1
|
Faber JE. Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling. J Cereb Blood Flow Metab 2025:271678X251322378. [PMID: 40072222 PMCID: PMC11904929 DOI: 10.1177/0271678x251322378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Collateral blood vessels are unique, naturally occurring endogenous bypass vessels that provide alternative pathways for oxygen delivery in obstructive arterial conditions and diseases. Surprisingly however, the capacity of the collateral circulation to provide protection varies greatly among individuals, resulting in a significant fraction having poor collateral circulation in their tissues. We recently reviewed evidence that the presence of naturally-occurring polymorphisms in genes that determine the number and diameter of collaterals that form during development (ie, genetic background), is a major contributor to this variation. The purpose of this review is to summarize current understanding of the other determinants of collateral blood flow, drawing on both animal and human studies. These include the level of smooth muscle tone in collaterals, hemodynamic forces, how collaterals form during development (collaterogenesis), de novo formation of additional new collaterals during adulthood, loss of collaterals with aging and cardiovascular risk factor presence (rarefaction), and collateral remodeling (structural lumen enlargement). We also review emerging evidence that collaterals not only provide protection in ischemic conditions but may also serve a physiological function in healthy individuals. Primary focus is on studies conducted in brain, however relevant findings in other tissues are also reviewed, as are questions for future investigation.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Kaloss AM, de Jager C, Lyles K, Groot NA, Zhu J, Lin Y, Xie H, Matson JB, Theus MH. Tie2-Dependent Mechanisms Promote Leptomeningeal Collateral Remodeling and Reperfusion Following Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640890. [PMID: 40093127 PMCID: PMC11908148 DOI: 10.1101/2025.02.28.640890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Leptomeningeal collaterals are distal pial arterial anastomotic vessels that provide an alternative route for redistributing cerebral blood flow following arterial obstruction, thereby limiting tissue damage. However, the regulatory mechanisms and strategies to enhance this adaptive response remain under investigation. This study explored the pharmacological effects of Tie2 receptor activation, using the peptide agonist Vasculotide, following permanent middle cerebral artery occlusion (pMCAO). Vasculotide improved collateral growth and remodeling, which correlated with reduced infarct volume, enhanced blood flow, and functional recovery within 24hrs post-pMCAO. In contrast, collateral growth was attenuated in Tie2 and EphA4/Tie2 double knockdown mice, while the loss of EphA4 increased Tie2 and Ang-1 expression and mimicked the positive effects of Vasculotide following stroke. Furthermore, bulk RNA sequencing of meningeal tissue identified key transcriptomic changes, including alterations in AJ-associated transcripts, such as Krt5 , Krt14 , and Col17a1 , in the ipsilateral meninges of both endothelial cell-specific EphA4 knockout and Vasculotide-treated mice. Krt5 expression was found upregulated on meningeal arterial vascular network in injured KO mice, highlighting a potential new mediator of meningeal vascular remodeling. These findings illustrate that EphA4 and Tie2 play opposing roles in collateral remodeling, including the regulation of Krt5. Modulating their activity could potentially enhance the collateral response to stroke.
Collapse
|
3
|
Faber JE. Genetic determinants of insufficiency of the collateral circulation. J Cereb Blood Flow Metab 2025:271678X251317880. [PMID: 39901795 DOI: 10.1177/0271678x251317880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
It has been estimated that approximately two million neurons, sixteen billion synapses and twelve kilometers of axons are lost each minute following anterior large-vessel stroke. The level of collateral blood flow has become recognized as a primary determinant of the pace of this loss and an important factor in clinical decision-making. Many of the topics in this review cover recent developments that have not been reviewed elsewhere. These include that: the number and diameter of collaterals and collateral blood flow vary greatly in the brain and other tissues of healthy individuals; a large percentage of individuals are deficient in collaterals; the underlying mechanism arises primarily from naturally occurring polymorphisms in genes/genetic loci within the pathway that drives collateral formation during development; evidence indicates collateral abundance does not exhibit sexual dimorphism; and that collaterals-besides their function as endogenous bypass vessels-may have a physiological role in optimizing oxygen delivery. Animal and human studies in brain and other tissues, where available, are reviewed. Details of many of the studies are provided so that the strength of the findings and conclusions can be assessed without consulting the original literature. Key questions that remain unanswered and strategies to address them are also discussed.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Sinha A, Gupta M, Bhaskar SMM. Evolucollateral dynamics in stroke: Evolutionary pathophysiology, remodelling and emerging therapeutic strategies. Eur J Neurosci 2024; 60:6779-6798. [PMID: 39498733 DOI: 10.1111/ejn.16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Leptomeningeal collaterals (LMCs) are crucial in mitigating the impact of acute ischemic stroke (AIS) by providing alternate blood flow routes when primary arteries are obstructed. This article explores the evolutionary pathophysiology of LMCs, highlighting their critical function in stroke and the genetic and molecular mechanisms governing their development and remodelling. We address the translational challenges of applying animal model findings to human clinical scenarios, emphasizing the need for further research to validate emerging therapies-such as pharmacological agents, gene therapy and mechanical interventions-in clinical settings, aimed at enhancing collateral perfusion. Computational modelling emerges as a promising method for integrating experimental data, which requires precise parameterization and empirical validation. We introduce the 'Evolucollateral Dynamics' hypothesis, proposing a novel framework that incorporates evolutionary biology principles into therapeutic strategies, offering new perspectives on enhancing collateral circulation. This hypothesis emphasizes the role of genetic predispositions and environmental influences on collateral circulation, which may impact therapeutic strategies and optimize treatment outcomes. Future research must incorporate human clinical data to create robust treatment protocols, thereby maximizing the therapeutic potential of LMCs and improving outcomes for stroke patients.
Collapse
Affiliation(s)
- Akansha Sinha
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Muskaan Gupta
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Sonu M M Bhaskar
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South West Sydney Local Health District, Liverpool, NSW, Australia
- Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
| |
Collapse
|
5
|
Palzkill VR, Tan J, Tice AL, Ferriera LF, Ryan TE. A 6-minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586197. [PMID: 38585832 PMCID: PMC10996543 DOI: 10.1101/2024.03.21.586197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferriera
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, Pardo-Manuel de Villena F, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. J Cereb Blood Flow Metab 2023; 43:1983-2004. [PMID: 37572089 PMCID: PMC10676139 DOI: 10.1177/0271678x231194956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Collateral number in skeletal muscle and intestine of selected high- and low-collateral strains evidenced the same relative abundance as in brain. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. Six additional suggestive QTL (LOD > 4.5) were also identified in CC-wide QTL mapping. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Wojciech Rzechorzek
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, de Villena FPM, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542633. [PMID: 37398475 PMCID: PMC10312463 DOI: 10.1101/2023.05.28.542633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
|
8
|
Abbas H, Olivere LA, Padgett ME, Schmidt CA, Gilmore BF, McCord TJ, Southerland KW, McClung JM, Kontos CD. Muscle progenitor cells are required for skeletal muscle regeneration and prevention of adipogenesis after limb ischemia. Front Cardiovasc Med 2023; 10:1118738. [PMID: 36937923 PMCID: PMC10017542 DOI: 10.3389/fcvm.2023.1118738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal muscle injury in peripheral artery disease (PAD) has been attributed to vascular insufficiency, however evidence has demonstrated that muscle cell responses play a role in determining outcomes in limb ischemia. Here, we demonstrate that genetic ablation of Pax7+ muscle progenitor cells (MPCs) in a model of hindlimb ischemia (HLI) inhibited muscle regeneration following ischemic injury, despite a lack of morphological or physiological changes in resting muscle. Compared to control mice (Pax7WT), the ischemic limb of Pax7-deficient mice (Pax7Δ) was unable to generate significant force 7 or 28 days after HLI. A significant increase in adipose was observed in the ischemic limb 28 days after HLI in Pax7Δ mice, which replaced functional muscle. Adipogenesis in Pax7Δ mice corresponded with a significant increase in PDGFRα+ fibro/adipogenic progenitors (FAPs). Inhibition of FAPs with batimastat decreased muscle adipose but increased fibrosis. In vitro, Pax7Δ MPCs failed to form myotubes but displayed increased adipogenesis. Skeletal muscle from patients with critical limb threatening ischemia displayed increased adipose in more ischemic regions of muscle, which corresponded with fewer satellite cells. Collectively, these data demonstrate that Pax7+ MPCs are required for muscle regeneration after ischemia and suggest that muscle regeneration may be an important therapeutic target in PAD.
Collapse
Affiliation(s)
- Hasan Abbas
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
- Duke-NUS Medical School, Singapore, Singapore
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | | | - Michael E. Padgett
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Cameron A. Schmidt
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Brian F. Gilmore
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Timothy J. McCord
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin W. Southerland
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Joseph M. McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Brody School of Medicine, East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Christopher D. Kontos
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
- Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
9
|
Lee HK, Kwon DH, Aylor DL, Marchuk DA. A cross-species approach using an in vivo evaluation platform in mice demonstrates that sequence variation in human RABEP2 modulates ischemic stroke outcomes. Am J Hum Genet 2022; 109:1814-1827. [PMID: 36167069 PMCID: PMC9606478 DOI: 10.1016/j.ajhg.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023] Open
Abstract
Ischemic stroke, caused by vessel blockage, results in cerebral infarction, the death of brain tissue. Previously, quantitative trait locus (QTL) mapping of cerebral infarct volume and collateral vessel number identified a single, strong genetic locus regulating both phenotypes. Additional studies identified RAB GTPase-binding effector protein 2 (Rabep2) as the casual gene. However, there is yet no evidence that variation in the human ortholog of this gene plays any role in ischemic stroke outcomes. We established an in vivo evaluation platform in mice by using adeno-associated virus (AAV) gene replacement and verified that both mouse and human RABEP2 rescue the mouse Rabep2 knockout ischemic stroke volume and collateral vessel phenotypes. Importantly, this cross-species complementation enabled us to experimentally investigate the functional effects of coding sequence variation in human RABEP2. We chose four coding variants from the human population that are predicted by multiple in silico algorithms to be damaging to RABEP2 function. In vitro and in vivo analyses verify that all four led to decreased collateral vessel connections and increased infarct volume. Thus, there are naturally occurring loss-of-function alleles. This cross-species approach will expand the number of targets for therapeutics development for ischemic stroke.
Collapse
Affiliation(s)
- Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Do Hoon Kwon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - David L Aylor
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Collateral Status and Clinical Outcomes after Mechanical Thrombectomy in Patients with Anterior Circulation Occlusion. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7796700. [PMID: 35126946 PMCID: PMC8808144 DOI: 10.1155/2022/7796700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Background. Successful mechanical thrombectomy (MT) requires reliable, noninvasive selection criteria. We aimed to investigate the association of collateral status and clinical outcomes after MT in patients with ischemic stroke due to anterior circulation occlusion. Methods. 109 patients with poor collaterals and 110 aged, sex-matched patients with good collaterals were enrolled in the study. Collateral circulation was estimated by the CT angiography with a 0–3 scale. The collateral status was categorized as poor collaterals (scores 0–1) and good collaterals (scores 2-3). The reperfusion was assessed by the modified Treatment in Cerebral Infarction scale (mTICI, score 0/1/2a/2b/3). The clinical outcomes included the scores on the modified Rankin scale (mRS, ranging from 0 to 6) and death 90 days after mechanical thrombectomy. Results. Patients with greater scores of collateral status were more likely to achieve successful reperfusion (mTICI 2b/3). Patients with good collaterals were significantly associated with a higher chance of achieving mRS of 0–1 at 90 days (adjusted ORs: 4.55; 95% CI: 3.17–7.24; and
< 0.001) and a lower risk of death at 90 days (adjusted ORs: 0.87; 95% CI: 4.0%–28.0%; and
= 0.012) compared to patients with poor collaterals. In subgroup analyses, patients with statin use seem to benefit more from the effect of collateral status on good mRS (≤2). Conclusion. Among patients with acute ischemic stroke caused by anterior circulation occlusion, better collateral status is associated with higher scores on mRS and lower mortality after mechanical thrombectomy. Statin use might have an interaction with the effect of collateral status.
Collapse
|
11
|
Huang J, Li X, Zhao J, Chen H, Yun Y, Yang G, Jiang Y, Pan Y, Yuan S, Huang J, Su L, Wu Y, Lu D, Xu A, Meng L. Association of BIRC5 Gene Polymorphism with the Collateral Circulation and Severity of Large Artery Atherosclerotic Stroke. Int J Clin Pract 2022; 2022:9177545. [PMID: 35685607 PMCID: PMC9159164 DOI: 10.1155/2022/9177545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The collateral circulation near the cerebral artery occlusion can contribute to the relief of the symptoms and signs of stroke. Genetic factors play a decisive role in the difference in collateral circulation. Survivin, encoded by the baculoviral inhibitor of apoptosis (IAP) repeat-containing 5 gene (BIRC5), plays an important role in maintaining long-term endothelial integrity and homeostasis and as an angiogenic factor in the treatment of vascular diseases. We hypothesized that genetic variations in the BIRC5 gene may contribute to severity by influencing the collateral circulation. This study aimed at examining how the polymorphism of the BIRC5 gene correlated with the collateral circulation and severity of large artery atherosclerotic stroke. METHODS This study enrolled 428 patients with large artery atherosclerotic stroke. There are no statistical differences in age, sex, social behavior, such as smoking and drinking, between the groups classified by the collateral circulation and by the severity of stroke (P > 0.01). Direct sequencing was performed for the genotyping of single nucleotide polymorphism (SNP) of BIRC5 (rs2071214). The enrolled patients were divided into several subgroups based on the collateral flow grading system from the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR), the results of the National Institutes of Health Stroke Survey (NIHSS) (6 as a threshold), and the score of the modified Rankin scale (mRS) (for the prediction of prognosis, 2 as a threshold). Differences among subgroups were identified through logistic regression. RESULTS The analysis of collateral circulation revealed the significant correlation of SNP of rs2071214 with the development of poor collateral circulation of large artery atherosclerotic stroke in the additive model (GG vs. AA, odds ratio (OR) = 3.592, 95% confidence interval (CI) = 1.410-9.150, and P=0.007) and the recessive model (GG vs. AA/GA, OR = 3.313, 95% CI = 1.420-7.727, and P=0.006). The analysis of stroke severity exposed the significant role of the SNP of rs2071214 in increasing stroke severity in the dominant model (GA/GG vs. AA, OR = 1.658, 95% CI = 1.017-2.703, and P=0.043) and the additive model (GA vs. AA, OR = 1.717, 95% CI = 1.021-2.888, and P=0.042). However, the analysis of the short-term outcome indicated that three genetic models were not associated with short-term outcomes in the additive model (GA vs. AA, P=0.815, GG vs. AA, and P=0.336), the dominant model (GA/GG vs. AA and P=0.589), and the recessive model (GG vs. AA/GA and P=0.342). CONCLUSION Our findings identified the SNP of rs2071214 of the BIRC5 gene as a risk factor for the poor compensatory ability of collateral circulation and a predictor of stroke severity in large artery atherosclerotic stroke, which suggested that the SNP of rs2071214 can serve as an innovative therapeutic target for patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Jianmin Huang
- Stroke Center & Neurology Division, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xuebin Li
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, China
| | - Haiyan Chen
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanfan Yun
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guixin Yang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yongming Jiang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yaoxin Pan
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shengshan Yuan
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianjun Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Li Su
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yingnin Wu
- Department of Radiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dong Lu
- Medical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Anding Xu
- Stroke Center & Neurology Division, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingzhang Meng
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise City, China
| |
Collapse
|
12
|
Determinants of Leptomeningeal Collateral Status Variability in Ischemic Stroke Patients. Can J Neurol Sci 2021; 49:767-773. [PMID: 34585652 DOI: 10.1017/cjn.2021.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Collateral status is an indicator of a favorable outcome in stroke. Leptomeningeal collaterals provide alternative routes for brain perfusion following an arterial occlusion or flow-limiting stenosis. Using a large cohort of ischemic stroke patients, we examined the relative contribution of various demographic, laboratory, and clinical variables in explaining variability in collateral status. METHODS Patients with acute ischemic stroke in the anterior circulation were enrolled in a multi-center hospital-based observational study. Intracranial occlusions and collateral status were identified and graded using multiphase computed tomography angiography. Based on the percentage of affected territory filled by collateral supply, collaterals were graded as either poor (0-49%), good (50-99%), or optimal (100%). Between-group differences in demographic, laboratory, and clinical factors were explored using ordinal regression models. Further, we explored the contribution of measured variables in explaining variance in collateral status. RESULTS 386 patients with collateral status classified as poor (n = 64), good (n = 125), and optimal (n = 197) were included. Median time from symptom onset to CT was 120 (IQR: 78-246) minutes. In final multivariable model, male sex (OR 1.9, 95% CIs [1.2, 2.9], p = 0.005) and leukocytosis (OR 1.1, 95% CIs [1.1, 1.2], p = 0.001) were associated with poor collaterals. Measured variables only explained 44.8-53.0% of the observed between-patient variance in collaterals. CONCLUSION Male sex and leukocytosis are associated with poorer collaterals. Nearly half of the variance in collateral flow remains unexplained and could be in part due to genetic differences.
Collapse
|
13
|
Lee HK, Wetzel-Strong SE, Aylor DL, Marchuk DA. A Neuroprotective Locus Modulates Ischemic Stroke Infarction Independent of Collateral Vessel Anatomy. Front Neurosci 2021; 15:705160. [PMID: 34408625 PMCID: PMC8366065 DOI: 10.3389/fnins.2021.705160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although studies with inbred strains of mice have shown that infarct size is largely determined by the extent of collateral vessel connections between arteries in the brain that enable reperfusion of the ischemic territory, we have identified strain pairs that do not vary in this vascular phenotype, but which nonetheless exhibit large differences in infarct size. In this study we performed quantitative trait locus (QTL) mapping in mice from an intercross between two such strains, WSB/EiJ (WSB) and C57BL/6J (B6). This QTL mapping revealed only one neuroprotective locus on Chromosome 8 (Chr 8) that co-localizes with a neuroprotective locus we mapped previously from F2 progeny between C3H/HeJ (C3H) and B6. The allele-specific phenotypic effect on infarct volume at the genetic region identified by these two independent mappings was in the opposite direction of the parental strain phenotype; namely, the B6 allele conferred increased susceptibility to ischemic infarction. Through two reciprocal congenic mouse lines with either the C3H or B6 background at the Chr 8 locus, we verified the neuroprotective effects of this genetic region that modulates infarct volume without any effect on the collateral vasculature. Additionally, we surveyed non-synonymous coding SNPs and performed RNA-sequencing analysis to identify potential candidate genes within the genetic interval. Through these approaches, we suggest new genes for future mechanistic studies of infarction following ischemic stroke, which may represent novel gene/protein targets for therapeutic development.
Collapse
Affiliation(s)
- Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Sarah E. Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - David L. Aylor
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
14
|
Faber JE, Storz JF, Cheviron ZA, Zhang H. High-altitude rodents have abundant collaterals that protect against tissue injury after cerebral, coronary and peripheral artery occlusion. J Cereb Blood Flow Metab 2021; 41:731-744. [PMID: 32703056 PMCID: PMC7983333 DOI: 10.1177/0271678x20942609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Collateral number/density varies widely in brain and other tissues among strains of Mus musculus mice due to differences in genetic background. Recent studies have shown that prolonged exposure to reduced atmospheric oxygen induces additional collaterals to form, suggesting that natural selection may favor increased collaterals in populations native to high-altitude. High-altitude guinea pigs (Cavia) and deer mice (Peromyscus) were compared with lowland species of Peromyscus, Mus and Rattus (9 species/strains examined). Collateral density, diameter and other morphometrics were measured in brain where, importantly, collateral abundance reflects that in other tissues of the same individual. Guinea pigs and high-altitude deer mice had a greater density of pial collaterals than lowlanders. Consistent with this, guinea pigs and highlander mice evidenced complete and 80% protection against stroke, respectively. They also sustained significantly less ischemia in heart and lower extremities after arterial occlusion. Vessels of the circle of Willis, including the communicating collateral arteries, also exhibited unique features in the highland species. Our findings support the hypothesis that species native to high-altitude have undergone genetic selection for abundant collaterals, suggesting that besides providing protection in obstructive disease, collaterals serve a physiological function to optimize oxygen delivery to meet oxygen demand when oxygen is limiting.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Transient versus Permanent MCA Occlusion in Mice Genetically Modified to Have Good versus Poor Collaterals. ACTA ACUST UNITED AC 2019; 4. [PMID: 31840083 PMCID: PMC6910253 DOI: 10.20900/mo.20190024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collateral-dependent blood flow is capable of significantly lessening the severity of stroke. Unfortunately, collateral flow varies widely in patients for reasons that remain unclear. Studies in mice have shown that the number and diameter of cerebral collaterals vary widely due primarily to polymorphisms in genes, e.g., Rabep2, involved in their formation during development. However, understanding how variation in collateral abundance affects stroke progression has been hampered by lack of a method to reversibly ligate the distal middle cerebral artery (MCAO) in mice. Here we present a method and examine infarct volume 24 h after transient (tMCAO, 90 min) versus permanent occlusion (pMCAO) in mice with good versus poor collaterals. Wildtype C57BL/6 mice (have abundant collaterals) sustained small infarctions following tMCAO that increased 2.1-fold after pMCAO, reflecting significant penumbra present at 90 min. Mutant C57BL/6 mice lacking Rabep2 (have reduced collaterals) sustained a 4-fold increase in infarct volume over WT following tMCAO and a smaller additional increase (0.4-fold) after pMCAO, reflecting reduced penumbra. Wildtype BALB/cBy (have a deficient Rabep2 variant and poor collaterals) had large infarctions following tMCAO that increased less (0.6-fold) than the above wildtype C57BL/6 mice following pMCAO. Mutant BALB/cBy mice (have deficient Rabep2 replaced with the C57BL/6 variant thus increased collaterals) sustained smaller infarctions after tMCAO. However, unlike C57BL/6 versus Rabep2 mice, penumbra was not increased since infarct volume increased only 0.3-fold following pMCAO. These findings present a murine model of tMCAO and demonstrate that neuroprotective mechanisms, in addition to collaterals, also vary with genetic background and affect the evolution of stroke.
Collapse
|
16
|
Collateral Vessels Have Unique Endothelial and Smooth Muscle Cell Phenotypes. Int J Mol Sci 2019; 20:ijms20153608. [PMID: 31344780 PMCID: PMC6695737 DOI: 10.3390/ijms20153608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Collaterals are unique blood vessels present in the microcirculation of most tissues that, by cross-connecting a small fraction of the outer branches of adjacent arterial trees, provide alternate routes of perfusion. However, collaterals are especially susceptible to rarefaction caused by aging, other vascular risk factors, and mouse models of Alzheimer’s disease—a vulnerability attributed to the disturbed hemodynamic environment in the watershed regions where they reside. We examined the hypothesis that endothelial and smooth muscle cells (ECs and SMCs, respectively) of collaterals have specializations, distinct from those of similarly-sized nearby distal-most arterioles (DMAs) that maintain collateral integrity despite their continuous exposure to low and oscillatory/disturbed shear stress, high wall stress, and low blood oxygen. Examination of mouse brain revealed the following: Unlike the pro-inflammatory cobble-stoned morphology of ECs exposed to low/oscillatory shear stress elsewhere in the vasculature, collateral ECs are aligned with the vessel axis. Primary cilia, which sense shear stress, are present, unexpectedly, on ECs of collaterals and DMAs but are less abundant on collaterals. Unlike DMAs, collaterals are continuously invested with SMCs, have increased expression of Pycard, Ki67, Pdgfb, Angpt2, Dll4, Ephrinb2, and eNOS, and maintain expression of Klf2/4. Collaterals lack tortuosity when first formed during development, but tortuosity becomes evident within days after birth, progresses through middle age, and then declines—results consistent with the concept that collateral wall cells have a higher turnover rate than DMAs that favors proliferative senescence and collateral rarefaction. In conclusion, endothelial and SMCs of collaterals have morphologic and functional differences from those of nearby similarly sized arterioles. Future studies are required to determine if they represent specializations that counterbalance the disturbed hemodynamic, pro-inflammatory, and pro-proliferative environment in which collaterals reside and thus mitigate their risk factor-induced rarefaction.
Collapse
|
17
|
Genetic and Environmental Contributions to Variation in the Posterior Communicating Collaterals of the Circle of Willis. Transl Stroke Res 2019; 10:189-203. [PMID: 29589286 DOI: 10.1007/s12975-018-0626-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Variation in blood flow mediated by the posterior communicating collateral arteries (PComs) contributes to variation in the severity of tissue injury in obstructive disease. Evidence in animals and humans indicates that differences in the extent of PComs, i.e., their anatomic lumen diameter and whether they are present bilaterally, unilaterally, or absent, are a major factor. These differences arise during development since they are present at birth. However, the causal mechanisms are unknown. We used angiography after maximal dilation to examine involvement of genetic, environmental, and stochastic factors. The extent of PComs varied widely among seven genetically diverse strains of mice. Like pial collaterals in the microcirculation, aging and hypertension reduced PCom diameter, while in contrast, obesity, hyperlipidemia, metabolic syndrome, and diabetes mellitus had no effect. Naturally occurring intrauterine growth restriction had no effect on extent of PCom or pial collaterals in the adult. The number and diameter of PComs evidenced much larger apparent stochastic-dependent variation than pial collaterals. In addition, both PComs underwent flow-mediated outward remodeling after unilateral permanent MCA occlusion that varied with genetic background and was greater on the ipsilesional side. These findings indicate that variation in the number and diameter of PCom collateral arteries arises from stochastic factors and naturally occurring genetic variants that differ from those that cause variation in pial collateral arterioles. Environmental factors also contribute: aging and hypertension reduce PCom diameter. Our results suggest possible sources of variation of PComs in humans and provide information relevant when studying mouse models of occlusive cerebrovascular disease.
Collapse
|
18
|
Piedade GS, Schirmer CM, Goren O, Zhang H, Aghajanian A, Faber JE, Griessenauer CJ. Cerebral Collateral Circulation: A Review in the Context of Ischemic Stroke and Mechanical Thrombectomy. World Neurosurg 2019; 122:33-42. [PMID: 30342266 DOI: 10.1016/j.wneu.2018.10.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 01/28/2023]
Abstract
The pial (leptomenigeal) collateral circulation is a key determinant of functional outcome after mechanical thrombectomy after large-vessel ischemic stroke. Patients with good collateral blood flow benefit up to 24 hours after stroke onset, whereas those with poor collateral flow evidence less or no benefit. However, clues to why collateral flow varies so widely among patients have remained elusive. Recent findings in animal studies, which are currently being tested for confirmation in humans, have found that naturally occurring variants of a novel "collateral gene," Rabep2, result in large differences in the extent of anatomic collaterals and thus blood flow and infarct size in mice after stroke. The comprehension of collagerogenesis in humans and the evaluation of collateral status could aid in identifying patients who will benefit not only from mechanical thrombectomy in the extended time window but also from any reperfusion strategy. We performed a literature review focused on radiographic, clinical, and genetic aspects of the collateral circulation.
Collapse
Affiliation(s)
- Guilherme Santos Piedade
- Department of Neurosurgery, Geisinger, Pennsylvania, USA; Department of Neurosurgery, University of Düsseldorf, Düsseldorf, Germany
| | | | - Oded Goren
- Department of Neurosurgery, Geisinger, Pennsylvania, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amir Aghajanian
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James E Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christoph J Griessenauer
- Department of Neurosurgery, Geisinger, Pennsylvania, USA; Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria; Department of Neurosurgery, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
19
|
Vilanilam G, Badi M, Gopal N. Letter by Vilanilam et al Regarding Article, "Collateral Clock Is More Important Than Time Clock for Tissue Fate: A Natural History Study of Acute Ischemic Strokes". Stroke 2018; 49:e339. [PMID: 30571443 DOI: 10.1161/strokeaha.118.023379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Mohammed Badi
- Department of Neurology, Mayo Clinic, Jacksonville, FL
| | - Neethu Gopal
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
20
|
Advanced Neuroimaging of Acute Ischemic Stroke: Penumbra and Collateral Assessment. Neuroimaging Clin N Am 2018; 28:585-597. [PMID: 30322595 DOI: 10.1016/j.nic.2018.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute ischemic stroke (AIS) occurs when there is a sudden loss in cerebral blood flow due to embolic or thromboembolic occlusion of a cerebral or cervical artery. Patients with AIS require emergent neuroimaging to guide treatment, which includes intravenous thrombolysis and endovascular mechanical thrombectomy (EMT). Recent advances in AIS treatment by EMT has been driven in part by advances in computed tomography (CT) and MR imaging neuroimaging evaluation of ischemic penumbra and pial collateral vessels. The authors review advanced noninvasive brain imaging by CT and MR imaging for the evaluation of AIS focusing on penumbral and collateral imaging.
Collapse
|
21
|
Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol 2017; 96:162-172. [DOI: 10.1016/j.ejrad.2017.08.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 11/17/2022]
|
22
|
Liu Z, Pericak-Vance MA, Goldschmidt-Clermont P, Seo D, Wang L, Rundek T, Beecham GW. Coronary collateralization shows sex and racial-ethnic differences in obstructive artery disease patients. PLoS One 2017; 12:e0183836. [PMID: 29016599 PMCID: PMC5634541 DOI: 10.1371/journal.pone.0183836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/12/2017] [Indexed: 12/14/2022] Open
Abstract
Background Coronary collateral circulation protects cardiac tissues from myocardial infarction damage and decreases sudden cardiac death. So far, it is unclear how coronary collateralization varies by race-ethnicity groups and by sex. Methods We assessed 868 patients with obstructive CAD. Patients were assessed for collateral grades based on Rentrop grading system, as well as other covariates. DNA samples were genotyped using the Affymetrix 6.0 genotyping array. To evaluate genetic contributions to collaterals, we performed admixture mapping using logistic regression with estimated local and global ancestry. Results Overall, 53% of participants had collaterals. We found difference between sex and racial-ethnic groups. Men had higher rates of collaterals than women (P-value = 0.000175). White Hispanics/Latinos showed overall higher rates of collaterals than African Americans and non-Hispanic Whites (59%, 50% and 48%, respectively, P-value = 0.017), and especially higher rates in grade 1 and grade 3 collateralization than the other two populations (P-value = 0.0257). Admixture mapping showed Native American ancestry was associated with the presence of collaterals at a region on chromosome 17 (chr17:35,243,142-41,251,931, β = 0.55, P-value = 0.000127). African ancestry also showed association with collaterals at a different region on chromosome 17 (chr17: 32,266,966-34,463,323, β = 0.38, P-value = 0.00072). Conclusions In our study, collateralization showed sex and racial-ethnic differences in obstructive CAD patients. We identified two regions on chromosome 17 that were likely to harbor genetic variations that influenced collateralization.
Collapse
Affiliation(s)
- Zhi Liu
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Pascal Goldschmidt-Clermont
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - David Seo
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Gary W. Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ginsberg MD. The cerebral collateral circulation: Relevance to pathophysiology and treatment of stroke. Neuropharmacology 2017; 134:280-292. [PMID: 28801174 DOI: 10.1016/j.neuropharm.2017.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/29/2022]
Abstract
The brain's collateral circulation consists of arterial anastomotic channels capable of providing nutrient perfusion to brain regions whose normal sources of flow have become compromised, as occurs in acute ischemic stroke. Modern CT-based neuroimaging is capable of providing detailed information as to collateral extent and sufficiency and is complemented by magnetic resonance-based methods. In the present era of standard-of-care IV thrombolysis for acute ischemic stroke, and following the recent therapeutic successes of randomized clinical trials of acute endovascular intervention, the sufficiency of the collateral circulation has been convincingly established as a key factor influencing the likelihood of successful reperfusion and favorable clinical outcome. This article reviews the features of the brain's collateral circulation; methods for its evaluation in the acute clinical setting; the relevance of collateral circulation to prognosis in acute ischemic stroke; the specific insights into the collateral circulation learned from recent trials of endovascular intervention; and the major influence of genetic factors. Finally, we emphasize the need to develop therapeutic approaches to augment collateral perfusion as an adjunctive strategy to be employed along with, or prior to, thrombolysis and endovascular interventions, and we highlight the possible potential of inhaled nitric oxide, albumin, and other approaches. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Myron D Ginsberg
- Department of Neurology, University of Miami Miller School of Medicine, Clinical Research Center, Room 1331, 1120 NW 14th Street, Miami, FL 33136, USA.
| |
Collapse
|
24
|
McClung JM, McCord TJ, Ryan TE, Schmidt CA, Green TD, Southerland KW, Reinardy JL, Mueller SB, Venkatraman TN, Lascola CD, Keum S, Marchuk DA, Spangenburg EE, Dokun A, Annex BH, Kontos CD. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy. Circulation 2017; 136:281-296. [PMID: 28442482 PMCID: PMC5537727 DOI: 10.1161/circulationaha.116.024873] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1, that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. METHODS We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. RESULTS We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6-Lsq1-3). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3Ile81, but not BAG3Met81, improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3Ile81 (n=9), but not BAG3Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3Met81, BAG3Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. CONCLUSIONS Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle function in the setting of ischemia.
Collapse
Affiliation(s)
- Joseph M McClung
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville.
| | - Timothy J McCord
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Terence E Ryan
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Cameron A Schmidt
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Tom D Green
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Kevin W Southerland
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Jessica L Reinardy
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Sarah B Mueller
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Talaignair N Venkatraman
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Christopher D Lascola
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Sehoon Keum
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Douglas A Marchuk
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Espen E Spangenburg
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Ayotunde Dokun
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Brian H Annex
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Christopher D Kontos
- From Department of Physiology and Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC (J.M.M., T.E.R., C.A.S., T.D.G., E.E.S); Department of Medicine, Division of Cardiology (T.J.M., J.L.R., S.B.M., C.D.K.), Department of Surgery, Division of General Surgery (K.W.S.), Department of Pharmacology and Cancer Biology (J.L.R., S.B.M., C.D.K.), Department of Radiology (T.N.V., C.D.L.), and Department of Molecular Genetics and Microbiology (S.K., D.A.M.), Duke University Medical Center, Durham, NC; and Department of Medicine, Division of Endocrinology (A.D., B.H.A.), Division of Cardiovascular Medicine (B.H.A.), and Robert M. Berne Cardiovascular Research Center (B.H.A.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
25
|
Nossent AY, Bastiaansen AJNM, Peters EAB, de Vries MR, Aref Z, Welten SMJ, de Jager SCA, van der Pouw Kraan TCTM, Quax PHA. CCR7-CCL19/CCL21 Axis is Essential for Effective Arteriogenesis in a Murine Model of Hindlimb Ischemia. J Am Heart Assoc 2017; 6:JAHA.116.005281. [PMID: 28275068 PMCID: PMC5524034 DOI: 10.1161/jaha.116.005281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background In order to identify factors that stimulate arteriogenesis after ischemia, we followed gene expression profiles in two extreme models for collateral artery formation over 28 days after hindlimb ischemia, namely “good‐responding” C57BL/6 mice and “poor‐responding” BALB/c mice. Methods and Results Although BALB/c mice show very poor blood flow recovery after ischemia, most known proarteriogenic genes were upregulated more excessively and for a longer period than in C57BL/6 mice. In clear contrast, chemokine genes Ccl19, Ccl21a, and Ccl21c and the chemokine receptor CCR7 were upregulated in C57BL/6 mice 1 day after hindlimb ischemia, but not in BALB/C mice. CCL19 and CCL21 regulate migration and homing of T lymphocytes via CCR7. When subjecting CCR7−/−/LDLR−/− mice to hindlimb ischemia, we observed a 20% reduction in blood flow recovery compared with that in LDLR−/− mice. Equal numbers of α‐smooth muscle actin–positive collateral arteries were found in the adductor muscles of both mouse strains, but collateral diameters were smaller in the CCR7−/−/LDLR−/−. Fluorescence‐activated cell sorter analyses showed that numbers of CCR7+ T lymphocytes (both CD4+ and CD8+) were decreased in the spleen and increased in the blood at day 1 after hindlimb ischemia in LDLR−/− mice. At day 1 after hindlimb ischemia, however, numbers of activated CD4+ T lymphocytes were decreased in the draining lymph nodes of LDLR−/− mice compared with CCR7−/−/LDLR−/− mice. Conclusions These data show that CCR7‐CCL19/CCL21 axis facilitates retention CD4+ T lymphocytes at the site of collateral artery remodeling, which is essential for effective arteriogenesis.
Collapse
Affiliation(s)
- A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Antonius J N M Bastiaansen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Erna A B Peters
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Zeen Aref
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine M J Welten
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia C A de Jager
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, the Netherlands.,Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
26
|
Schmidt CA, Ryan TE, Lin CT, Inigo MMR, Green TD, Brault JJ, Spangenburg EE, McClung JM. Diminished force production and mitochondrial respiratory deficits are strain-dependent myopathies of subacute limb ischemia. J Vasc Surg 2016; 65:1504-1514.e11. [PMID: 28024849 DOI: 10.1016/j.jvs.2016.04.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/17/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Reduced skeletal muscle mitochondrial function might be a contributing mechanism to the myopathy and activity based limitations that typically plague patients with peripheral arterial disease (PAD). We hypothesized that mitochondrial dysfunction, myofiber atrophy, and muscle contractile deficits are inherently determined by the genetic background of regenerating ischemic mouse skeletal muscle, similar to how patient genetics affect the distribution of disease severity with clinical PAD. METHODS Genetically ischemia protected (C57BL/6) and susceptible (BALB/c) mice underwent either unilateral subacute hind limb ischemia (SLI) or myotoxic injury (cardiotoxin) for 28 days. Limbs were monitored for blood flow and tissue oxygen saturation and tissue was collected for the assessment of histology, muscle contractile force, gene expression, mitochondrial content, and respiratory function. RESULTS Despite similar tissue O2 saturation and mitochondrial content between strains, BALB/c mice suffered persistent ischemic myofiber atrophy (55.3% of C57BL/6) and muscle contractile deficits (approximately 25% of C57BL/6 across multiple stimulation frequencies). SLI also reduced BALB/c mitochondrial respiratory capacity, assessed in either isolated mitochondria (58.3% of C57BL/6 at SLI on day (d)7, 59.1% of C57BL/6 at SLI d28 across multiple conditions) or permeabilized myofibers (38.9% of C57BL/6 at SLI d7; 76.2% of C57BL/6 at SLI d28 across multiple conditions). SLI also resulted in decreased calcium retention capacity (56.0% of C57BL/6) in BALB/c mitochondria. Nonischemic cardiotoxin injury revealed similar recovery of myofiber area, contractile force, mitochondrial respiratory capacity, and calcium retention between strains. CONCLUSIONS Ischemia-susceptible BALB/c mice suffered persistent muscle atrophy, impaired muscle function, and mitochondrial respiratory deficits during SLI. Interestingly, parental strain susceptibility to myopathy appears specific to regenerative insults including an ischemic component. Our findings indicate that the functional deficits that plague PAD patients could include mitochondrial respiratory deficits genetically inherent to the regenerating muscle myofibers.
Collapse
Affiliation(s)
- Cameron A Schmidt
- Department of Physiology, East Carolina University, Greenville, NC; Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Terence E Ryan
- Department of Physiology, East Carolina University, Greenville, NC; Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Chien-Te Lin
- Department of Physiology, East Carolina University, Greenville, NC; Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Melissa M R Inigo
- Department of Physiology, East Carolina University, Greenville, NC; Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Tom D Green
- Department of Physiology, East Carolina University, Greenville, NC; Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Jeffrey J Brault
- Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC; Department of Kinesiology, East Carolina University, Greenville, NC
| | - Espen E Spangenburg
- Department of Physiology, East Carolina University, Greenville, NC; Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Joseph M McClung
- Department of Physiology, East Carolina University, Greenville, NC; Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC.
| |
Collapse
|
27
|
Lucitti JL, Sealock R, Buckley BK, Zhang H, Xiao L, Dudley AC, Faber JE. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke 2016; 47:3022-3031. [PMID: 27811335 DOI: 10.1161/strokeaha.116.014160] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE The extent (number and diameter) of collateral vessels varies widely and is a major determinant, along with arteriogenesis (collateral remodeling), of variation in severity of tissue injury after large artery occlusion. Differences in genetic background underlie the majority of the variation in collateral extent in mice, through alterations in collaterogenesis (embryonic collateral formation). In brain and other tissues, ≈80% of the variation in collateral extent among different mouse strains has been linked to a region on chromosome 7. We recently used congenic (CNG) fine mapping of C57BL/6 (B6, high extent) and BALB/cByJ (BC, low extent) mice to narrow the region to a 737 Kb locus, Dce1. Herein, we report the causal gene. METHODS We used additional CNG mapping and knockout mice to narrow the number of candidate genes. Subsequent inspection identified a nonsynonymous single nucleotide polymorphism between B6 and BC within Rabep2 (rs33080487). We then created B6 mice with the BC single nucleotide polymorphism at this locus plus 3 other lines for predicted alteration or knockout of Rabep2 using gene editing. RESULTS The single amino acid change caused by rs33080487 accounted for the difference in collateral extent and infarct volume between B6 and BC mice attributable to Dce1. Mechanistically, variants of Rabep2 altered collaterogenesis during embryogenesis but had no effect on angiogenesis examined in vivo and in vitro. Rabep2 deficiency altered endosome trafficking known to be involved in VEGF-A→VEGFR2 signaling required for collaterogenesis. CONCLUSIONS Naturally occurring variants of Rabep2 are major determinants of variation in collateral extent and stroke severity in mice.
Collapse
Affiliation(s)
- Jennifer L Lucitti
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Robert Sealock
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Brian K Buckley
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Hua Zhang
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Lin Xiao
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Andrew C Dudley
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - James E Faber
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|
28
|
Ginsberg MD. Expanding the concept of neuroprotection for acute ischemic stroke: The pivotal roles of reperfusion and the collateral circulation. Prog Neurobiol 2016; 145-146:46-77. [PMID: 27637159 DOI: 10.1016/j.pneurobio.2016.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/22/2016] [Accepted: 09/10/2016] [Indexed: 12/27/2022]
Abstract
This review surveys the efforts taken to achieve clinically efficacious protection of the ischemic brain and underscores the necessity of expanding our purview to include the essential role of cerebral perfusion and the collateral circulation. We consider the development of quantitative strategies to measure cerebral perfusion at the regional and local levels and the application of these methods to elucidate flow-related thresholds of ischemic viability and to characterize the ischemic penumbra. We stress that the modern concept of neuroprotection must consider perfusion, the necessary substrate upon which ischemic brain survival depends. We survey the major mechanistic approaches to neuroprotection and review clinical neuroprotection trials, focusing on those phase 3 multicenter clinical trials for acute ischemic stroke that have been completed or terminated. We review the evolution of thrombolytic therapies; consider the lessons learned from the initial, negative multicenter trials of endovascular therapy; and emphasize the highly successful positive trials that have finally established a clinical role for endovascular clot removal. As these studies point to the brain's collateral circulation as key to successful reperfusion, we next review the anatomy and pathophysiology of collateral perfusion as it relates to ischemic infarction, as well as the molecular and genetic influences on collateral development. We discuss the current MR and CT-based diagnostic methods for assessing the collateral circulation and the prognostic significance of collaterals in ischemic stroke, and we consider past and possible future therapeutic directions.
Collapse
Affiliation(s)
- Myron D Ginsberg
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
29
|
Kent TA, Mandava P. Embracing Biological and Methodological Variance in a New Approach to Pre-Clinical Stroke Testing. Transl Stroke Res 2016; 7:274-83. [PMID: 27018014 PMCID: PMC5425098 DOI: 10.1007/s12975-016-0463-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 12/12/2022]
Abstract
High-profile failures in stroke clinical trials have discouraged clinical translation of neuroprotectants. While there are several plausible explanations for these failures, we believe that the fundamental problem is the way clinical and pre-clinical studies are designed and analyzed for heterogeneous disorders such as stroke due to innate biological and methodological variability that current methods cannot capture. Recent efforts to address pre-clinical rigor and design, while important, are unable to account for variability present even in genetically homogenous rodents. Indeed, efforts to minimize variability may lessen the clinical relevance of pre-clinical models. We propose a new approach that recognizes the important role of baseline stroke severity and other factors in influencing outcome. Analogous to clinical trials, we propose reporting baseline factors that influence outcome and then adapting for the pre-clinical setting a method developed for clinical trial analysis where the influence of baseline factors is mathematically modeled and the variance quantified. A new therapy's effectiveness is then evaluated relative to the pooled outcome variance at its own baseline conditions. In this way, an objective threshold for robustness can be established that must be overcome to suggest its effectiveness when expanded to broader populations outside of the controlled environment of the PI's laboratory. The method is model neutral and subsumes sources of variance as reflected in baseline factors such as initial stroke severity. We propose that this new approach deserves consideration for providing an objective method to select agents worthy of the commitment of time and resources in translation to clinical trials.
Collapse
Affiliation(s)
- Thomas A Kent
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, McNair Campus, 7200 Cambridge St. 9th Floor, MS: BCM609, Houston, TX, 77030, USA.
- Michael E. DeBakey VA Medical Center Stroke Program and Center for Translational Research on Inflammatory Diseases, Houston, TX, USA.
| | - Pitchaiah Mandava
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, McNair Campus, 7200 Cambridge St. 9th Floor, MS: BCM609, Houston, TX, 77030, USA
- Michael E. DeBakey VA Medical Center Stroke Program and Center for Translational Research on Inflammatory Diseases, Houston, TX, USA
| |
Collapse
|
30
|
Wang JJC, Rau C, Avetisyan R, Ren S, Romay MC, Stolin G, Gong KW, Wang Y, Lusis AJ. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model. PLoS Genet 2016; 12:e1006038. [PMID: 27385019 PMCID: PMC4934852 DOI: 10.1371/journal.pgen.1006038] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls. Heart failure is the most common cause of morbidity and mortality in the aging population. Previous large-scale human genome-wide association studies have yielded only a handful of genetic loci contributing to heart failure-related traits. Using a panel of diverse inbred mouse strains, treated with a β-adrenergic agonist isoproterenol to mimic the heart failure state, we sought to uncover the contribution of common genetic variation in heart failure. We found that heart failure has a strong genetic component. We successfully identified 17 genome-wide significant loci associated with indices of heart failure. We showed that genetic variation in a novel gene Myh14 affects heart failure by altering the mechanical responses of heart muscles to isoproterenol-induced stress. Follow-up studies of this gene and additional candidate genes and loci should reveal potential mechanisms by which genetic variations contribute to heart failure in the general human population. Such insights may lead to improved diagnosis and tailor treatment based on the genetic makeup of individuals in the population.
Collapse
Affiliation(s)
- Jessica Jen-Chu Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail: (JJCW); (AJL)
| | - Christoph Rau
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rozeta Avetisyan
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shuxun Ren
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Milagros C. Romay
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gabriel Stolin
- Department of Molecular, Cell, and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ke Wei Gong
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Yibin Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail: (JJCW); (AJL)
| |
Collapse
|
31
|
ANNEX BRIANH, BELLER GEORGEA. TOWARDS THE DEVELOPMENT OF NOVEL THERAPEUTICS FOR PERIPHERAL ARTERY DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:224-234. [PMID: 28066055 PMCID: PMC5216482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atherosclerosis is the leading cause of morbidity and mortality in the Western world. Peripheral artery disease (PAD) has been less studied then coronary artery disease but is nearly as common. PAD impairs blood flow to the leg(s) and causes functional impairment, leg pain, and amputation. The last drug approved for PAD was in 1999. Blood flow to leg proceeds through one major artery and in PAD total occlusions in the course of that vessel are common. Thus, the extent of new blood vessel growth determines a patients' clinical course. Promoting the growth of new blood vessels (therapeutic angiogenesis) was a major goal of therapy. Results from studies using cytokine growth factors have shown disappointing results. Using clinical and preclinical studies, our laboratory has identified several novel therapeutic approaches. One, a modulator of innate immunity, will be reviewed as an approach that has the potential to create new therapies for PAD.
Collapse
Affiliation(s)
- BRIAN H. ANNEX
- Correspondence and reprint requests: Brian H. Annex, MD,
Department of Medicine, University of Virginia, 1215 Lee Street, PO Box 800158, Charlottesville, VA 22908434-982-0853434-982-1998
| | | |
Collapse
|
32
|
Winship IR. Cerebral collaterals and collateral therapeutics for acute ischemic stroke. Microcirculation 2015; 22:228-36. [PMID: 25351102 DOI: 10.1111/micc.12177] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022]
Abstract
Cerebral collaterals are vascular redundancies in the cerebral circulation that can partially maintain blood flow to ischemic tissue when primary conduits are blocked. After occlusion of a cerebral artery, anastomoses connecting the distal segments of the MCA with distal branches of the ACA and PCA (known as leptomeningeal or pial collaterals) allow for partially maintained blood flow in the ischemic penumbra and delay or prevent cell death. However, collateral circulation varies dramatically between individuals, and collateral extent is significant predictor of stroke severity and recanalization rate. Collateral therapeutics attempt to harness these vascular redundancies by enhancing blood flow through pial collaterals to reduce ischemia and brain damage after cerebral arterial occlusion. While therapies to enhance collateral flow remain relatively nascent neuroprotective strategies, experimental therapies including inhaled NO, transient suprarenal aortic occlusion, and electrical stimulation of the parasympathetic sphenopalatine ganglion show promise as collateral therapeutics with the potential to improve treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Ryan TE, Schmidt CA, Green TD, Brown DA, Neufer PD, McClung JM. Mitochondrial Regulation of the Muscle Microenvironment in Critical Limb Ischemia. Front Physiol 2015; 6:336. [PMID: 26635622 PMCID: PMC4649016 DOI: 10.3389/fphys.2015.00336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/02/2015] [Indexed: 01/11/2023] Open
Abstract
Critical limb ischemia (CLI) is the most severe clinical presentation of peripheral arterial disease and manifests as chronic limb pain at rest and/or tissue necrosis. Current clinical interventions are largely ineffective and therapeutic angiogenesis based trials have shown little efficacy, highlighting the dire need for new ideas and novel therapeutic approaches. Despite a decade of research related to skeletal muscle as a determinant of morbidity and mortality outcomes in CLI, very little progress has been made toward an effective therapy aimed directly at the muscle myopathies of this disease. Within the muscle cell, mitochondria are well positioned to modulate the ischemic cellular response, as they are the principal sites of cellular energy production and the major regulators of cellular redox charge and cell death. In this mini review, we update the crucial importance of skeletal muscle to CLI pathology and examine the evolving influence of muscle and endothelial cell mitochondria in the complex ischemic microenvironment. Finally, we discuss the novelty of muscle mitochondria as a therapeutic target for ischemic pathology in the context of the complex co-morbidities often associated with CLI.
Collapse
Affiliation(s)
- Terence E Ryan
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Cameron A Schmidt
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Tom D Green
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - David A Brown
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - P Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
34
|
McClung JM, McCord TJ, Southerland K, Schmidt CA, Padgett ME, Ryan TE, Kontos CD. Subacute limb ischemia induces skeletal muscle injury in genetically susceptible mice independent of vascular density. J Vasc Surg 2015; 64:1101-1111.e2. [PMID: 26254821 DOI: 10.1016/j.jvs.2015.06.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/07/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The primary preclinical model of peripheral artery disease, which involves acute limb ischemia (ALI), can result in appreciable muscle injury that is attributed to the acuity of the ischemic injury. A less acute model of murine limb ischemia using ameroid constrictors (ACs) has been developed in an attempt to mimic the chronic nature of human disease. However, there is currently little understanding of how genetics influence muscle injury following subacute arterial occlusion in the mouse. METHODS We investigated the influence of mouse genetics on skeletal muscle tissue survival, blood flow, and vascular density by subjecting two different mouse strains, C57BL/6 (BL6) and BALB/c, to ALI or subacute limb ischemia using single (1AC) or double (2AC) AC placement on the femoral artery. RESULTS Similar to ALI, the 2AC model resulted in significant tissue necrosis and limb perfusion deficits in genetically susceptible BALB/c but not BL6 mice. In the 1AC model, no outward evidence of tissue necrosis was observed, and there were no differences in limb blood flow between BL6 and BALB/c. However, BALB/c mice displayed significantly greater muscle injury, as evidenced by increased inflammation and myofiber atrophy, despite having no differences in CD31(+) and SMA(+) vascular density and area. BALB/c mice also displayed significantly greater centralized myonuclei, indicating increased muscle regeneration. CONCLUSIONS The susceptibility of skeletal muscle to ischemia-induced injury is at least partly independent of muscle blood flow and vascular density, consistent with a muscle cell autonomous response that is genetically determined. Further development of preclinical models of peripheral artery disease that more accurately reflect the nature of the human disease may allow more accurate identification of genetic targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph M McClung
- Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC; Diabetes and Obesity Institute, East Carolina Heart Institute, Brody Medical Center, Greenville, NC.
| | - Timothy J McCord
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Kevin Southerland
- Division of General Surgery, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Cameron A Schmidt
- Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC; Diabetes and Obesity Institute, East Carolina Heart Institute, Brody Medical Center, Greenville, NC
| | - Michael E Padgett
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Terence E Ryan
- Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC; Diabetes and Obesity Institute, East Carolina Heart Institute, Brody Medical Center, Greenville, NC
| | - Christopher D Kontos
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| |
Collapse
|
35
|
Zhang H, Faber JE. De-novo collateral formation following acute myocardial infarction: Dependence on CCR2⁺ bone marrow cells. J Mol Cell Cardiol 2015; 87:4-16. [PMID: 26254180 DOI: 10.1016/j.yjmcc.2015.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/02/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Wide variation exists in the extent (number and diameter) of native pre-existing collaterals in tissues of different strains of mice, with supportive indirect evidence recently appearing for humans. This variation is a major determinant of the wide variation in severity of tissue injury in occlusive vascular disease. Whether such genetic-dependent variation also exists in the heart is unknown because no model exists for study of mouse coronary collaterals. Also owing to methodological limitations, it is not known if ischemia can induce new coronary collaterals to form ("neo-collaterals") versus remodeling of pre-existing ones. The present study sought to develop a model to study coronary collaterals in mice, determine whether neo-collateral formation occurs, and investigate the responsible mechanisms. Four strains with known rank-ordered differences in collateral extent in brain and skeletal muscle were studied: C57BLKS>C57BL/6>A/J>BALB/c. Unexpectedly, these and 5 additional strains lacked native coronary collaterals. However after ligation, neo-collaterals formed rapidly within 1-to-2 days, reaching their maximum extent in ≤7 days. Rank-order for neo-collateral formation differed from the above: C57BL/6>BALB/c>C57BLKS>A/J. Collateral network conductance, infarct volume(-1), and contractile function followed this same rank-order. Neo-collateral formation and collateral conductance were reduced and infarct volume increased in MCP1(-/-) and CCR2(-/-) mice. Bone-marrow transplant rescued collateral formation in CCR2(-/-) mice. Involvement of fractalkine➔CX3CR1 signaling and endothelial cell proliferation were also identified. This study introduces a model for investigating the coronary collateral circulation in mice, demonstrates that neo-collaterals form rapidly after coronary occlusion, and finds that MCP➔CCR2-mediated recruitment of myeloid cells is required for this process.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, USA
| | - James E Faber
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
36
|
Beard DJ, McLeod DD, Logan CL, Murtha LA, Imtiaz MS, van Helden DF, Spratt NJ. Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for 'collateral failure' and infarct expansion after ischemic stroke. J Cereb Blood Flow Metab 2015; 35:861-72. [PMID: 25669909 PMCID: PMC4420869 DOI: 10.1038/jcbfm.2015.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 01/09/2023]
Abstract
Recent human imaging studies indicate that reduced blood flow through pial collateral vessels ('collateral failure') is associated with late infarct expansion despite stable arterial occlusion. The cause for 'collateral failure' is unknown. We recently showed that intracranial pressure (ICP) rises dramatically but transiently 24 hours after even minor experimental stroke. We hypothesized that ICP elevation would reduce collateral blood flow. First, we investigated the regulation of flow through collateral vessels and the penetrating arterioles arising from them during stroke reperfusion. Wistar rats were subjected to intraluminal middle cerebral artery (MCA) occlusion (MCAo). Individual pial collateral and associated penetrating arteriole blood flow was quantified using fluorescent microspheres. Baseline bidirectional flow changed to MCA-directed flow and increased by >450% immediately after MCAo. Collateral diameter changed minimally. Second, we determined the effect of ICP elevation on collateral and watershed penetrating arteriole flow. Intracranial pressure was artificially raised in stepwise increments during MCAo. The ICP increase was strongly correlated with collateral and penetrating arteriole flow reductions. Changes in collateral flow post-stroke appear to be primarily driven by the pressure drop across the collateral vessel, not vessel diameter. The ICP elevation reduces cerebral perfusion pressure and collateral flow, and is the possible explanation for 'collateral failure' in stroke-in-progression.
Collapse
Affiliation(s)
- Daniel J Beard
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Damian D McLeod
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Caitlin L Logan
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lucy A Murtha
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Mohammad S Imtiaz
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia [2] Computational Cardiology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Neil J Spratt
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia [2] Department of Neurology, John Hunter Hospital, Hunter New England Local Health District, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
37
|
Hakimzadeh N, Verberne HJ, Siebes M, Piek JJ. The future of collateral artery research. Curr Cardiol Rev 2015; 10:73-86. [PMID: 23638829 PMCID: PMC3968596 DOI: 10.2174/1573403x113099990001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 08/13/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
In the event of obstructive coronary artery disease, collateral arteries have been deemed an alternative blood
source to preserve myocardial tissue perfusion and function. Monocytes play an important role in modulating this process,
by local secretion of growth factors and extracellular matrix degrading enzymes. Extensive efforts have focused on developing
compounds for augmenting the growth of collateral vessels (arteriogenesis). Nonetheless, clinical trials investigating
the therapeutic potential of these compounds resulted in disappointing outcomes. Previous studies focused on developing
compounds that stimulated collateral vessel growth by enhancing monocyte survival and activity. The limited success
of these compounds in clinical studies, led to a paradigm shift in arteriogenesis research. Recent studies have shown genetic
heterogeneity between CAD patients with sufficient and insufficient collateral vessels. The genetic predispositions in
patients with poorly developed collateral vessels include overexpression of arteriogenesis inhibiting signaling pathways.
New directions of arteriogenesis research focus on attempting to block such inhibitory pathways to ultimately promote arteriogenesis.
Methods to detect collateral vessel growth are also critical in realizing the therapeutic potential of newly developed
compounds. Traditional invasive measurements of intracoronary derived collateral flow index remain the gold
standard in quantifying functional capacity of collateral vessels. However, advancements made in hybrid diagnostic imaging
modalities will also prove to be advantageous in detecting the effects of pro-arteriogenic compounds.
Collapse
Affiliation(s)
| | | | | | - Jan J Piek
- Department of Cardiology, Room B2-250, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Al-Ali F, Elias JJ, Filipkowski DE, Faber JE. Acute ischemic stroke treatment, part 1: patient selection "the 50% barrier and the capillary index score". Front Neurol 2015; 6:83. [PMID: 25954243 PMCID: PMC4406085 DOI: 10.3389/fneur.2015.00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 11/13/2022] Open
Abstract
The current strategy for intra-arterial treatment (IAT) of acute ischemic stroke focuses on minimizing time from ictus to revascularization and maximizing revascularization. Employing this strategy has yet to lead to improved rates of successful outcomes. However, the collateral blood supply likely plays a significant role in maintaining viable brain tissue during ischemia. Based on our prior work, we believe that only approximately 50% of patients are genetically predisposed to have sufficient collaterals for a good outcome following treatment, a concept we call the 50% barrier. The Capillary Index Score (CIS) has been developed as a tool to identify patients with a sufficient collateral blood supply to maintain tissue viability prior to treatment. Patients with a favorable CIS (f CIS) may be able to achieve a good outcome with IAT beyond an arbitrary time window. The CIS is incorporated into a proposed patient treatment algorithm. For patients suffering from a large stroke without aphasia, a non-enhanced head CT should be followed by CT angiography (CTA). For patients without signs of stroke mimics or visible signs of structural changes due to large irreversible ischemia, CTA can help confirm the vascular occlusion and location. The CIS can be obtained from a diagnostic cerebral angiogram, with IAT offered to patients categorized as f CIS.
Collapse
Affiliation(s)
- Firas Al-Ali
- Summit Neurovascular Specialists, Akron, OH, USA
| | - John J. Elias
- Department of Research, Akron General Medical Center, Akron, OH, USA
| | | | - James E. Faber
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
39
|
Nishijima Y, Akamatsu Y, Weinstein PR, Liu J. Collaterals: Implications in cerebral ischemic diseases and therapeutic interventions. Brain Res 2015; 1623:18-29. [PMID: 25770816 DOI: 10.1016/j.brainres.2015.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 02/09/2023]
Abstract
Despite the tremendous progress made in the treatment of cerebrovascular occlusive diseases, many patients suffering from ischemic brain injury still experience dismal outcomes. Although rehabilitation contributes to post-stroke functional recovery, there is no doubt that interventions that promote the restoration of blood supply are proven to minimize ischemic injury and improve recovery. In response to the acutely decreased blood perfusion during arterial occlusion, arteriogenesis, the compensation of blood flow through the collateral circulation during arterial obstructive diseases can act not only in a timely fashion but also much more efficiently compared to angiogenesis, the sprouting of new capillaries, and a mechanism occurring in a delayed fashion while increases the total resistance of the vascular bed of the affected territory. Interestingly, despite the vast differences between the two vascular remodeling mechanisms, some crucial growth factors and cytokines involved in angiogenesis are also required for arteriogenesis. Understanding the mechanisms underlying vascular remodeling after ischemic brain injury is a critical step towards the development of effective therapies for ischemic stroke. The present article will discuss our current views in vascular remodeling acutely after brain ischemia, namely arteriogenesis, and some relevant clinical therapies available on the horizon in augmenting collateral flow that hold promise in treating ischemic brain injury. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Yasuo Nishijima
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA; SFVAMC, San Francisco, CA 94121, USA; Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yosuke Akamatsu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA; SFVAMC, San Francisco, CA 94121, USA; Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Phillip R Weinstein
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA; SFVAMC, San Francisco, CA 94121, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA; SFVAMC, San Francisco, CA 94121, USA.
| |
Collapse
|
40
|
Prabhakar P, Zhang H, Chen D, Faber JE. Genetic variation in retinal vascular patterning predicts variation in pial collateral extent and stroke severity. Angiogenesis 2015; 18:97-114. [PMID: 25369734 PMCID: PMC4422395 DOI: 10.1007/s10456-014-9449-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/27/2014] [Indexed: 01/21/2023]
Abstract
The presence of a native collateral circulation in tissues lessens injury in occlusive vascular diseases. However, differences in genetic background cause wide variation in collateral number and diameter in mice, resulting in large variation in protection. Indirect estimates of collateral perfusion suggest that wide variation also exists in humans. Unfortunately, methods used to obtain these estimates are invasive and not widely available. We sought to determine whether differences in genetic background in mice result in variation in branch patterning of the retinal arterial circulation, and whether these differences predict strain-dependent differences in pial collateral extent and severity of ischemic stroke. Retinal patterning metrics, collateral extent, and infarct volume were obtained for 10 strains known to differ widely in collateral extent. Multivariate regression was conducted, and model performance was assessed using K-fold cross-validation. Twenty-one metrics varied with strain (p<0.01). Ten metrics (e.g., bifurcation angle, lacunarity, optimality) predicted collateral number and diameter across seven regression models, with the best model closely predicting (p<0.0001) number (±1.2-3.4 collaterals, K-fold R2=0.83-0.98), diameter (±1.2-1.9 μm, R2=0.73-0.88), and infarct volume (±5.1 mm3, R2=0.85-0.87). An analogous set of the most predictive metrics, obtained for the middle cerebral artery (MCA) tree in a subset of the above strains, also predicted (p<0.0001) collateral number (±3.3 collaterals, K-fold R2=0.78) and diameter (±1.6 μm, R2=0.86). Thus, differences in arterial branch patterning in the retina and the MCA trees are specified by genetic background and predict variation in collateral extent and stroke severity. If also true in human, and since genetic variation in cerebral collaterals extends to other tissues at least in mice, a similar "retinal predictor index" could serve as a non- or minimally invasive biomarker for collateral extent in brain and other tissues. This could aid prediction of severity of tissue injury in the event of an occlusive event or development of obstructive disease and in patient stratification for treatment options and clinical studies.
Collapse
Affiliation(s)
- Pranay Prabhakar
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina
| | - Hua Zhang
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina
| | - De Chen
- Optical Microscopy and Analysis Laboratory Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James E. Faber
- Department of Cell Biology and Physiology and the McAllister Heart Institute, University of North Carolina
| |
Collapse
|
41
|
Smolock EM, Burke RM, Wang C, Thomas T, Batchu SN, Qiu X, Zettel M, Fujiwara K, Berk BC, Korshunov VA. Intima modifier locus 2 controls endothelial cell activation and vascular permeability. Physiol Genomics 2014; 46:624-33. [PMID: 24986958 DOI: 10.1152/physiolgenomics.00048.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid intima formation is a significant risk factor for cardiovascular disease. C3H/FeJ (C3H/F) and SJL/J (SJL) inbred mouse strains differ in susceptibility to immune and vascular traits. Using a congenic approach we demonstrated that the Intima modifier 2 (Im2) locus on chromosome 11 regulates leukocyte infiltration. We sought to determine whether inflammation was due to changes in circulating immune cells or activation of vascular wall cells in genetically pure Im2 (C3H/F.SJL.11.1) mice. Complete blood counts showed no differences in circulating monocytes between C3H/F and C3H/F.SJL.11.1 compared with SJL mice. Aortic vascular cell adhesion molecule-1 (VCAM-1) total protein levels were dramatically increased in SJL and C3H/F.SJL.11.1 compared with C3H/F mice. Immunostaining of aortic endothelial cells (EC) showed a significant increase in VCAM-1 expression in SJL and C3H/F.SJL.11.1 compared with C3H/F under steady flow conditions. Immunostaining of EC membranes revealed a significant decrease in EC size in SJL and C3H/F.SJL.11.1 vs. C3H/F in regions of disturbed flow. Vascular permeability was significantly higher in C3H/F.SJL.11.1 compared with C3H/F. Our results indicate that Im2 regulation of leukocyte infiltration is mediated by EC inflammation and permeability. RNA sequencing and pathway analyses comparing genes in the Im2 locus to C3H/F provide insight into candidate genes that regulate vascular wall inflammation and permeability highlighting important genetic mechanisms that control vascular intima in response to injury.
Collapse
Affiliation(s)
- Elaine M Smolock
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ryan M Burke
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Chenjing Wang
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; Function Teaching and Research Section, Medical College of Northwest University for Nationalities, Lanzhou, China
| | - Tamlyn Thomas
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Sri N Batchu
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Martha Zettel
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Keigi Fujiwara
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Bradford C Berk
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Vyacheslav A Korshunov
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
42
|
Martinon E, Lefevre PH, Thouant P, Osseby GV, Ricolfi F, Chavent A. Collateral circulation in acute stroke: Assessing methods and impact: A literature review. J Neuroradiol 2014; 41:97-107. [PMID: 24613101 DOI: 10.1016/j.neurad.2014.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Edouard Martinon
- Service de neuroradiologie, hôpital Bocage, CHU de Dijon, 2, boulevard Maréchal-de-Lattre-de-Tassigny, 21079 Dijon, France.
| | - Pierre Henry Lefevre
- Service de neuroradiologie, hôpital Bocage, CHU de Dijon, 2, boulevard Maréchal-de-Lattre-de-Tassigny, 21079 Dijon, France
| | - Pierre Thouant
- Service de neuroradiologie, hôpital Bocage, CHU de Dijon, 2, boulevard Maréchal-de-Lattre-de-Tassigny, 21079 Dijon, France
| | - Guy Victor Osseby
- Service de neurologie, hôpital général, CHU de Dijon, 3, rue Faubourg-Raines, 21033 Dijon, France
| | - Frederic Ricolfi
- Service de neuroradiologie, hôpital Bocage, CHU de Dijon, 2, boulevard Maréchal-de-Lattre-de-Tassigny, 21079 Dijon, France
| | - Adrien Chavent
- Service de neuroradiologie, hôpital Bocage, CHU de Dijon, 2, boulevard Maréchal-de-Lattre-de-Tassigny, 21079 Dijon, France
| |
Collapse
|
43
|
Sealock R, Zhang H, Lucitti JL, Moore SM, Faber JE. Congenic fine-mapping identifies a major causal locus for variation in the native collateral circulation and ischemic injury in brain and lower extremity. Circ Res 2013; 114:660-71. [PMID: 24300334 DOI: 10.1161/circresaha.114.302931] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE Severity of tissue injury in occlusive disease is dependent on the extent (number and diameter) of collateral vessels, which varies widely among healthy mice and humans. However, the causative genetic elements are unknown. Recently, much of the variation among different mouse strains, including C57Bl/6J (B6, high extent) and BALB/cByJ (Bc, low extent), was linked to a quantitative trait locus on chromosome 7 (Candq1). OBJECTIVE We used congenic mapping to refine Candq1 and its candidate genes to create an isogenic strain set with large differences in collateral extent to assess their impact and the impact of Candq1, alone, on ischemic injury. METHODS AND RESULTS Six congenic strains possessing portions of Candq1 introgressed from B6 into Bc were generated and phenotyped. Candq1 was refined from 27 to 0.737 Mb with full retention of effect, that is, return or rescue of phenotypes from the poor values in Bc to nearly those of wild-type B6 in the B6/B6 congenic mice as follows: 83% rescue of low pial collateral extent and 4.5-fold increase in blood flow and 85% reduction of infarct volume after middle cerebral artery occlusion; 54% rescue of low skeletal muscle collaterals and augmented recovery of perfusion (83%) and function after femoral artery ligation. Gene deletion and in silico analysis further delineated the candidate genes. CONCLUSIONS We have significantly refined Candq1 (now designated determinant of collateral extent 1; Dce1), demonstrated that genetic background-dependent variation in collaterals is a major factor underlying differences in ischemic tissue injury, and generated a congenic strain set with wide allele dose-dependent variation in collateral extent for use in investigations of the collateral circulation.
Collapse
Affiliation(s)
- Robert Sealock
- From the Departments of Cell Biology and Physiology (R.S., H.Z., J.L.L., J.E.F.) and Surgery (S.M.M.), and The McAllister Heart Institute (H.Z., J.L.L., J.E.F.), School of Medicine, University of North Carolina at Chapel Hill, NC
| | | | | | | | | |
Collapse
|
44
|
Keum S, Lee HK, Chu PL, Kan MJ, Huang MN, Gallione CJ, Gunn MD, Lo DC, Marchuk DA. Natural genetic variation of integrin alpha L (Itgal) modulates ischemic brain injury in stroke. PLoS Genet 2013; 9:e1003807. [PMID: 24130503 PMCID: PMC3794904 DOI: 10.1371/journal.pgen.1003807] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022] Open
Abstract
During ischemic stroke, occlusion of the cerebrovasculature causes neuronal cell death (infarction), but naturally occurring genetic factors modulating infarction have been difficult to identify in human populations. In a surgically induced mouse model of ischemic stroke, we have previously mapped Civq1 to distal chromosome 7 as a quantitative trait locus determining infarct volume. In this study, genome-wide association mapping using 32 inbred mouse strains and an additional linkage scan for infarct volume confirmed that the size of the infarct is determined by ancestral alleles of the causative gene(s). The genetically isolated Civq1 locus in reciprocal recombinant congenic mice refined the critical interval and demonstrated that infarct size is determined by both vascular (collateral vessel anatomy) and non-vascular (neuroprotection) effects. Through the use of interval-specific SNP haplotype analysis, we further refined the Civq1 locus and identified integrin alpha L (Itgal) as one of the causative genes for Civq1. Itgal is the only gene that exhibits both strain-specific amino acid substitutions and expression differences. Coding SNPs, a 5-bp insertion in exon 30b, and increased mRNA and protein expression of a splice variant of the gene (Itgal-003, ENSMUST00000120857), all segregate with infarct volume. Mice lacking Itgal show increased neuronal cell death in both ex vivo brain slice and in vivo focal cerebral ischemia. Our data demonstrate that sequence variation in Itgal modulates ischemic brain injury, and that infarct volume is determined by both vascular and non-vascular mechanisms.
Collapse
Affiliation(s)
- Sehoon Keum
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Pei-Lun Chu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew J. Kan
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Min-Nung Huang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carol J. Gallione
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael D. Gunn
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Donald C. Lo
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE, Goyal M, Hill MD, Demchuk AM, Damani Z, Cho KH, Chang HW, Hong JH, Sohn SI. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol 2013; 74:241-8. [PMID: 23536377 DOI: 10.1002/ana.23906] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We sought to identify potentially modifiable determinants associated with variability in leptomeningeal collateral status in patients with acute ischemic stroke. METHODS Data are from the Keimyung Stroke Registry. Consecutive patients with M1 segment middle cerebral artery ± intracranial internal carotid artery occlusions on baseline computed tomographic angiography (CTA) from May 2004 to July 2009 were included. Baseline and follow-up imaging was analyzed blinded to all clinical information. Two raters assessed leptomeningeal collaterals on baseline CTA by consensus, using a previously validated regional leptomeningeal score (rLMC). RESULTS Baseline characteristics (N = 206) were: mean age = 66.9 ± 11.6 years, median baseline National Institutes of Health Stroke Scale = 14 (interquartile range [IQR] = 11-20), and median time from stroke symptom onset to CTA = 166 minutes (IQR = 96-262). Poor collateral status at baseline (rLMC score = 0-10) was seen in 73 of 206 patients (35.4%). On univariate analyses, patients with poor collateral status at baseline were older; were hypertensive; had higher white blood cell count, blood glucose, D-dimer, and serum uric acid levels; and were more likely to have metabolic syndrome. Multivariate modeling identified metabolic syndrome (odds ratio [OR] = 3.22, 95% confidence interval [CI] = 1.69-6.15, p < 0.001), hyperuricemia (per 1mg/dl serum uric acid; OR = 1.35, 95% CI = 1.12-1.62, p < 0.01), and older age (per 10 years; OR = 1.34, 95% CI = 1.02-1.77, p = 0.03) as independent predictors of poor leptomeningeal collateral status at baseline. INTERPRETATION Metabolic syndrome, hyperuricemia, and age are associated with poor leptomeningeal collateral status in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Bijoy K Menon
- Calgary Stroke Program, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|