castillo C, Corre E, Pales Espinosa E, Allam B. Clam focal and systemic immune responses to QPX infection revealed by RNA-seq technology. BMC Genomics 2016; 17:146. [PMID: 26921237 PMCID: PMC4769524 DOI: 10.1186/s12864-016-2493-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background The hard clam Mercenaria mercenaria is an important seafood species widely exploited along the eastern coasts of the United States and play a crucial role in coastal ecology and economy. Severe hard clam mortalities have been associated with the protistan parasite QPX (Quahog Parasite Unknown). QPX infection establishes in pallial organs with the lesions typically characterized as nodules, which represent inflammatory masses formed by hemocyte infiltration and encapsulation of parasites. QPX infection is known to induce host changes on both the whole-organism level and at specific lesion areas, which imply systemic and focal defense responses, respectively. However, little is known about the molecular mechanisms underlying these alterations. Results RNA-seq was performed using Illumina Hiseq 2000 (641 Million 100 bp reads) to characterize M. mercenaria focal and systemic immune responses to QPX. Transcripts were assembled and the expression levels were compared between nodule and healthy tissues from infected clams, and between these and tissues from healthy clams. De novo assembly reconstructed a consensus transcriptome of 62,980 sequences that was functionally-annotated. A total of 3,131 transcripts were identified as differentially expressed in different tissues. Results allowed the identification of host immune factors implicated in the systemic and focal responses against QPX and unraveled the pathways involved in parasite neutralization. Among transcripts significantly modulated upon host-pathogen interactions, those involved in non-self recognition, signal transduction and defense response were over-represented. Alterations in pathways regulating hemocyte focal adhesion, migration and apoptosis were also demonstrated. Conclusions Our study is the first attempt to thoroughly characterize M. mercenaria transcriptome and identify molecular features associated with QPX infection. It is also one of the first studies contrasting focal and systemic responses to infections in invertebrates using high-throughput sequencing. Results identified the molecular signatures of clam systemic and focal defense responses, to collectively mediate immune processes such as hemocyte recruitment and local inflammation. These investigations improve our understanding of bivalve immunity and provide molecular targets for probing the biological bases of clam resistance towards QPX. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2493-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kailai Wang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - Carmelo del Castillo
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - Erwan Corre
- Analyses and Bioinformatics for Marine Science, Station Biologique de Roscoff, 29688, Roscoff Cedex, France.
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
43
|
Aliyu H, De Maayer P, Cowan D. The genome of the Antarctic polyextremophileNesterenkoniasp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 2016; 92:fiw032. [DOI: 10.1093/femsec/fiw032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 01/18/2023] Open
|
44
|
He G, Wu C, Huang J, Zhou R. Acid tolerance response of Tetragenococcus halophilus: A combined physiological and proteomic analysis. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Tsai CJY, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016; 7:214-29. [PMID: 26730990 PMCID: PMC4871635 DOI: 10.1080/21505594.2015.1135289] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galleria mellonella (greater wax moth or honeycomb moth) has been introduced as an alternative model to study microbial infections. G. mellonella larvae can be easily and inexpensively obtained in large numbers and are simple to use as they don't require special lab equipment. There are no ethical constraints and their short life cycle makes them ideal for large-scale studies. Although insects lack an adaptive immune response, their innate immune response shows remarkable similarities with the immune response in vertebrates. This review gives a current update of what is known about the immune system of G. mellonella and provides an extensive overview of how G. mellonella is used to study the virulence of Gram-positive and Gram-negative bacteria. In addition, the use of G. mellonella to evaluate the efficacy of antimicrobial agents and experimental phage therapy are also discussed. The review concludes with a critical assessment of the current limitatons of G. mellonella infection models.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Jacelyn Mei San Loh
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Thomas Proft
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| |
Collapse
|
46
|
Schultze T, Hilker R, Mannala GK, Gentil K, Weigel M, Farmani N, Windhorst AC, Goesmann A, Chakraborty T, Hain T. A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq. Front Microbiol 2015; 6:1199. [PMID: 26579105 PMCID: PMC4627465 DOI: 10.3389/fmicb.2015.01199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/15/2015] [Indexed: 01/21/2023] Open
Abstract
Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly, or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost 10 years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach. We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in Brain Heart Infusion broth. This study confirmed ∼64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis.
Collapse
Affiliation(s)
- Tilman Schultze
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Rolf Hilker
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany ; Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Gopala K Mannala
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Katrin Gentil
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Neda Farmani
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Anita C Windhorst
- Institute of Medical Informatics, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Germany
| |
Collapse
|
47
|
Ayarza JM, Mazzella MA, Erijman L. Expression of stress-related proteins in Sediminibacterium sp. growing under planktonic conditions. J Basic Microbiol 2015; 55:1134-40. [PMID: 25847231 DOI: 10.1002/jobm.201400725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/22/2015] [Indexed: 01/03/2023]
Abstract
Aggregation is a common trait of bacteria in natural and engineered biological systems. Microbial aggregates, such as flocs, granules, and biofilms, are spatially heterogeneous environments. It is generally observed that by growing under aggregated conditions bacteria respond and adapt to environmental stress better than free-swimming bacteria of the same species. We performed a proteomic analysis of a strain of Sediminibacterium, isolated from activated sludge, which grew planktonically in diluted culture media and in an aggregated form in media containing a high concentration of organic substrate. Auto-aggregation was also observed in the presence of pyruvate in dilute media. Expression of a number of stress-related proteins significantly increased under planktonic growth in comparison to aggregate growth. The upregulated proteins, identified by MALDI-TOF mass spectrometry, were two isoforms of a protein belonging to the universal stress family (UspA), a thioredoxin-disulfide reductase, the Campylobacter jejuni orthologue transcriptional regulator (Cj1172c), and the CocE/NonD hydrolase. We conclude that Sediminibaterium sp. C3 growth is stressed under planktonic conditions and that aggregation induced by pyruvate protects the bacteria against oxidative stress.
Collapse
Affiliation(s)
- Joaquín M Ayarza
- Instituto de Investigaciones en Ingeniería Genetica y Biología Molecular "Dr. Hector N. Torres" (INGEBI-CONICET), ADN1428 Buenos Aires, Argentina
| | - María Agustina Mazzella
- Instituto de Investigaciones en Ingeniería Genetica y Biología Molecular "Dr. Hector N. Torres" (INGEBI-CONICET), ADN1428 Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genetica y Biología Molecular "Dr. Hector N. Torres" (INGEBI-CONICET), ADN1428 Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Pan W, Shen Y, Han X, Wang Y, Liu H, Jiang Y, Zhang Y, Wang Y, Xu Y, Cao J. Transcriptome profiles of the protoscoleces of Echinococcus granulosus reveal that excretory-secretory products are essential to metabolic adaptation. PLoS Negl Trop Dis 2014; 8:e3392. [PMID: 25500817 PMCID: PMC4263413 DOI: 10.1371/journal.pntd.0003392] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. The successful infection establishment of parasites depends on their ability to combat their host's immune system while maintaining metabolic adaptation to their hosts. The mechanisms of these processes are not well understood. We used the protoscoleces (PSCs) of E. granulosus as a model system to study this complex host-parasite interaction by investigating the role of excretory-secretory proteins (ESPs) in the physiological adaptation of the parasite. Using Roche 454 sequencing technology and in silico secretome analysis, we predicted 2280 ESPs and analyzed their biological functions. Our analysis of the bioinformatic data suggested that ESPs are integral to the metabolism of carbohydrates and proteins within the parasite and/or hosts. We also found that ESPs are involved in mediating the immune responses of hosts and function within key development-related signaling pathways. We found 11 intracellular enzymes, 25 molecular chaperones and four proteases that were highly represented in the ESPs, in addition to 44 antigenic proteins that showed promise as candidates for vaccine or serodiagnostic development purposes. These findings provide valuable information on the mechanisms of metabolic adaptation in parasites that will aid the development of novel hydatid treatment and control targets.
Collapse
Affiliation(s)
- Wei Pan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| | - Xiuming Han
- Department of Parasitic Diseases, Qinghai Institute for Endemic Disease Prevention and Control, Zong Zhai, Xining, Qinghai, People's Republic of China
| | - Ying Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yumei Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| |
Collapse
|
49
|
Acinetobacter baumannii universal stress protein A plays a pivotal role in stress response and is essential for pneumonia and sepsis pathogenesis. Int J Med Microbiol 2014; 305:114-23. [PMID: 25466824 DOI: 10.1016/j.ijmm.2014.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/14/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is one of the most significant threats to global public health. This threat is compounded by the fact that A. baumannii is rapidly becoming resistant to all relevant antimicrobials. Identifying key microbial factors through which A. baumannii resists hostile host environment is paramount to the development of novel antimicrobials targeting infections caused by this emerging pathogen. An attractive target could be a molecule that plays a role in the pathogenesis and stress response of A. baumannii. Accordingly, the universal stress protein A (UspA) was chosen to be fully investigated in this study. A platform of A. baumannii constructs, expressing various levels of the uspA gene ranging from zero to thirteen folds of wild-type level, and a recombinant E. coli strain, were employed to investigate the role of UspA in vitro stress and in vivo pathogenesis. The UspA protein plays a significant role in protecting A. baumannii from H(2)O(2), low pH, and the respiratory toxin 2,4-DNP. A. baumannii UspA protein plays an essential role in two of the deadliest types of infection caused by A. baumannii; pneumonia and sepsis. This distinguishes A. baumannii UspA from its closely related homolog, the Staphylococcus aureus Usp2, as well as from the less similar Burkholderia glumae Usps. Heterologous and overexpression experiments suggest that UspA mediates its role via an indirect mechanism. Our study highlights the role of UspA as an important contributor to the A. baumannii stress and virulence machineries, and polishes it as a plausible target for new therapeutics.
Collapse
|
50
|
Quereda JJ, Ortega ÁD, Pucciarelli MG, García-del Portillo F. The Listeria Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5'-UTR Variant. PLoS Genet 2014; 10:e1004765. [PMID: 25356775 PMCID: PMC4214639 DOI: 10.1371/journal.pgen.1004765] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen whose genome encodes many cell wall proteins that bind covalently to peptidoglycan. Some members of this protein family have a key role in virulence, and recent studies show that some of these, such as Lmo0514, are upregulated in bacteria that colonize eukaryotic cells. The regulatory mechanisms that lead to these changes in cell wall proteins remain poorly characterized. Here we studied the regulation responsible for increased Lmo0514 protein levels in intracellular bacteria. The amount of this protein increased markedly in intracellular bacteria (>200-fold), which greatly exceeded the increase in lmo0514 transcript levels (∼6-fold). Rapid amplification of 5'-cDNA ends (RACE) assays identified two lmo0514 transcripts with 5'-untranslated regions (5'-UTR) of 28 and 234 nucleotides. The transcript containing the long 5'-UTR is upregulated by intracellular bacteria. The 234-nucleotide 5'-UTR is also the target of a small RNA (sRNA) denoted Rli27, which we identified by bioinformatics analysis as having extensive base pairing potential with the long 5'-UTR. The interaction is predicted to increase accessibility of the Shine-Dalgarno sequence occluded in the long 5'-UTR and thus to promote Lmo0514 protein production inside the eukaryotic cell. Real-time quantitative PCR showed that Rli27 is upregulated in intracellular bacteria. In vivo experiments indicated a decrease in Lmo0514 protein levels in intracellular bacteria that lacked Rli27. Wild-type Lmo0514 levels were restored by expressing the wild-type Rli27 molecule but not a mutated version unable to interact with the lmo0514 long 5'-UTR. These findings emphasize how 5'-UTR length affects regulation by defined sRNA. In addition, they demonstrate how alterations in the relative abundance of two transcripts with distinct 5'-UTR confine the action of an sRNA for a specific target to bacteria that occupy the intracellular eukaryotic niche.
Collapse
Affiliation(s)
- Juan J. Quereda
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Álvaro D. Ortega
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO-CSIC), Madrid, Spain
- * E-mail: (MGP); (FGdP)
| | - Francisco García-del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- * E-mail: (MGP); (FGdP)
| |
Collapse
|