1
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
2
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Ngo KX, Vu HT, Umeda K, Trinh MN, Kodera N, Uyeda T. Deciphering the actin structure-dependent preferential cooperative binding of cofilin. eLife 2024; 13:RP95257. [PMID: 39093938 PMCID: PMC11296705 DOI: 10.7554/elife.95257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0-6.3 nm) than the MAD within typical helices (4.3-5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.
Collapse
Affiliation(s)
- Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Huong T Vu
- Centre for Mechanochemical Cell Biology, Warwick Medical SchoolCoventryUnited Kingdom
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Minh-Nhat Trinh
- School of Electrical and Electronic Engineering, Hanoi University of Science and TechnologyHanoiViet Nam
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Taro Uyeda
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, ShinjukuTokyoJapan
| |
Collapse
|
4
|
Quintanilla MA, Patel H, Wu H, Sochacki KA, Chandrasekar S, Akamatsu M, Rotty JD, Korobova F, Bear JE, Taraska JW, Oakes PW, Beach JR. Local monomer levels and established filaments potentiate non-muscle myosin 2 assembly. J Cell Biol 2024; 223:e202305023. [PMID: 38353656 PMCID: PMC10866686 DOI: 10.1083/jcb.202305023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
Collapse
Affiliation(s)
- Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Hiral Patel
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kem A. Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shreya Chandrasekar
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Matthew Akamatsu
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Jeremy D. Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Farida Korobova
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Justin W. Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
5
|
Maeda T, Shimamori K, Kurita H, Tokuraku K, Kuragano M. Amyloid β interferes with wound healing of brain microvascular endothelial cells by disorganizing the actin cytoskeleton. Exp Cell Res 2024; 436:113958. [PMID: 38325585 DOI: 10.1016/j.yexcr.2024.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a disease in which amyloid β (Aβ) is deposited in the cerebral blood vessels, reducing compliance, tearing and weakening of vessel walls, leading to cerebral hemorrhage. The mechanisms by which Aβ leads to focal wall fragmentation and intimal damage are not well understood. We analyzed the motility of human brain microvascular endothelial cells (hBMECs) in real-time using a wound-healing assay. We observed the suppression of cell migration by visualizing Aβ aggregation using quantum dot (QD) nanoprobes. In addition, using QD nanoprobes and a SiR-actin probe, we simultaneously observed Aβ aggregation and F-actin organization in real-time for the first time. Aβ began to aggregate at the edge of endothelial cells, reducing cell motility. In addition, Aβ aggregation disorganized the actin cytoskeleton and induced abnormal actin aggregation. Aβ aggregated actively in the anterior group, where cell motility was active. Our findings may be a first step toward explaining the mechanism by which Aβ causes vascular wall fragility, bleeding, and rebleeding in CAA.
Collapse
Affiliation(s)
- Takuma Maeda
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan; Department of Neurosurgery, Ohkawara Neurosurgical Hospital, Hokkaido, 050-0082, Japan; Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Keiya Shimamori
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Hiroki Kurita
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Masahiro Kuragano
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan.
| |
Collapse
|
6
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
7
|
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz MA, Calderwood DA, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat Commun 2023; 14:8011. [PMID: 38049429 PMCID: PMC10695988 DOI: 10.1038/s41467-023-43612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.
Collapse
Affiliation(s)
- Sorosh Amiri
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Mechanical Engineering and Material Science, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Camelia Muresan
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Xingbo Shang
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | | | - Martin A Schwartz
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Yale Cardiovascular Research Center, 300 George St, New Haven, CT, 06511, USA
| | - David A Calderwood
- Department of Pharmacology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
| | - Michael Murrell
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, 217 Prospect Street, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
8
|
Bridges MC, Nair-Menon J, Risner A, Jimenez DW, Daulagala AC, Kingsley C, Davis ME, Kourtidis A. Actin-dependent recruitment of AGO2 to the zonula adherens. Mol Biol Cell 2023; 34:ar129. [PMID: 37819702 PMCID: PMC10848941 DOI: 10.1091/mbc.e22-03-0099-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Adherens junctions are cadherin-based structures critical for cellular architecture. E-cadherin junctions in mature epithelial cell monolayers tether to an apical actomyosin ring to form the zonula adherens (ZA). We have previously shown that the adherens junction protein PLEKHA7 associates with and regulates the function of the core RNA interference (RNAi) component AGO2 specifically at the ZA. However, the mechanism mediating AGO2 recruitment to the ZA remained unexplored. Here, we reveal that this ZA-specific recruitment of AGO2 depends on both the structural and tensile integrity of the actomyosin cytoskeleton. We found that depletion of not only PLEKHA7, but also either of the three PLEKHA7-interacting, LIM-domain family proteins, namely LMO7, LIMCH1, and PDLIM1, results in disruption of actomyosin organization and tension, as well as disruption of AGO2 junctional localization and of its miRNA-binding ability. We also show that AGO2 binds Myosin IIB and that PLEKHA7, LMO7, LIMCH1, and PDLIM1 all disrupt interaction of AGO2 with Myosin IIB at the ZA. These results demonstrate that recruitment of AGO2 to the ZA is sensitive to actomyosin perturbations, introducing the concept of mechanosensitive RNAi machinery, with potential implications in tissue remodeling and in disease.
Collapse
Affiliation(s)
- Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Alyssa Risner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Douglas W. Jimenez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Madison E. Davis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
9
|
Okura K, Matsumoto T, Narita A, Tatsumi H. Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments. J Mol Biol 2023; 435:168295. [PMID: 37783285 DOI: 10.1016/j.jmb.2023.168295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
A variety of biological roles of mechanical forces have been proposed in cell biology, such as cell signaling pathways for survival, development, growth, and differentiation. Mechanical forces alter the mechanical conditions within cells and their environment, which strongly influences the reorganization of the actin cytoskeleton. Single-molecule imaging studies of actin filaments have led to the hypothesis that the actin filament acts as a mechanosensor; e.g., increases in actin filament tension alter their conformation and affinity for regulatory proteins. However, our understanding of the molecular mechanisms underlying how tension modulates the mechanical behavior of a single actin filament is still incomplete. In this study, a direct measurement of the twisting and bending of a fluorescently labeled single actin filament under different tension levels by force application (0.8-3.4 pN) was performed using single-molecule fluorescence polarization (SMFP) microscopy. The results showed that the amplitude of twisting and bending fluctuations of a single actin filament decreased with increasing tension. Electron micrograph analysis of tensed filaments also revealed that the fluctuations in the crossover length of actin filaments decreased with increasing filament tension. Possible molecular mechanisms underlying these results involving the binding of actin-binding proteins, such as cofilin, to the filament are discussed.
Collapse
Affiliation(s)
- Kaoru Okura
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Tomoharu Matsumoto
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Akihiro Narita
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan.
| |
Collapse
|
10
|
Kuroda K, Kiya K, Matsuzaki S, Takamura H, Otani N, Tomita K, Kawai K, Fujiwara T, Nakai K, Onishi A, Katayama T, Kubo T. Altered actin dynamics is possibly implicated in the inhibition of mechanical stimulation-induced dermal fibroblast differentiation into myofibroblasts. Exp Dermatol 2023; 32:2012-2022. [PMID: 37724850 DOI: 10.1111/exd.14933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
The formation of hypertrophic scars and keloids is strongly associated with mechanical stimulation, and myofibroblasts are known to play a major role in abnormal scar formation. Wounds in patients with neurofibromatosis type 1 (NF1) become inconspicuous and lack the tendency to form abnormal scars. We hypothesized that there would be a unique response to mechanical stimulation and subsequent scar formation in NF1. To test this hypothesis, we investigated the molecular mechanisms of differentiation into myofibroblasts in NF1-derived fibroblasts and neurofibromin-depleted fibroblasts and examined actin dynamics, which is involved in fibroblast differentiation, with a focus on the pathway linking LIMK2/cofilin to actin dynamics. In normal fibroblasts, expression of α-smooth muscle actin (α-SMA), a marker of myofibroblasts, significantly increased after mechanical stimulation, whereas in NF1-derived and neurofibromin-depleted fibroblasts, α-SMA expression did not change. Phosphorylation of cofilin and subsequent actin polymerization did not increase in NF1-derived and neurofibromin-depleted fibroblasts after mechanical stimulation. Finally, in normal fibroblasts treated with Jasplakinolide, an actin stabilizer, α-SMA expression did not change after mechanical stimulation. Therefore, when neurofibromin was dysfunctional or depleted, subsequent actin polymerization did not occur in response to mechanical stimulation, which may have led to the unchanged expression of α-SMA. We believe this molecular pathway can be a potential therapeutic target for the treatment of abnormal scars.
Collapse
Affiliation(s)
- Kazuya Kuroda
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichiro Kiya
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
- Department of Radiological Sciences, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Hironori Takamura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Naoya Otani
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Kawai
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kunihiro Nakai
- Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, Fukui, Japan
| | - Ayako Onishi
- Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
11
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
12
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
13
|
Tsymbalyuk OV, Davydovska TL, Naumenko AM, Voiteshenko IS, Veselsky SP, Nyporko AY, Pidhaietska AY, Kozolup MS, Skryshevsky VA. Mechanisms of regulation of motility of the gastrointestinal tract and the hepatobiliary system under the chronic action of nanocolloids. Sci Rep 2023; 13:3823. [PMID: 36882506 PMCID: PMC9992515 DOI: 10.1038/s41598-023-30958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Modern cutting edge technologies of chemical synthesis enable the production of unique nanostructures with excess energy and high reactivity. Uncontrolled use of such materials in the food industry and pharmacology entail a risk for the development of a nanotoxicity crisis. Using the methods of tensometry, mechanokinetic analysis, biochemical methods, and bioinformatics, the current study showed that chronic (for six months) intragastrical burdening of rats with aqueous nanocolloids (AN) ZnO and TiO2 caused violations of the pacemaker-dependent mechanisms of regulation of spontaneous and neurotransmitter-induced contractions of the gastrointestinal tract (GIT) smooth muscles (SMs), and transformed the contraction efficiency indices (AU, in Alexandria units). Under the same conditions, the fundamental principle of distribution of physiologically relevant differences in the numeric values of the mechanokinetic parameters of spontaneous SM contractions between different parts of GIT is violated, which can potentially cause its pathological changes. Using molecular docking, typical bonds in the interfaces of the interaction of these nanomaterials with myosin II, a component of the contractile apparatus of smooth muscle cells (SMC) were investigated. In this connection, the study addressed the question of possible competitive relations between ZnO and TiO2 nanoparticles and actin molecules for binding sites on the myosin II actin-interaction interface. In addition, using biochemical methods, it was shown that chronic long-term exposure to nanocolloids causes changes in the primary active ion transport systems of cell plasma membranes, the activity of marker liver enzymes and disrupts the blood plasma lipid profile, which indicates the hepatotoxic effect of these nanocolloids.
Collapse
Affiliation(s)
- Olga V Tsymbalyuk
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Tamara L Davydovska
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Anna M Naumenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Ivan S Voiteshenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Stanislav P Veselsky
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Alex Y Nyporko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Anastasiia Y Pidhaietska
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Mariya S Kozolup
- Department of Foreign Languages for Sciences, Ivan Franko National University of Lviv, 41 Doroshenko St., Lviv, 79000, Ukraine
| | - Valeriy A Skryshevsky
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine. .,Corporation Science Park, Taras Shevchenko University of Kyiv, 60, Volodymyrska Str., Kyiv, 01033, Ukraine.
| |
Collapse
|
14
|
Abstract
Non-muscle myosin 2 (NM2) motors are the major contractile machines in most cell types. Unsurprisingly, these ubiquitously expressed actin-based motors power a plethora of subcellular, cellular and multicellular processes. In this Cell Science at a Glance article and the accompanying poster, we review the biochemical properties and mechanisms of regulation of this myosin. We highlight the central role of NM2 in multiple fundamental cellular processes, which include cell migration, cytokinesis, epithelial barrier function and tissue morphogenesis. In addition, we highlight recent studies using advanced imaging technologies that have revealed aspects of NM2 assembly hitherto inaccessible. This article will hopefully appeal to both cytoskeletal enthusiasts and investigators from outside the cytoskeleton field who have interests in one of the many basic cellular processes requiring actomyosin force production.
Collapse
Affiliation(s)
- Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60525, USA
| | - John A. Hammer
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60525, USA
| |
Collapse
|
15
|
Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment. Int J Mol Sci 2023; 24:ijms24032444. [PMID: 36768766 PMCID: PMC9916732 DOI: 10.3390/ijms24032444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.
Collapse
|
16
|
Abstract
Immune responses are governed by signals from the tissue microenvironment, and in addition to biochemical signals, mechanical cues and forces arising from the tissue, its extracellular matrix and its constituent cells shape immune cell function. Indeed, changes in biophysical properties of tissue alter the mechanical signals experienced by cells in many disease conditions, in inflammatory states and in the context of ageing. These mechanical cues are converted into biochemical signals through the process of mechanotransduction, and multiple pathways of mechanotransduction have been identified in immune cells. Such pathways impact important cellular functions including cell activation, cytokine production, metabolism, proliferation and trafficking. Changes in tissue mechanics may also represent a new form of 'danger signal' that alerts the innate and adaptive immune systems to the possibility of injury or infection. Tissue mechanics can change temporally during an infection or inflammatory response, offering a novel layer of dynamic immune regulation. Here, we review the emerging field of mechanoimmunology, focusing on how mechanical cues at the scale of the tissue environment regulate immune cell behaviours to initiate, propagate and resolve the immune response.
Collapse
|
17
|
Al Azzam OY, Watts JC, Reynolds JE, Davis JE, Reinemann DN. Myosin II Adjusts Motility Properties and Regulates Force Production Based on Motor Environment. Cell Mol Bioeng 2022; 15:451-465. [PMID: 36444350 PMCID: PMC9700534 DOI: 10.1007/s12195-022-00731-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Myosin II has been investigated with optical trapping, but single motor-filament assay arrangements are not reflective of the complex cellular environment. To understand how myosin interactions propagate up in scale to accomplish system force generation, we devised a novel actomyosin ensemble optical trapping assay that reflects the hierarchy and compliancy of a physiological environment and is modular for interrogating force effectors. Methods Hierarchical actomyosin bundles were formed in vitro. Fluorescent template and cargo actin filaments (AF) were assembled in a flow cell and bundled by myosin. Beads were added in the presence of ATP to bind the cargo AF and activate myosin force generation to be measured by optical tweezers. Results Three force profiles resulted across a range of myosin concentrations: high force with a ramp-plateau, moderate force with sawtooth movement, and baseline. The three force profiles, as well as high force output, were recovered even at low solution concentration, suggesting that myosins self-optimize within AFs. Individual myosin steps were detected in the ensemble traces, indicating motors are taking one step at a time while others remain engaged in order to sustain productive force generation. Conclusions Motor communication and system compliancy are significant contributors to force output. Environmental conditions, motors taking individual steps to sustain force, the ability to backslip, and non-linear concentration dependence of force indicate that the actomyosin system contains a force-feedback mechanism that senses the local cytoskeletal environment and communicates to the individual motors whether to be in a high or low duty ratio mode. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00731-1.
Collapse
Affiliation(s)
- Omayma Y. Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| | - Janie C. Watts
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| | - Justin E. Reynolds
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Juliana E. Davis
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Dana N. Reinemann
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
18
|
Hoffman LM, Jensen CC, Beckerle MC. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Mol Biol Cell 2022; 33:ar100. [PMID: 35767320 DOI: 10.1091/mbc.e22-02-0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small heat shock protein HspB1, also known as Hsp25/27, is a ubiquitously expressed molecular chaperone that responds to mechanical cues. Uniaxial cyclic stretch activates the p38 mitogen-activated protein kinase (MAPK) signaling cascade and increases the phosphorylation of HspB1. Similar to the mechanosensitive cytoskeletal regulator zyxin, phospho-HspB1 is recruited to features of the stretch-stimulated actin cytoskeleton. To evaluate the role of HspB1 and its phosphoregulation in modulating cell function, we utilized CRISPR/Cas9-edited HspB1-null cells and determined they were altered in behaviors such as actin cytoskeletal remodeling, cell spreading, and cell motility. In our model system, expression of WT HspB1, but not nonphosphorylatable HspB1, rescued certain characteristics of the HspB1-null cells including the enhanced cell motility of HspB1-null cells and the deficient actin reinforcement of stretch-stimulated HspB1-null cells. The recruitment of HspB1 to high-tension structures in geometrically constrained cells, such as actin comet tails emanating from focal adhesions, also required a phosphorylatable HspB1. We show that mechanical signals activate posttranslational regulation of the molecular chaperone, HspB1, and are required for normal cell behaviors including actin cytoskeletal remodeling, cell spreading, and cell migration.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
19
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
20
|
Xu W, Liu X, Liu X. Modeling the dynamic growth and branching of actin filaments. SOFT MATTER 2022; 18:3649-3659. [PMID: 35438124 DOI: 10.1039/d2sm00283c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an essential component of the cytoskeleton, actin filaments play a key role in a variety of cellular physiological activities. To better understand the function of actin filaments, which are a special kind of polymer chain, researchers have started to focus on the Brownian dynamics of polymers. Currently, to study the dynamics of polymers, classical explicit bead-spring models and finite-element methods (FEMs) have both been broadly used. However, compared to bead-spring models, FEMs can address the mechanical properties of actin filaments and actin networks with more detail and better accuracy. However, current FEMs do not consider the dynamic assembly of actin into an actin filament network. Here, we extend the traditional FEM and present a new framework of the FEM based on the co-rotational grid method, which allows us to simulate the dynamic growth and branching of actin filaments. Several examples are studied. The proposed numerical model is capable of capturing the dynamic assembly of actin filaments.
Collapse
Affiliation(s)
- Wu Xu
- Department of Mechanics, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, 430074, Wuhan, China
| | - Xuheng Liu
- School of Civil Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaohu Liu
- Department of Mechanics, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, 430074, Wuhan, China
| |
Collapse
|
21
|
Weng S, Huebner RJ, Wallingford JB. Convergent extension requires adhesion-dependent biomechanical integration of cell crawling and junction contraction. Cell Rep 2022; 39:110666. [PMID: 35476988 PMCID: PMC9119128 DOI: 10.1016/j.celrep.2022.110666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Convergent extension (CE) is an evolutionarily conserved collective cell movement that elongates several organ systems during development. Studies have revealed two distinct cellular mechanisms, one based on cell crawling and the other on junction contraction. Whether these two behaviors collaborate is unclear. Here, using live-cell imaging, we show that crawling and contraction act both independently and jointly but that CE is more effective when they are integrated via mechano-reciprocity. We thus developed a computational model considering both crawling and contraction. This model recapitulates the biomechanical efficacy of integrating the two modes and further clarifies how the two modes and their integration are influenced by cell adhesion. Finally, we use these insights to understand the function of an understudied catenin, Arvcf, during CE. These data are significant for providing interesting biomechanical and cell biological insights into a fundamental morphogenetic process that is implicated in human neural tube defects and skeletal dysplasias.
Collapse
Affiliation(s)
- Shinuo Weng
- Department of Molecular Biosciences, Patterson Labs, The University of Texas at Austin, 2401 Speedway, Austin, TX 78712, USA
| | - Robert J Huebner
- Department of Molecular Biosciences, Patterson Labs, The University of Texas at Austin, 2401 Speedway, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, The University of Texas at Austin, 2401 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
22
|
Nagasaki A, Katoh K, Hoshi M, Doi M, Nakamura C, Uyeda TQP. Characterization of phalloidin-negative nuclear actin filaments in U2OS cells expressing cytoplasmic actin-EGFP. Genes Cells 2022; 27:317-330. [PMID: 35194888 DOI: 10.1111/gtc.12930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Actin is a major structural component of the cytoskeleton in eukaryotic cells including fungi, plants and animals, and exists not only in the cytoplasm as cytoskeleton but also in the nucleus. Recently, we developed a novel actin probe, β-actin-EGFP fusion protein, which exhibited similar monomeric to filamentous ratio as that of endogenous actin, in contrast to the widely used EGFP-β-actin fusion protein that over-assembles in cells. Unexpectedly, this novel probe visualized an interconnected meshwork of slightly curved beam-like bundles of actin filaments in the nucleus of U2OS cells. These structures were not labeled with rhodamine phalloidin, Lifeact-EGFP or anti-actin antibodies. In addition, immunofluorescence staining and expression of cofilin-EGFP revealed that this nuclear actin structures contained cofilin. We named these actin filaments as phalloidin negative intranuclear (PHANIN) actin filaments. Since PHANIN actin filaments could not be detected by general detection methods for actin filaments, we propose that PHANIN actin filaments are different from previously reported nuclear actin structures.
Collapse
Affiliation(s)
- Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Masamichi Hoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Chikashi Nakamura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, Japan
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, Japan
| |
Collapse
|
23
|
Take Y, Chikai Y, Shimamori K, Kuragano M, Kurita H, Tokuraku K. Amyloid β aggregation induces human brain microvascular endothelial cell death with abnormal actin organization. Biochem Biophys Rep 2022; 29:101189. [PMID: 34977364 PMCID: PMC8685982 DOI: 10.1016/j.bbrep.2021.101189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a disease in which amyloid β (Aβ) is deposited on the walls of blood vessels in the brain, making those walls brittle and causing cerebral hemorrhage. However, the mechanism underlying its onset is not well understood. The aggregation and accumulation of Aβ cause the occlusion and fragility of blood vessels due to endothelial cell damage, breakdown of the blood-brain barrier, and replacement with elements constituting the blood vessel wall. In this study, we observed the effect of Aβ on human primary brain microvascular endothelial cells (hBMECs) in real-time using quantum dot nanoprobes to elucidate the mechanism of vascular weakening by Aβ. It was observed that Aβ began to aggregate around hBMECs after the start of incubation and that the cells were covered with aggregates. Aβ aggregates firmly anchored the cells on the plate surface, and eventually suppressed cell motility and caused cell death. Furthermore, Aβ aggregation induced the organization of abnormal actin, resulting in a significant increase in intracellular actin dots over 10 μm2. These results suggest that the mechanism by which Aβ forms a fragile vessel wall is as follows: Aβ aggregation around vascular endothelial cells anchors them to the substrate, induces abnormal actin organization, and leads to cell death. Amyloid β (Aβ) aggregates anchor human endothelial cells to the substrate. Aβ induces abnormal actin organization in human endothelial cells. Aβ induces cell death of human endothelial cells.
Collapse
Affiliation(s)
- Yushiro Take
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
- Ohkawara Neurosurgical Hospital, Hokkaido, 050-0082, Japan
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Saitama, 350-1298, Japan
| | - Yusaku Chikai
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Keiya Shimamori
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Masahiro Kuragano
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Hiroki Kurita
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Saitama, 350-1298, Japan
| | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
- Corresponding author.
| |
Collapse
|
24
|
Hollósi A, Pászty K, Kellermayer M, Charras G, Varga A. BRAF Modulates Stretch-Induced Intercellular Gap Formation through Localized Actin Reorganization. Int J Mol Sci 2021; 22:ijms22168989. [PMID: 34445693 PMCID: PMC8396467 DOI: 10.3390/ijms22168989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Mechanical forces acting on cell–cell adhesion modulate the barrier function of endothelial cells. The actively remodeled actin cytoskeleton impinges on cell–cell adhesion to counteract external forces. We applied stress on endothelial monolayers by mechanical stretch to uncover the role of BRAF in the stress-induced response. Control cells responded to external forces by organizing and stabilizing actin cables in the stretched cell junctions. This was accompanied by an increase in intercellular gap formation, which was prevented in BRAF knockdown monolayers. In the absence of BRAF, there was excess stress fiber formation due to the enhanced reorganization of actin fibers. Our findings suggest that stretch-induced intercellular gap formation, leading to a decrease in barrier function of blood vessels, can be reverted by BRAF RNAi. This is important when the endothelium experiences changes in external stresses caused by high blood pressure, leading to edema, or by immune or cancer cells in inflammation or metastasis.
Collapse
Affiliation(s)
- Anna Hollósi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Katalin Pászty
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK;
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Andrea Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
- Correspondence:
| |
Collapse
|
25
|
Hosokawa N, Kuragano M, Yoshino A, Shibata K, Uyeda TQP, Tokuraku K. Unidirectional cooperative binding of fimbrin actin-binding domain 2 to actin filament. Biochem Biophys Res Commun 2021; 552:59-65. [PMID: 33740665 DOI: 10.1016/j.bbrc.2021.02.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 01/07/2023]
Abstract
Fimbrin forms bundles of parallel actin filaments in filopodia, but it remains unclear how fimbrin forms well-ordered bundles. To address this issue, we focused on the cooperative interaction between the actin-binding domain of fimbrin and actin filaments. First, we loosely immobilized actin filaments on a glass surface via a positively charged lipid layer and observed the binding of GFP-fused actin-binding domain 2 of fimbrin using fluorescence microscopy. The actin-binding domain formed low-density clusters with unidirectional growth along actin filaments. When the actin filaments were tightly immobilized to the surface by increasing the charge density of the lipid layer, cluster formation was suppressed. This result suggests that the propagation of cooperative structural changes of actin filaments evoked by binding of the actin-binding domain was suppressed by a strong physical interaction with the glass surface. Interestingly, binding of the fimbrin actin-binding domain shortened the length of loosely immobilized actin filaments. Based on these results, we propose that fimbrin-actin interactions accompanied by unidirectional long-range allostery help the formation of well-ordered parallel actin filament bundles.
Collapse
Affiliation(s)
- Naoki Hosokawa
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Masahiro Kuragano
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Atsuki Yoshino
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Keitaro Shibata
- Department of Cell Biology, Graduate School of Medical Science, Tokushima University, Tokushima, 770-8503, Japan
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan.
| |
Collapse
|
26
|
Mechanically tuning actin filaments to modulate the action of actin-binding proteins. Curr Opin Cell Biol 2020; 68:72-80. [PMID: 33160108 DOI: 10.1016/j.ceb.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
In cells, the actin cytoskeleton is regulated by an interplay between mechanics and biochemistry. A key mechanism, which has emerged based on converging indications from structural, cellular, and biophysical data, depicts the actin filament as a mechanically tunable substrate: mechanical stress applied to an actin filament induces conformational changes, which modify the binding and the regulatory action of actin-binding proteins. For a long time, however, direct evidence of this mechanotransductive mechanism was very scarce. This situation is changing rapidly, and recent in vitro single-filament studies using different techniques have revealed that several actin-binding proteins are able to sense tension, curvature, and/or torsion, applied to actin filaments. Here, we discuss these recent advances and their possible implications.
Collapse
|
27
|
Kelley CA, Triplett O, Mallick S, Burkewitz K, Mair WB, Cram EJ. FLN-1/filamin is required to anchor the actomyosin cytoskeleton and for global organization of sub-cellular organelles in a contractile tissue. Cytoskeleton (Hoboken) 2020; 77:379-398. [PMID: 32969593 DOI: 10.1002/cm.21633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.
Collapse
Affiliation(s)
- Charlotte A Kelley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Olivia Triplett
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samyukta Mallick
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Rens EG, Merks RM. Cell Shape and Durotaxis Explained from Cell-Extracellular Matrix Forces and Focal Adhesion Dynamics. iScience 2020; 23:101488. [PMID: 32896767 PMCID: PMC7482025 DOI: 10.1016/j.isci.2020.101488] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Many cells are small and rounded on soft extracellular matrices (ECM), elongated on stiffer ECMs, and flattened on hard ECMs. Cells also migrate up stiffness gradients (durotaxis). Using a hybrid cellular Potts and finite-element model extended with ODE-based models of focal adhesion (FA) turnover, we show that the full range of cell shape and durotaxis can be explained in unison from dynamics of FAs, in contrast to previous mathematical models. In our 2D cell-shape model, FAs grow due to cell traction forces. Forces develop faster on stiff ECMs, causing FAs to stabilize and, consequently, cells to spread on stiff ECMs. If ECM stress further stabilizes FAs, cells elongate on substrates of intermediate stiffness. We show that durotaxis follows from the same set of assumptions. Our model contributes to the understanding of the basic responses of cells to ECM stiffness, paving the way for future modeling of more complex cell-ECM interactions.
Collapse
Affiliation(s)
- Elisabeth G. Rens
- Scientific Computing, CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands
- Mathematics Department, University of British Columbia, Mathematics Road 1984, Vancouver, BC V6T 1Z2, Canada
| | - Roeland M.H. Merks
- Scientific Computing, CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands
| |
Collapse
|
29
|
Ishida-Ishihara S, Akiyama M, Furusawa K, Naguro I, Ryuno H, Sushida T, Ishihara S, Haga H. Osmotic gradients induce stable dome morphogenesis on extracellular matrix. J Cell Sci 2020; 133:jcs.243865. [PMID: 32576662 DOI: 10.1242/jcs.243865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental processes in morphogenesis is dome formation, but many of the mechanisms involved are unexplored. Previous in vitro studies showed that an osmotic gradient is the driving factor of dome formation. However, these investigations were performed without extracellular matrix (ECM), which provides structural support to morphogenesis. With the use of ECM, we observed that basal hypertonic stress induced stable domes in vitro that have not been seen in previous studies. These domes developed as a result of ECM swelling via aquaporin water transport activity. Based on computer simulation, uneven swelling, with a positive feedback between cell stretching and enhanced water transport, was a cause of dome formation. These results indicate that osmotic gradients induce dome morphogenesis via both enhanced water transport activity and subsequent ECM swelling.
Collapse
Affiliation(s)
- Sumire Ishida-Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masakazu Akiyama
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano 4-21-1, Nakano-ku, Tokyo 164-8525, Japan
| | - Kazuya Furusawa
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan.,Faculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen 3-6-1, Fukui 910-8505, Japan
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Ryuno
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takamichi Sushida
- Department of Computer Science and Technology, Salesian Polytechnic, Oyamagaoka 4-6-8, Machida City, Tokyo 194-0215, Japan
| | - Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan.,Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan .,Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
30
|
Long-Range and Directional Allostery of Actin Filaments Plays Important Roles in Various Cellular Activities. Int J Mol Sci 2020; 21:ijms21093209. [PMID: 32370032 PMCID: PMC7246755 DOI: 10.3390/ijms21093209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
A wide variety of uniquely localized actin-binding proteins (ABPs) are involved in various cellular activities, such as cytokinesis, migration, adhesion, morphogenesis, and intracellular transport. In a micrometer-scale space such as the inside of cells, protein molecules diffuse throughout the cell interior within seconds. In this condition, how can ABPs selectively bind to particular actin filaments when there is an abundance of actin filaments in the cytoplasm? In recent years, several ABPs have been reported to induce cooperative conformational changes to actin filaments allowing structural changes to propagate along the filament cables uni- or bidirectionally, thereby regulating the subsequent binding of ABPs. Such propagation of ABP-induced cooperative conformational changes in actin filaments may be advantageous for the elaborate regulation of cellular activities driven by actin-based machineries in the intracellular space, which is dominated by diffusion. In this review, we focus on long-range allosteric regulation driven by cooperative conformational changes of actin filaments that are evoked by binding of ABPs, and discuss roles of allostery of actin filaments in narrow intracellular spaces.
Collapse
|
31
|
Takano M, Yura K, Uyeda T, Yasuda K. Biophysics at Waseda University. Biophys Rev 2020; 12:225-232. [PMID: 32157615 PMCID: PMC7242523 DOI: 10.1007/s12551-020-00638-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Biophysics in Waseda University was started in 1965 as one of the three key research areas that constitute the Physics Department. In the biophysics group, one theoretical lab and two experimental labs are now working on the cutting-edge themes on biophysics, disseminating the ideas and knowledge of biophysics to undergraduate and graduate students from the viewpoint of physics.
Collapse
Affiliation(s)
- Mitsunori Takano
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kei Yura
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Taro Uyeda
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kenji Yasuda
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
32
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
33
|
It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020; 472:419-433. [PMID: 32239285 PMCID: PMC7165135 DOI: 10.1007/s00424-020-02369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood. The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension, they play a potent role in the field of channelopathies and mechanomedicine.
Collapse
|
34
|
Li Z, Lee H, Eskin SG, Ono S, Zhu C, McIntire LV. Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex. Biomech Model Mechanobiol 2020; 19:1509-1521. [PMID: 31965350 DOI: 10.1007/s10237-019-01284-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
Abstract
Formins promote actin assembly and are involved in force-dependent cytoskeletal remodeling. However, how force alters the formin functions still needs to be investigated. Here, using atomic force microscopy and biomembrane force probe, we investigated how mechanical force affects formin-mediated actin interactions at the level of single molecular complexes. The biophysical parameters of G-actin/G-actin (GG) or G-actin/F-actin (GF) interactions were measured under force loading in the absence or presence of two C-terminal fragments of the mouse formin mDia1: mDia1Ct that contains formin homology 2 domain (FH2) and diaphanous autoregulatory domain (DAD) and mDia1Ct-ΔDAD that contains only FH2. Under force-free conditions, neither association nor dissociation kinetics of GG and GF interactions were significantly affected by mDia1Ct or mDia1Ct-ΔDAD. Under tensile forces (0-7 pN), the average lifetimes of these bonds were prolonged and molecular complexes were stiffened in the presence of mDia1Ct, indicating mDia1Ct association kinetically stabilizes and mechanically strengthens bonds of the dimer and at the end of the F-actin under force. Interestingly, mDia1Ct-ΔDAD prolonged the lifetime of GF but not GG bond under force, suggesting the DAD domain is critical for mDia1Ct to strengthen GG interaction. These data unravel the mechanochemical coupling in formin-induced actin assembly and provide evidence to understand the initiation of formin-mediated actin elongation and nucleation.
Collapse
Affiliation(s)
- Zhenhai Li
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA.,Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Hyunjung Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Suzanne G Eskin
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA.
| | - Cheng Zhu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA. .,George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Larry V McIntire
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
35
|
How Actin Tracks Affect Myosin Motors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:183-197. [DOI: 10.1007/978-3-030-38062-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
36
|
The many implications of actin filament helicity. Semin Cell Dev Biol 2019; 102:65-72. [PMID: 31862222 DOI: 10.1016/j.semcdb.2019.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
Collapse
|
37
|
Abstract
The cytoskeleton provides structural integrity to cells and serves as a key component in mechanotransduction. Tensins are thought to provide a force-bearing linkage between integrins and the actin cytoskeleton; yet, direct evidence of tensin’s role in mechanotransduction is lacking. We here report that local force application to epithelial cells using a micrometer-sized needle leads to rapid accumulation of cten (tensin 4), but not tensin 1, along a fibrous intracellular network. Surprisingly, cten-positive fibers are not actin fibers; instead, these fibers are keratin intermediate filaments. The dissociation of cten from tension-free keratin fibers depends on the duration of cell stretch, demonstrating that the external force favors maturation of cten−keratin network interactions over time and that keratin fibers retain remarkable structural memory of a cell’s force-bearing state. These results establish the keratin network as an integral part of force-sensing elements recruiting distinct proteins like cten and suggest the existence of a mechanotransduction pathway via keratin network.
Collapse
|
38
|
Lee M, Kang EH. Molecular dynamics study of interactions between polymorphic actin filaments and gelsolin segment-1. Proteins 2019; 88:385-392. [PMID: 31498927 DOI: 10.1002/prot.25813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022]
Abstract
The assembly of protein actin into double-helical filaments promotes many eukaryotic cellular processes that are regulated by actin-binding proteins (ABPs). Actin filaments can adopt multiple conformations, known as structural polymorphism, which possibly influences the interaction between filaments and ABPs. Gelsolin is a Ca2+ -regulated ABP that severs and caps actin filaments. Gelsolin binding modulates filament structure; however, it is not known how polymorphic actin filament structures influence an interaction of gelsolin S1 with the barbed-end of filament. Herein, we investigated how polymorphic structures of actin filaments affect the interactions near interfaces between the gelsolin segment 1 (S1) domain and the filament barbed-end. Using all-atom molecular dynamics simulations, we demonstrate that different tilted states of subunits modulate gelsolin S1 interactions with the barbed-end of polymorphic filaments. Hydrogen bonding and interaction energy at the filament-gelsolin S1 interface indicate distinct conformations of filament barbed ends, resulting in different interactions of gelsolin S1. This study demonstrates that filament's structural multiplicity plays important roles in the interactions of actin with ABPs.
Collapse
Affiliation(s)
- Myeongsang Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Ellen H Kang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Department of Physics, University of Central Florida, Orlando, Florida.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida
| |
Collapse
|
39
|
Kothari P, Johnson C, Sandone C, Iglesias PA, Robinson DN. How the mechanobiome drives cell behavior, viewed through the lens of control theory. J Cell Sci 2019; 132:jcs234476. [PMID: 31477578 PMCID: PMC6771144 DOI: 10.1242/jcs.234476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells have evolved sophisticated systems that integrate internal and external inputs to coordinate cell shape changes during processes, such as development, cell identity determination, and cell and tissue homeostasis. Cellular shape-change events are driven by the mechanobiome, the network of macromolecules that allows cells to generate, sense and respond to externally imposed and internally generated forces. Together, these components build the cellular contractility network, which is governed by a control system. Proteins, such as non-muscle myosin II, function as both sensors and actuators, which then link to scaffolding proteins, transcription factors and metabolic proteins to create feedback loops that generate the foundational mechanical properties of the cell and modulate cellular behaviors. In this Review, we highlight proteins that establish and maintain the setpoint, or baseline, for the control system and explore the feedback loops that integrate different cellular processes with cell mechanics. Uncovering the genetic, biophysical and biochemical interactions between these molecular components allows us to apply concepts from control theory to provide a systems-level understanding of cellular processes. Importantly, the actomyosin network has emerged as more than simply a 'downstream' effector of linear signaling pathways. Instead, it is also a significant driver of cellular processes traditionally considered to be 'upstream'.
Collapse
Affiliation(s)
- Priyanka Kothari
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cecilia Johnson
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Corinne Sandone
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Pablo A Iglesias
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Douglas N Robinson
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
40
|
Tsujioka M, Uyeda TQP, Iwadate Y, Patel H, Shibata K, Yumoto T, Yonemura S. Actin-binding domains mediate the distinct distribution of two Dictyostelium Talins through different affinities to specific subsets of actin filaments during directed cell migration. PLoS One 2019; 14:e0214736. [PMID: 30946777 PMCID: PMC6449030 DOI: 10.1371/journal.pone.0214736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although the distinct distribution of certain molecules along the anterior or posterior edge is essential for directed cell migration, the mechanisms to maintain asymmetric protein localization have not yet been fully elucidated. Here, we studied a mechanism for the distinct localizations of two Dictyostelium talin homologues, talin A and talin B, both of which play important roles in cell migration and adhesion. Using GFP fusion, we found that talin B, as well as its C-terminal actin-binding region, which consists of an I/LWEQ domain and a villin headpiece domain, was restricted to the leading edge of migrating cells. This is in sharp contrast to talin A and its C-terminal actin-binding domain, which co-localized with myosin II along the cell posterior cortex, as reported previously. Intriguingly, even in myosin II-null cells, talin A and its actin-binding domain displayed a specific distribution, co-localizing with stretched actin filaments. In contrast, talin B was excluded from regions rich in stretched actin filaments, although a certain amount of its actin-binding region alone was present in those areas. When cells were sucked by a micro-pipette, talin B was not detected in the retracting aspirated lobe where acto-myosin, talin A, and the actin-binding regions of talin A and talin B accumulated. Based on these results, we suggest that talin A predominantly interacts with actin filaments stretched by myosin II through its C-terminal actin-binding region, while the actin-binding region of talin B does not make such distinctions. Furthermore, talin B appears to have an additional, unidentified mechanism that excludes it from the region rich in stretched actin filaments. We propose that these actin-binding properties play important roles in the anterior and posterior enrichment of talin B and talin A, respectively, during directed cell migration.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Electron Microscope Laboratory, RIKEN, Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
- * E-mail:
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | | | - Hitesh Patel
- Edinburgh Cancer Research Centre, The University of Edinburgh, Crewe Road South, Edinburgh, Scotland
| | - Keitaro Shibata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hyogo, Japan
| | - Tenji Yumoto
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | - Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN, Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| |
Collapse
|
41
|
Shutova MS, Svitkina TM. Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells. BIOCHEMISTRY (MOSCOW) 2019; 83:1459-1468. [PMID: 30878021 DOI: 10.1134/s0006297918120040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various forms of cell motility critically depend on pushing, pulling, and resistance forces generated by the actin cytoskeleton. Whereas pushing forces largely depend on actin polymerization, pulling forces responsible for cell contractility and resistance forces maintaining the cell shape require interaction of actin filaments with the multivalent molecular motor myosin II. In contrast to muscle-specific myosin II paralogs, nonmuscle myosin II (NMII) functions in virtually all mammalian cells, where it executes numerous mechanical tasks. NMII is expressed in mammalian cells as a tissue-specific combination of three paralogs, NMIIA, NMIIB, and NMIIC. Despite overall similarity, these paralogs differ in their molecular properties, which allow them to play both unique and common roles. Importantly, the three paralogs can also cooperate with each other by mixing and matching their unique capabilities. Through specialization and cooperation, NMII paralogs together execute a great variety of tasks in many different cell types. Here, we focus on mammalian NMII paralogs and review novel aspects of their kinetics, regulation, and functions in cells from the perspective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cells.
Collapse
Affiliation(s)
- M S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proc Natl Acad Sci U S A 2019; 116:3594-3603. [PMID: 30808751 DOI: 10.1073/pnas.1821638116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA - /E -/H - and racE - mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
Collapse
|
43
|
Lee H, Eskin SG, Ono S, Zhu C, McIntire LV. Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. J Cell Sci 2019; 132:jcs.216911. [PMID: 30659118 DOI: 10.1242/jcs.216911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023] Open
Abstract
The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hyunjung Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suzanne G Eskin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University, Atlanta, GA 30322, USA .,Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA .,Geroge W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Larry V McIntire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
44
|
Schiffhauer ES, Ren Y, Iglesias VA, Kothari P, Iglesias PA, Robinson DN. Myosin IIB assembly state determines its mechanosensitive dynamics. J Cell Biol 2019; 218:895-908. [PMID: 30655296 PMCID: PMC6400566 DOI: 10.1083/jcb.201806058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
Dynamical cell shape changes require a highly sensitive cellular system that can respond to chemical and mechanical inputs. Myosin IIs are key players in the cell's ability to react to mechanical inputs, demonstrating an ability to accumulate in response to applied stress. Here, we show that inputs that influence the ability of myosin II to assemble into filaments impact the ability of myosin to respond to stress in a predictable manner. Using mathematical modeling for Dictyostelium myosin II, we predict that myosin II mechanoresponsiveness will be biphasic with an optimum established by the percentage of myosin II assembled into bipolar filaments. In HeLa and NIH 3T3 cells, heavy chain phosphorylation of NMIIB by PKCζ, as well as expression of NMIIA, can control the ability of NMIIB to mechanorespond by influencing its assembly state. These data demonstrate that multiple inputs to the myosin II assembly state integrate at the level of myosin II to govern the cellular response to mechanical inputs.
Collapse
Affiliation(s)
- Eric S Schiffhauer
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yixin Ren
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Vicente A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Priyanka Kothari
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD .,Department of Pharmacology and Molecular Sciences School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
45
|
Kanoldt V, Fischer L, Grashoff C. Unforgettable force – crosstalk and memory of mechanosensitive structures. Biol Chem 2018; 400:687-698. [DOI: 10.1515/hsz-2018-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
Abstract
Abstract
The ability of cells to sense and respond to mechanical stimuli is crucial for many developmental and homeostatic processes, while mechanical dysfunction of cells has been associated with numerous pathologies including muscular dystrophies, cardiovascular defects and epithelial disorders. Yet, how cells detect and process mechanical information is still largely unclear. In this review, we outline major mechanisms underlying cellular mechanotransduction and we summarize the current understanding of how cells integrate information from distinct mechanosensitive structures to mediate complex mechanoresponses. We also discuss the concept of mechanical memory and describe how cells store information on previous mechanical events for different periods of time.
Collapse
Affiliation(s)
- Verena Kanoldt
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Lisa Fischer
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
- Department of Quantitative Cell Biology , Institute of Molecular Cell Biology, University of Münster , 48149 Münster , Germany
| |
Collapse
|
46
|
Okimura C, Sakumura Y, Shimabukuro K, Iwadate Y. Sensing of substratum rigidity and directional migration by fast-crawling cells. Phys Rev E 2018; 97:052401. [PMID: 29906928 DOI: 10.1103/physreve.97.052401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/24/2022]
Abstract
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Collapse
Affiliation(s)
- Chika Okimura
- Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Yuichi Sakumura
- School of Information Science and Technology, Aichi Prefectural University, Aichi 480-1198, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube 755-8555, Japan
| | - Yoshiaki Iwadate
- Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
47
|
Sakamoto S, Thumkeo D, Ohta H, Zhang Z, Huang S, Kanchanawong P, Fuu T, Watanabe S, Shimada K, Fujihara Y, Yoshida S, Ikawa M, Watanabe N, Saitou M, Narumiya S. mDia1/3 generate cortical F-actin meshwork in Sertoli cells that is continuous with contractile F-actin bundles and indispensable for spermatogenesis and male fertility. PLoS Biol 2018; 16:e2004874. [PMID: 30256801 PMCID: PMC6175529 DOI: 10.1371/journal.pbio.2004874] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell-germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.
Collapse
Affiliation(s)
- Satoko Sakamoto
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dean Thumkeo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (DT); (SN)
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Zhen Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Shuangru Huang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Takayoshi Fuu
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sadanori Watanabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Shimada
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | | | - Masahito Ikawa
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (DT); (SN)
| |
Collapse
|
48
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
49
|
Harris AR, Jreij P, Fletcher DA. Mechanotransduction by the Actin Cytoskeleton: Converting Mechanical Stimuli into Biochemical Signals. Annu Rev Biophys 2018. [DOI: 10.1146/annurev-biophys-070816-033547] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Force transmission through the actin cytoskeleton plays a central role in cell movements, shape change, and internal organization. Dynamic reorganization of actin filaments by an array of specialized binding proteins creates biochemically and architecturally distinct structures, many of which are finely tuned to exert or resist mechanical loads. The molecular complexity of the actin cytoskeleton continues to be revealed by detailed biochemical assays, and the architectural diversity and dynamics of actin structures are being uncovered by advances in super-resolution fluorescence microscopy and electron microscopy. However, our understanding of how mechanical forces feed back on cytoskeletal architecture and actin-binding protein organization is comparatively limited. In this review, we discuss recent work investigating how mechanical forces applied to cytoskeletal proteins are transduced into biochemical signals. We explore multiple mechanisms for mechanical signal transduction, including the mechanosensitive behavior of actin-binding proteins, the effect of mechanical force on actin filament dynamics, and the influence of mechanical forces on the structure of single actin filaments. The emerging picture is one in which the actin cytoskeleton is defined not only by the set of proteins that constitute a network but also by the constant interplay of mechanical forces and biochemistry.
Collapse
Affiliation(s)
- Andrew R. Harris
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
| | - Pamela Jreij
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
| | - Daniel A. Fletcher
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
50
|
Furukawa KT, Yamashita K, Sakurai N, Ohno S. The Epithelial Circumferential Actin Belt Regulates YAP/TAZ through Nucleocytoplasmic Shuttling of Merlin. Cell Rep 2018; 20:1435-1447. [PMID: 28793266 DOI: 10.1016/j.celrep.2017.07.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Circumferential actin belts underlying the adherens junctions of columnar epithelial cell monolayers control intercellular surface tension and cell shape to maintain tissue integrity. Yes-associated protein (YAP) and its paralog TAZ are proliferation-activating transcriptional coactivators that shuttle between the nucleus and cytoplasm. Previous studies suggest the importance of stress fibers in the actin cytoskeleton for regulation of YAP nuclear localization; however, the role of the circumferential actin belt on YAP localization remains unclarified. By manipulating actin tension, we demonstrate that circumferential actin belt tension suppresses YAP/TAZ nuclear localization. This suppression requires Merlin, an F-actin binding protein associated with adherens junctions. Merlin physically interacts with YAP/TAZ, and nuclear export sequences of Merlin are required for suppression. Together, with the observation that the association between E-cadherin and Merlin was diminished by tension in circumferential actin belts, our results suggest that released Merlin undergoes nucleocytoplasmic shutting and mediates export of YAP/TAZ from the nucleus.
Collapse
Affiliation(s)
- Kana T Furukawa
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Kazunari Yamashita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Natsuki Sakurai
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|