1
|
Singh DK, Ahmed M, Akter S, Shivanna V, Bucşan AN, Mishra A, Golden NA, Didier PJ, Doyle LA, Hall-Ursone S, Roy CJ, Arora G, Dick EJ, Jagannath C, Mehra S, Khader SA, Kaushal D. Prevention of tuberculosis in cynomolgus macaques by an attenuated Mycobacterium tuberculosis vaccine candidate. Nat Commun 2025; 16:1957. [PMID: 40000643 PMCID: PMC11861635 DOI: 10.1038/s41467-025-57090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The need for novel vaccination strategies to control tuberculosis (TB) is underscored by the limited and variable efficacy of the currently licensed vaccine, Bacille Calmette-Guerin (BCG). SigH is critical for Mycobacterium tuberculosis (Mtb) to mitigate oxidative stress, and in its absence Mtb is unable to scavenge host oxidative/nitrosative bursts. The MtbΔsigH (ΔsigH) isogenic mutant induces signatures of the innate immunity in macrophages and protects rhesus macaques from a lethal Mtb challenge. To understand the immune mechanisms of protection via mucosal vaccination with ΔsigH, we employed the resistant cynomolgus macaque model; and our results show that ΔsigH vaccination significantly protects against lethal Mtb challenge in this species. ΔsigH-vaccinated macaques are devoid of granulomas and instead generate inducible bronchus associated lymphoid structures, and robust antigen-specific CD4+ and CD8+ T cell responses, driven by a hyper-immune, trained immunity-like phenotype in host macrophages with enhanced antigen presentation. Correlates of protection in ΔsigH-vaccinated macaques include gene signatures of T cell activation, IFNG production, including IFN-responsive, activated T cells, concomitant with IFNG production, and suppression of IDO+ Type I IFN-responsive macrophage recruitment. Thus, ΔsigH is a promising lead candidate for further development as an antitubercular vaccine.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Sadia Akter
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Vinay Shivanna
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Allison N Bucşan
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Nadia A Golden
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Peter J Didier
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Lara A Doyle
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chad J Roy
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Garima Arora
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
3
|
Sarmah DT, Parveen R, Kundu J, Chatterjee S. Latent tuberculosis and computational biology: A less-talked affair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:17-31. [PMID: 36781150 DOI: 10.1016/j.pbiomolbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Tuberculosis (TB) is a pervasive and devastating air-borne disease caused by the organisms belonging to the Mycobacterium tuberculosis (Mtb) complex. Currently, it is the global leader in infectious disease-related death in adults. The proclivity of TB to enter the latent state has become a significant impediment to the global effort to eradicate TB. Despite decades of research, latent tuberculosis (LTB) mechanisms remain poorly understood, making it difficult to develop efficient treatment methods. In this review, we seek to shed light on the current understanding of the mechanism of LTB, with an accentuation on the insights gained through computational biology. We have outlined various well-established computational biology components, such as omics, network-based techniques, mathematical modelling, artificial intelligence, and molecular docking, to disclose the crucial facets of LTB. Additionally, we highlighted important tools and software that may be used to conduct a variety of systems biology assessments. Finally, we conclude the article by addressing the possible future directions in this field, which might help a better understanding of LTB progression.
Collapse
Affiliation(s)
- Dipanka Tanu Sarmah
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rubi Parveen
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Jayendrajyoti Kundu
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
4
|
Singh B, Moodley C, Singh DK, Escobedo RA, Sharan R, Arora G, Ganatra SR, Shivanna V, Gonzalez O, Hall-Ursone S, Dick EJ, Kaushal D, Alvarez X, Mehra S. Inhibition of indoleamine dioxygenase leads to better control of tuberculosis adjunctive to chemotherapy. JCI Insight 2023; 8:e163101. [PMID: 36692017 PMCID: PMC9977315 DOI: 10.1172/jci.insight.163101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
The expression of indoleamine 2,3-dioxygenase (IDO), a robust immunosuppressant, is significantly induced in macaque tuberculosis (TB) granulomas, where it is expressed on IFN-responsive macrophages and myeloid-derived suppressor cells. IDO expression is also highly induced in human TB granulomas, and products of its activity are detected in patients with TB. In vivo blockade of IDO activity resulted in the reorganization of the granuloma with substantially greater T cells being recruited to the core of the lesions. This correlated with better immune control of TB and reduced lung M. tuberculosis burdens. To study if the IDO blockade strategy can be translated to a bona fide host-directed therapy in the clinical setting of TB, we studied the effect of IDO inhibitor 1-methyl-d-tryptophan adjunctive to suboptimal anti-TB chemotherapy. While two-thirds of controls and one-third of chemotherapy-treated animals progressed to active TB, inhibition of IDO adjunctive to the same therapy protected macaques from TB, as measured by clinical, radiological, and microbiological attributes. Although chemotherapy improved proliferative T cell responses, adjunctive inhibition of IDO further enhanced the recruitment of effector T cells to the lung. These results strongly suggest the possibility that IDO inhibition can be attempted adjunctive to anti-TB chemotherapy in clinical trials.
Collapse
|
5
|
Bo H, Moure UAE, Yang Y, Pan J, Li L, Wang M, Ke X, Cui H. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front Cell Infect Microbiol 2023; 13:1062963. [PMID: 36936766 PMCID: PMC10020944 DOI: 10.3389/fcimb.2023.1062963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis (TB), remains a pathogen of great interest on a global scale. This airborne pathogen affects the lungs, where it interacts with macrophages. Acidic pH, oxidative and nitrosative stressors, and food restrictions make the macrophage's internal milieu unfriendly to foreign bodies. Mtb subverts the host immune system and causes infection due to its genetic arsenal and secreted effector proteins. In vivo and in vitro research have examined Mtb-host macrophage interaction. This interaction is a crucial stage in Mtb infection because lung macrophages are the first immune cells Mtb encounters in the host. This review summarizes Mtb effectors that interact with macrophages. It also examines how macrophages control and eliminate Mtb and how Mtb manipulates macrophage defense mechanisms for its own survival. Understanding these mechanisms is crucial for TB prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Haotian Bo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yuanmiao Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jun Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Miao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| |
Collapse
|
6
|
Thakur Z, Vaid RK, Anand T, Tripathi BN. Comparative Genome Analysis of 19 Trueperella pyogenes Strains Originating from Different Animal Species Reveal a Genetically Diverse Open Pan-Genome. Antibiotics (Basel) 2022; 12:antibiotics12010024. [PMID: 36671226 PMCID: PMC9854608 DOI: 10.3390/antibiotics12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Correspondence:
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Bhupendra Nath Tripathi
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Division of Animal Science, Krishi Bhavan, New Delhi 110001, India
| |
Collapse
|
7
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
8
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
9
|
Gough M, Singh DK, Moodley C, Niu T, Golden NA, Kaushal D, Mehra S. Peripheral Blood Markers Correlate with the Progression of Active Tuberculosis Relative to Latent Control of Mycobacterium tuberculosis Infection in Macaques. Pathogens 2022; 11:544. [PMID: 35631065 PMCID: PMC9146669 DOI: 10.3390/pathogens11050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Despite a century of research into tuberculosis (TB), there is a dearth of reproducible, easily quantifiable, biomarkers that can predict disease onset and differentiate between host disease states. Due to the challenges associated with human sampling, nonhuman primates (NHPs) are utilized for recapitulating the closest possible modelling of human TB. To establish a predictive peripheral biomarker profile based on a larger cohort of rhesus macaques (RM), we analyzed results pertaining to peripheral blood serum chemistry and cell counts from RMs that were experimentally exposed to Mtb in our prior studies and characterized as having either developed active TB (ATB) disease or latent TB infection (LTBI). We compared lung CFU burdens and quantitative pathologies with a number of measurables in the peripheral blood. Based on our results, the investigations were then extended to the study of specific molecules and cells in the lung compartments of a subset of these animals and their immune responses. In addition to the elevated serum C-reactive protein (CRP) levels, frequently used to discern the level of Mtb infection in model systems, reduced serum albumin-to-globulin (A/G) ratios were also predictive of active TB disease. Furthermore, higher peripheral myeloid cell levels, particularly those of neutrophils, kynurenine-to-tryptophan ratio, an indicator of induced expression of the immunosuppressive molecule indoleamine dioxygenase, and an influx of myeloid cell populations could also efficiently discriminate between ATB and LTBI in experimentally infected macaques. These quantifiable correlates of disease were then used in conjunction with a regression-based analysis to predict bacterial load. Our results suggest a potential biomarker profile of TB disease in rhesus macaques, that could inform future NHP-TB research. Our results thus suggest that specific biomarkers may be developed from the myeloid subset of peripheral blood or plasma with the ability to discriminate between active and latent Mtb infection.
Collapse
Affiliation(s)
- Maya Gough
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
- Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Nadia A. Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| |
Collapse
|
10
|
Pshennikova ES, Voronina AS. Dormancy: There and Back Again. Mol Biol 2022; 56:735-755. [PMID: 36217335 PMCID: PMC9534470 DOI: 10.1134/s0026893322050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
Abstract
Many cells are capable of maintaining viability in a non-dividing state with minimal metabolism under unfavorable conditions. These are germ cells, adult stem cells, and microorganisms. Unfortunately, a resting state, or dormancy, is possible for tuberculosis bacilli in a latent form of the disease and cancer cells, which may later form secondary tumors (metastases) in different parts of the body. These cells are resistant to therapy that can destroy intensely dividing cells and to the host immune system. A cascade of reactions that allows cells to enter and exit dormancy is triggered by regulatory factors from the microenvironment in niches that harbor the cells. A ratio of forbidding and permitting signals dictates whether the cells become dormant or start proliferation. The only difference between the cell dormancy regulation in normal and pathological conditions is that pathogens, mycobacteria, and cancer cells can influence their own fate by changing their microenvironment. Certain mechanisms of these processes are considered in the review.
Collapse
Affiliation(s)
- E. S. Pshennikova
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - A. S. Voronina
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
11
|
Enriquez AB, Izzo A, Miller SM, Stewart EL, Mahon RN, Frank DJ, Evans JT, Rengarajan J, Triccas JA. Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Front Immunol 2021; 12:740117. [PMID: 34759923 PMCID: PMC8572789 DOI: 10.3389/fimmu.2021.740117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death worldwide due to a single infectious disease agent. BCG, the only licensed vaccine against TB, offers limited protection against pulmonary disease in children and adults. TB vaccine research has recently been reinvigorated by new data suggesting alternative administration of BCG induces protection and a subunit/adjuvant vaccine that provides close to 50% protection. These results demonstrate the need for generating adjuvants in order to develop the next generation of TB vaccines. However, development of TB-targeted adjuvants is lacking. To help meet this need, NIAID convened a workshop in 2020 titled “Advancing Vaccine Adjuvants for Mycobacterium tuberculosis Therapeutics”. In this review, we present the four areas identified in the workshop as necessary for advancing TB adjuvants: 1) correlates of protective immunity, 2) targeting specific immune cells, 3) immune evasion mechanisms, and 4) animal models. We will discuss each of these four areas in detail and summarize what is known and what we can advance on in order to help develop more efficacious TB vaccines.
Collapse
Affiliation(s)
- Ana B Enriquez
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Angelo Izzo
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel J Frank
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
McLoughlin KE, Correia CN, Browne JA, Magee DA, Nalpas NC, Rue-Albrecht K, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, MacHugh DE. RNA-Seq Transcriptome Analysis of Peripheral Blood From Cattle Infected With Mycobacterium bovis Across an Experimental Time Course. Front Vet Sci 2021; 8:662002. [PMID: 34124223 PMCID: PMC8193354 DOI: 10.3389/fvets.2021.662002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at −1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the −1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection.
Collapse
Affiliation(s)
- Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Kevin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Adam O Whelan
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Bernardo Villarreal-Ramos
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - H Martin Vordermeier
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Maphasa RE, Meyer M, Dube A. The Macrophage Response to Mycobacterium tuberculosis and Opportunities for Autophagy Inducing Nanomedicines for Tuberculosis Therapy. Front Cell Infect Microbiol 2021; 10:618414. [PMID: 33628745 PMCID: PMC7897680 DOI: 10.3389/fcimb.2020.618414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
The major causative agent of tuberculosis (TB), i.e., Mycobacterium tuberculosis (Mtb), has developed mechanisms to evade host defense responses and persist within host cells for prolonged periods of time. Mtb is also increasingly resistant to existing anti-TB drugs. There is therefore an urgent need to develop new therapeutics for TB and host directed therapies (HDTs) hold potential as effective therapeutics for TB. There is growing interest in the induction of autophagy in Mtb host cells using autophagy inducing compounds (AICs). Nanoparticles (NPs) can enhance the effect of AICs, thus improving stability, enabling cell targeting and providing opportunities for multimodal therapy. In this review, we focus on the macrophage responses to Mtb infection, in particular, the mechanistic aspects of autophagy and the evasion of autophagy by intracellular Mtb. Due to the overlap between the onset of autophagy and apoptosis; we also focus on the relationship between apoptosis and autophagy. We will also review known AICs in the context of Mtb infection. Finally, we discuss the applications of NPs in inducing autophagy with the intention of sharing insights to encourage further research and development of nanomedicine HDTs for TB therapy.
Collapse
Affiliation(s)
- Retsepile E Maphasa
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Admire Dube
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
14
|
Ahluwalia P, Ahluwalia M, Vaibhav K, Mondal A, Sahajpal N, Islam S, Fulzele S, Kota V, Dhandapani K, Baban B, Rojiani AM, Kolhe R. Infections of the lung: a predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA J 2020; 11:581-601. [PMID: 33204369 PMCID: PMC7661834 DOI: 10.1007/s13167-020-00230-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The long evolutionary battle between humans and pathogens has played an important role in shaping the current network of host-pathogen interactions. Each organ brings new challenges from the perspective of a pathogen to establish a suitable niche for survival while subverting the protective mechanisms of the host. Lungs, the organ for oxygen exchange, have been an easy target for pathogens due to its accessibility. The organ has evolved diverse capabilities to provide the flexibility required for an organism's health and at the same time maintain protective functionality to prevent and resolve assault by pathogens. The pathogenic invasions are strongly challenged by healthy lung architecture which includes the presence and activity of the epithelium, mucous, antimicrobial proteins, surfactants, and immune cells. Competitively, the pathogens in the form of viruses, bacteria, and fungi have evolved an arsenal of strategies that can over-ride the host's protective mechanisms. While bacteria such as Mycobacterium tuberculosis (M. tuberculosis) can survive in dormant form for years before getting active in humans, novel pathogens can wreak havoc as they pose a high risk of morbidity and mortality in a very short duration of time. Recently, a coronavirus strain SARS-CoV-2 has caused a pandemic which provides us an opportunity to look at the host manipulative strategies used by respiratory pathogens. Their ability to hide, modify, evade, and exploit cell's processes are key to their survival. While pathogens like M. tuberculosis have been infecting humans for thousands of years, SARS-CoV-2 has been the cause of the recent pandemic. Molecular understanding of the strategies used by these pathogens could greatly serve in design of predictive, preventive, personalized medicine (PPPM). In this article, we have emphasized on the clinically relevant evasive strategies of the pathogens in the lungs with emphasis on M. tuberculosis and SARS-CoV-2. The molecular basis of these evasive strategies illuminated through advances in genomics, cell, and structural biology can assist in the mapping of vulnerable molecular networks which can be exploited translationally. These evolutionary approaches can further assist in generating screening and therapeutic options for susceptible populations and could be a promising approach for the prediction, prevention of disease, and the development of personalized medicines. Further, tailoring the clinical data of COVID-19 patients with their physiological responses in light of known host-respiratory pathogen interactions can provide opportunities to improve patient profiling and stratification according to identified therapeutic targets.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Ashis Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Shaheen Islam
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
15
|
Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens 2020; 9:pathogens9030218. [PMID: 32188164 PMCID: PMC7157668 DOI: 10.3390/pathogens9030218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the first innate defense barriers and play an indispensable role in communication between innate and adaptive immune responses, leading to restricted Mycobacterium tuberculosis (Mtb) infection. The macrophages can undergo programmed cell death (apoptosis), which is a crucial step to limit the intracellular growth of bacilli by liberating them into extracellular milieu in the form of apoptotic bodies. These bodies can be taken up by the macrophages for the further degradation of bacilli or by the dendritic cells, thereby leading to the activation of T lymphocytes. However, Mtb has the ability to interplay with complex signaling networks to subvert macrophage apoptosis. Here, we describe the intelligent strategies of Mtb inhibition of macrophages apoptosis. This review provides a platform for the future study of unrevealed Mtb anti-apoptotic mechanisms and the design of therapeutic interventions.
Collapse
|
16
|
Gautam US, Mehra S, Kumari P, Alvarez X, Niu T, Tyagi JS, Kaushal D. Mycobacterium tuberculosis sensor kinase DosS modulates the autophagosome in a DosR-independent manner. Commun Biol 2019; 2:349. [PMID: 31552302 PMCID: PMC6754383 DOI: 10.1038/s42003-019-0594-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Dormancy is a key characteristic of the intracellular life-cycle of Mtb. The importance of sensor kinase DosS in mycobacteria are attributed in part to our current findings that DosS is required for both persistence and full virulence of Mtb. Here we show that DosS is also required for optimal replication in macrophages and involved in the suppression of TNF-α and autophagy pathways. Silencing of these pathways during the infection process restored full virulence in MtbΔdosS mutant. Notably, a mutant of the response regulator DosR did not exhibit the attenuation in macrophages, suggesting that DosS can function independently of DosR. We identified four DosS targets in Mtb genome; Rv0440, Rv2859c, Rv0994, and Rv0260c. These genes encode functions related to hypoxia adaptation, which are not directly controlled by DosR, e.g., protein recycling and chaperoning, biosynthesis of molybdenum cofactor and nitrogen metabolism. Our results strongly suggest a DosR-independent role for DosS in Mtb.
Collapse
Affiliation(s)
- Uma S. Gautam
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Present Address: Duke Human Vaccine Institute, Duke University School of Medicine, 909 S. LaSalle St., Durham, NC 27710 USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
- Center for Experimental Infectious Diseases Research, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
| | - Priyanka Kumari
- All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | - Tianhua Niu
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, 70112 LA USA
| | - Jaya S. Tyagi
- All India Institute of Medical Sciences, New Delhi, 110029 India
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute Faridabad, Haryana, 121001 India
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, 70112 LA USA
| |
Collapse
|
17
|
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 2019; 20:E340. [PMID: 30650615 PMCID: PMC6359177 DOI: 10.3390/ijms20020340] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
Epidemiological data from the Center of Disease Control (CDC) and the World Health Organization (WHO) statistics in 2017 show that 10.0 million people around the world became sick with tuberculosis. Mycobacterium tuberculosis (MTB) is an intracellular parasite that mainly attacks macrophages and inhibits their apoptosis. It can become a long-term infection in humans, causing a series of pathological changes and clinical manifestations. In this review, we summarize innate immunity including the inhibition of antioxidants, the maturation and acidification of phagolysosomes and especially the apoptosis and autophagy of macrophages. Besides, we also elaborate on the adaptive immune response and the formation of granulomas. A thorough understanding of these escape mechanisms is of major importance for the prevention, diagnosis and treatment of tuberculosis.
Collapse
Affiliation(s)
- Weijie Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Fengjuan Wu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yiyuan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yurong Fu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
18
|
Dunlap MD, Howard N, Das S, Scott N, Ahmed M, Prince O, Rangel-Moreno J, Rosa BA, Martin J, Kaushal D, Kaplan G, Mitreva M, Kim KW, Randolph GJ, Khader SA. A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol 2018; 11:1727-1742. [PMID: 30115997 PMCID: PMC6279476 DOI: 10.1038/s41385-018-0071-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2) is a major chemokine axis that recruits myeloid cells including monocytes and macrophages. Thus far, CCR2-/- mice have not been found to be susceptible to infection with Mycobacterium tuberculosis (Mtb). Here, using a prototype W-Beijing family lineage 2 Mtb strain, HN878, we show that CCR2-/- mice exhibit increased susceptibility to tuberculosis (TB). Following exposure to Mtb HN878, alveolar macrophages (AMs) are amongst the earliest cells infected. We show that AMs accumulate early in the airways following infection and express CCR2. During disease progression, CCR2-expressing AMs exit the airways and localize within the TB granulomas. RNA-sequencing of sorted airway and non-airway AMs from infected mice show distinct gene expression profiles, suggesting that upon exit from airways and localization within granulomas, AMs become classically activated. The absence of CCR2+ cells specifically at the time of AM egress from the airways resulted in enhanced susceptibility to Mtb infection. Furthermore, infection with an Mtb HN878 mutant lacking phenolic glycolipid (PGL) expression still resulted in increased susceptibility in CCR2-/- mice. Together, these data show a novel role for CCR2 in protective immunity against clinically relevant Mtb infections.
Collapse
Affiliation(s)
- Micah D Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Nicole Howard
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ninecia Scott
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Bruce A Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - John Martin
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, 70118, USA
| | - Gilla Kaplan
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis 2018; 76:4970761. [PMID: 29762680 DOI: 10.1093/femspd/fty037] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Macrophages are first-line responders against microbes. The success of Mycobacterium tuberculosis (Mtb) rests upon its ability to convert these antimicrobial cells into a permissive cellular niche. This is a remarkable accomplishment, as the antimicrobial arsenal of macrophages is extensive. Normally bacteria are delivered to an acidic, degradative lysosome through one of several trafficking pathways, including LC3-associated phagocytosis (LAP) and autophagy. Once phagocytozed, the bacilli are subjected to reactive oxygen and nitrogen species, and they induce the expression of proinflammatory cytokines, which serve to augment host responses. However, Mtb hijacks these host defense mechanisms, manipulating host cellular trafficking, innate immune responses, and cell death pathways to its benefit. The complex series of measures and countermeasures between host and pathogen ultimately determines the outcome of infection. In this review, we focus on the diverse effectors that Mtb uses in its multipronged effort to subvert the innate immune responses of macrophages. We highlight recent advances in understanding the molecular interface of the Mtb-macrophage interaction.
Collapse
Affiliation(s)
- S Upadhyay
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - E Mittal
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J A Philips
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection. Clin Microbiol Rev 2018; 31:31/4/e00021-18. [PMID: 30021818 DOI: 10.1128/cmr.00021-18] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious cause of mortality worldwide, due in part to a limited understanding of its clinical pathogenic spectrum of infection and disease. Historically, scientific research, diagnostic testing, and drug treatment have focused on addressing one of two disease states: latent TB infection or active TB disease. Recent research has clearly demonstrated that human TB infection, from latent infection to active disease, exists within a continuous spectrum of metabolic bacterial activity and antagonistic immunological responses. This revised understanding leads us to propose two additional clinical states: incipient and subclinical TB. The recognition of incipient and subclinical TB, which helps divide latent and active TB along the clinical disease spectrum, provides opportunities for the development of diagnostic and therapeutic interventions to prevent progression to active TB disease and transmission of TB bacilli. In this report, we review the current understanding of the pathogenesis, immunology, clinical epidemiology, diagnosis, treatment, and prevention of both incipient and subclinical TB, two emerging clinical states of an ancient bacterium.
Collapse
|
21
|
Kuroda MJ, Sugimoto C, Cai Y, Merino KM, Mehra S, Araínga M, Roy CJ, Midkiff CC, Alvarez X, Didier ES, Kaushal D. High Turnover of Tissue Macrophages Contributes to Tuberculosis Reactivation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Infect Dis 2018; 217:1865-1874. [PMID: 29432596 PMCID: PMC5972562 DOI: 10.1093/infdis/jix625] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/29/2017] [Indexed: 01/29/2023] Open
Abstract
Background Tuberculosis (TB) and human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) profoundly affect the immune system and synergistically accelerate disease progression. It is believed that CD4+ T-cell depletion by HIV is the major cause of immunodeficiency and reactivation of latent TB. Previous studies demonstrated that blood monocyte turnover concurrent with tissue macrophage death from virus infection better predicted AIDS onset than CD4+ T-cell depletion in macaques infected with simian immunodeficiency virus (SIV). Methods In this study, we describe the contribution of macrophages to the pathogenesis of Mycobacterium tuberculosis (Mtb)/SIV coinfection in a rhesus macaque model using in vivo BrdU labeling, immunostaining, flow cytometry, and confocal microscopy. Results We found that increased monocyte and macrophage turnover and levels of SIV-infected lung macrophages correlated with TB reactivation. All Mtb/SIV-coinfected monkeys exhibited declines in CD4+ T cells regardless of reactivation or latency outcomes, negating lower CD4+ T-cell levels as a primary cause of Mtb reactivation. Conclusions Results suggest that SIV-related damage to macrophages contributes to Mtb reactivation during coinfection. This also supports strategies to target lung macrophages for the treatment of TB.
Collapse
Affiliation(s)
- Marcelo J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Chie Sugimoto
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Yanhui Cai
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Kristen M Merino
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
- Center for Experimental Infectious Diseases Research, Baton Rouge, Louisiana
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Mariluz Araínga
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana
| | - Elizabeth S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
22
|
In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2017; 115:E62-E71. [PMID: 29255022 PMCID: PMC5776797 DOI: 10.1073/pnas.1711373114] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB.
Collapse
|
23
|
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14:963-975. [PMID: 28890547 PMCID: PMC5719146 DOI: 10.1038/cmi.2017.88] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host's innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host-pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haiying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
24
|
Phillips BL, Gautam US, Bucsan AN, Foreman TW, Golden NA, Niu T, Kaushal D, Mehra S. LAG-3 potentiates the survival of Mycobacterium tuberculosis in host phagocytes by modulating mitochondrial signaling in an in-vitro granuloma model. PLoS One 2017; 12:e0180413. [PMID: 28880895 PMCID: PMC5589099 DOI: 10.1371/journal.pone.0180413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/28/2017] [Indexed: 11/23/2022] Open
Abstract
CD4+ T-cell mediated Th1 immune responses are critical for immunity to TB. The immunomodulatory protein, lymphocyte activation gene-3 (LAG-3) decreases Th1-type immune responses in T-cells. LAG-3 expression is significantly induced in the lungs of macaques with active TB and correlates with increased bacterial burden. Overproduction of LAG-3 can greatly diminish responses and could lead to uncontrolled Mtb replication. To assess the effect of LAG-3 on the progression of Mtb infection, we developed a co-culture system wherein blood-derived macrophages are infected with Mtb and supplemented with macaque blood or lung derived CD4+ T-cells. Silencing LAG-3 signaling in macaque lung CD4+ T-cells enhanced killing of Mtb in co-cultures, accompanied by reduced mitochondrial electron transport and increased IFN-γ expression. Thus, LAG-3 may modulate adaptive immunity to Mtb infection by interfering with the mitochondrial apoptosis pathway. Better understanding this pathway could allow us to circumvent immune features that promote disease.
Collapse
Affiliation(s)
- Bonnie L Phillips
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Uma S Gautam
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Allison N Bucsan
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nadia A Golden
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health, New Orleans, Louisiana, United States of America
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
25
|
Abstract
Among the animal models of tuberculosis (TB), the non-human primates, particularly rhesus macaques (Macaca fascicularis) and cynomolgus macaques (Macaca mulatta), share the greatest anatomical and physiological similarities with humans. Macaques are highly susceptible to Mycobacterium tuberculosis infection and manifest the complete spectrum of clinical and pathological manifestations of TB as seen in humans. Therefore, the macaque models have been used extensively for investigating the pathogenesis of M. tuberculosis infection and for preclinical testing of drugs and vaccines against TB. This review focuses on published major studies that exemplify how the rhesus and cynomolgus macaques have enhanced and may continue to advance global efforts in TB research.
Collapse
|
26
|
Hudock TA, Foreman TW, Bandyopadhyay N, Gautam US, Veatch AV, LoBato DN, Gentry KM, Golden NA, Cavigli A, Mueller M, Hwang SA, Hunter RL, Alvarez X, Lackner AA, Bader JS, Mehra S, Kaushal D. Hypoxia Sensing and Persistence Genes Are Expressed during the Intragranulomatous Survival of Mycobacterium tuberculosis. Am J Respir Cell Mol Biol 2017; 56:637-647. [PMID: 28135421 PMCID: PMC5449490 DOI: 10.1165/rcmb.2016-0239oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Although it is accepted that the environment within the granuloma profoundly affects Mycobacterium tuberculosis (Mtb) and infection outcome, our ability to understand Mtb gene expression in these niches has been limited. We determined intragranulomatous gene expression in human-like lung lesions derived from nonhuman primates with both active tuberculosis (ATB) and latent TB infection (LTBI). We employed a non-laser-based approach to microdissect individual lung lesions and interrogate the global transcriptome of Mtb within granulomas. Mtb genes expressed in classical granulomas with central, caseous necrosis, as well as within the caseum itself, were identified and compared with other Mtb lesions in animals with ATB (n = 7) or LTBI (n = 7). Results were validated using both an oligonucleotide approach and RT-PCR on macaque samples and by using human TB samples. We detected approximately 2,900 and 1,850 statistically significant genes in ATB and LTBI lesions, respectively (linear models for microarray analysis, Bonferroni corrected, P < 0.05). Of these genes, the expression of approximately 1,300 (ATB) and 900 (LTBI) was positively induced. We identified the induction of key regulons and compared our results to genes previously determined to be required for Mtb growth. Our results indicate pathways that Mtb uses to ensure its survival in a highly stressful environment in vivo. A large number of genes is commonly expressed in granulomas with ATB and LTBI. In addition, the enhanced expression of the dormancy survival regulon was a key feature of lesions in animals with LTBI, stressing its importance in the persistence of Mtb during the chronic phase of infection.
Collapse
Affiliation(s)
- Teresa A. Hudock
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Taylor W. Foreman
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Nirmalya Bandyopadhyay
- Whitaker Biomedical Engineering Institute, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Uma S. Gautam
- Tulane National Primate Research Center, Covington, Louisiana
| | - Ashley V. Veatch
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Denae N. LoBato
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Nadia A. Golden
- Tulane National Primate Research Center, Covington, Louisiana
| | - Amy Cavigli
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Shen-An Hwang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, Louisiana
| | - Andrew A. Lackner
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Joel S. Bader
- Whitaker Biomedical Engineering Institute, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Smriti Mehra
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| |
Collapse
|
27
|
Guo M, Xian QY, Rao Y, Zhang J, Wang Y, Huang ZX, Wang X, Bao R, Zhou L, Liu JB, Tang ZJ, Guo DY, Qin C, Li JL, Ho WZ. SIV Infection Facilitates Mycobacterium tuberculosis Infection of Rhesus Macaques. Front Microbiol 2017; 7:2174. [PMID: 28133458 PMCID: PMC5233680 DOI: 10.3389/fmicb.2016.02174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/29/2016] [Indexed: 01/14/2023] Open
Abstract
Tuberculosis (TB) is a common opportunistic infection and the leading cause of death for human immunodeficiency virus (HIV)-infected patients. Thus, it is necessary to understand the pathogenetic interactions between M.tb and HIV infection. In this study, we examined M.tb and/or simian immunodeficiency virus (SIV) infection of Chinese rhesus macaques. While there was little evidence that M.tb enhanced SIV infection of macaques, SIV could facilitate M.tb infection as demonstrated by X-rays, pathological and microbiological findings. Chest X-rays showed that co-infected animals had disseminated lesions in both left and right lungs, while M.tb mono-infected animals displayed the lesions only in right lungs. Necropsy of co-infected animals revealed a disseminated M.tb infection not only in the lungs but also in the extrapulmonary organs including spleen, pancreas, liver, kidney, and heart. The bacterial counts in the lungs, the bronchial lymph nodes, and the extrapulmonary organs of co-infected animals were significantly higher than those of M.tb mono-infected animals. The mechanistic studies demonstrated that two of three co-infected animals had lower levels of M.tb specific IFN-γ and IL-22 in PBMCs than M.tb mono-infected animals. These findings suggest that Chinese rhesus macaque is a suitable and alternative non-human primate model for SIV/M.tb coinfection studies. The impairment of the specific anti-TB immunity is likely to be a contributor of SIV-mediated enhancement M.tb infection.
Collapse
Affiliation(s)
- Ming Guo
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Qiao-Yang Xian
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Yan Rao
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Jing Zhang
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Yong Wang
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Zhi-Xiang Huang
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Xin Wang
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Rong Bao
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Li Zhou
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Jin-Biao Liu
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Zhi-Jiao Tang
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - De-Yin Guo
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei, China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College Beijing, China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine Philadelphia, PA, USA
| | - Wen-Zhe Ho
- School of Basic Medical Sciences, Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan UniversityWuhan, Hubei, China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
28
|
Veatch AV, Niu T, Caskey J, McGillivray A, Gautam US, Subramanian R, Kousoulas KG, Mehra S, Kaushal D. Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons. Tuberculosis (Edinb) 2016; 101S:S9-S17. [PMID: 27729257 DOI: 10.1016/j.tube.2016.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infections cause tuberculosis (TB), an infectious disease which causes ∼1.5 million deaths annually. The ability of this pathogen to evade, escape and encounter immune surveillance is fueled by its adaptability. Thus, Mtb induces a transition in its transcriptome in response to environmental changes. Global transcriptome profiling has been key to our understanding of how Mtb responds to the different stress conditions it faces during its life cycle. While this was initially achieved using microarray technology, RNAseq is now widely employed. It is important to understand the correlation between the large amount of microarray based transcriptome data, which continues to shape our understanding of Mtb stress networks, and newer data being generated using RNAseq. We assessed how well the two platforms correlate using three well-defined stress conditions: diamide, hypoxia, and re-aeration. The data used here was generated by different individuals over time using distinct samples, providing a stringent test of platform correlation. While correlation between microarrays and sequencing was high upon diamide treatment, which causes a rapid reprogramming of the transcriptome, RNAseq allowed a better definition of the hypoxic response, characterized by subtle changes in the magnitude of gene-expression. RNAseq also allows for the best cross-platform reproducibility.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tianhua Niu
- Department of Biostatistics & Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans LA, USA
| | - John Caskey
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Amanda McGillivray
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA
| | - Uma Shankar Gautam
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA
| | - Ramesh Subramanian
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - K Gus Kousoulas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Smriti Mehra
- Divisions of Microbiology, Tulane National Primate Research Center, Covington LA, USA; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
29
|
Huang Q, Luo H, Liu M, Zeng J, Abdalla AE, Duan X, Li Q, Xie J. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis. INFECTION GENETICS AND EVOLUTION 2016; 40:295-301. [DOI: 10.1016/j.meegid.2015.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 01/02/2023]
|
30
|
Sharp JD, Singh AK, Park ST, Lyubetskaya A, Peterson MW, Gomes ALC, Potluri LP, Raman S, Galagan JE, Husson RN. Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses. PLoS One 2016; 11:e0152145. [PMID: 27003599 PMCID: PMC4803200 DOI: 10.1371/journal.pone.0152145] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 11/24/2022] Open
Abstract
Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.
Collapse
Affiliation(s)
- Jared D. Sharp
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States of America
| | - Atul K. Singh
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States of America
| | - Sang Tae Park
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States of America
| | - Anna Lyubetskaya
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States of America
| | - Matthew W. Peterson
- Department of Microbiology, Boston University, Boston, Massachusetts 02215, United States of America
| | - Antonio L. C. Gomes
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States of America
| | - Lakshmi-Prasad Potluri
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States of America
| | - Sahadevan Raman
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States of America
| | - James E. Galagan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States of America
- Department of Microbiology, Boston University, Boston, Massachusetts 02215, United States of America
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States of America
| |
Collapse
|
31
|
Abstract
Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.
Collapse
|
32
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
33
|
Kaushal D, Foreman TW, Gautam US, Alvarez X, Adekambi T, Rangel-Moreno J, Golden NA, Johnson AMF, Phillips BL, Ahsan MH, Russell-Lodrigue KE, Doyle LA, Roy CJ, Didier PJ, Blanchard JL, Rengarajan J, Lackner AA, Khader SA, Mehra S. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun 2015; 6:8533. [PMID: 26460802 PMCID: PMC4608260 DOI: 10.1038/ncomms9533] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is a global pandaemic, partially due to the failure of vaccination approaches. Novel anti-TB vaccines are therefore urgently required. Here we show that aerosol immunization of macaques with the Mtb mutant in SigH (MtbΔsigH) results in significant recruitment of inducible bronchus-associated lymphoid tissue (iBALT) as well as CD4+ and CD8+ T cells expressing activation and proliferation markers to the lungs. Further, the findings indicate that pulmonary vaccination with MtbΔsigH elicited strong central memory CD4+ and CD8+ T-cell responses in the lung. Vaccination with MtbΔsigH results in significant protection against a lethal TB challenge, as evidenced by an approximately three log reduction in bacterial burdens, significantly diminished clinical manifestations and granulomatous pathology and characterized by the presence of profound iBALT. This highly protective response is virtually absent in unvaccinated and BCG-vaccinated animals after challenge. These results suggest that future TB vaccine candidates can be developed on the basis of MtbΔsigH. BCG, the only vaccine currently used against tuberculosis, confers only limited protection. Here the authors show that mucosal immunization of macaques with an attenuated strain of Mycobacterium tuberculosis confers a high level of protection from a lethal challenge with the bacterium.
Collapse
Affiliation(s)
- Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA.,Department of Microbiology and Immunology, Tulane Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA.,Biomedical Sciences Graduate Program, Tulane Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Uma S Gautam
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | - Toidi Adekambi
- Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA.,Emory Vaccine Center, Atlanta, Georgia 30329, USA
| | | | - Nadia A Golden
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | - Bonnie L Phillips
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA.,Biomedical Sciences Graduate Program, Tulane Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Muhammad H Ahsan
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | - Lara A Doyle
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | - Chad J Roy
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | - Peter J Didier
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | - James L Blanchard
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | - Jyothi Rengarajan
- Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA.,Emory Vaccine Center, Atlanta, Georgia 30329, USA
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA.,Department of Microbiology and Immunology, Tulane Health Sciences Center, New Orleans, Louisiana 70112, USA.,Department of Pathology, Tulane Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University at St Louis, St Louis, Missouri 63110, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA.,Center for Biomedical Research Excellence, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA.,Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
34
|
Mehra S, Foreman TW, Didier PJ, Ahsan MH, Hudock TA, Kissee R, Golden NA, Gautam US, Johnson AM, Alvarez X, Russell-Lodrigue KE, Doyle LA, Roy CJ, Niu T, Blanchard JL, Khader SA, Lackner AA, Sherman DR, Kaushal D. The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence. Am J Respir Crit Care Med 2015; 191:1185-96. [PMID: 25730547 DOI: 10.1164/rccm.201408-1502oc] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia. OBJECTIVES To understand DosR's contribution in the persistence of M. tuberculosis, we compared the phenotype of various DosR regulon mutants and a complemented strain to M. tuberculosis in macaques, which faithfully model M. tuberculosis infection. METHODS We measured clinical and microbiologic correlates of infection with M. tuberculosis relative to mutant/complemented strains in the DosR regulon, studied lung pathology and hypoxia, and compared immune responses in lung using transcriptomics and flow cytometry. MEASUREMENTS AND MAIN RESULTS Despite being able to replicate initially, mutants in DosR regulon failed to persist or cause disease. On the contrary, M. tuberculosis and a complemented strain were able to establish infection and tuberculosis. The attenuation of pathogenesis in animals infected with the mutants coincided with the appearance of a Th1 response and organization of hypoxic lesions wherein M. tuberculosis expressed dosR. The lungs of animals infected with the mutants (but not the complemented strain) exhibited early transcriptional signatures of T-cell recruitment, activation, and proliferation associated with an increase of T cells expressing homing and proliferation markers. CONCLUSIONS Delayed adaptive responses, a hallmark of M. tuberculosis infection, not only lead to persistence but also interfere with the development of effective antituberculosis vaccines. The DosR regulon therefore modulates both the magnitude and the timing of adaptive immune responses in response to hypoxia in vivo, resulting in persistent infection. Hence, DosR regulates key aspects of the M. tuberculosis life cycle and limits lung pathology.
Collapse
|
35
|
Gupta AM, Bhattacharya S, Bagchi A, Mandal S. Implication from the predicted docked interaction of sigma H and exploration of its interaction with RNA polymerase in Mycobacterium tuberculosis. Bioinformation 2015; 11:296-301. [PMID: 26229290 PMCID: PMC4512004 DOI: 10.6026/97320630011296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022] Open
Abstract
M. tuberculosis is adapted to remain active in the extreme environmental condition due to the presence of atypical sigma factors commonly called extra cytoplasmic function (ECF) sigma factors. Among the 13 sigma factors of M. tuberculosis, 10 are regarded as the ECF sigma factor that exerts their attributes in various stress response. Therefore it is of interest to describe the structural prediction of one of the ECF sigma factors, sigma H (SigH), involved in oxidative and heat stress having interaction with the β׳ subunit of M. tuberculosis. RNA polymerase (Mtb-RNAP). The model of Mtb-SigH was build using the commercial package of Discovery Studio version 2.5 from Accelerys (San Diego, CA, USA) containing the inbuilt MODELER module and that of β׳ subunit of Mtb-RNAP using Phyre Server. Further, the protein models were docked using the fully automated web tool ClusPro (cluspro.bu.edu/login.php). Mtb-SigH is a triple helical structure having a putative DNA-binding site and the β׳ subunit of MtbRNAP consists of 18-beta sheets and 22 helices. The SigH-Mtb-RNAP β׳ interaction studies showed that Arg26, Gln19 andAsp18, residues of SigH protein are involved in binding with Arg137, Gln140, Arg152, Asn133 and Asp144 of β׳ subunit of Mtb-RNAP. The predicted model helps to explore the molecular mechanism in the control of gene regulation with a novel unique target for potential new generation inhibitor.
Collapse
Affiliation(s)
- Aayatti Mallick Gupta
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Simanti Bhattacharya
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
36
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
37
|
Abstract
The use of animal models has been invaluable for studying the pathogenesis of Mycobacterium tuberculosis infection, as well as for testing the efficacy of vaccines and drug regimens for tuberculosis. Among the applied animal models, nonhuman primates, particularly macaques, share the greatest anatomical and physiological similarities with humans. As such, macaque models have been used for investigating tuberculosis pathogenesis and preclinical testing of drugs and vaccines. This review focuses on published major studies which illustrate how the rhesus and cynomolgus macaques have enriched and may continue to advance the field of global tuberculosis research.
Collapse
|
38
|
Phillips BL, Mehra S, Ahsan MH, Selman M, Khader SA, Kaushal D. LAG3 expression in active Mycobacterium tuberculosis infections. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:820-33. [PMID: 25549835 DOI: 10.1016/j.ajpath.2014.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023]
Abstract
Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus-induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4(+) T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response.
Collapse
Affiliation(s)
- Bonnie L Phillips
- Division of Bacteriology, Tulane National Primate Research Center, Covington, Louisiana; Biomedical Sciences Graduate Student Program, New Orleans, Louisiana; National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
| | - Muhammad H Ahsan
- Division of Bacteriology, Tulane National Primate Research Center, Covington, Louisiana; Training in Lung Molecular and Cell Pathobiology Program, New Orleans, Louisiana
| | - Moises Selman
- National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Shabaana A Khader
- Department of Molecular Microbiology and Immunology, Washington University of St. Louis, St. Louis, Missouri
| | - Deepak Kaushal
- Division of Bacteriology, Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
39
|
Souza BM, Castro TLDP, Carvalho RDDO, Seyffert N, Silva A, Miyoshi A, Azevedo V. σ(ECF) factors of gram-positive bacteria: a focus on Bacillus subtilis and the CMNR group. Virulence 2014; 5:587-600. [PMID: 24921931 PMCID: PMC4105308 DOI: 10.4161/viru.29514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called σ(ECF) factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms' physiology and indicating some of the genes whose transcription they regulate.
Collapse
Affiliation(s)
- Bianca Mendes Souza
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Thiago Luiz de Paula Castro
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Nubia Seyffert
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Artur Silva
- Laboratório de Polimorfismo de DNA; Instituto de Ciências Biológicas; Departamento de Genética; Universidade Federal do Pará; Belém, PA Brazil
| | - Anderson Miyoshi
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| |
Collapse
|
40
|
Dutta NK, Illei PB, Jain SK, Karakousis PC. Characterization of a novel necrotic granuloma model of latent tuberculosis infection and reactivation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2045-55. [PMID: 24815353 DOI: 10.1016/j.ajpath.2014.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/20/2014] [Accepted: 03/18/2014] [Indexed: 01/09/2023]
Abstract
We sought to develop and characterize a novel paucibacillary model in mice, which develops necrotic lung granulomas after infection with Mycobacterium tuberculosis. Six weeks after aerosol immunization with recombinant Mycobacterium bovis bacillus Calmette-Guerin overexpressing the 30-kDa antigen, C3HeB/FeJ mice were aerosol infected with M. tuberculosis H37Rv. Six weeks later, mice were treated with one of three standard regimens for latent tuberculosis infection or tumor necrosis factor (TNF)-neutralizing antibody. Mouse lungs were analyzed by histological features, positron emission tomography/computed tomography, whole-genome microarrays, and RT-PCR. Lungs and sera were studied by multiplex enzyme-linked immunosorbent assays. Paucibacillary infection was established, recapitulating the sterilizing activities of human latent tuberculosis infection regimens. TNF neutralization led to increased lung bacillary load, disrupted granuloma architecture with expanded necrotic foci and reduced tissue hypoxia, and accelerated animal mortality. TNF-neutralized mouse lungs and sera showed significant up-regulation of interferon γ, IL-1β, IL-6, IL-10, chemokine ligands 2 and 3, and matrix metalloproteinase genes. Clinical and microbiological reactivation of paucibacillary infection by TNF neutralization was associated with reduced hypoxia in lung granulomas and induction of matrix metalloproteinases and proinflammatory cytokines. This model may be useful for screening the sterilizing activity of novel anti-tuberculosis drugs, and identifying mycobacterial regulatory and metabolic pathways required for bacillary growth restriction and reactivation.
Collapse
Affiliation(s)
- Noton K Dutta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter B Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
41
|
Gautam US, Mehra S, Ahsan MH, Alvarez X, Niu T, Kaushal D. Role of TNF in the altered interaction of dormant Mycobacterium tuberculosis with host macrophages. PLoS One 2014; 9:e95220. [PMID: 24743303 PMCID: PMC3990579 DOI: 10.1371/journal.pone.0095220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) persists within lung granulomas, despite being subjected to diverse stress conditions, including hypoxia. We hypothesized that the response of host phagocytes to Mtb experiencing hypoxia is radically altered and designed in vitro experiment to study this phenomenon. Hypoxia-stressed (Mtb-H) and aerobically grown Mtb (Mtb-A) were used to infect Rhesus Macaque Bone Marrow Derived Macrophages (Rh-BMDMs) and the comparative host response to Mtb infection studied. Mechanistic insights were gained by employing RNAi. Mtb-H accumulated significantly lower bacterial burden during growth in Rh-BMDMs, concomitantly generating a drastically different host transcriptional profile (with only <2% of all genes perturbed by either infection being shared between the two groups). A key component of this signature was significantly higher TNF and apopotosis in Mtb-H- compared to Mtb-A-infected Rh-BMDMs. Silencing of TNF by RNAi reversed the significant control of Mtb replication. These results indicate a potential mechanism for the rapid clearance of hypoxia-conditioned bacilli by phagocytes. In conclusion, hypoxia-conditioned Mtb undergo significantly different interactions with host macrophages compared to Mtb grown in normoxia. These interactions result in the induction of the TNF signaling pathway, activation of apoptosis, and DNA-damage stress response. Our results show that Mtb-H bacilli are particularly susceptible to killing governed by TNF.
Collapse
Affiliation(s)
- Uma S. Gautam
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Smriti Mehra
- Department of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Muhammad H. Ahsan
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Department of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
42
|
McGillivray A, Golden NA, Gautam US, Mehra S, Kaushal D. The Mycobacterium tuberculosis Rv2745c plays an important role in responding to redox stress. PLoS One 2014; 9:e93604. [PMID: 24705585 PMCID: PMC3976341 DOI: 10.1371/journal.pone.0093604] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease worldwide. Over the course of its life cycle in vivo, Mtb is exposed to a plethora of environmental stress conditions. Temporal regulation of genes involved in sensing and responding to such conditions is therefore crucial for Mtb to establish an infection. The Rv2745c (clgR) gene encodes a Clp protease gene regulator that is induced in response to a variety of stress conditions and potentially plays a role in Mtb pathogenesis. Our isogenic mutant, Mtb:ΔRv2745c, is significantly more sensitive to in vitro redox stress generated by diamide, relative to wild-type Mtb as well as to a complemented strain. Together with the fact that the expression of Rv2745c is strongly induced in response to redox stress, these results strongly implicate a role for ClgR in the management of intraphagosomal redox stress. Additionally, we observed that redox stress led to the dysregulation of the expression of the σH/σE regulon in the isogenic mutant, Mtb:ΔRv2745c. Furthermore, induction of clgR in Mtb and Mtb:ΔRv2745c (comp) did not lead to Clp protease induction, indicating that clgR has additional functions that need to be elucidated. Our data, when taken together with that obtained by other groups, indicates that ClgR plays diverse roles in multiple regulatory networks in response to different stress conditions. In addition to redox stress, the expression of Rv2745c correlates with the expression of genes involved in sulfate assimilation as well as in response to hypoxia and reaeration. Clearly, the Mtb Rv2745c-encoded ClgR performs different functions during stress response and is important for the pathogenicity of Mtb in-vivo, regardless of its induction of the Clp proteolytic pathway.
Collapse
Affiliation(s)
- Amanda McGillivray
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nadia Abrahams Golden
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Uma Shankar Gautam
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chim N, Johnson PM, Goulding CW. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis. J Inorg Biochem 2014; 133:118-26. [PMID: 24314844 PMCID: PMC3959581 DOI: 10.1016/j.jinorgbio.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, has evolved sophisticated mechanisms for evading assault by the human host. This review focuses on M. tuberculosis regulatory metalloproteins that are sensitive to exogenous stresses attributed to changes in the levels of gaseous molecules (i.e., molecular oxygen, carbon monoxide and nitric oxide) to elicit an intracellular response. In particular, we highlight recent developments on the subfamily of Whi proteins, redox sensing WhiB-like proteins that contain iron-sulfur clusters, sigma factors and their cognate anti-sigma factors of which some are zinc-regulated, and the dormancy survival regulon DosS/DosT-DosR heme sensory system. Mounting experimental evidence suggests that these systems contribute to a highly complex and interrelated regulatory network that controls M. tuberculosis biology. This review concludes with a discussion of strategies that M. tuberculosis has developed to maintain redox homeostasis, including mechanisms to regulate endogenous nitric oxide and carbon monoxide levels.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA.
| |
Collapse
|
44
|
Parandhaman DK, Narayanan S. Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2014; 4:31. [PMID: 24634891 PMCID: PMC3943388 DOI: 10.3389/fcimb.2014.00031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/17/2014] [Indexed: 01/24/2023] Open
Abstract
Cell death or senescence is a fundamental event that helps maintain cellular homeostasis, shapes the growth of organism, and provides protective immunity against invading pathogens. Decreased or increased cell death is detrimental both in infectious and non-infectious diseases. Cell death is executed both by regulated enzymic reactions and non-enzymic sudden collapse. In this brief review we have tried to summarize various cell death modalities and their impact on the pathogenesis of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India ; Department of Immunology, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India
| |
Collapse
|
45
|
Pinto AC, de Sá PHCG, Ramos RTJ, Barbosa S, Barbosa HPM, Ribeiro AC, Silva WM, Rocha FS, Santana MP, de Paula Castro TL, Miyoshi A, Schneider MPC, Silva A, Azevedo V. Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 2014; 15:14. [PMID: 24405787 PMCID: PMC3890534 DOI: 10.1186/1471-2164-15-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/13/2013] [Indexed: 11/12/2022] Open
Abstract
Background The completion of whole-genome sequencing for Corynebacterium pseudotuberculosis strain 1002 has contributed to major advances in research aimed at understanding the biology of this microorganism. This bacterium causes significant loss to goat and sheep farmers because it is the causal agent of the infectious disease caseous lymphadenitis, which may lead to outcomes ranging from skin injury to animal death. In the current study, we simulated the conditions experienced by the bacteria during host infection. By sequencing transcripts using the SOLiDTM 3 Plus platform, we identified new targets expected to potentiate the survival and replication of the pathogen in adverse environments. These results may also identify possible candidates useful for the development of vaccines, diagnostic kits or therapies aimed at the reduction of losses in agribusiness. Results Under the 3 simulated conditions (acid, osmotic and thermal shock stresses), 474 differentially expressed genes exhibiting at least a 2-fold change in expression levels were identified. Important genes to the infection process were induced, such as those involved in virulence, defence against oxidative stress, adhesion and regulation, and many genes encoded hypothetical proteins, indicating that further investigation of the bacterium is necessary. The data will contribute to a better understanding of the biology of C. pseudotuberculosis and to studies investigating strategies to control the disease. Conclusions Despite the veterinary importance of C. pseudotuberculosis, the bacterium is poorly characterised; therefore, effective treatments for caseous lymphadenitis have been difficult to establish. Through the use of RNAseq, these results provide a better biological understanding of this bacterium, shed light on the most likely survival mechanisms used by this microorganism in adverse environments and identify candidates that may help reduce or even eradicate the problems caused by this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Vasco Azevedo
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av, Antônio Carlos, Belo Horizonte 31,270-901, Brazil.
| |
Collapse
|
46
|
Arya S, Sethi D, Singh S, Hade MD, Singh V, Raju P, Chodisetti SB, Verma D, Varshney GC, Agrewala JN, Dikshit KL. Truncated hemoglobin, HbN, is post-translationally modified in Mycobacterium tuberculosis and modulates host-pathogen interactions during intracellular infection. J Biol Chem 2013; 288:29987-29999. [PMID: 23983123 PMCID: PMC3795296 DOI: 10.1074/jbc.m113.507301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a phenomenally successful human pathogen having evolved mechanisms that allow it to survive within the hazardous environment of macrophages and establish long term, persistent infection in the host against the control of cell-mediated immunity. One such mechanism is mediated by the truncated hemoglobin, HbN, of Mtb that displays a potent O2-dependent nitric oxide dioxygenase activity and protects its host from the toxicity of macrophage-generated nitric oxide (NO). Here we demonstrate for the first time that HbN is post-translationally modified by glycosylation in Mtb and remains localized on the cell membrane and the cell wall. The glycan linkage in the HbN was identified as mannose. The elevated expression of HbN in Mtb and M. smegmatis facilitated their entry within the macrophages as compared with isogenic control cells, and mutation in the glycan linkage of HbN disrupted this effect. Additionally, HbN-expressing cells exhibited higher survival within the THP-1 and mouse peritoneal macrophages, simultaneously increasing the intracellular level of proinflammatory cytokines IL-6 and TNF-α and suppressing the expression of co-stimulatory surface markers CD80 and CD86. These results, thus, suggest the involvement of HbN in modulating the host-pathogen interactions and immune system of the host apart from protecting the bacilli from nitrosative stress inside the activated macrophages, consequently driving cells toward increased infectivity and intracellular survival.
Collapse
Affiliation(s)
- Swati Arya
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Renner NA, Sansing HA, Inglis FM, Mehra S, Kaushal D, Lackner AA, Maclean AG. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes. J Cell Physiol 2013; 228:1284-94. [PMID: 23154943 DOI: 10.1002/jcp.24283] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/02/2012] [Indexed: 01/18/2023]
Abstract
The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukocyte entry. Cultured astrocytes typically have a polygonal morphology until stimulated. We hypothesized that cultured astrocytes which were induced to stellate would have an activated phenotype compared with polygonal cells. We investigated the activation of astrocytes derived from adult macaques to the cytokine TNF-α under resting and stellated conditions by four parameters: morphology, intermediate filament expression, adhesion, and cytokine secretion. Astrocytes were stellated following transient acidification; resulting in increased expression of GFAP and vimentin. Stellation was accompanied by decreased adhesion that could be recovered with proinflammatory cytokine treatment. Surprisingly, there was decreased secretion of proinflammatory cytokines by stellated astrocytes compared with polygonal cells. These results suggest that astrocytes are capable of multiple phenotypes depending on the stimulus and the order stimuli are applied.
Collapse
Affiliation(s)
- Nicole A Renner
- Program in Neuroscience, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sakamoto K, Kim MJ, Rhoades ER, Allavena RE, Ehrt S, Wainwright HC, Russell DG, Rohde KH. Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases. Infect Immun 2013; 81:764-76. [PMID: 23264051 PMCID: PMC3584883 DOI: 10.1128/iai.00906-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022] Open
Abstract
Trehalose 6,6'-dimycolate (TDM) is a cell wall glycolipid and an important virulence factor of mycobacteria. In order to study the role of TDM in the innate immune response to Mycobacterium tuberculosis, microarray analysis was used to examine gene regulation in murine bone marrow-derived macrophages in response to 90-μm-diameter polystyrene microspheres coated with TDM. A large number of genes, particularly those involved in the immune response and macrophage function, were up- or downregulated in response to these TDM-coated beads compared to control beads. Genes involved in the immune response were specifically upregulated in a myeloid differentiation primary response gene 88 (MyD88)-dependent manner. The complexity of the transcriptional response also increased greatly between 2 and 24 h. Matrix metalloproteinases (MMPs) were significantly upregulated at both time points, and this was confirmed by quantitative real-time reverse transcription-PCR (RT-PCR). Using an in vivo Matrigel granuloma model, the presence and activity of MMP-9 were examined by immunohistochemistry and in situ zymography (ISZ), respectively. We found that TDM-coated beads induced MMP-9 expression and activity in Matrigel granulomas. Macrophages were primarily responsible for MMP-9 expression, as granulomas from neutrophil-depleted mice showed staining patterns similar to that for wild-type mice. The relevance of these observations to human disease is supported by the similar induction of MMP-9 in human caseous tuberculosis (TB) granulomas. Given that MMPs likely play an important role in both the construction and breakdown of tuberculous granulomas, our results suggest that TDM may drive MMP expression during TB pathogenesis.
Collapse
Affiliation(s)
- Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Martinez AN, Mehra S, Kaushal D. Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis 2013; 207:1253-61. [PMID: 23359591 DOI: 10.1093/infdis/jit037] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis can grow in the hostile intracellular environment of macrophages by actively evading macrophage-associated antibacterial activities. The stress response factor SigH contributes to this process by modulating β-chemokine and interleukin 6 (Il6) expression. Hence, Il6 is of critical importance for acquired immunity against M. tuberculosis infection. Here, we attempted to better characterize the role of Il6 in the immune response to M. tuberculosis infection. METHODS A small interfering RNA-based approach was used to silence expression of the Il6 transcript in host macrophages infected with a wild-type strain of M. tuberculosis or an attenuated mutant strain of M. tuberculosis (Mtb:Δ-sigH). The outcome was measured by the analysis of bacterial burden and transcriptome-wide analysis of host gene expression. Transcriptome results were confirmed via quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Wild type and Mtb:Δ-sigH infection of host macrophages in which Il6 had been silenced resulted in increased expression of interferon-inducible genes, especially those involved in type I interferon signaling. The expression of Ly-6 genes was significantly higher in cells infected with Mtb:Δ-sigH, compared with those infected with the wild-type strain (P < .05). CONCLUSIONS M. tuberculosis regulates host Il6 production to inhibit type I interferon signaling and, consequently, disease progression. Mtb:Δ-sigH is associated with delayed activation of macrophages, compared with the wild-type strain, and with delayed inflammatory stimuli as consequence. These findings have important implications for improving understanding of the mechanisms behind M. tuberculosis virulence and pathogenesis and provide an initial road map to further investigate the mechanisms that may account for the deleterious effects of type I interferons in M. tuberculosis infection.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | |
Collapse
|
50
|
Mehra S, Alvarez X, Didier PJ, Doyle LA, Blanchard JL, Lackner AA, Kaushal D. Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. J Infect Dis 2012; 207:1115-27. [PMID: 23255564 DOI: 10.1093/infdis/jis778] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The BCG vaccine is ineffective against adult tuberculosis. Hence, new antituberculosis vaccines are needed. Correlates of protection against tuberculosis are not known. We studied the effects of BCG vaccination on gene expression in tuberculosis granulomas using macaques. METHODS Macaques were BCG-vaccinated or sham-vaccinated and then challenged with virulent Mycobacterium tuberculosis. Lung lesions were used for comparative transcriptomics. RESULTS Vaccinated macaques were protected with lower bacterial burden and immunopathology. Lesions from BCG-vaccinated nonhuman primates (NHPs) showed a better balance of α- and β-chemokine gene expression with higher levels of β-chemokine expression relative to nonvaccinated animals. Consistent with this, sham-vaccinated macaques recruited fewer macrophages relative to neutrophils in their lungs. The expression of indoleamine 2,3-dioxygenase (IDO), a known immunosuppressor, was significantly higher in both week 5 and 10 lesions from sham-vaccinated, relative to BCG-vaccinated, NHPs. IDO expression was primarily limited to the nonlymphocytic region of the lesions, within the inner ring structure surrounding the central necrosis. CONCLUSIONS Our study defines lung gene expression correlates of protective response against tuberculosis, relative to disease, which can potentially be employed to assess the efficacy of candidate antituberculosis vaccines. Mycobacterium tuberculosis may modulate protective immune responses using diverse mechanisms, including increased recruitment of inflammatory neutrophils and the concomitant use of IDO to modulate inflammation.
Collapse
Affiliation(s)
- Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | |
Collapse
|