1
|
Petrosiute A, Zakšauskas A, Lučiūnaitė A, Petrauskas V, Baranauskienė L, Kvietkauskaitė A, Ščerbavičienė A, Tamošiūnaitė M, Musvicaitė J, Jankūnaitė A, Žvinys G, Stančaitis L, Čapkauskaitė E, Mickevičiūtė A, Juozapaitienė V, Dudutienė V, Zubrienė A, Grincevičienė Š, Bukelskienė V, Schiöth HB, Matulienė J, Matulis D. Carbonic anhydrase IX inhibition as a path to treat neuroblastoma. Br J Pharmacol 2025; 182:1610-1629. [PMID: 39776083 DOI: 10.1111/bph.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia frequently presents a major challenge in the treatment of neuroblastoma (NBL). The neuroblastoma cells produce carbonic anhydrase IX (CA IX), an enzyme crucial for the survival of cancer cells in low-oxygen environments. EXPERIMENTAL APPROACH We designed and synthesised a novel high-affinity inhibitor of CA IX. The highest to-date. The affinities were determined for all human catalytically active CA isozymes showing significant selectivity for CA IX over other isozymes. The inhibitor effect on neuroblastoma cancer cell growth was determined in vitro and in vivo via a mice xenograft model. KEY RESULTS The novel designed inhibitor effectively mitigated the acidification induced by CA IX and reduced spheroid growth under hypoxic conditions in the SK-N-AS cell line. It also diminished the secretion of pro-tumour chemokines IL-8 (CXCL2) and CCL2. When we combined this novel CA IX inhibitor with a compound that inhibits the chemokine receptor CCR2 protein activity, we observed a reduction in mouse tumour growth. The combined treatment also prompted tumours to exhibit adaptive resistance by producing higher levels of vascular endothelial growth factor receptors (VEGFR) and other compensatory signals. CONCLUSIONS AND IMPLICATIONS This research underscores the pivotal role of CA IX in cancer and the potential of a novel CA IX inhibitor-based combination intervention therapy for neuroblastoma treatment.
Collapse
Affiliation(s)
- Agne Petrosiute
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Audrius Zakšauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Lučiūnaitė
- Department of Immunology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agnė Kvietkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Alvilė Ščerbavičienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Marta Tamošiūnaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justina Musvicaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Alberta Jankūnaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gediminas Žvinys
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laimonas Stančaitis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Čapkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vaida Juozapaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Dudutienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Švitrigailė Grincevičienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Bukelskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jurgita Matulienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Grigoreva TA, Kindt DN, Sagaidak AV, Novikova DS, Tribulovich VG. Cellular Systems for Colorectal Stem Cancer Cell Research. Cells 2025; 14:170. [PMID: 39936962 PMCID: PMC11817814 DOI: 10.3390/cells14030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Oncological diseases consistently occupy leading positions among the most life-threatening diseases, including in highly developed countries. At the same time, the second most common cause of cancer death is colorectal cancer. The current level of research shows that the development of effective therapy, in this case, requires a new grade of understanding processes during the emergence and development of a tumor. In particular, the concept of cancer stem cells that ensure the survival of chemoresistant cells capable of giving rise to new tumors is becoming widespread. To provide adequate conditions that reproduce natural processes typical for tumor development, approaches based on increasingly complex cellular systems are being improved. This review discusses the main strategies that allow for the study of the properties of tumor cells with an emphasis on colorectal cancer stem cells. The features of working with tumor cells and the advantages and disadvantages of 2D and 3D culture systems are considered.
Collapse
Affiliation(s)
- Tatyana A. Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia (V.G.T.)
| | | | | | | | | |
Collapse
|
3
|
Makela AV, Tundo A, Liu H, Schneider D, Hermiston T, Khodakivskyi P, Goun E, Contag CH. Targeted intracellular delivery of molecular cargo to hypoxic human breast cancer stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575071. [PMID: 39605477 PMCID: PMC11601403 DOI: 10.1101/2024.01.12.575071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cancer stem cells (CSCs) drive tumorigenesis, are responsible for metastasis, and resist conventional therapies thus posing significant treatment challenges. CSCs reside in hypoxic tumor regions and therefore, effective therapies must target CSCs within this specific microenvironment. CSCs are characterized by limited distinguishable features, however, surface displayed phosphatidylserine (PS) appears to be characteristic of stem cells and offers a potential target. GlaS, a truncated coagulation protein that is internalized after binding PS, was investigated for intracellular delivery of molecular payloads to CSCs. Intracellular delivery via GlaS was enhanced in patient-derived CD44+ mammary CSCs under hypoxic conditions relative to physoxia or hyperoxia. In vivo, GlaS successfully targeted hypoxic tumor regions, and functional delivery of molecular cargo was confirmed using luciferin conjugated to GlaS via a disulfide linkage (GlaS-SS-luc), which releases luciferin upon intracellular glutathione reduction. Bioluminescence imaging demonstrated effective GlaS-mediated delivery of luciferin, a model drug, to CSCs in culture and in vivo. These findings offer the promise of directed delivery of therapeutic agents to intracellular targets in CSCs.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Anthony Tundo
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Huiping Liu
- Department of Pharmacology and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | - Elena Goun
- Department of Chemistry, University of Missouri, Columbia, MO
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
- Departments of Biomedical Engineering, and Microbiology, Genetics, and Immunology, Michigan State University, East Lansing MI
| |
Collapse
|
4
|
Ciepła J, Smolarczyk R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies. Clin Exp Med 2024; 24:235. [PMID: 39361163 PMCID: PMC11449960 DOI: 10.1007/s10238-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Hypoxia is one of the defining characteristics of the tumor microenvironment (TME) in solid cancers. It has a major impact on the growth and spread of malignant cells as well as their resistance to common treatments like radiation and chemotherapy. Here, we explore the complex functions of hypoxia in the TME and investigate its effects on angiogenesis, immunological evasion, and cancer cell metabolism. For prognostic and therapeutic reasons, hypoxia identification is critical, and recent developments in imaging and molecular methods have enhanced our capacity to precisely locate underoxygenated areas inside tumors. Furthermore, targeted therapies that take advantage of hypoxia provide a potential new direction in the treatment of cancer. Therapeutic approaches that specifically target hypoxic conditions in tumors without causing adverse effects are being led by hypoxia-targeted nanocarriers and hypoxia-activated prodrugs (HAPs). This review provides an extensive overview of this dynamic and clinically significant area of oncology research by synthesizing current knowledge about the mechanisms of hypoxia in cancer, highlighting state-of-the-art detection methodologies, and assessing the potential and efficacy of hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
5
|
Tátrai E, Ranđelović I, Surguta SE, Tóvári J. Role of Hypoxia and Rac1 Inhibition in the Metastatic Cascade. Cancers (Basel) 2024; 16:1872. [PMID: 38791951 PMCID: PMC11120288 DOI: 10.3390/cancers16101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The hypoxic condition has a pivotal role in solid tumors and was shown to correlate with the poor outcome of anticancer treatments. Hypoxia contributes to tumor progression and leads to therapy resistance. Two forms of a hypoxic environment might have relevance in tumor mass formation: chronic and cyclic hypoxia. The main regulators of hypoxia are hypoxia-inducible factors, which regulate the cell survival, proliferation, motility, metabolism, pH, extracellular matrix function, inflammatory cells recruitment and angiogenesis. The metastatic process consists of different steps in which hypoxia-inducible factors can play an important role. Rac1, belonging to small G-proteins, is involved in the metastasis process as one of the key molecules of migration, especially in a hypoxic environment. The effect of hypoxia on the tumor phenotype and the signaling pathways which may interfere with tumor progression are already quite well known. Although the role of Rac1, one of the small G-proteins, in hypoxia remains unclear, predominantly, in vitro studies performed so far confirm that Rac1 inhibition may represent a viable direction for tumor therapy.
Collapse
Affiliation(s)
- Enikő Tátrai
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Ivan Ranđelović
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Sára Eszter Surguta
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| | - József Tóvári
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
6
|
Grimm F, Asuaje A, Jain A, Silva Dos Santos M, Kleinjung J, Nunes PM, Gehrig S, Fets L, Darici S, MacRae JI, Anastasiou D. Metabolic priming by multiple enzyme systems supports glycolysis, HIF1α stabilisation, and human cancer cell survival in early hypoxia. EMBO J 2024; 43:1545-1569. [PMID: 38485816 PMCID: PMC11021510 DOI: 10.1038/s44318-024-00065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 04/18/2024] Open
Abstract
Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.
Collapse
Affiliation(s)
- Fiona Grimm
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Agustín Asuaje
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Aakriti Jain
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Mariana Silva Dos Santos
- Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Jens Kleinjung
- Computational Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Patrícia M Nunes
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Stefanie Gehrig
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Louise Fets
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Salihanur Darici
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Dimitrios Anastasiou
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|
7
|
Fusco P, Fietta A, Esposito MR, Zanella L, Micheli S, Bastianello A, Bova L, Borile G, Germano G, Cimetta E. miR-210-3p enriched extracellular vesicles from hypoxic neuroblastoma cells stimulate migration and invasion of target cells. Cell Biosci 2023; 13:89. [PMID: 37202777 DOI: 10.1186/s13578-023-01045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Tumor hypoxia stimulates release of extracellular vesicles (EVs) that facilitate short- and long-range intercellular communication and metastatization. Albeit hypoxia and EVs release are known features of Neuroblastoma (NB), a metastasis-prone childhood malignancy of the sympathetic nervous system, whether hypoxic EVs can facilitate NB dissemination is unclear. METHODS Here we isolated and characterized EVs from normoxic and hypoxic NB cell culture supernatants and performed microRNA (miRNA) cargo analysis to identify key mediators of EVs biological effects. We then validated if EVs promote pro-metastatic features both in vitro and in an in vivo zebrafish model. RESULTS EVs from NB cells cultured at different oxygen tensions did not differ for type and abundance of surface markers nor for biophysical properties. However, EVs derived from hypoxic NB cells (hEVs) were more potent than their normoxic counterpart in inducing NB cells migration and colony formation. miR-210-3p was the most abundant miRNA in the cargo of hEVs; mechanistically, overexpression of miR-210-3p in normoxic EVs conferred them pro-metastatic features, whereas miR-210-3p silencing suppressed the metastatic ability of hypoxic EVs both in vitro and in vivo. CONCLUSION Our data identify a role for hypoxic EVs and their miR-210-3p cargo enrichment in the cellular and microenvironmental changes favoring NB dissemination.
Collapse
Affiliation(s)
- Pina Fusco
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Anna Fietta
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Luca Zanella
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Sara Micheli
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Angelica Bastianello
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Lorenzo Bova
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
| | - Giulia Borile
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Giuseppe Germano
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy.
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy.
| |
Collapse
|
8
|
Polat D, Onur E, Yılmaz N, Sökücü M, Gerçeker O. KDM3A, a Novel Blood-Based Biomarker in Colorectal Carcinogenesis. Balkan J Med Genet 2023; 25:23-27. [PMID: 37265967 PMCID: PMC10230839 DOI: 10.2478/bjmg-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-linked deaths globally. The determination of biomarkers is important in the prognosis and treatment of CRC. Previous studies emphasized the relationship between hypoxia and CRC in humans, and there is strong evidence that this process is strongly related to HIF-1. KDM3A is a histone demethylase that could directly bind to HIF-1α, a subunit of HIF-1. This study aimed to reveal whether the expression level of the KDM3A gene could be used as a predictor of CRC. The expression levels of HIF-1α, KDM3A, and Epithelial-Mesenchymal Transition (EMT) genes were evaluated by qRT-PCR in leukocyte samples of 50 CRC patients in different stages and 50 healthy controls. HIF-1α and KDM3A expression levels were significantly higher in the CRC group, compared to the controls. Slug and ZEB-1 genes, the mesenchymal markers, showed the same significance pattern between groups. We acquired 0.664 AUC with 54% sensitivity and 85.4% specificity for separating controls from CRC patients by using the KDM3A expression levels in ROC analysis. This data support that KDM3A could be a novel supplementary biomarker in diagnosis of CRC, which could be noninvasively detected in circulation.
Collapse
Affiliation(s)
- D. Polat
- Department of Biology, Section of Molecular Biology, Faculty of Art and Science, Gaziantep University, Gaziantep, Turkey
| | - E. Onur
- Department of Medical Biology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - N. Yılmaz
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - M. Sökücü
- Department of Pathology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - O.F. Gerçeker
- Department of Biology, Section of Molecular Biology, Faculty of Art and Science, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
9
|
Palm A, Theorell-Haglöw J, Isakson J, Ljunggren M, Sundh J, Ekström MP, Grote L. Association between obstructive sleep apnoea and cancer: a cross-sectional, population-based study of the DISCOVERY cohort. BMJ Open 2023; 13:e064501. [PMID: 36868588 PMCID: PMC9990651 DOI: 10.1136/bmjopen-2022-064501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
OBJECTIVES Nocturnal hypoxia in obstructive sleep apnoea (OSA) is a potential risk factor for cancer. We aimed to investigate the association between OSA measures and cancer prevalence in a large national patient cohort. DESIGN Cross-sectional study. SETTINGS 44 sleep centres in Sweden. PARTICIPANTS 62 811 patients from the Swedish registry for positive airway pressure (PAP) treatment in OSA, linked to the national cancer registry and national socioeconomic data (the course of DIsease in patients reported to Swedish CPAP, Oxygen and VEntilator RegistrY cohort). OUTCOME MEASURES After propensity score matching for relevant confounders (anthropometric data, comorbidities, socioeconomic status, smoking prevalence), sleep apnoea severity, measured as Apnoea-Hypopnoea Index (AHI) or Oxygen Desaturation Index (ODI), were compared between those with and without cancer diagnosis up to 5 years prior to PAP initiation. Subgroup analysis for cancer subtype was performed. RESULTS OSA patients with cancer (n=2093) (29.8% females, age 65.3 (SD 10.1) years, body mass index 30 (IQR 27-34) kg/m2) had higher median AHI (n/hour) (32 (IQR 20-50) vs 30 (IQR 19-45), n/hour, p=0.002) and median ODI (n/hour) (28 (IQR 17-46) vs 26 (IQR 16-41), p<0.001) when compared with matched OSA patients without cancer. In subgroup analysis, ODI was significantly higher in OSA patients with lung cancer (N=57; 38 (21-61) vs 27 (16-43), p=0.012)), prostate cancer (N=617; 28 (17-46) vs 24, (16-39)p=0.005) and malignant melanoma (N=170; 32 (17-46) vs 25 (14-41),p=0.015). CONCLUSIONS OSA mediated intermittent hypoxia was independently associated with cancer prevalence in this large, national cohort. Future longitudinal studies are warranted to study the potential protective influence of OSA treatment on cancer incidence.
Collapse
Affiliation(s)
- Andreas Palm
- Department of Medical Sciences, Lung, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
- Centre for Research and Development, Region of Gävleborg Gävle Hospital, Gävle, Sweden
| | - J Theorell-Haglöw
- Department of Medical Sciences, Lung, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Johan Isakson
- Centre for Research and Development, Region of Gävleborg, Gävle Hospital, Gävle, Sweden
| | - Mirjam Ljunggren
- Department of Medical Sciences, Lung, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Josefin Sundh
- Department of Respiratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Per Ekström
- Department of Clinical Sciences, Respiratory Medicine and Allergology, Lund University, Lund, Sweden, Lund, Sweden
| | - Ludger Grote
- Sahlgrenska Academy, Gothenburg University, Centre for Sleep and Wake Disorders, Goteborg, Sweden
| |
Collapse
|
10
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
11
|
Martin J, Islam F. Detection and Isolation of Cancer Stem Cells. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:45-69. [DOI: 10.1007/978-981-99-3185-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Hains AE, Uppal S, Cao JZ, Salwen HR, Applebaum MA, Cohn SL, Godley LA. MYCN and HIF-1 directly regulate TET1 expression to control 5-hmC gains and enhance neuroblastoma cell migration in hypoxia. Epigenetics 2022; 17:2056-2074. [PMID: 35942521 PMCID: PMC9665154 DOI: 10.1080/15592294.2022.2106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
Ten-Eleven-Translocation 5-methylcytosine dioxygenases 1-3 (TET1-3) convert 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), using oxygen as a co-substrate. Contrary to expectations, hypoxia induces 5-hmC gains in MYCN-amplified neuroblastoma (NB) cells via upregulation of TET1. Here, we show that MYCN directly controls TET1 expression in normoxia, and in hypoxia, HIF-1 augments TET1 expression and TET1 protein stability. Through gene-editing, we identify two MYCN and HIF-1 binding sites within TET1 that regulate gene expression. Bioinformatic analyses of 5-hmC distribution and RNA-sequencing data from hypoxic cells implicate hypoxia-regulated genes important for cell migration, including CXCR4. We show that hypoxic cells lacking the two MYCN/HIF-1 binding sites within TET1 migrate slower than controls. Treatment of MYCN-amplified NB cells with a CXCR4 antagonist results in slower migration under hypoxic conditions, suggesting that inclusion of a CXCR4 antagonist into NB treatment regimens could be beneficial for children with MYCN-amplified NBs.
Collapse
Affiliation(s)
- Anastasia E. Hains
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Sakshi Uppal
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - John Z. Cao
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Helen R. Salwen
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Mark A. Applebaum
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Susan L. Cohn
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Narmontė M, Gibas P, Daniūnaitė K, Gordevičius J, Kriukienė E. Multiomics Analysis of Neuroblastoma Cells Reveals a Diversity of Malignant Transformations. Front Cell Dev Biol 2021; 9:727353. [PMID: 34557494 PMCID: PMC8452964 DOI: 10.3389/fcell.2021.727353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system that exhibits significant variation in the stage of differentiation and cell composition of tumors. Global loss of DNA methylation and genomic 5-hydroxymethylcytosine (5hmC) is a hallmark of human cancers. Here, we used our recently developed single-base resolution approaches, hmTOP-seq and uTOP-seq, for construction of 5hmC maps and identification of large partially methylated domains (PMDs) in different NB cell subpopulations. The 5hmC profiles revealed distinct signatures characteristic to different cell lineages and stages of malignant transformation of NB cells in a conventional and oxygen-depleted environment, which often occurs in tumors. The analysis of the cell-type-specific PMD distribution highlighted differences in global genome organization among NB cells that were ascribed to the same lineage identity by transcriptomic networks. Collectively, we demonstrated a high informativeness of the integrative epigenomic and transcriptomic research and large-scale genome structure in investigating the mechanisms that regulate cell identities and developmental stages of NB cells. Such multiomics analysis, as compared with mutational studies, open new ways for identification of novel disease-associated features which bring prognostic and therapeutic value in treating this aggressive pediatric disease.
Collapse
Affiliation(s)
- Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kristina Daniūnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Human Genome Research Group, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juozas Gordevičius
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
14
|
Brum PO, Viola GD, Saibro-Girardi C, Tiefensee-Ribeiro C, Brum MO, Gasparotto J, Krolow R, Moreira JCF, Gelain DP. Hypoxia-Inducible Factor-1α (HIF-1α) Inhibition Impairs Retinoic Acid-Induced Differentiation in SH-SY5Y Neuroblastoma Cells, Leading to Reduced Neurite Length and Diminished Gene Expression Related to Cell Differentiation. Neurochem Res 2021; 47:409-421. [PMID: 34557995 PMCID: PMC8827409 DOI: 10.1007/s11064-021-03454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumour in childhood, originated from cells of the neural crest during the development of the Sympathetic Nervous System. Retinoids are vitamin-A derived differentiating agents utilised to avoid disease resurgence in high-risk neuroblastoma treatment. Several studies indicate that hypoxia—a common feature of the tumoural environment—is a key player in cell differentiation and proliferation. Hypoxia leads to the accumulation of the hypoxia-inducible factor-1α (HIF-1α). This work aims to investigate the effects of the selective inhibition of HIF-1α on the differentiation induced by retinoic acid in human neuroblastoma cells from the SH-SY5Y lineage to clarify its role in cell differentiation. Our results indicate that HIF-1α inhibition impairs RA-induced differentiation by reducing neuron-like phenotype and diminished immunolabeling and expression of differentiation markers.
Collapse
Affiliation(s)
- Pedro Ozorio Brum
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Max F. Perutz Labs, University of Vienna, Dr Bohr-Gasse 9, Room 4.510, 1030, Vienna, Austria.
| | - Guilherme Danielski Viola
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Saibro-Girardi
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Rachel Krolow
- Laboratório de Programação Neurobiológica do Comportamento Alimentar, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Romero Y, Aquino-Gálvez A. Hypoxia in Cancer and Fibrosis: Part of the Problem and Part of the Solution. Int J Mol Sci 2021; 22:8335. [PMID: 34361103 PMCID: PMC8348404 DOI: 10.3390/ijms22158335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptive responses to hypoxia are involved in the progression of lung cancer and pulmonary fibrosis. However, it has not been pointed out that hypoxia may be the link between these diseases. As tumors or scars expand, a lack of oxygen results in the activation of the hypoxia response, promoting cell survival even during chronic conditions. The role of hypoxia-inducible factors (HIFs) as master regulators of this adaptation is crucial in both lung cancer and idiopathic pulmonary fibrosis, which have shown the active transcriptional signature of this pathway. Emerging evidence suggests that interconnected feedback loops such as metabolic changes, fibroblast differentiation or extracellular matrix remodeling contribute to HIF overactivation, making it an irreversible phenomenon. This review will focus on the role of HIF signaling and its possible overlapping in order to identify new opportunities in therapy and regeneration.
Collapse
Affiliation(s)
- Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Arnoldo Aquino-Gálvez
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico
| |
Collapse
|
16
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
17
|
Cheng H, Li D. Investigation into the association between obstructive sleep apnea and incidence of all-type cancers: a systematic review and meta-analysis. Sleep Med 2021; 88:274-281. [PMID: 34219029 DOI: 10.1016/j.sleep.2021.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/13/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Obstructive sleep apnea (OSA) is one of the most common sleep-related breathing disorders and is featured by complete or partial obstruction of the upper airway using sleep. Conflicting reports regarding the association between obstructive sleep apnea (OSA) and cancer incidence are existing in different studies. The aim of this study is to determine whether OSA is independently associated with incidence of all-type cancers by using the meta-analysis. Medline, Embase, PubMed, Ovid, the Cochrane Library database, Web of Science, and Google Scholar were searched by two independent reviewers until 31 January 2021. Studies that evaluated OSA and the cancer incidence were included. Pooled risk ratios (RR) and corresponding 95% confidence intervals (CI) were calculated. Twelve studies, involved 184,915 participants, were pooled in this meta-analysis. Fixed-effects model analysis showed that patients with OSA had an increased risk of cancer incidence (RR: 1.52, 95% CI: 1.39-1.66, P < 0.001). The subgroup analysis showed that the pooled RRs of cancer incidence were 1.14 (95% CI: 1.04-1.25, P = 0.006) for mild OSA, 1.36 (95% CI: 1.32-1.92; P < 0.001) for moderate OSA and 1.59 (95% CI: 1.45-1.74; P < 0.001) for severe OSA, respectively. Patients with moderate and severe OSA were identified to have an increased risk of cancer incidence when compared to patients with mild OSA. In addition, patients with severe OSA also showed an increased risk of incident cancer (RR: 1.18, 95% CI: 1.08-1.28, P < 0.001) when compared to patients with moderate OSA. In conclusion, from most updated literatures, our meta-analysis results indicated that OSA was independently associated with incidence of all-type cancers when stratified the severity of OSA. However, further detailed analysis and clinical studies are warranted to decipher the association between OSA and cancer prevalence.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China.
| | - Dongcai Li
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
18
|
Huo Z, Bilang R, Brantner B, von der Weid N, Holland-Cunz SG, Gros SJ. Perspective on Similarities and Possible Overlaps of Congenital Disease Formation-Exemplified on a Case of Congenital Diaphragmatic Hernia and Neuroblastoma in a Neonate. CHILDREN-BASEL 2021; 8:children8020163. [PMID: 33671521 PMCID: PMC7926624 DOI: 10.3390/children8020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022]
Abstract
The coincidence of two rare diseases such as congenital diaphragmatic hernia (CDH) and neuroblastoma is exceptional. With an incidence of around 2–3:10,000 and 1:8000 for either disease occurring on its own, the chance of simultaneous presentation of both pathologies at birth is extremely low. Unfortunately, the underlying processes leading to congenital malformation and neonatal tumors are not yet thoroughly understood. There are several hypotheses revolving around the formation of CDH and neuroblastoma. The aim of our study was to put the respective hypotheses of disease formation as well as known factors in this process into perspective regarding their similarities and possible overlaps of congenital disease formation. We present the joint occurrence of these two rare diseases based on a patient presentation and immunochemical prognostic marker evaluation. The aim of this manuscript is to elucidate possible similarities in the pathogeneses of both disease entities. Discussed are the role of toxins, cell differentiation, the influence of retinoic acid and NMYC as well as of hypoxia. The detailed discussion reveals that some of the proposed pathophysiological mechanisms of both malformations have common aspects. Especially disturbances of the retinoic acid pathway and NMYC expression can influence and disrupt cell differentiation in either disease. Due to the rarity of both diseases, interdisciplinary efforts and multi-center studies are needed to investigate the reasons for congenital malformations and their interlinkage with neonatal tumor disease.
Collapse
Affiliation(s)
- Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
| | - Remo Bilang
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
| | - Benedikt Brantner
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
| | - Nicolas von der Weid
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
- Department of Hematology and Oncology, University Children’s Hospital Basel, 4056 Basel, Switzerland
| | - Stefan G. Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
- Correspondence:
| |
Collapse
|
19
|
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21:62. [PMID: 33472628 PMCID: PMC7816485 DOI: 10.1186/s12935-020-01719-5] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.
Collapse
Affiliation(s)
- Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine , Arak University of Medical Sciences, Arak, Iran
| | - Alireza Rostami
- Department of Surgery, School of Medicine Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Sistani
- Department of Emergency Medicine, School of Medicine Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery , Arak University of Medical Sciences , Arak, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ahmadlou
- Sciences Medical of University Arak, Hospital Amiralmomenin, Center Development Research Clinical, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, 3848176341, Iran.
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Imam Khomeini Campus, Farhikhtegan Bld., Shahid J'afari St., Kermanshah, 3848176341, Iran.
| |
Collapse
|
20
|
Pini N, Huo Z, Kym U, Holland-Cunz S, Gros SJ. AQP1-Driven Migration Is Independent of Other Known Adverse Factors but Requires a Hypoxic Undifferentiated Cell Profile in Neuroblastoma. CHILDREN-BASEL 2021; 8:children8010048. [PMID: 33467498 PMCID: PMC7829990 DOI: 10.3390/children8010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Neuroblastoma is a biologically very heterogeneous tumor with its clinical manifestation ranging from spontaneous regression to highly aggressive metastatic disease. Several adverse factors have been linked to oncogenesis, tumor progression and metastases of neuroblastoma including NMYC amplification, the neural adhesion molecule NCAM, as well as CXCR4 as a promoter of metastases. In this study, we investigate to what extent the expression of AQP1 in neuroblastoma correlates with changing cellular factors such as the hypoxic status, differentiation, expression of known adverse factors such as NMYC and NCAM, and CXCR4-related metastatic spread. Our results show that while AQP1 expression leads to an increased migratory behavior of neuroblastoma cells under hypoxic conditions, we find that hypoxia is associated with a reduction of NMYC in the same cells. A similar effect can be observed when using the tetracycline driven mechanism of SH-EP/Tet cells. When NMYC is not expressed, the expression of AQP1 is increased together with an increased expression of HIF-1α and HIF-2α. We furthermore show that when growing cells in different cell densities, they express AQP1, HIF-1α, HIF-2α, NMYC and NCAM to different degrees. AQP1 expression correlates with a hypoxic profile of these cells with increased HIF-1α and HIF-2α expression, as well as with NMYC and NCAM expression in two out of three neuroblastoma cell lines. When investigating cell properties of the cells that actually migrate, we find that the increased APQ1 expression in the migrated cells correlates with an increased NMYC and NCAM expression again in two out of three cell lines. Expression of the tumor cell homing marker CXCR4 varies between different tumor areas and between cell lines. While some migrated tumor cells highly express CXCR4, cells of other origin do not. In the initial phase of migration, we determined a dominant role of AQP1 expression of migrating cells in the scratch assay.
Collapse
Affiliation(s)
- Nicola Pini
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Urs Kym
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Correspondence:
| |
Collapse
|
21
|
Bader SB, Dewhirst MW, Hammond EM. Cyclic Hypoxia: An Update on Its Characteristics, Methods to Measure It and Biological Implications in Cancer. Cancers (Basel) 2020; 13:E23. [PMID: 33374581 PMCID: PMC7793090 DOI: 10.3390/cancers13010023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Regions of hypoxia occur in most if not all solid cancers. Although the presence of tumor hypoxia is a common occurrence, the levels of hypoxia and proportion of the tumor that are hypoxic vary significantly. Importantly, even within tumors, oxygen levels fluctuate due to changes in red blood cell flux, vascular remodeling and thermoregulation. Together, this leads to cyclic or intermittent hypoxia. Tumor hypoxia predicts for poor patient outcome, in part due to increased resistance to all standard therapies. However, it is less clear how cyclic hypoxia impacts therapy response. Here, we discuss the causes of cyclic hypoxia and, importantly, which imaging modalities are best suited to detecting cyclic vs. chronic hypoxia. In addition, we provide a comparison of the biological response to chronic and cyclic hypoxia, including how the levels of reactive oxygen species and HIF-1 are likely impacted. Together, we highlight the importance of remembering that tumor hypoxia is not a static condition and that the fluctuations in oxygen levels have significant biological consequences.
Collapse
Affiliation(s)
- Samuel B. Bader
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| | - Mark W. Dewhirst
- Radiation Oncology Department, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ester M. Hammond
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| |
Collapse
|
22
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs 2020; 18:md18100498. [PMID: 33003514 PMCID: PMC7599646 DOI: 10.3390/md18100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.
Collapse
|
24
|
Currò M, Ferlazzo N, Giunta ML, Montalto AS, Russo T, Arena S, Impellizzeri P, Caccamo D, Romeo C, Ientile R. Hypoxia-Dependent Expression of TG2 Isoforms in Neuroblastoma Cells as Consequence of Different MYCN Amplification Status. Int J Mol Sci 2020; 21:ijms21041364. [PMID: 32085516 PMCID: PMC7072980 DOI: 10.3390/ijms21041364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme and two isoforms, TG2-L and TG2-S, exerting opposite effects in the regulation of cell death and survival, have been revealed in cancer tissues. Notably, in cancer cells a hypoxic environment may stimulate tumor growth, invasion and metastasis. Here we aimed to characterize the role of TG2 isoforms in neuroblastoma cell fate under hypoxic conditions. The mRNA levels of TG2 isoforms, hypoxia-inducible factor (HIF)-1α, p16, cyclin D1 and B1, as well as markers of cell proliferation/death, DNA damage, and cell cycle were examined in SH-SY5Y (non-MYCN-amplified) and IMR-32 (MYCN-amplified) neuroblastoma cells in hypoxia/reoxygenation conditions. The exposure to hypoxia induced the up-regulation of HIF-1α in both cell lines. Hypoxic conditions caused the up-regulation of TG2-S and the reduction of cell viability/proliferation associated with DNA damage in SH-SY5Y cells, while in IMR-32 did not produce DNA damage, and increased the levels of both TG2 isoforms and proliferation markers. Different cell response to hypoxia can be mediated by TG2 isoforms in function of MYCN amplification status. A better understanding of the role of TG2 isoforms in neuroblastoma may open new venues in a diagnostic and therapeutic perspective.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Nadia Ferlazzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Maria Laura Giunta
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Angela Simona Montalto
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Tiziana Russo
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Salvatore Arena
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Pietro Impellizzeri
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Carmelo Romeo
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
- Correspondence:
| |
Collapse
|
25
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1163] [Impact Index Per Article: 232.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
26
|
Zhao Z, Xiao X, Saw PE, Wu W, Huang H, Chen J, Nie Y. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. SCIENCE CHINA-LIFE SCIENCES 2019; 63:180-205. [PMID: 31883066 DOI: 10.1007/s11427-019-9665-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cell is a novel approach, which utilizes anti-tumor immunity for cancer treatment. As compared to the traditional cell-mediated immunity, CAR-T possesses the improved specificity of tumor antigens and independent cytotoxicity from major histocompatibility complex molecules through a monoclonal antibody in addition to the T-cell receptor. CAR-T cell has proven its effectiveness, primarily in hematological malignancies, specifically where the CD 19 CAR-T cells were used to treat B-cell acute lymphoblastic leukemia and B-cell lymphomas. Nevertheless, there is little progress in the treatment of solid tumors despite the fact that many CAR agents have been created to target tumor antigens such as CEA, EGFR/EGFRvIII, GD2, HER2, MSLN, MUC1, and other antigens. The main obstruction against the progress of research in solid tumors is the tumor microenvironment, in which several elements, such as poor locating ability, immunosuppressive cells, cytokines, chemokines, immunosuppressive checkpoints, inhibitory metabolic factors, tumor antigen loss, and antigen heterogeneity, could affect the potency of CAR-T cells. To overcome these hurdles, researchers have reconstructed the CAR-T cells in various ways. The purpose of this review is to summarize the current research in this field, analyze the mechanisms of the major barriers mentioned above, outline the main solutions, and discuss the outlook of this novel immunotherapeutic modality.
Collapse
Affiliation(s)
- Zijun Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyun Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongyan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
27
|
Aravindan N, Jain D, Somasundaram DB, Herman TS, Aravindan S. Cancer stem cells in neuroblastoma therapy resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:948-967. [PMID: 31867574 PMCID: PMC6924637 DOI: 10.20517/cdr.2019.72] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical therapy in patients with progressive NB. Given the disease’s heterogeneity and developed resistance, attaining a cure after relapse of progressive NB is highly challenging. A rapid decrease in the timeline between successive recurrences is likely due to the ongoing acquisition of genetic rearrangements in undifferentiated NB-cancer stem cells (CSCs). In this review, we present the current understanding of NB-CSCs, their intrinsic role in tumorigenesis, their function in disease progression, and their influence on acquired therapy resistance and tumor evolution. In particular, this review focus on the intrinsic involvement of stem cells and signaling in the genesis of NB, the function of pre-existing CSCs in NB progression and therapy response, the formation and influence of induced CSCs (iCSCs) in drug resistance and tumor evolution, and the development of a CSC-targeted therapeutic approach.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Anesthesiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Drishti Jain
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
28
|
Saxena K, Jolly MK. Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression. Biomolecules 2019; 9:E339. [PMID: 31382593 PMCID: PMC6722594 DOI: 10.3390/biom9080339] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia has been shown to increase the aggressiveness and severity of tumor progression. Along with chronic and acute hypoxic regions, solid tumors contain regions of cycling hypoxia (also called intermittent hypoxia or IH). Cyclic hypoxia is mimicked in vitro and in vivo by periodic exposure to cycles of hypoxia and reoxygenation (H-R cycles). Compared to chronic hypoxia, cyclic hypoxia has been shown to augment various hallmarks of cancer to a greater extent: angiogenesis, immune evasion, metastasis, survival etc. Cycling hypoxia has also been shown to be the major contributing factor in increasing the risk of cancer in obstructive sleep apnea (OSA) patients. Here, we first compare and contrast the effects of acute, chronic and intermittent hypoxia in terms of molecular pathways activated and the cellular processes affected. We highlight the underlying complexity of these differential effects and emphasize the need to investigate various combinations of factors impacting cellular adaptation to hypoxia: total duration of hypoxia, concentration of oxygen (O2), and the presence of and frequency of H-R cycles. Finally, we summarize the effects of cycling hypoxia on various hallmarks of cancer highlighting their dependence on the abovementioned factors. We conclude with a call for an integrative and rigorous analysis of the effects of varying extents and durations of hypoxia on cells, including tools such as mechanism-based mathematical modelling and microfluidic setups.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
29
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
30
|
Rivera KR, Yokus MA, Erb PD, Pozdin VA, Daniele M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 2019; 144:3190-3215. [PMID: 30968094 PMCID: PMC6564678 DOI: 10.1039/c8an02201a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As microfabrication techniques and tissue engineering methods improve, microphysiological systems (MPS) are being engineered that recapitulate complex physiological and pathophysiological states to supplement and challenge traditional animal models. Although MPS provide unique microenvironments that transcend common 2D cell culture, without proper regulation of oxygen content, MPS often fail to provide the biomimetic environment necessary to activate and investigate fundamental pathways of cellular metabolism and sub-cellular level. Oxygen exists in the human body in various concentrations and partial pressures; moreover, it fluctuates dramatically depending on fasting, exercise, and sleep patterns. Regulating oxygen content inside MPS necessitates a sensitive biological sensor to quantify oxygen content in real-time. Measuring oxygen in a microdevice is a non-trivial requirement for studies focused on understanding how oxygen impacts cellular processes, including angiogenesis and tumorigenesis. Quantifying oxygen inside a microdevice can be achieved via an array of technologies, with each method having benefits and limitations in terms of sensitivity, limits of detection, and invasiveness that must be considered and optimized. This article will review oxygen physiology in organ systems and offer comparisons of organ-specific MPS that do and do not consider oxygen microenvironments. Materials used in microphysiological models will also be analyzed in terms of their ability to control oxygen. Finally, oxygen sensor technologies are critically compared and evaluated for use in MPS.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
31
|
Ali M, Kowkuntla S, Delloro DJ, Galambos C, Hathi D, Janz S, Shokeen M, Tripathi C, Xu H, Yuk J, Zhan F, Tomasson MH, Bates ML. Chronic intermittent hypoxia enhances disease progression in myeloma-resistant mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R678-R686. [PMID: 30892915 DOI: 10.1152/ajpregu.00388.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity is the only known modifiable risk factor for multiple myeloma (MM), an incurable cancer of bone marrow plasma cells. The mechanism linking the two is unknown. Obesity is associated with an increased risk of sleep apnea, which results in chronic intermittent hypoxia (CIH), and drives solid tumor aggressiveness. Given the link between CIH and solid tumor progression, we tested the hypothesis that CIH drives the proliferation of MM cells in culture and their engraftment and progression in vivo. Malignant mouse 5TGM1 cells were cultured in CIH, static hypoxia, or normoxia as a control in custom, gas-permeable plates. Typically MM-resistant C57BL/6J mice were exposed to 10 h/day CIH (AHI = 12/h), static hypoxia, or normoxia for 7 days, followed by injection with 5TGM1 cells and an additional 28 days of exposure. CIH and static hypoxia slowed the growth of 5TGM1 cells in culture. CIH-exposed mice developed significantly more MM than controls (67 vs. 12%, P = 0.005), evidenced by hindlimb paralysis, gammopathy, bone lesions, and bone tumor formation. Static hypoxia was not a significant driver of MM progression and did not reduce survival (P = 0.117). Interestingly, 5TGM1 cells preferentially engrafted in the bone marrow and promoted terminal disease in CIH mice, despite a lower tumor burden, compared with the positive controls. These first experiments in the context of hematological cancer demonstrate that CIH promotes MM through mechanisms distinct from solid tumors and that sleep apnea may be a targetable risk factor in patients with or at risk for blood cancer.
Collapse
Affiliation(s)
- Mahmoud Ali
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Sandeep Kowkuntla
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Derick J Delloro
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, Colorado
| | - Deep Hathi
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Siegfried Janz
- Department of Pathology, University of Iowa , Iowa City, Iowa
| | - Monica Shokeen
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Chakrapani Tripathi
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Hongwei Xu
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Jisung Yuk
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Michael H Tomasson
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Melissa L Bates
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa.,Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| |
Collapse
|
32
|
Aminzadeh-Gohari S, Feichtinger RG, Kofler B. Energy Metabolism and Metabolic Targeting of Neuroblastoma. NEUROBLASTOMA 2019:113-132. [DOI: 10.1016/b978-0-12-812005-7.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Zhou H, Dong G, Zheng W, Wang S, Wang L, Zhi W, Wang C. Radiofrequency radiation at 2.856 GHz does not affect key cellular endpoints in neuron-like PC12 cells. Electromagn Biol Med 2018; 38:102-110. [PMID: 30482060 DOI: 10.1080/15368378.2018.1550787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To investigate the potential cytotoxicity of radiofrequency (RF) radiation on central nervous system, rat pheochromocytoma (PC12) cells were exposed to 2.856 GHz RF radiation at a specific absorption rate (SAR) of 4 W/kg for 8 h a day for 2 days in 35 mm Petri dishes. During exposure, the real-time variation of the culture medium temperature was monitored in the first hour. Reactive oxygen species (ROS) production, intracellular Ca2+ concentration, and cell apoptosis rate were assessed immediately after exposure by flow cytometry. The results showed that the medium temperature raised about 0.93 °C, but no significant changes were observed in apoptosis, ROS levels or intracellular Ca2+ concentration after treatment. Although several studies suggested that RF radiation does indeed cause neurological effects, this study presented inconsistent results, indicating that 2.856 GHz RF radiation exposure at a SAR of 4 W/kg does not have a dramatic impact on PC12 cells, and suggests the need for further investigation on the key cellular endpoints of other nerve cells after exposure to RF radiation.
Collapse
Affiliation(s)
- Hongmei Zhou
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Guofu Dong
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Wen Zheng
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Shuiming Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Lifeng Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Weijia Zhi
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Changzhen Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| |
Collapse
|
34
|
Enrichment of cancer stem cells by agarose multi-well dishes and 3D spheroid culture. Cell Tissue Res 2018; 375:397-408. [PMID: 30244317 DOI: 10.1007/s00441-018-2920-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
As the theory of cancer stem cells (CSCs) is maturing, CSC-targeted therapy is emerging as an important therapeutic strategy and seeking the ideal method for rapid enrichment and purification of CSCs has become crucial. So far, based on the known CSC phenotypes and biological characteristics, the methods for enrichment CSCs mainly include low adhesion culture, low oxygen culture, chemotherapy drug stimulation and side population (SP) sorting but these methods cannot realize quick enrichment of the desired CSCs. Herein, we adopt a novel method that efficiently enriches a certain amount of CSCs through agarose multi-well dishes using rubber micro-molds to make cancer cells into cell spheroids (3D). These 3D cancer cell spheroids in the proportions of expression of CSC biomarkers (single stain of CD44, CD44v6 and CD133 or double stain of both CD44 and CD133) were significantly higher than those of the conventional adherent culture (2D) using flow cytometry analysis. In addition, the expression levels of stemness transcription factors such as OCT4, NANOG and SOX2 in 3D were also significantly higher than that in 2D through Western blot (WB) and quantitative polymerase chain reaction (qPCR) assays. In addition, the CSCs in 3D could form colonies with different sizes in soft agar. In conclusion, we developed a new method to enrich some kinds of CSCs, which might be a benefit for future CSC-targeted therapy studies and anti-CSC drug screening applications.
Collapse
|
35
|
Sreepadmanabh M, Toley BJ. Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics. Biotechnol Adv 2018; 36:1094-1110. [DOI: 10.1016/j.biotechadv.2018.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
|
36
|
Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene 2018; 37:4214-4225. [DOI: 10.1038/s41388-018-0259-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
|
37
|
Marie-Egyptienne DT, Chaudary N, Kalliomäki T, Hedley DW, Hill RP. Cancer initiating-cells are enriched in the CA9 positive fraction of primary cervix cancer xenografts. Oncotarget 2018; 8:1392-1404. [PMID: 27901496 PMCID: PMC5352063 DOI: 10.18632/oncotarget.13625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have suggested that Cancer Initiating Cells (CIC) can be identified/enriched in cell populations obtained from solid tumors based on the expression of cell surface marker proteins. We used early passage primary cervix cancer xenografts to sort cells based on the expression of the intrinsic hypoxia marker Carbonic Anhydrase 9 (CA9) and tested their cancer initiation potential by limiting dilution assay. We demonstrated that CICs are significantly enriched in the CA9+ fraction in 5/6 models studied. Analyses of the expression of the stem cell markers Oct4, Notch1, Sca-1 & Bmi1 showed a trend toward an increase in the CA9+ populations, albeit not significant. We present evidence that enhanced autophagy does not play a role in the enhanced growth of the CA9+ cells. Our study suggests a direct in vivo functional link between hypoxic cells and CICs in primary cervix cancer xenografts.
Collapse
Affiliation(s)
- Delphine Tamara Marie-Egyptienne
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Naz Chaudary
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada
| | - Tuula Kalliomäki
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - David William Hedley
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Richard Peter Hill
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network and Campbell Family Institute for Cancer Research, Toronto, Ontario, M5G2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Applebaum MA, Jha AR, Kao C, Hernandez KM, DeWane G, Salwen HR, Chlenski A, Dobratic M, Mariani CJ, Godley LA, Prabhakar N, White K, Stranger BE, Cohn SL. Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients. Oncotarget 2018; 7:76816-76826. [PMID: 27765905 PMCID: PMC5340231 DOI: 10.18632/oncotarget.12713] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is notable for its broad spectrum of clinical behavior ranging from spontaneous regression to rapidly progressive disease. Hypoxia is well known to confer a more aggressive phenotype in neuroblastoma. We analyzed transcriptome data from diagnostic neuroblastoma tumors and hypoxic neuroblastoma cell lines to identify genes whose expression levels correlate with poor patient outcome and are involved in the hypoxia response. By integrating a diverse set of transcriptome datasets, including those from neuroblastoma patients and neuroblastoma derived cell lines, we identified nine genes (SLCO4A1, ENO1, HK2, PGK1, MTFP1, HILPDA, VKORC1, TPI1, and HIST1H1C) that are up-regulated in hypoxia and whose expression levels are correlated with poor patient outcome in three independent neuroblastoma cohorts. Analysis of 5-hydroxymethylcytosine and ENCODE data indicate that at least five of these nine genes have an increase in 5-hydroxymethylcytosine and a more open chromatin structure in hypoxia versus normoxia and are putative targets of hypoxia inducible factor (HIF) as they contain HIF binding sites in their regulatory regions. Four of these genes are key components of the glycolytic pathway and another three are directly involved in cellular metabolism. We experimentally validated our computational findings demonstrating that seven of the nine genes are significantly up-regulated in response to hypoxia in the four neuroblastoma cell lines tested. This compact and robustly validated group of genes, is associated with the hypoxia response in aggressive neuroblastoma and may represent a novel target for biomarker and therapeutic development.
Collapse
Affiliation(s)
- Mark A Applebaum
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America.,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Aashish R Jha
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, 60637, United States of America.,Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Clara Kao
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Kyle M Hernandez
- Center for Research Informatics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Gillian DeWane
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Helen R Salwen
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Alexandre Chlenski
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Marija Dobratic
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Christopher J Mariani
- Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Lucy A Godley
- Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Nanduri Prabhakar
- Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Kevin White
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Barbara E Stranger
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, 60637, United States of America.,Department of Medicine, University of Chicago, Chicago, Illinois, 60637, United States of America.,Center for Data Intensive Science, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Susan L Cohn
- Departments of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America.,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| |
Collapse
|
39
|
Liu L, Liu W, Wang L, Zhu T, Zhong J, Xie N. Hypoxia-inducible factor 1 mediates intermittent hypoxia-induced migration of human breast cancer MDA-MB-231 cells. Oncol Lett 2017; 14:7715-7722. [PMID: 29250173 PMCID: PMC5727604 DOI: 10.3892/ol.2017.7223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
Metastasis is the major cause of triple-negative breast cancer (TNBC)-associated mortality. Hypoxia promotes cancer cell migration and remote metastasis, which occur with hypoxia inducible factor 1α (HIF-1α) stabilization and vimentin upregulation. However, the evolutionary dynamics that link the changes in HIF-1α and vimentin levels under hypoxic conditions are not well understood. In the present study, the effects of intermittent hypoxia (IH), continuous hypoxia (CH) and normoxia on the migration and proliferation of human TNBC MDA-MB-231 cells were investigated. The results demonstrated that IH significantly increased the migration of MDA-MB-231 cells, and this effect was dependent on the number of cycles of hypoxia-reoxygenation. Unexpectedly, IH significantly inhibited cell proliferation, while CH only caused such an effect if hypoxia extended for ≥3 days. IH and CH induced HIF-1α protein accumulation and vimentin upregulation, with a greater effect observed in IH. Knockdown of HIF-1α with siRNA abolished IH-induced cell migration and vimentin upregulation. In summary, multiple cycles of hypoxia and reoxygenation have a more pronounced effect on the promotion of TNBC invasiveness than CH; HIF-1α activation and downstream vimentin upregulation may account for this phenotypic change.
Collapse
Affiliation(s)
- Litao Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Lili Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Ting Zhu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianhua Zhong
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ni Xie
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Correspondence to: Dr Ni Xie, Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China, E-mail:
| |
Collapse
|
40
|
Wang X, Xu W, Wang S, Yu F, Feng J, Wang X, Zhang L, Lin J. Transdifferentiation of human MNNG/HOS osteosarcoma cells into vascular endothelial cells in vitro and in vivo. Oncol Rep 2017; 38:3153-3159. [PMID: 29048647 DOI: 10.3892/or.2017.6005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
The transdifferentiation of cancer cells into other types of cells in several types of tissues or organs has been studied. However, whether human osteosarcoma MNNG/HOS cells can transdifferentiate into other types of cells has seldom been reported. Meanwhile, the mechanism of tumor angiogenesis is still disputed, and whether MNNG/HOS cells participate in angiogenesis in osteosarcoma remains unknown. In the present study, the investigation was divided into two parts: in vitro and in vivo. In vitro, we cultivated MNNG/HOS cells under hypoxic conditions for 4 days and found that they typically showed a characteristic 'flagstone' appearance as cultured vascular endothelial cells (VECs). MNNG/HOS cells that were cultivated on Matrigel under hypoxic conditions gradually formed tubular-like structures. Furthermore, when cultured under hypoxic conditions for 4 days, MNNG/HOS cells also transcribed and expressed several molecular markers of VECs (CD31, CD34 and vWF). In vivo, MNNG/HOS cells (1x106 cells) were cultivated under hypoxic conditions and subcutaneously injected into nude mice; the mice were sacrificed 49 days after inoculation. Immunohistochemical staining with anti-human CD31 antibody showed evidence of tumor angiogenesis in human osteosarcoma MNNG/HOS cells. The results demonstrated that MNNG/HOS cells can transdifferentiate into vascular endothelial cell-like cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xinwen Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Weifeng Xu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Shenglin Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Feqiang Yu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jinyi Feng
- Department of Orthopaedics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xinwu Wang
- Department of Orthopaedics, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| | - Lurong Zhang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jianhua Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
41
|
Almendros I, Gozal D. Intermittent hypoxia and cancer: Undesirable bed partners? Respir Physiol Neurobiol 2017; 256:79-86. [PMID: 28818483 DOI: 10.1016/j.resp.2017.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
The deleterious effects of intermittent hypoxia (IH) on cancer biology have been primarily evaluated in the context of the aberrant circulation observed in solid tumors which results in recurrent intra-tumoral episodic hypoxia. From those studies, IH has been linked to an accelerated tumor progression, metastasis and resistance to therapies. More recently, the role of IH in cancer has also been studied in the context of obstructive sleep apnea (OSA), since IH is a hallmark characteristic of this condition. Such recent studies are undoubtedly adding more information regarding the role of IH on tumor malignancy. In terms of the IH patterns associated with OSA, this altered oxygenation paradigm has been recently proposed as a determinant factor in fostering cancer incidence and progression from both in vitro and in vivo experimental models. Here, we summarize all the available evidence to date linking IH effects on several types of cancer.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
42
|
Activation of Hypoxia Signaling in Stromal Progenitors Impairs Kidney Development. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1496-1511. [PMID: 28527294 DOI: 10.1016/j.ajpath.2017.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/16/2023]
Abstract
Intrauterine hypoxia is a reason for impaired kidney development. The cellular and molecular pathways along which hypoxia exerts effects on nephrogenesis are not well understood. They are likely triggered by hypoxia-inducible transcription factors (HIFs), and their effects appear to be dependent on the cell compartment contributing to kidney formation. In this study, we investigated the effects of HIF activation in the developing renal stroma, which also essentially modulates nephron development from the metanephric mesenchyme. HIF activation was achieved by conditional deletion of the von Hippel-Lindau tumor suppressor (VHL) protein in the forkhead box FOXD1 cell lineage, from which stromal progenitors arise. The resulting kidneys showed maturation defects associated with early postnatal death. In particular, nephron formation, tubular maturation, and the differentiation of smooth muscle, renin, and mesangial cells were impaired. Erythropoietin expression was strongly enhanced. Codeletion of VHL together with HIF2A but not with HIF1A led to apparently normal kidneys, and the animals reached normal age but were anemic because of low erythropoietin levels. Stromal deletion of HIF2A or HIF1A alone did not affect kidney development. These findings emphasize the relevance of sufficient intrauterine oxygenation for normal renal stroma differentiation, suggesting that chronic activity of HIF2 in stromal progenitors impairs kidney development. Finally, these data confirm the concept that normal stroma function is essential for normal tubular differentiation.
Collapse
|
43
|
Michiels C, Tellier C, Feron O. Cycling hypoxia: A key feature of the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2016; 1866:76-86. [PMID: 27343712 DOI: 10.1016/j.bbcan.2016.06.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
Abstract
A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments.
Collapse
Affiliation(s)
- Carine Michiels
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Céline Tellier
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 53 Avenue Mounier, B1.53.09, B-1200 Brussels, Belgium.
| |
Collapse
|
44
|
Cimmino F, Avitabile M, Pezone L, Scalia G, Montanaro D, Andreozzi M, Terracciano L, Iolascon A, Capasso M. CD55 is a HIF-2α marker with anti-adhesive and pro-invading properties in neuroblastoma. Oncogenesis 2016; 5:e212. [PMID: 27043658 PMCID: PMC4848835 DOI: 10.1038/oncsis.2016.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/31/2015] [Accepted: 01/14/2016] [Indexed: 02/08/2023] Open
Abstract
CD55 has been revealed to have an important role in tumor genesis, and presence of small populations of cells with strong CD55 expression would be sufficient to predict poor prognosis of several tumors. In our study we revealed that CD55 is a novel target of hypoxia-inducible factor HIF-2α in neuroblastoma (NB) cells. We show that HIF-2α expression is sufficient to sustain stem-like features of NB cells, whereas CD55 protein upon HIF-2α expression contributes to growth of colonies and to invasion of cells, but not to stemness features. Interestingly, in NB tissues, CD55 expression is limited to quite a small population of cells that are HIF-2α positive, and the gene expression of CD55 in the NB data set reveals that the presence of CD55(high) affects prognosis of NB patients. The functional characterization of CD55-positive populations within heterogeneous NB monoclonal cell lines shows that CD55 has pro-invading and anti-adhesive properties that might provide the basis for the ability of solid tumors to survive as microscopic residual disease. The easy accessibility to CD55 membrane antigen will offer the possibility of a novel antibody approach in the treatment of recurrent tumors and will provide a ready target for antibody-based visualization in NB diagnosis and prognosis.
Collapse
Affiliation(s)
- F Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - M Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - L Pezone
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Dipartimento di Medicina, Scuola di Medicina e Chirurgia, Università degli Studi di Verona, Verona, Italy
| | - G Scalia
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - D Montanaro
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - M Andreozzi
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - L Terracciano
- Institute of Pathology, University of Basel, Basel, Switzerland
| | - A Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - M Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
45
|
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 2016; 138:1058-66. [PMID: 25784597 PMCID: PMC4573780 DOI: 10.1002/ijc.29519] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
The complex cross-talk of intricate intercellular signaling networks between the tumor and stromal cells promotes cancer progression. Hypoxia is one of the most common conditions encountered within the tumor microenvironment that drives tumorigenesis. Most responses to hypoxia are elicited by a family of transcription factors called hypoxia-inducible factors (HIFs), which induce expression of a diverse set of genes that assist cells to adapt to hypoxic environments. Among the three HIF protein family members, the role of HIF-1 is well established in cancer progression. HIF-1 functions as a signaling hub to coordinate the activities of many transcription factors and signaling molecules that impact tumorigenesis. This mini review discusses the complex role of HIF-1 and its context-dependent partners under various cancer-promoting events including inflammation and generation of cancer stem cells, which are implicated in tumor metastasis and relapse. In addition, the review highlights the importance of therapeutic targeting of HIF-1 for cancer prevention.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
46
|
Kukwa W, Migacz E, Druc K, Grzesiuk E, Czarnecka AM. Obstructive sleep apnea and cancer: effects of intermittent hypoxia? Future Oncol 2015; 11:3285-98. [PMID: 26562000 DOI: 10.2217/fon.15.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common disorder characterized by pauses in regular breathing. Apneic episodes lead to recurrent hypoxemia-reoxygenation cycles with concomitant cellular intermittent hypoxia. Studies suggest that intermittent hypoxia in OSA may influence tumorigenesis. This review presents recent articles on the potential role of OSA in cancer development. Relevant research has focused on: molecular pathways mediating the influence of intermittent hypoxia on tumor physiology, animal and epidemiological human studies linking OSA and cancer. Current data relating OSA to risk of neoplastic disease remain scarce, but recent studies reveal the potential for a strong relation. More work is, therefore, needed on the impact of OSA on many cancer-related aspects. Results may offer enlightenment for improved cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wojciech Kukwa
- Department of Otorhinolaryngology, Faculty of Medicine & Dentistry, Medical University of Warsaw, 19/25 Stepinska Street, 00-739 Warsaw, Poland
| | - Ewa Migacz
- Department of Otorhinolaryngology, Faculty of Medicine & Dentistry, Medical University of Warsaw, 19/25 Stepinska Street, 00-739 Warsaw, Poland
| | - Karolina Druc
- Laboratory of Molecular Oncology, Department of Oncology, Military Institute of Medicine, 128 Szaserow Street, 04-141 Warsaw, Poland
| | - Elzbieta Grzesiuk
- Institute of Biochemistry & Biophysics PAS, Molecular Biology Department, 5a Pawinskiego Street, 02-106 Warszawa, Poland
| | - Anna M Czarnecka
- Laboratory of Molecular Oncology, Department of Oncology, Military Institute of Medicine, 128 Szaserow Street, 04-141 Warsaw, Poland
| |
Collapse
|
47
|
Increased Oxidative Stress as a Selective Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:294303. [PMID: 26273420 PMCID: PMC4529973 DOI: 10.1155/2015/294303] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment.
Collapse
|
48
|
Chen X, Qian Y, Wu S. The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med 2015; 79:253-63. [PMID: 25277420 PMCID: PMC4356994 DOI: 10.1016/j.freeradbiomed.2014.08.027] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/15/2014] [Accepted: 08/23/2014] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming and altered bioenergetics have emerged as hallmarks of cancer and an area of active basic and translational cancer research. Drastically upregulated glucose transport and metabolism in most cancers regardless of the oxygen supply, a phenomenon called the Warburg effect, is a major focuses of the research. Warburg speculated that cancer cells, due to defective mitochondrial oxidative phosphorylation (OXPHOS), switch to glycolysis for ATP synthesis, even in the presence of oxygen. Studies in the recent decade indicated that while glycolysis is indeed drastically upregulated in almost all cancer cells, mitochondrial respiration continues to operate normally at rates proportional to oxygen supply. There is no OXPHOS-to-glycolysis switch but rather upregulation of glycolysis. Furthermore, upregulated glycolysis appears to be for synthesis of biomass and reducing equivalents in addition to ATP production. The new finding that a significant amount of glycolytic intermediates is diverted to the pentose phosphate pathway (PPP) for production of NADPH has profound implications in how cancer cells use the Warburg effect to cope with reactive oxygen species (ROS) generation and oxidative stress, opening the door for anticancer interventions taking advantage of this. Recent findings in the Warburg effect and its relationship with ROS and oxidative stress controls will be reviewed. Cancer treatment strategies based on these new findings will be presented and discussed.
Collapse
Affiliation(s)
- Xiaozhuo Chen
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA; Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
49
|
Maguire LH, Thomas AR, Goldstein AM. Tumors of the neural crest: Common themes in development and cancer. Dev Dyn 2014; 244:311-22. [PMID: 25382669 DOI: 10.1002/dvdy.24226] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
The neural crest (NC) is a remarkable transient structure in the vertebrate embryo that gives rise to a highly versatile population of pluripotent cells that contribute to the formation of multiple tissues and organs throughout the body. In order to achieve their task, NC-derived cells have developed specialized mechanisms to promote (1) their transition from an epithelial to a mesenchymal phenotype, (2) their capacity for extensive migration and cell proliferation, and (3) their ability to produce diverse cell types largely depending on the microenvironment encountered during and after their migratory path. Following embryogenesis, these same features of cellular motility, invasion, and proliferation can become a liability by contributing to tumorigenesis and metastasis. Ample evidence has shown that cancer cells have cleverly co-opted many of the genetic and molecular features used by developing NC cells. This review focuses on tumors that arise from NC-derived tissues and examines mechanistic themes shared during their oncogenic and metastatic development with embryonic NC cell ontogeny.
Collapse
Affiliation(s)
- Lillias H Maguire
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
50
|
Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT. Oxygen control with microfluidics. LAB ON A CHIP 2014; 14:4305-18. [PMID: 25251498 DOI: 10.1039/c4lc00853g] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in channels to generate oxygen gradients in a device, and electrolytic reactions to produce oxygen directly on chip.
Collapse
Affiliation(s)
- Martin D Brennan
- UIC Bioengineering (MC 563), 820 S Wood St W103 CSN, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|