1
|
Nakagawa T, Hata K, Izumi Y, Nakashima H, Katada S, Matsuda T, Bamba T, Nakashima K. E3 ubiquitin ligase RMND5A maintains the self-renewal state of human neural stem/precursor cells by regulating Wnt and mTOR signaling pathways. FEBS Lett 2025. [PMID: 40377017 DOI: 10.1002/1873-3468.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/18/2025]
Abstract
During cortical development, neural stem/precursor cells (NS/PCs) sequentially produce neurons, astrocytes, and oligodendrocytes. Before producing these cells, human (h) NS/PCs undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. Here, we performed a gene knockout screen using the CRISPR/Cas9 system to search for genes involved in hNS/PC self-renewal. We identified RMND5A, encoding an E3 ubiquitin ligase, among the candidate genes. We further demonstrated that knockdown of RMND5A decreased proliferation and promoted neuronal differentiation of hNS/PCs through the activation and suppression of the Wnt and mTOR signaling pathways, respectively. Taken together, our findings suggest that RMND5A participates in the maintenance of hNS/PC self-renewal by modulating the Wnt and mTOR signaling pathways. Impact statement During cortical development, human neural stem/precursor cells (hNS/PCs) undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. We identified RMND5A, an E3 ubiquitin ligase, as essential for maintaining self-renewal of hNS/PCs, providing valuable insights into the evolutionary expansion of the human brain.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taito Matsuda
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Neural Regeneration and Brain Repair, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Huang Z, He C, Wang G, Zhu M, Tong X, Feng Y, Zhang C, Dong S, Harim Y, Liu HK, Zhou W, Lan F, Feng W. Mutation of CHD7 impairs the output of neuroepithelium transition that is reversed by the inhibition of EZH2. Mol Psychiatry 2025:10.1038/s41380-025-02990-6. [PMID: 40164694 DOI: 10.1038/s41380-025-02990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Haploinsufficiency of CHD7 (Chromo-Helicase-DNA binding protein 7) causes a severe congenital disease CHARGE syndrome. Brain anomaly such as microcephaly and olfactory bulb agenesis seen in CHARGE patients have not been mimicked in previous animal models. Here, we uncover an indispensable function of CHD7 in the neuroepithelium (NE) but not in the neural stem cells (NSCs) after NE transition. Loss of Chd7 in mouse NE resulted in CHARGE-like brain anomalies due to reduced proliferation and differentiation of neural stem and progenitor cells, which were recapitulated in CHD7 KO human forebrain organoids. Mechanistically, we find that CHD7 activates neural transcription factors by removing the repressive histone mark H3K27me3 and promoting chromatin accessibility. Importantly, neurodevelopmental defects caused by CHD7 loss in human brain organoids and mice were ameliorated by the inhibition of H3K27me3 methyltransferase EZH2. Altogether, by implementing appropriate experimental models, we uncover the pathogenesis of CHD7-associated neurodevelopmental diseases, and identify a potential therapeutic opportunity for CHARGE syndrome.
Collapse
Affiliation(s)
- Zhuxi Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenxi He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guangfu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ming Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoyu Tong
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yi Feng
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Chenyang Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuhua Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yassin Harim
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Wenhao Zhou
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Lan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Tao R, Han K, Wu SC, Friske JD, Roussel MF, Northcott PA. Arrested development: the dysfunctional life history of medulloblastoma. Genes Dev 2025; 39:4-17. [PMID: 39231614 PMCID: PMC11789489 DOI: 10.1101/gad.351936.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Medulloblastoma is a heterogeneous embryonal tumor of the cerebellum comprised of four distinct molecular subgroups that differ in their developmental origins, genomic landscapes, clinical presentation, and survival. Recent characterization of the human fetal cerebellum at single-cell resolution has propelled unprecedented insights into the cellular origins of medulloblastoma subgroups, including those underlying previously elusive groups 3 and 4. In this review, the molecular pathogenesis of medulloblastoma is examined through the lens of cerebellar development. In addition, we discuss how enhanced understanding of medulloblastoma origins has the potential to refine disease modeling for the advancement of treatment and outcomes.
Collapse
Affiliation(s)
- Ran Tao
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Katie Han
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jake D Friske
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
4
|
Bose R, Posada-Pérez M, Karvela E, Skandik M, Keane L, Falk A, Spulber S, Joseph B, Ceccatelli S. Bi-allelic NRXN1α deletion in microglia derived from iPSC of an autistic patient increases interleukin-6 production and impairs supporting function on neuronal networking. Brain Behav Immun 2025; 123:28-42. [PMID: 39243986 DOI: 10.1016/j.bbi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental conditions, with a highly diverse genetic hereditary component, including altered neuronal circuits, that has an impact on communication skills and behaviours of the affected individuals. Beside the recognised role of neuronal alterations, perturbations of microglia and the associated neuroinflammatory processes have emerged as credible contributors to aetiology and physiopathology of ASD. Mutations in NRXN1, a member of the neurexin family of cell-surface receptors that bind neuroligin, have been associated to ASD. NRXN1 is known to be expressed by neurons where it facilitates synaptic contacts, but it has also been identified in glial cells including microglia. Asserting the impact of ASD-related genes on neuronal versus microglia functions has been challenging. Here, we present an ASD subject-derived induced pluripotent stem cells (iPSC)-based in vitro system to characterise the effects of the ASD-associated NRXN1 gene deletion on neurons and microglia, as well as on the ability of microglia to support neuronal circuit formation and function. Using this approach, we demonstrated that NRXN1 deletion, impacting on the expression of the alpha isoform (NRXN1α), in microglia leads to microglial alterations and release of IL6, a pro-inflammatory interleukin associated with ASD. Moreover, microglia bearing the NRXN1α-deletion, lost the ability to support the formation of functional neuronal networks. The use of recombinant IL6 protein on control microglia-neuron co-cultures or neutralizing antibody to IL6 on their NRXN1α-deficient counterparts, supported a direct contribution of IL6 to the observed neuronal phenotype. Altogether, our data suggest that, in addition to neurons, microglia are also negatively affected by NRXN1α-deletion, and this significantly contributes to the observed neuronal circuit aberrations.
Collapse
Affiliation(s)
- Raj Bose
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Mercedes Posada-Pérez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Eleni Karvela
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Skandik
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong; Lund Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong.
| |
Collapse
|
5
|
Aili D, Herland A. Engineered Hydrogels for 3D Cell Culture and Bioprinting of Human Induced Pluripotent Stem Cell-Derived Neuroepithelial Stem Cells. Methods Mol Biol 2025; 2924:223-233. [PMID: 40307646 DOI: 10.1007/978-1-0716-4530-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This protocol outlines the synthesis and use of engineered hyaluronan-based hydrogels for 3D cell culture and bioprinting of human induced pluripotent stem cell (hiPSC)-derived neuroepithelial stem cells (lt-NES). Key steps include hydrogel formation using bioorthogonal chemistries, cell encapsulation, and 3D bioprinting with a Cellink BioX printer, enabling the creation of complex tissue models. The protocol ensures high cell viability and supports differentiation, essential for neuroscience research and drug development.
Collapse
Affiliation(s)
- Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Anna Herland
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology at Science for Life Laboratory, Solna, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institute and KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
6
|
Dave B, Tailor J. Human stem cell models to unravel brain cancer. BMC Cancer 2024; 24:1465. [PMID: 39609728 PMCID: PMC11603633 DOI: 10.1186/s12885-024-13187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Pre-clinical animal models of human brain tumors have been invaluable tools for studying cancer pathogenesis and exploring novel treatment modalities. Such models recapitulate important aspects of the human disease such as the stem-progenitor-differentiated cell hierarchy. Although powerful, we argue that animal models are inherently limited in their ability to phenocopy certain important aspects of human brain tumor biology. We specifically highlight the inability of mouse models to generate certain forms aggressive pediatric medulloblastoma likely owing to cellular, anatomic, and genetic differences between the human and mouse brains. Additionally, we review some limitations of human brain tumor derived cell lines and outline why they are a sub-optimal system for purposes of pre-clinical modeling. Below, we present the case for human stem cell-based models of brain tumors, focusing mainly on glioblastoma and medulloblastoma. Drawing on several recently published studies, we review the exciting progress that has been made towards modeling human brain tumors using two-dimensional adherent stem cell cultures and three-dimensional organoids. We identify the important advances arrived at using these human stem cell-based models and suggest opportunities for future work in this direction. In this review article, we aim to highlight the utility and promises of human stem cell-based models of brain tumors as a complementary system to traditional transgenic animal and cell line systems.
Collapse
Affiliation(s)
- Biren Dave
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jignesh Tailor
- Division of Pediatric Neurosurgery, Riley Hospital for Children, Indianapolis, IN, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Mothes T, Konstantinidis E, Eltom K, Dakhel A, Rostami J, Erlandsson A. Tau processing and tau-mediated inflammation differ in human APOEε2 and APOEε4 astrocytes. iScience 2024; 27:111163. [PMID: 39524360 PMCID: PMC11549983 DOI: 10.1016/j.isci.2024.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) and progressive supra-nuclear palsy (PSP) are both proteinopathies, characterized by the accumulation of tau aggregates. APOEε4 is the greatest genetic risk factor for developing AD, while APOEε2 is a significant risk factor for developing PSP. In the brain, astrocytes are the predominant producer of ApoE, but they are also important for inflammation and overall brain homeostasis. Although, tau inclusions appear frequently in astrocytes in both AD and PSP brains, their connection to ApoE remains unclear. Here, we show that hiPSC-derived APOE 2/2 astrocytes accumulate, process, and spread pathogenic tau aggregates more efficiently than isogenic APOE 4/4 astrocytes. Moreover, the APOE 2/2 astrocytes display a more robust inflammatory response, which could be of relevance for the disease course. Taken together, our data highlight a central role of ApoE in astrocyte-mediated tau pathology.
Collapse
Affiliation(s)
- Tobias Mothes
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Evangelos Konstantinidis
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Khalid Eltom
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Abdulkhalek Dakhel
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Jinar Rostami
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Anna Erlandsson
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| |
Collapse
|
8
|
Lee Y, Flores CC, Lefton M, Bhoumik S, Owada Y, Gerstner JR. Integrated Transcriptome Profiling and Pan-Cancer Analyses Reveal Oncogenic Networks and Tumor-Immune Modulatory Roles for FABP7 in Brain Cancers. Int J Mol Sci 2024; 25:12231. [PMID: 39596296 PMCID: PMC11594725 DOI: 10.3390/ijms252212231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Fatty acid binding protein 7 (FABP7) is a multifunctional chaperone involved in lipid metabolism and signaling. It is primarily expressed in astrocytes and neural stem cells (NSCs), as well as their derived malignant glioma cells within the central nervous system. Despite growing evidence for FABP7's tumor-intrinsic onco-metabolic functions, its mechanistic role in regulating the brain tumor immune microenvironment (TIME) and its impact on prognosis at the molecular level remain incompletely understood. Utilizing combined transcriptome profiling and pan-cancer analysis approaches, we report that FABP7 mediates the expression of multiple onco-immune drivers, collectively impacting tumor immunity and clinical outcomes across brain cancer subtypes. An analysis of a single-cell expression atlas revealed that FABP7 is predominantly expressed in the glial lineage and malignant cell populations in gliomas, with nuclear localization in their parental NSCs. Pathway and gene enrichment analysis of RNA sequencing data from wild-type (WT) and Fabp7-knockout (KO) mouse brains, alongside control (CTL) and FABP7-overexpressing (FABP7 OV) human astrocytes, revealed a more pronounced effect of FABP7 levels on multiple cancer-associated pathways. Notably, genes linked to brain cancer progression and tumor immunity (ENO1, MUC1, COL5A1, and IL11) were significantly downregulated (>2-fold) in KO brain tissue but were upregulated in FABP7 OV astrocytes. Furthermore, an analysis of data from The Cancer Genome Atlas (TCGA) showed robust correlations between the expression of these factors, as well as FABP7, and established glioma oncogenes (EGFR, BRAF, NF1, PDGFRA, IDH1), with stronger associations seen in low-grade glioma (LGG) than in glioblastoma (GBM). TIME profiling also revealed that the expression of FABP7 and the genes that it modulates was significantly associated with prognosis and survival, particularly in LGG patients, by influencing the infiltration of immunosuppressive cell populations within tumors. Overall, our findings suggest that FABP7 acts as an intracellular regulator of pro-tumor immunomodulatory genes, exerting a synergistic effect on the TIME and clinical outcomes in brain cancer subtypes.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
- Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
| | - Sukanya Bhoumik
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan;
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.C.F.); (M.L.); (S.B.)
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
- Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
9
|
Horváth V, Garza R, Jönsson ME, Johansson PA, Adami A, Christoforidou G, Karlsson O, Castilla Vallmanya L, Koutounidou S, Gerdes P, Pandiloski N, Douse CH, Jakobsson J. Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease. Nat Struct Mol Biol 2024; 31:1543-1556. [PMID: 38834915 PMCID: PMC11479940 DOI: 10.1038/s41594-024-01320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.
Collapse
Affiliation(s)
- Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Laura Castilla Vallmanya
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ninoslav Pandiloski
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Pandiloski N, Horváth V, Karlsson O, Koutounidou S, Dorazehi F, Christoforidou G, Matas-Fuentes J, Gerdes P, Garza R, Jönsson ME, Adami A, Atacho DAM, Johansson JG, Englund E, Kokaia Z, Jakobsson J, Douse CH. DNA methylation governs the sensitivity of repeats to restriction by the HUSH-MORC2 corepressor. Nat Commun 2024; 15:7534. [PMID: 39214989 PMCID: PMC11364546 DOI: 10.1038/s41467-024-50765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The human silencing hub (HUSH) complex binds to transcripts of LINE-1 retrotransposons (L1s) and other genomic repeats, recruiting MORC2 and other effectors to remodel chromatin. How HUSH and MORC2 operate alongside DNA methylation, a central epigenetic regulator of repeat transcription, remains largely unknown. Here we interrogate this relationship in human neural progenitor cells (hNPCs), a somatic model of brain development that tolerates removal of DNA methyltransferase DNMT1. Upon loss of MORC2 or HUSH subunit TASOR in hNPCs, L1s remain silenced by robust promoter methylation. However, genome demethylation and activation of evolutionarily-young L1s attracts MORC2 binding, and simultaneous depletion of DNMT1 and MORC2 causes massive accumulation of L1 transcripts. We identify the same mechanistic hierarchy at pericentromeric α-satellites and clustered protocadherin genes, repetitive elements important for chromosome structure and neurodevelopment respectively. Our data delineate the epigenetic control of repeats in somatic cells, with implications for understanding the vital functions of HUSH-MORC2 in hypomethylated contexts throughout human development.
Collapse
Affiliation(s)
- Ninoslav Pandiloski
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fereshteh Dorazehi
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jon Matas-Fuentes
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Diahann A M Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jenny G Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Meng J, Fang J, Bao Y, Chen H, Hu X, Wang Z, Li M, Cheng Q, Dong Y, Yang X, Zou Y, Zhao D, Tang J, Zhang W, Chen C. The biphasic role of Hspb1 on ferroptotic cell death in Parkinson's disease. Theranostics 2024; 14:4643-4666. [PMID: 39239519 PMCID: PMC11373631 DOI: 10.7150/thno.98457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/21/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Ferroptosis-driven loss of dopaminergic neurons plays a pivotal role in the pathogenesis of Parkinson's disease (PD). In PD patients, Hspb1 is commonly observed at abnormally high levels in the substantia nigra. The precise consequences of Hspb1 overexpression in PD, however, have yet to be fully elucidated. Methods: We used human iPSC-derived dopaminergic neurons and Coniferaldehyde (CFA)-an Nrf2 agonist known for its ability to cross the blood-brain barrier-to investigate the role of Hspb1 in PD. We examined the correlation between Hspb1 overexpression and Nrf2 activation and explored the transcriptional regulation of Hspb1 by Nrf2. Gene deletion techniques were employed to determine the necessity of Nrf2 and Hspb1 for CFA's neuroprotective effects. Results: Our research demonstrated that Nrf2 can upregulate the transcription of Hspb1 by directly binding to its promoter. Deletion of either Nrf2 or Hspb1 gene abolished the neuroprotective effects of CFA. The Nrf2-Hspb1 pathway, newly identified as a defense mechanism against ferroptosis, was shown to be essential for preventing neurodegeneration progression. Additionally, we discovered that prolonged overexpression of Hspb1 leads to neuronal death and that Hspb1 released from ruptured cells can trigger secondary cell death in neighboring cells, exacerbating neuroinflammatory responses. Conclusions: These findings highlight a biphasic role of Hspb1 in PD, where it initially provides neuroprotection through the Nrf2-Hspb1 pathway but ultimately contributes to neurodegeneration and inflammation when overexpressed. Understanding this dual role is crucial for developing therapeutic strategies targeting Hspb1 and Nrf2 in PD.
Collapse
Affiliation(s)
- Jieyi Meng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinyu Fang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huizhu Chen
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xiaodan Hu
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Quancheng Cheng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yaqiong Dong
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jiping Tang
- Physiology and Pharmacology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92350, USA
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
12
|
Jain S, Voulgaris D, Thongkorn S, Hesen R, Hägg A, Moslem M, Falk A, Herland A. On-Chip Neural Induction Boosts Neural Stem Cell Commitment: Toward a Pipeline for iPSC-Based Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401859. [PMID: 38655836 PMCID: PMC11220685 DOI: 10.1002/advs.202401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 04/26/2024]
Abstract
The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.
Collapse
Affiliation(s)
- Saumey Jain
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
| | - Dimitrios Voulgaris
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMESCenter for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Surangrat Thongkorn
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE)Department of Clinical ChemistryFaculty of Allied Health SciencesChulalongkorn UniversityBangkok10330Thailand
| | - Rick Hesen
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Alice Hägg
- Neural Stem CellsDepartment of Experimental Medical ScienceLund Stem Cell CenterLund UniversityLund221 84Sweden
| | - Mohsen Moslem
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Anna Falk
- Neural Stem CellsDepartment of Experimental Medical ScienceLund Stem Cell CenterLund UniversityLund221 84Sweden
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Anna Herland
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMESCenter for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstitutetSolna171 65Sweden
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| |
Collapse
|
13
|
Winn D, Uhlin E, Kele M, Eidhof I, Falk A. Pre-clinical evaluation of clinically relevant iPS cell derived neuroepithelial stem cells as an off-the-shelf cell therapy for spinal cord injury. Front Pharmacol 2024; 15:1390058. [PMID: 38841365 PMCID: PMC11150580 DOI: 10.3389/fphar.2024.1390058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Preclinical transplantations using human neuroepithelial stem (NES) cells in spinal cord injury models have exhibited promising results and demonstrated cell integration and functional improvement in transplanted animals. Previous studies have relied on the generation of research grade cell lines in continuous culture. Using fresh cells presents logistic hurdles for clinical transition regarding time and resources for maintaining high quality standards. In this study, we generated a good manufacturing practice (GMP) compliant human iPS cell line in GMP clean rooms alongside a research grade iPS cell line which was produced using standardized protocols with GMP compliant chemicals. These two iPS cell lines were differentiated into human NES cells, from which six batches of cell therapy doses were produced. The doses were cryopreserved, thawed on demand and grafted in a rat spinal cord injury model. Our findings demonstrate that NES cells can be directly grafted post-thaw with high cell viability, maintaining their cell identity and differentiation capacity. This opens the possibility of manufacturing off-the-shelf cell therapy products. Moreover, our manufacturing process yields stable cell doses with minimal batch-to-batch variability, characterized by consistent expression of identity markers as well as similar viability of cells across the two iPS cell lines. These cryopreserved cell doses exhibit sustained viability, functionality, and quality for at least 2 years. Our results provide proof of concept that cryopreserved NES cells present a viable alternative to transplanting freshly cultured cells in future cell therapies and exemplify a platform from which cell formulation can be optimized and facilitate the transition to clinical trials.
Collapse
Affiliation(s)
- Dania Winn
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Elias Uhlin
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Ilse Eidhof
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
14
|
Beretta C, Svensson E, Dakhel A, Zyśk M, Hanrieder J, Sehlin D, Michno W, Erlandsson A. Amyloid-β deposits in human astrocytes contain truncated and highly resistant proteoforms. Mol Cell Neurosci 2024; 128:103916. [PMID: 38244652 DOI: 10.1016/j.mcn.2024.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that develops over decades. Glial cells, including astrocytes are tightly connected to the AD pathogenesis, but their impact on disease progression is still unclear. Our previous data show that astrocytes take up large amounts of aggregated amyloid-beta (Aβ) but are unable to successfully degrade the material, which is instead stored intracellularly. The aim of the present study was to analyze the astrocytic Aβ deposits composition in detail in order to understand their role in AD propagation. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aβ42 fibrils and magnetic beads. Live cell imaging and immunocytochemistry confirmed that the ingested Aβ aggregates and beads were transported to the same lysosomal compartments in the perinuclear region, which allowed us to successfully isolate the Aβ deposits from the astrocytes. Using a battery of experimental techniques, including mass spectrometry, western blot, ELISA and electron microscopy we demonstrate that human astrocytes truncate and pack the Aβ aggregates in a way that makes them highly resistant. Moreover, the astrocytes release specifically truncated forms of Aβ via different routes and thereby expose neighboring cells to pathogenic proteins. Taken together, our study establishes a role for astrocytes in mediating Aβ pathology, which could be of relevance for identifying novel treatment targets for AD.
Collapse
Affiliation(s)
- C Beretta
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - E Svensson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden; Department of Neuroinflammation, UCL Queen Square Institute of Neurology, 1 Wakefield Street, WC1N 1PJ London, United Kingdom of Great Britain and Northern Ireland.
| | - A Dakhel
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - M Zyśk
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - J Hanrieder
- Department of Psychiatry and Neurochemistry, University of Gothenburg, SE-43180 Gothenburg, Sweden.
| | - D Sehlin
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - W Michno
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - A Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
15
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Mimicking the Human Articular Joint with In Vitro Model of Neurons-Synoviocytes Co-Culture. Int J Stem Cells 2024; 17:91-98. [PMID: 37996245 PMCID: PMC10899880 DOI: 10.15283/ijsc23043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 11/25/2023] Open
Abstract
The development of in vitro models is essential in modern science due to the need for experiments using human material and the reduction in the number of laboratory animals. The complexity of the interactions that occur in living organisms requires improvements in the monolayer cultures. In the work presented here, neuroepithelial stem (NES) cells were differentiated into peripheral-like neurons (PLN) and the phenotype of the cells was confirmed at the genetic and protein levels. Then RNA-seq method was used to investigate how stimulation with pro-inflammatory factors such as LPS and IFNγ affects the expression of genes involved in the immune response in human fibroblast-like synoviocytes (HFLS). HFLS were then cultured on semi-permeable membrane inserts, and after 24 hours of pro-inflammatory stimulation, the levels of cytokines secretion into the medium were checked. Inserts with stimulated HFLS were introduced into the PLN culture, and by measuring secreted ATP, an increase in cell activity was found in the system. The method used mimics the condition that occurs in the joint during inflammation, as observed in the development of diseases such as rheumatoid arthritis (RA) or osteoarthritis (OA). In addition, the system used can be easily modified to simulate the interaction of peripheral neurons with other cell types.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| |
Collapse
|
16
|
Eltom K, Mothes T, Libard S, Ingelsson M, Erlandsson A. Astrocytic accumulation of tau fibrils isolated from Alzheimer's disease brains induces inflammation, cell-to-cell propagation and neuronal impairment. Acta Neuropathol Commun 2024; 12:34. [PMID: 38409026 PMCID: PMC10898102 DOI: 10.1186/s40478-024-01745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
Accumulating evidence highlights the involvement of astrocytes in Alzheimer's disease (AD) progression. We have previously demonstrated that human iPSC-derived astrocytes ingest and modify synthetic tau fibrils in a way that enhances their seeding efficiency. However, synthetic tau fibrils differ significantly from in vivo formed fibrils. To mimic the situation in the brain, we here analyzed astrocytes' processing of human brain-derived tau fibrils and its consequences for cellular physiology. Tau fibrils were extracted from both AD and control brains, aiming to examine any potential differences in astrocyte response depending on the origin of fibrils. Our results show that human astrocytes internalize, but fail to degrade, both AD and control tau fibrils. Instead, pathogenic, seeding capable tau proteoforms are spread to surrounding cells via tunneling nanotubes and exocytosis. Notably, accumulation of AD tau fibrils induces a stronger reactive state in astrocytes, compared to control fibrils, evident by the augmented expression of vimentin and GFAP, as well as by an increased secretion of the pro-inflammatory cytokines IL-8 and MCP-1. Moreover, conditioned media from astrocytes with AD tau fibril deposits induce synapse and metabolic impairment in human iPSC-derived neurons. Taken together, our data suggest that the accumulation of brain-derived AD tau fibrils induces a more robust inflammatory and neurotoxic phenotype in human astrocytes, accentuating the nature of tau fibrils as an important contributing factor to inflammation and neurodegeneration in AD.
Collapse
Affiliation(s)
- Khalid Eltom
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden
| | - Tobias Mothes
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Neuro-Oncology and Neurodegeneration, Uppsala University, Uppsala, Sweden
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden
- University Health Network, Krembil Brain Institute, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden.
| |
Collapse
|
17
|
Hruska-Plochan M, Wiersma VI, Betz KM, Mallona I, Ronchi S, Maniecka Z, Hock EM, Tantardini E, Laferriere F, Sahadevan S, Hoop V, Delvendahl I, Pérez-Berlanga M, Gatta B, Panatta M, van der Bourg A, Bohaciakova D, Sharma P, De Vos L, Frontzek K, Aguzzi A, Lashley T, Robinson MD, Karayannis T, Mueller M, Hierlemann A, Polymenidou M. A model of human neural networks reveals NPTX2 pathology in ALS and FTLD. Nature 2024; 626:1073-1083. [PMID: 38355792 PMCID: PMC10901740 DOI: 10.1038/s41586-024-07042-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
Collapse
Affiliation(s)
| | - Vera I Wiersma
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Katharina M Betz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Izaskun Mallona
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Zurich, Switzerland
| | - Zuzanna Maniecka
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Hock
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Florent Laferriere
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Vanessa Hoop
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Beatrice Gatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Panatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Puneet Sharma
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- NCCR RNA and Disease Technology Platform, Bern, Switzerland
| | - Laura De Vos
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological diseases, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Martin Mueller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
18
|
Smyrlaki I, Fördős F, Rocamonde-Lago I, Wang Y, Shen B, Lentini A, Luca VC, Reinius B, Teixeira AI, Högberg B. Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force. Nat Commun 2024; 15:465. [PMID: 38238313 PMCID: PMC10796381 DOI: 10.1038/s41467-023-44059-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
The Notch signaling pathway has fundamental roles in embryonic development and in the nervous system. The current model of receptor activation involves initiation via a force-induced conformational change. Here, we define conditions that reveal pulling force-independent Notch activation using soluble multivalent constructs. We treat neuroepithelial stem-like cells with molecularly precise ligand nanopatterns displayed from solution using DNA origami. Notch signaling follows with clusters of Jag1, and with chimeric structures where most Jag1 proteins are replaced by other binders not targeting Notch. Our data rule out several confounding factors and suggest a model where Jag1 activates Notch upon prolonged binding without appearing to need a pulling force. These findings reveal a distinct mode of activation of Notch and lay the foundation for the development of soluble agonists.
Collapse
Affiliation(s)
- Ioanna Smyrlaki
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ferenc Fördős
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Iris Rocamonde-Lago
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yang Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Boxuan Shen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Alto, Finland
| | - Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Mastropasqua F, Oksanen M, Soldini C, Alatar S, Arora A, Ballarino R, Molinari M, Agostini F, Poulet A, Watts M, Rabkina I, Becker M, Li D, Anderlid BM, Isaksson J, Lundin Remnelius K, Moslem M, Jacob Y, Falk A, Crosetto N, Bienko M, Santini E, Borgkvist A, Bölte S, Tammimies K. Deficiency of the Heterogeneous Nuclear Ribonucleoprotein U locus leads to delayed hindbrain neurogenesis. Biol Open 2023; 12:bio060113. [PMID: 37815090 PMCID: PMC10581386 DOI: 10.1242/bio.060113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023] Open
Abstract
Genetic variants affecting Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) have been identified in several neurodevelopmental disorders (NDDs). HNRNPU is widely expressed in the human brain and shows the highest postnatal expression in the cerebellum. Recent studies have investigated the role of HNRNPU in cerebral cortical development, but the effects of HNRNPU deficiency on cerebellar development remain unknown. Here, we describe the molecular and cellular outcomes of HNRNPU locus deficiency during in vitro neural differentiation of patient-derived and isogenic neuroepithelial stem cells with a hindbrain profile. We demonstrate that HNRNPU deficiency leads to chromatin remodeling of A/B compartments, and transcriptional rewiring, partly by impacting exon inclusion during mRNA processing. Genomic regions affected by the chromatin restructuring and host genes of exon usage differences show a strong enrichment for genes implicated in epilepsies, intellectual disability, and autism. Lastly, we show that at the cellular level HNRNPU downregulation leads to an increased fraction of neural progenitors in the maturing neuronal population. We conclude that the HNRNPU locus is involved in delayed commitment of neural progenitors to differentiate in cell types with hindbrain profile.
Collapse
Affiliation(s)
- Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Cristina Soldini
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Shemim Alatar
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Abishek Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michelle Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Ielyzaveta Rabkina
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Johan Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Department of Medical Sciences, Child and Adolescent Psychiatry Unit, Uppsala University, 75309 Uppsala, Sweden
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
| | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
- Lund Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, 6845 Perth, Western Australia
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, 10431 Stockholm, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| |
Collapse
|
20
|
Martinez-Curiel R, Jansson L, Tsupykov O, Avaliani N, Aretio-Medina C, Hidalgo I, Monni E, Bengzon J, Skibo G, Lindvall O, Kokaia Z, Palma-Tortosa S. Oligodendrocytes in human induced pluripotent stem cell-derived cortical grafts remyelinate adult rat and human cortical neurons. Stem Cell Reports 2023; 18:1643-1656. [PMID: 37236198 PMCID: PMC10444570 DOI: 10.1016/j.stemcr.2023.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Neuronal loss and axonal demyelination underlie long-term functional impairments in patients affected by brain disorders such as ischemic stroke. Stem cell-based approaches reconstructing and remyelinating brain neural circuitry, leading to recovery, are highly warranted. Here, we demonstrate the in vitro and in vivo production of myelinating oligodendrocytes from a human induced pluripotent stem cell (iPSC)-derived long-term neuroepithelial stem (lt-NES) cell line, which also gives rise to neurons with the capacity to integrate into stroke-injured, adult rat cortical networks. Most importantly, the generated oligodendrocytes survive and form myelin-ensheathing human axons in the host tissue after grafting onto adult human cortical organotypic cultures. This lt-NES cell line is the first human stem cell source that, after intracerebral delivery, can repair both injured neural circuitries and demyelinated axons. Our findings provide supportive evidence for the potential future use of human iPSC-derived cell lines to promote effective clinical recovery following brain injuries.
Collapse
Affiliation(s)
- Raquel Martinez-Curiel
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Linda Jansson
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Oleg Tsupykov
- Department of Cytology, Bogomoletz Institute of Physiology; Institute of Genetic and Regenerative Medicine, Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, 01024 Kyiv, Ukraine
| | | | - Constanza Aretio-Medina
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Wallenberg Center for Molecular Medicine, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Emanuela Monni
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Johan Bengzon
- Division of Neurosurgery, Department of Clinical Sciences Lund, University Hospital, 22184 Lund, Sweden
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology; Institute of Genetic and Regenerative Medicine, Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, 01024 Kyiv, Ukraine
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden.
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| |
Collapse
|
21
|
Arora A, Becker M, Marques C, Oksanen M, Li D, Mastropasqua F, Watts ME, Arora M, Falk A, Daub CO, Lanekoff I, Tammimies K. Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep 2023; 13:10519. [PMID: 37386098 PMCID: PMC10310850 DOI: 10.1038/s41598-023-37488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
Research continues to identify genetic variation, environmental exposures, and their mixtures underlying different diseases and conditions. There is a need for screening methods to understand the molecular outcomes of such factors. Here, we investigate a highly efficient and multiplexable, fractional factorial experimental design (FFED) to study six environmental factors (lead, valproic acid, bisphenol A, ethanol, fluoxetine hydrochloride and zinc deficiency) and four human induced pluripotent stem cell line derived differentiating human neural progenitors. We showcase the FFED coupled with RNA-sequencing to identify the effects of low-grade exposures to these environmental factors and analyse the results in the context of autism spectrum disorder (ASD). We performed this after 5-day exposures on differentiating human neural progenitors accompanied by a layered analytical approach and detected several convergent and divergent, gene and pathway level responses. We revealed significant upregulation of pathways related to synaptic function and lipid metabolism following lead and fluoxetine exposure, respectively. Moreover, fluoxetine exposure elevated several fatty acids when validated using mass spectrometry-based metabolomics. Our study demonstrates that the FFED can be used for multiplexed transcriptomic analyses to detect relevant pathway-level changes in human neural development caused by low-grade environmental risk factors. Future studies will require multiple cell lines with different genetic backgrounds for characterising the effects of environmental exposures in ASD.
Collapse
Affiliation(s)
- Abishek Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Cátia Marques
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Michelle Evelyn Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Lund Stem Cell Center, Division of Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Carsten Oliver Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
22
|
Mothes T, Portal B, Konstantinidis E, Eltom K, Libard S, Streubel-Gallasch L, Ingelsson M, Rostami J, Lindskog M, Erlandsson A. Astrocytic uptake of neuronal corpses promotes cell-to-cell spreading of tau pathology. Acta Neuropathol Commun 2023; 11:97. [PMID: 37330529 PMCID: PMC10276914 DOI: 10.1186/s40478-023-01589-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023] Open
Abstract
Tau deposits in astrocytes are frequently found in Alzheimer's disease (AD) and other tauopathies. Since astrocytes do not express tau, the inclusions have been suggested to be of neuronal origin. However, the mechanisms behind their appearance and their relevance for disease progression remain unknown. Here we demonstrate, using a battery of experimental techniques that human astrocytes serve as an intermediator, promoting cell-to-cell spreading of pathological tau. Human astrocytes engulf and process, but fail to fully degrade dead neurons with tau pathology, as well as synthetic tau fibrils and tau aggregates isolated from AD brain tissue. Instead, the pathogenic tau is spread to nearby cells via secretion and tunneling nanotube mediated transfer. By performing co-culture experiments we could show that tau-containing astrocytes induce tau pathology in healthy human neurons directly. Furthermore, our results from a FRET based seeding assay, demonstrated that the tau proteoforms secreted by astrocytes have an exceptional seeding capacity, compared to the original tau species engulfed by the cells. Taken together, our study establishes a central role for astrocytes in mediating tau pathology, which could be of relevance for identifying novel treatment targets for AD and other tauopathies.
Collapse
Affiliation(s)
- Tobias Mothes
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Benjamin Portal
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Evangelos Konstantinidis
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Khalid Eltom
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Neuro-Oncology and Neurodegeneration, Uppsala University, Uppsala, Sweden
| | - Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
- University Health Network, Krembil Brain Institute, Toronto, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Jinar Rostami
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Maria Lindskog
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences; Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
23
|
Isoda M, Sanosaka T, Tomooka R, Mabuchi Y, Shinozaki M, Andoh-Noda T, Banno S, Mizota N, Yamaguchi R, Okano H, Kohyama J. Mesenchymal properties of iPSC-derived neural progenitors that generate undesired grafts after transplantation. Commun Biol 2023; 6:611. [PMID: 37286713 DOI: 10.1038/s42003-023-04995-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Although neural stem/progenitor cells derived from human induced pluripotent stem cells (hiPSC-NS/PCs) are expected to be a cell source for cell-based therapy, tumorigenesis of hiPSC-NS/PCs is a potential problem for clinical applications. Therefore, to understand the mechanisms of tumorigenicity in NS/PCs, we clarified the cell populations of NS/PCs. We established single cell-derived NS/PC clones (scNS/PCs) from hiPSC-NS/PCs that generated undesired grafts. Additionally, we performed bioassays on scNS/PCs, which classified cell types within parental hiPSC-NS/PCs. Interestingly, we found unique subsets of scNS/PCs, which exhibited the transcriptome signature of mesenchymal lineages. Furthermore, these scNS/PCs expressed both neural (PSA-NCAM) and mesenchymal (CD73 and CD105) markers, and had an osteogenic differentiation capacity. Notably, eliminating CD73+ CD105+ cells from among parental hiPSC-NS/PCs ensured the quality of hiPSC-NS/PCs. Taken together, the existence of unexpected cell populations among NS/PCs may explain their tumorigenicity leading to potential safety issues of hiPSC-NS/PCs for future regenerative medicine.
Collapse
Affiliation(s)
- Miho Isoda
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, Hyogo, 650-0047, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryo Tomooka
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
- Intractable Disease Research Centre, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Clinical Regenerative Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomoko Andoh-Noda
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Satoe Banno
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriko Mizota
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, Hyogo, 650-0047, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
24
|
Kubickova B, Martinkova S, Bohaciakova D, Nezvedova M, Liu R, Brozman O, Spáčil Z, Hilscherova K. Effects of all-trans and 9-cis retinoic acid on differentiating human neural stem cells in vitro. Toxicology 2023; 487:153461. [PMID: 36805303 PMCID: PMC10019519 DOI: 10.1016/j.tox.2023.153461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Cyanobacterial blooms are known sources of environmentally-occurring retinoid compounds, including all-trans and 9-cis retinoic acids (RAs). The developmental hazard for aquatic organisms has been described, while the implications for human health hazard assessment are not yet sufficiently characterized. Here, we employ a human neural stem cell model that can differentiate in vitro into a mixed culture of neurons and glia. Cells were exposed to non-cytotoxic 8-1000 nM all-trans or 9-cis RA for 9-18 days (DIV13 and DIV22, respectively). Impact on biomarkers was analyzed on gene expression (RT-qPCR) and protein level (western blot and proteomics) at both time points; network patterning (immunofluorescence) on DIV22. RA exposure significantly concentration-dependently increased gene expression of retinoic acid receptors and the metabolizing enzyme CYP26A1, confirming the chemical-specific response of the model. Expression of thyroid hormone signaling-related genes remained mostly unchanged. Markers of neural progenitors/stem cells (PAX6, SOX1, SOX2, NESTIN) were decreased with increasing RA concentrations, though a basal population remained. Neural markers (DCX, TUJ1, MAP2, NeuN, SYP) remained unchanged or were decreased at high concentrations (200-1000 nM). Conversely, (astro-)glial marker S100β was increased concentration-dependently on DIV22. Together, the biomarker analysis indicates an RA-dependent promotion of glial cell fates over neural differentiation, despite the increased abundance of neural protein biomarkers during differentiation. Interestingly, RA exposure induced substantial changes to the cell culture morphology: while low concentrations resulted in a network-like differentiation pattern, high concentrations (200-1000 nM RA) almost completely prevented such network patterning. After functional confirmation for implications in network function, such morphological features could present a proxy for network formation assessment, an apical key event in (neuro-)developmental Adverse Outcome Pathways. The described application of a human in vitro model for (developmental) neurotoxicity to emerging environmentally-relevant retinoids contributes to the evidence-base for the use of differentiating human in vitro models for human health hazard and risk assessment.
Collapse
Affiliation(s)
- Barbara Kubickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Sarka Martinkova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Dasa Bohaciakova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Kamenice 3, 62500 Brno, Czech Republic.
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Runze Liu
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Ondrej Brozman
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
25
|
Yu H, Han Y, Cui C, Li G, Zhang B. Loss of SV2A promotes human neural stem cell apoptosis via p53 signaling. Neurosci Lett 2023; 800:137125. [PMID: 36780942 DOI: 10.1016/j.neulet.2023.137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
This study investigated the role of synaptic vesicle protein 2A (SV2A) in the regulation of human induced pluripotent stem cell-derived neural stem cells (NSCs). SV2A was highly expressed in NSCs. SV2A knockdown promotes apoptosis, which was associated with an upregulation of genes involved in p53 signaling as determined by transcriptome analysis. Treatment with the small molecule p53 inhibitor pifithrin-α reversed the promotion of NSC apoptosis induced by loss of SV2A. These results demonstrate that SV2A plays an important role in regulating NSC survival via the p53 signaling pathway.
Collapse
Affiliation(s)
- Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
26
|
Konstantinidis E, Dakhel A, Beretta C, Erlandsson A. Long-term effects of amyloid-beta deposits in human iPSC-derived astrocytes. Mol Cell Neurosci 2023; 125:103839. [PMID: 36907531 DOI: 10.1016/j.mcn.2023.103839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Growing evidence indicates that astrocytes are tightly connected to Alzheimer's disease (AD) pathogenesis. However, the way in which astrocytes participate in AD initiation and progression remains to be clarified. Our previous data show that astrocytes engulf large amounts of aggregated amyloid-beta (Aβ) but are unable to successfully degrade the material. In this study, we aimed to evaluate how intracellular Aβ-accumulation affects the astrocytes over time. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aβ-fibrils and then cultured further for one week or ten weeks in Aβ-free medium. Cells from both time points were analyzed for lysosomal proteins and astrocyte reactivity markers and the media were screened for inflammatory cytokines. In addition, the overall health of cytoplasmic organelles was investigated by immunocytochemistry and electron microscopy. Our data demonstrate that long-term astrocytes retained frequent Aβ-inclusions that were enclosed within LAMP1-positive organelles and sustained markers associated with reactivity. Furthermore, Aβ-accumulation resulted in endoplasmic reticulum and mitochondrial swelling, increased secretion of the cytokine CCL2/MCP-1 and formation of pathological lipid structures. Taken together, our results provide valuable information of how intracellular Aβ-deposits affect astrocytes, and thereby contribute to the understanding of the role of astrocytes in AD progression.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Abdulkhalek Dakhel
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Chiara Beretta
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Anna Erlandsson
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden.
| |
Collapse
|
27
|
Jayabal P, Zhou F, Ma X, Bondra KM, Blackman B, Weintraub ST, Chen Y, Chévez-Barrios P, Houghton PJ, Gallie B, Shiio Y. Nitric oxide suppression by secreted frizzled-related protein 2 drives retinoblastoma. Cell Rep 2023; 42:112103. [PMID: 36773293 PMCID: PMC10412738 DOI: 10.1016/j.celrep.2023.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Retinoblastoma is a cancer of the infant retina primarily driven by loss of the Rb tumor suppressor gene, which is undruggable. Here, we report an autocrine signaling, mediated by secreted frizzled-related protein 2 (SFRP2), which suppresses nitric oxide and enables retinoblastoma growth. We show that coxsackievirus and adenovirus receptor (CXADR) is the cell-surface receptor for SFRP2 in retinoblastoma cells; that CXADR functions as a "dependence receptor," transmitting a growth-inhibitory signal in the absence of SFRP2; and that the balance between SFRP2 and CXADR determines nitric oxide production. Accordingly, high SFRP2 RNA expression correlates with high-risk histopathologic features in retinoblastoma. Targeting SFRP2 signaling by SFRP2-binding peptides or by a pharmacological inhibitor rapidly induces nitric oxide and profoundly inhibits retinoblastoma growth in orthotopic xenograft models. These results reveal a cytokine signaling pathway that regulates nitric oxide production and retinoblastoma cell proliferation and is amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Panneerselvam Jayabal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Fuchun Zhou
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kathryn M Bondra
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Barron Blackman
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Population Health Sciences, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Patricia Chévez-Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Brenda Gallie
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Yuzuru Shiio
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
28
|
Berg LJ, Brüstle O. Stem cell programming - prospects for perinatal medicine. J Perinat Med 2023:jpm-2022-0575. [PMID: 36809086 DOI: 10.1515/jpm-2022-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023]
Abstract
Recreating human cell and organ systems in vitro has tremendous potential for disease modeling, drug discovery and regenerative medicine. The aim of this short overview is to recapitulate the impressive progress that has been made in the fast-developing field of cell programming during the past years, to illuminate the advantages and limitations of the various cell programming technologies for addressing nervous system disorders and to gauge their impact for perinatal medicine.
Collapse
Affiliation(s)
- Lea J Berg
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
29
|
Zyśk M, Beretta C, Naia L, Dakhel A, Påvénius L, Brismar H, Lindskog M, Ankarcrona M, Erlandsson A. Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism. J Neuroinflammation 2023; 20:43. [PMID: 36803838 PMCID: PMC9940442 DOI: 10.1186/s12974-023-02722-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Astrocytes play a central role in maintaining brain energy metabolism, but are also tightly connected to the pathogenesis of Alzheimer's disease (AD). Our previous studies demonstrate that inflammatory astrocytes accumulate large amounts of aggregated amyloid-beta (Aβ). However, in which way these Aβ deposits influence their energy production remain unclear. METHODS The aim of the present study was to investigate how Aβ pathology in astrocytes affects their mitochondria functionality and overall energy metabolism. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aβ42 fibrils for 7 days and analyzed over time using different experimental approaches. RESULTS Our results show that to maintain stable energy production, the astrocytes initially increased their mitochondrial fusion, but eventually the Aβ-mediated stress led to abnormal mitochondrial swelling and excessive fission. Moreover, we detected increased levels of phosphorylated DRP-1 in the Aβ-exposed astrocytes, which co-localized with lipid droplets. Analysis of ATP levels, when blocking certain stages of the energy pathways, indicated a metabolic shift to peroxisomal-based fatty acid β-oxidation and glycolysis. CONCLUSIONS Taken together, our data conclude that Aβ pathology profoundly affects human astrocytes and changes their entire energy metabolism, which could result in disturbed brain homeostasis and aggravated disease progression.
Collapse
Affiliation(s)
- Marlena Zyśk
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Chiara Beretta
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Luana Naia
- grid.4714.60000 0004 1937 0626Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Abdulkhalek Dakhel
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Linnea Påvénius
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Hjalmar Brismar
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 171 65 Stockholm, Sweden ,grid.5037.10000000121581746Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, 171 65 Stockholm, Sweden
| | - Maria Lindskog
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Maria Ankarcrona
- grid.4714.60000 0004 1937 0626Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
30
|
Konstantinidis E, Portal B, Mothes T, Beretta C, Lindskog M, Erlandsson A. Intracellular deposits of amyloid-beta influence the ability of human iPSC-derived astrocytes to support neuronal function. J Neuroinflammation 2023; 20:3. [PMID: 36593462 PMCID: PMC9809017 DOI: 10.1186/s12974-022-02687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Astrocytes are crucial for maintaining brain homeostasis and synaptic function, but are also tightly connected to the pathogenesis of Alzheimer's disease (AD). Our previous data demonstrate that astrocytes ingest large amounts of aggregated amyloid-beta (Aβ), but then store, rather than degrade the ingested material, which leads to severe cellular stress. However, the involvement of pathological astrocytes in AD-related synaptic dysfunction remains to be elucidated. METHODS In this study, we aimed to investigate how intracellular deposits of Aβ in astrocytes affect their interplay with neurons, focusing on neuronal function and viability. For this purpose, human induced pluripotent stem cell (hiPSC)-derived astrocytes were exposed to sonicated Αβ42 fibrils. The direct and indirect effects of the Αβ-exposed astrocytes on hiPSC-derived neurons were analyzed by performing astrocyte-neuron co-cultures as well as additions of conditioned media or extracellular vesicles to pure neuronal cultures. RESULTS Electrophysiological recordings revealed significantly decreased frequency of excitatory post-synaptic currents in neurons co-cultured with Aβ-exposed astrocytes, while conditioned media from Aβ-exposed astrocytes had the opposite effect and resulted in hyperactivation of the synapses. Clearly, factors secreted from control, but not from Aβ-exposed astrocytes, benefited the wellbeing of neuronal cultures. Moreover, reactive astrocytes with Aβ deposits led to an elevated clearance of dead cells in the co-cultures. CONCLUSIONS Taken together, our results demonstrate that inclusions of aggregated Aβ affect the reactive state of the astrocytes, as well as their ability to support neuronal function.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Benjamin Portal
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tobias Mothes
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Chiara Beretta
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Lindskog
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Anna Erlandsson
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
31
|
Coschiera A, Watts ME, Kere J, Tammimies K, Swoboda P. Human LUHMES and NES cells as models for studying primary cilia in neurons. Methods Cell Biol 2023; 176:27-41. [PMID: 37164541 DOI: 10.1016/bs.mcb.2022.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Primary cilia are antenna-like organelles emanating from the cell surface. They are involved in cell-to-cell communication and bidirectional signal transduction to/from the extracellular environment. During brain formation, cilia critically aid in neurogenesis and maturation of neuronal structures such as axons, dendrites and synapses. Aberrations in cilia function can induce neuron differentiation defects and pathological consequences of varying severity, resulting in ciliopathies and likely a number of neurodevelopmental disorders. Despite the documented relevance of cilia for proper brain development, human neuronal models to recognize and study cilia biology are still scarce. We have established two types of cell models, Lund Human Mesencephalic (LUHMES) cells and neuroepithelial stem (NES) cells derived from induced pluripotent stem cells (iPSC), to investigate cilia biology in both proliferating neuronal progenitors/precursors and during the entire neuron differentiation and maturation process. We employ improved immunocytochemistry assays able to specifically detect cilia by confocal and super-resolution microscopy. We provide straightforward and robust methods to easily maintain cells in culture, for immunostaining and characterization of cilia orientation, anatomy and shape in human neurons across all stages of differentiation.
Collapse
Affiliation(s)
- Andrea Coschiera
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Michelle Evelyn Watts
- Karolinska Institute, Department of Women's and Children's Health and Center for Psychiatry Research, Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Juha Kere
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden; University of Helsinki, Stem Cells and Metabolism Research Program and Folkhälsan Research Center, Helsinki, Finland
| | - Kristiina Tammimies
- Karolinska Institute, Department of Women's and Children's Health and Center for Psychiatry Research, Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden.
| |
Collapse
|
32
|
Chromatin remodeler CHD7 targets active enhancer region to regulate cell type-specific gene expression in human neural crest cells. Sci Rep 2022; 12:22648. [PMID: 36587182 PMCID: PMC9805427 DOI: 10.1038/s41598-022-27293-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
A mutation in the chromatin remodeler chromodomain helicase DNA-binding 7 (CHD7) gene causes the multiple congenital anomaly CHARGE syndrome. The craniofacial anomalies observed in CHARGE syndrome are caused by dysfunctions of neural crest cells (NCCs), which originate from the neural tube. However, the mechanism by which CHD7 regulates the function of human NCCs (hNCCs) remains unclear. We aimed to characterize the cis-regulatory elements governed by CHD7 in hNCCs by analyzing genome-wide ChIP-Seq data and identifying hNCC-specific CHD7-binding profiles. We compared CHD7-binding regions among cell types, including human induced pluripotent stem cells and human neuroepithelial cells, to determine the comprehensive properties of CHD7-binding in hNCCs. Importantly, analysis of the hNCC-specific CHD7-bound region revealed transcription factor AP-2α as a potential co-factor facilitating the cell type-specific transcriptional program in hNCCs. CHD7 was strongly associated with active enhancer regions, permitting the expression of hNCC-specific genes to sustain the function of hNCCs. Our findings reveal the regulatory mechanisms of CHD7 in hNCCs, thus providing additional information regarding the transcriptional programs in hNCCs.
Collapse
|
33
|
Azeez IA, Awogbindin IO, Olayinka JN, Folarin RO, Adamu AS, Ior LD, Shehu AM, Mukhtar AI, Ajeigbe OF, Emokpae AO, Usende IL, Babatunde BR, Yusha'u Y, Olateju OI, Kamoga R, Benson AIO, Oparaji KC, Owemidu IO, Iliyasu MO, Imam MI, Olopade JO. Neural stem cell research in Africa: current realities and future prospects. Biol Open 2022; 11:280534. [PMID: 36326097 PMCID: PMC9641530 DOI: 10.1242/bio.059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.
Collapse
Affiliation(s)
- Idris A. Azeez
- Department of Veterinary Anatomy, University of Jos 1 , Jos, 930001 Nigeria
| | | | - Juliet N. Olayinka
- Department of Pharmacology and Therapeutics, Afe Babalola University 3 , Ado-Ekiti, 360001 Nigeria
| | - Royhaan O. Folarin
- Department of Anatomy, Olabisi Onabanjo University 4 , Ago-Iwoye, 120107 Nigeria
| | - Abubakar S. Adamu
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Lydia D. Ior
- Department of Pharmacology, University of Jos 6 , Jos, 930001 , Nigeria
| | - Asmau M. Shehu
- Department of Human Anatomy, Federal University Dutse 7 , Dutse, 720223 , Nigeria
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Abubakar I. Mukhtar
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Olufunke F. Ajeigbe
- Elizade University, Ilara-Mokin, 340112 9 Department of Physical and Chemical Sciences, Biochemistry Programme , , Nigeria
| | | | - Ifukibot L. Usende
- Department of Veterinary Anatomy, University of Abuja 11 , Abuja, 900105 , Nigeria
| | | | - Yusuf Yusha'u
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - Oladiran I. Olateju
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Ronald Kamoga
- Department of Pharmacology and Therapeutics, Mbarara University of Science and Technology 13 , Mbarara P.O. Box 1410 , Uganda
| | - Ayoola I. O. Benson
- Department of Human Anatomy, Elizade University, Ilara-Mokin 14 , Abakaliki, 482131 Nigeria
| | - Kenneth C. Oparaji
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike 15 , Abakaliki, 482131 , Nigeria
| | - Idowu O. Owemidu
- Department of Physiology, Kogi State University 16 , Anyigba, 272102 , Nigeria
| | - Musa O. Iliyasu
- Department of Anatomy, Kogi State University 17 , Anyigba, 272102 , Nigeria
| | - Maryam I. Imam
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan 18 , Ibadan, 200005 , Nigeria
| |
Collapse
|
34
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
35
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
36
|
Uchino K, Tanaka Y, Kawaguchi S, Kubota K, Watanabe T, Katsurabayashi S, Hirose S, Iwasaki K. Establishment of autaptic culture with human-induced pluripotent stem cell-derived astrocytes. iScience 2022; 25:104762. [PMID: 35942096 PMCID: PMC9356095 DOI: 10.1016/j.isci.2022.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Although astrocytes are involved in the pathogenesis of CNS diseases, how they induce synaptic abnormalities is unclear. Currently, in vitro pathological astrocyte cultures or animal models do not reproduce human disease phenotypes accurately. Induced pluripotent stem cells (iPSCs) are replacing animal models in pathological studies. We developed an autaptic culture (AC) system containing single neuron cultures grown on microislands of astrocytes. AC with human iPSC-derived astrocytes (HiA) was established. We evaluated the effect of astrocytes on the synaptic functions of human-derived neurons. We found a significantly higher Na+ current amplitude, membrane capacitance, and number of synapses, as well as longer dendrites, in HiAACs compared with neuron monocultures. Furthermore, HiAs were involved in the formation and maturation of functional synapses that exhibited excitatory postsynaptic currents. This system can facilitate the study of CNS diseases and advance the development of drugs targeting glial cells. We developed an autaptic culture with human iPSCs-derived astrocytes Neurons in HiAACs developed after culture and formed functional synapses EPSC and mEPSC were recorded showing HiAs promoted synapse formation/maturation Autaptic cultures can be used to analyze synaptic activity and human CNS disease
Collapse
Affiliation(s)
- Kouya Uchino
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yasuyoshi Tanaka
- Department of Advanced Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
- iONtarget, Co., Inc., 1-3-70-5805 Momochihama, Sawara-ku, Fukuoka 814-0006, Japan
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Sayaka Kawaguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Corresponding author
| | - Shinichi Hirose
- iONtarget, Co., Inc., 1-3-70-5805 Momochihama, Sawara-ku, Fukuoka 814-0006, Japan
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- General Medical Research Center, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
37
|
Reis L, Raciti M, Rodriguez PG, Joseph B, Al Rayyes I, Uhlén P, Falk A, da Cunha Lima ST, Ceccatelli S. Glyphosate-based herbicide induces long-lasting impairment in neuronal and glial differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2044-2057. [PMID: 35485992 PMCID: PMC9541419 DOI: 10.1002/tox.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 05/09/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most sold pesticides in the world. There are several formulations based on the active ingredient glyphosate (GLY) used along with other chemicals to improve the absorption and penetration in plants. The final composition of commercial GBH may modify GLY toxicological profile, potentially enhancing its neurotoxic properties. The developing nervous system is particularly susceptible to insults occurring during the early phases of development, and exposure to chemicals in this period may lead to persistent impairments on neurogenesis and differentiation. The aim of this study was to evaluate the long-lasting effects of a sub-cytotoxic concentration, 2.5 parts per million of GBH and GLY, on the differentiation of human neuroepithelial stem cells (NES) derived from induced pluripotent stem cells (iPSC). We treated NES cells with each compound and evaluated the effects on key cellular processes, such as proliferation and differentiation in daughter cells never directly exposed to the toxicants. We found that GBH induced a more immature neuronal profile associated to increased PAX6, NESTIN and DCX expression, and a shift in the differentiation process toward glial cell fate at the expense of mature neurons, as shown by an increase in the glial markers GFAP, GLT1, GLAST and a decrease in MAP2. Such alterations were associated to dysregulation of key genes critically involved in neurogenesis, including PAX6, HES1, HES5, and DDK1. Altogether, the data indicate that subtoxic concentrations of GBH, but not of GLY, induce long-lasting impairments on the differentiation potential of NES cells.
Collapse
Affiliation(s)
- Luã Reis
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Marilena Raciti
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Bertrand Joseph
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Per Uhlén
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Anna Falk
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Suzana Telles da Cunha Lima
- Laboratório de Bioprospecção e Biotecnologia, Instituto de BiologiaUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | | |
Collapse
|
38
|
Ballarino R, Bouwman BAM, Agostini F, Harbers L, Diekmann C, Wernersson E, Bienko M, Crosetto N. An atlas of endogenous DNA double-strand breaks arising during human neural cell fate determination. Sci Data 2022; 9:400. [PMID: 35821502 PMCID: PMC9276747 DOI: 10.1038/s41597-022-01508-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Endogenous DNA double-strand breaks (DSBs) occurring in neural cells have been implicated in the pathogenesis of neurodevelopmental disorders (NDDs). Currently, a genomic map of endogenous DSBs arising during human neurogenesis is missing. Here, we applied in-suspension Breaks Labeling In Situ and Sequencing (sBLISS), RNA-Seq, and Hi-C to chart the genomic landscape of DSBs and relate it to gene expression and genome architecture in 2D cultures of human neuroepithelial stem cells (NES), neural progenitor cells (NPC), and post-mitotic neural cells (NEU). Endogenous DSBs were enriched at the promoter and along the gene body of transcriptionally active genes, at the borders of topologically associating domains (TADs), and around chromatin loop anchors. NDD risk genes harbored significantly more DSBs in comparison to other protein-coding genes, especially in NEU cells. We provide sBLISS, RNA-Seq, and Hi-C datasets for each differentiation stage, and all the scripts needed to reproduce our analyses. Our datasets and tools represent a unique resource that can be harnessed to investigate the role of genome fragility in the pathogenesis of NDDs.
Collapse
Affiliation(s)
- Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17165, Sweden
| | - Britta A M Bouwman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Federico Agostini
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Luuk Harbers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Constantin Diekmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Erik Wernersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
39
|
Assessing the neurotoxicity of airborne nano-scale particulate matter in human iPSC-derived neurons using a transcriptomics benchmark dose model. Toxicol Appl Pharmacol 2022; 449:116109. [DOI: 10.1016/j.taap.2022.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|
40
|
Jury M, Matthiesen I, Rasti Boroojeni F, Ludwig SL, Civitelli L, Winkler TE, Selegård R, Herland A, Aili D. Bioorthogonally Cross-Linked Hyaluronan-Laminin Hydrogels for 3D Neuronal Cell Culture and Biofabrication. Adv Healthc Mater 2022; 11:e2102097. [PMID: 35114074 PMCID: PMC11468931 DOI: 10.1002/adhm.202102097] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Laminins (LNs) are key components in the extracellular matrix of neuronal tissues in the developing brain and neural stem cell niches. LN-presenting hydrogels can provide a biologically relevant matrix for the 3D culture of neurons toward development of advanced tissue models and cell-based therapies for the treatment of neurological disorders. Biologically derived hydrogels are rich in fragmented LN and are poorly defined concerning composition, which hampers clinical translation. Engineered hydrogels require elaborate and often cytotoxic chemistries for cross-linking and LN conjugation and provide limited possibilities to tailor the properties of the materials. Here a modular hydrogel system for neural 3D cell cultures, based on hyaluronan and poly(ethylene glycol), that is cross-linked and functionalized with human recombinant LN-521 using bioorthogonal copper-free click chemistry, is shown. Encapsulated human neuroblastoma cells demonstrate high viability and grow into spheroids. Long-term neuroepithelial stem cells (lt-NES) cultured in the hydrogels can undergo spontaneous differentiation to neural fate and demonstrate significantly higher viability than cells cultured without LN. The hydrogels further support the structural integrity of 3D bioprinted structures and maintain high viability of bioprinted and syringe extruded lt-NES, which can facilitate biofabrication and development of cell-based therapies.
Collapse
Affiliation(s)
- Michael Jury
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Isabelle Matthiesen
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Fatemeh Rasti Boroojeni
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Saskia L. Ludwig
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Livia Civitelli
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalWest WingUniversity of OxfordOxfordOX3 9DUUK
| | - Thomas E. Winkler
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
- Institute of MicrotechnologyCenter of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweig38106Germany
| | - Robert Selegård
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Anna Herland
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
- AIMES, Center for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstituteSolna171 65Sweden
- Division of NanobiotechnologyDepartment of Protein Science, Science for Life LaboratoryKTH Royal Institute of TechnologyStockholm17165Sweden
| | - Daniel Aili
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| |
Collapse
|
41
|
Varga BV, Faiz M, Pivonkova H, Khelifi G, Yang H, Gao S, Linderoth E, Zhen M, Karadottir RT, Hussein SM, Nagy A. Signal requirement for cortical potential of transplantable human neuroepithelial stem cells. Nat Commun 2022; 13:2844. [PMID: 35606347 PMCID: PMC9126949 DOI: 10.1038/s41467-022-29839-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-β1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.
Collapse
Affiliation(s)
- Balazs V Varga
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.
| | - Maryam Faiz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Helena Pivonkova
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shangbang Gao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Emma Linderoth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ragnhildur Thora Karadottir
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Samer M Hussein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Obstetrics and Gynaecology, and Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
42
|
Generation of Human iPSC-Derived Astrocytes with a mature star-shaped phenotype for CNS modeling. Stem Cell Rev Rep 2022; 18:2494-2512. [PMID: 35488987 PMCID: PMC9489586 DOI: 10.1007/s12015-022-10376-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
Abstract
The generation of astrocytes from human induced pluripotent stem cells has been hampered by either prolonged differentiation—spanning over two months—or by shorter protocols that generate immature astrocytes, devoid of salient mature astrocytic traits pivotal for central nervous system (CNS) modeling. We directed stable hiPSC-derived neuroepithelial stem cells to human iPSC-derived Astrocytes (hiAstrocytes) with a high percentage of star-shaped cells by orchestrating an astrocytic-tuned culturing environment in 28 days. We employed RT-qPCR and ICC to validate the astrocytic commitment of the neuroepithelial stem cells. To evaluate the inflammatory phenotype, we challenged the hiAstrocytes with the pro-inflammatory cytokine IL-1β (interleukin 1 beta) and quantitatively assessed the secretion profile of astrocyte-associated cytokines and the expression of intercellular adhesion molecule 1 (ICAM-1). Finally, we quantitatively assessed the capacity of hiAstrocytes to synthesize and export the antioxidant glutathione. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of GFAP, AQP4 and ALDH1L1. In addition, the notion of a mature phenotype is reinforced by the expression of both astrocytic glutamate transporters EAAT1 and EAAT2. Thus, hiAstrocytes have a mature phenotype that encompasses traits critical in CNS modeling, including glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile on a par with human fetal astrocytes. This protocol generates a multifaceted astrocytic model suitable for in vitro CNS disease modeling and personalized medicine.
Collapse
|
43
|
Semkova V, Haupt S, Segschneider M, Bell C, Ingelman-Sundberg M, Hajo M, Weykopf B, Muthukottiappan P, Till A, Brüstle O. Dynamics of Metabolic Pathways and Stress Response Patterns during Human Neural Stem Cell Proliferation and Differentiation. Cells 2022; 11:cells11091388. [PMID: 35563695 PMCID: PMC9100042 DOI: 10.3390/cells11091388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding early nervous system stress response mechanisms is crucial for studying developmental neurotoxicity and devising neuroprotective treatments. We used hiPSC-derived long-term self-renewing neuroepithelial stem (lt-NES) cells differentiated for up to 12 weeks as an in vitro model of human neural development. Following a transcriptome analysis to identify pathway alterations, we induced acute oxidative stress (OS) using tert-butyl hydroperoxide (TBHP) and assessed cell viability at different stages of neural differentiation. We studied NRF2 activation, autophagy, and proteasomal function to explore the contribution and interplay of these pathways in the acute stress response. With increasing differentiation, lt-NES cells showed changes in the expression of metabolic pathway-associated genes with engagement of the pentose phosphate pathway after 6 weeks, this was accompanied by a decreased susceptibility to TBHP-induced stress. Microarray analysis revealed upregulation of target genes of the antioxidant response KEAP1–NRF2–ARE pathway after 6 weeks of differentiation. Pharmacological inhibition of NRF2 confirmed its vital role in the increased resistance to stress. While autophagy was upregulated alongside differentiation, it was not further increased upon oxidative stress and had no effect on stress-induced cell loss and the activation of NRF2 downstream genes. In contrast, proteasome inhibition led to the aggravation of the stress response resulting in decreased cell viability, derangement of NRF2 and KEAP1 protein levels, and lacking NRF2-pathway activation. Our data provide detailed insight into the dynamic regulation and interaction of pathways involved in modulating stress responses across defined time points of neural differentiation.
Collapse
Affiliation(s)
- Vesselina Semkova
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- LIFE & BRAIN GmbH, Cellomics Unit, 53127 Bonn, Germany
| | - Simone Haupt
- LIFE & BRAIN GmbH, Cellomics Unit, 53127 Bonn, Germany
| | | | - Catherine Bell
- Karolinska Institute, Department of Physiology and Pharmacology, 171 77 Stockholm, Sweden
| | | | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Beatrice Weykopf
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Pathma Muthukottiappan
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Andreas Till
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence: (A.T.); (O.B.)
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence: (A.T.); (O.B.)
| |
Collapse
|
44
|
Guo Y, Guan Y, Zhu H, Sun T, Wang Y, Huang Y, Ma C, Emery R, Guan W, Wang C, Liu C. Therapeutic function of iPSCs-derived primitive neuroepithelial cells in a rat model of Parkinson's disease. Neurochem Int 2022; 155:105324. [PMID: 35247479 DOI: 10.1016/j.neuint.2022.105324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are a promising unlimited source for cell replacement therapy of neurodegenerative disorders, including Parkinson's disease (PD). In the present study, rat iPSCs-derived primitive neuroepithelial cells (RiPSCs-iNECs) were successfully induced from rat iPSCs (RiPSCs) following two major developmental stages, and could generate neurospheres and differentiated into both neurons and astrocytes in vitro. Then, the RiPSCs-iNECs-GFP+ were unilaterally transplanted into the right substantia nigra (SN) of 6-hydroxydopamine-lesioned rat models of PD. The results demonstrated that the grafted RiPSCs-iNECs could survive in parkinsonian rat brain for at least 150 days, and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. Furthermore, the PD model rats grafted with RiPSCs-iNECs exhibited a significant functional recovery from their parkinsonian behavioral defects. Histological studies showed that RiPSCs-iNECs could differentiate into multiple types of neurons including dopaminergic neurons, GFAP, Pax6, FoxA2 and DAT-positive cells, and induced dopaminergic neurons extended dense neurites into the host striatum. Thus, iPSCs derived primitive neuroepithelial cells could be an attractive candidate as a source of donor material for the treatment of PD, but the molecular mechanism needs further clarification.
Collapse
Affiliation(s)
- Yu Guo
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuhan Guan
- University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Huan Zhu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuanyuan Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuqi Huang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China; Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Rik Emery
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Weijun Guan
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Chunjing Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China; Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
45
|
Bohl B, Jabali A, Ladewig J, Koch P. Asymmetric Notch activity by differential inheritance of lysosomes in human neural stem cells. SCIENCE ADVANCES 2022; 8:eabl5792. [PMID: 35148180 PMCID: PMC8836802 DOI: 10.1126/sciadv.abl5792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Symmetric and asymmetric cell divisions are conserved strategies for stem cell expansion and the generation of more committed progeny, respectively. Here, we demonstrate that in human neural stem cells (NSCs), lysosomes are asymmetrically inherited during mitosis. We show that lysosomes contain Notch receptors and that Notch activation occurs the acidic lysosome environment. The lysosome asymmetry correlates with the expression of the Notch target gene HES1 and the activity of Notch signaling in the daughter cells. Furthermore, an asymmetry of lysosomes and Notch receptors was also observed in a human organoid model of brain development with mitotic figures showing preferential inheritance of lysosomes and Notch receptor in that daughter cell remaining attached to the apical membrane. Thus, this study suggests a previously unknown function of lysosomes as a signaling hub to establish a bias in Notch signaling activity between daughter cells after an asymmetric cell division of human NSCs.
Collapse
Affiliation(s)
- Bettina Bohl
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ammar Jabali
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Julia Ladewig
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Philipp Koch
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| |
Collapse
|
46
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
47
|
Schuy J, Eisfeldt J, Pettersson M, Shahrokhshahi N, Moslem M, Nilsson D, Dahl N, Shahsavani M, Falk A, Lindstrand A. Partial Monosomy 21 Mirrors Gene Expression of Trisomy 21 in a Patient-Derived Neuroepithelial Stem Cell Model. Front Genet 2022; 12:803683. [PMID: 35186010 PMCID: PMC8854775 DOI: 10.3389/fgene.2021.803683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) from patients are an attractive disease model to study tissues with poor accessibility such as the brain. Using this approach, we and others have shown that trisomy 21 results in genome-wide transcriptional dysregulations. The effects of loss of genes on chromosome 21 is much less characterized. Here, we use patient-derived neural cells from an individual with neurodevelopmental delay and a ring chromosome 21 with two deletions spanning 3.8 Mb at the terminal end of 21q22.3, containing 60 protein-coding genes. To investigate the molecular perturbations of the partial monosomy on neural cells, we established patient-derived iPSCs from fibroblasts retaining the ring chromosome 21, and we then induced iPSCs into neuroepithelial stem cells. RNA-Seq analysis of NESCs with the ring chromosome revealed downregulation of 18 genes within the deleted region together with global transcriptomic dysregulations when compared to euploid NESCs. Since the deletions on chromosome 21 represent a genetic “contrary” to trisomy of the corresponding region, we further compared the dysregulated transcriptomic profile in with that of two NESC lines with trisomy 21. The analysis revealed opposed expression changes for 23 genes on chromosome 21 as well as 149 non-chromosome 21 genes. Taken together, our results bring insights into the effects on the global and chromosome 21 specific gene expression from a partial monosomy of chromosome 21qter during early neuronal differentiation.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Mansoureh Shahsavani
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Anna Lindstrand,
| |
Collapse
|
48
|
Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, Hribkova H, Klimova H, Vanova T, Bohaciakova D. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022; 18:792-820. [PMID: 35107767 PMCID: PMC8930932 DOI: 10.1007/s12015-021-10254-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/05/2022]
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer’s disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
Collapse
Affiliation(s)
- Martin Barak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Simona Vochyanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
49
|
Giacomelli E, Vahsen BF, Calder EL, Xu Y, Scaber J, Gray E, Dafinca R, Talbot K, Studer L. Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 2022; 29:11-35. [PMID: 34995492 PMCID: PMC8785905 DOI: 10.1016/j.stem.2021.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Elisa Giacomelli
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
50
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|