1
|
Alalam H, Šafhauzer M, Sunnerhagen P. New reporters for monitoring cellular NMD. RNA (NEW YORK, N.Y.) 2025; 31:600-611. [PMID: 39880586 PMCID: PMC11912909 DOI: 10.1261/rna.080272.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes. NMD is executed by a set of three core factors conserved in evolution, UPF1-3, as well as additional influencing proteins such as kinases. Monitoring NMD activity is challenging due to the difficulties in quantitating RNA decay rates in vivo, and consequently, it has also been problematic to identify new factors influencing NMD. Here, we developed a genetic selection system in yeast to capture new components affecting NMD status. The reporter constructs link NMD target sequences with nutrient-selectable genetic markers. By crossing these reporters into a genome-wide library of deletion mutants and quantitating colony growth on a selective medium, we robustly detect previously known NMD components in a high-throughput fashion. In addition, we identify novel mutations influencing NMD status and implicate ribosome recycling as important for NMD. By using our constructed combinations of promoters, NMD target sequences, and selectable markers, the system can also efficiently detect mutations with a minor effect, or in special environments. Furthermore, it can be used to explore how NMD acts on targets of different structures.
Collapse
Affiliation(s)
- Hanna Alalam
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| | - Monika Šafhauzer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Göteborg, Sweden
| |
Collapse
|
2
|
Wu K, Xie Q, Liu X, Fu Y, Li S, Yu X, Li W, Zhao P, Ren Y, Ruan M, Zhang X. Capsid protein of turnip crinkle virus suppresses antiviral RNA decay by degrading Arabidopsis Dcp1 via ubiquitination pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70075. [PMID: 40052252 DOI: 10.1111/tpj.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
RNA decay is a pervasive process in eukaryotic cells. Viruses utilize the host cell's intracellular machinery to gain access to essential molecules and subcellular structures required for infection during the pathogenesis process. The study demonstrates that turnip crinkle virus (TCV) infection enhances the expression of Arabidopsis Dcp1 (AtDcp1), which negatively regulates the accumulation of TCV RNA, indicating its involvement in antiviral defense. Nevertheless, TCV circumvents the antiviral defense based on RNA decay, as indicated by the capsid protein (CP) of TCV stabilizing the known nonsense-mediated RNA decay-targeted transcripts. In vivo, CP physically interacts with AtDcp1, promoting AtDcp1 degradation via ubiquitination pathway. This is evidenced by the observation that the degradation is inhibited by 26S proteasome inhibitors. Furthermore, CP elevates the polyubiquitination of Dcp1-Flag. These data indicate that CP suppresses RNA decay by interacting with AtDcp1 and mediating its degradation through the 26S proteasome pathway, effectively suppressing antiviral RNA decay. This study uncovers a previously unidentified virulence strategy in the ongoing conflict between plants and TCV.
Collapse
Affiliation(s)
- Kunxin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China
| | - Qiuxian Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Xueting Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Yan Fu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Shuxia Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China
| | - Xiaoling Yu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China
| | - Wenbin Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China
| | - Pingjuan Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China
| | - Yanli Ren
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, China
| |
Collapse
|
3
|
Hewezi T. Phytopathogens Reprogram Host Alternative mRNA Splicing. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:173-192. [PMID: 38691872 DOI: 10.1146/annurev-phyto-121423-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
4
|
Belleville AE, Thomas JD, Tonnies J, Gabel AM, Borrero Rossi A, Singh P, Queitsch C, Bradley RK. An autoregulatory poison exon in Smndc1 is conserved across kingdoms and influences organism growth. PLoS Genet 2024; 20:e1011363. [PMID: 39150991 PMCID: PMC11357089 DOI: 10.1371/journal.pgen.1011363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/28/2024] [Accepted: 07/08/2024] [Indexed: 08/18/2024] Open
Abstract
Many of the most highly conserved elements in the human genome are "poison exons," alternatively spliced exons that contain premature termination codons and permit post-transcriptional regulation of mRNA abundance through induction of nonsense-mediated mRNA decay (NMD). Poison exons are widely assumed to be highly conserved due to their presumed importance for organismal fitness, but this functional importance has never been tested in the context of a whole organism. Here, we report that a poison exon in Smndc1 is conserved across mammals and plants and plays a molecular autoregulatory function in both kingdoms. We generated mouse and A. thaliana models lacking this poison exon to find its loss leads to deregulation of SMNDC1 protein levels, pervasive alterations in mRNA processing, and organismal size restriction. Together, these models demonstrate the importance of poison exons for both molecular and organismal phenotypes that likely explain their extraordinary conservation.
Collapse
Affiliation(s)
- Andrea E. Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - James D. Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Biology, University of Washington, Seattle, Washington, United States of America
| | - Austin M. Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Andrea Borrero Rossi
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Priti Singh
- Preclinical Modeling Core, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Blázquez MA. Polyamines: Their Role in Plant Development and Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:95-117. [PMID: 38382905 DOI: 10.1146/annurev-arplant-070623-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review focuses on the intricate relationship between plant polyamines and the genetic circuits and signaling pathways that regulate various developmental programs and the defense responses of plants when faced with biotic and abiotic aggressions. Particular emphasis is placed on genetic evidence supporting the involvement of polyamines in specific processes, such as the pivotal role of thermospermine in regulating xylem cell differentiation and the significant contribution of polyamine metabolism in enhancing plant resilience to drought. Based on the numerous studies describing effects of the manipulation of plant polyamine levels, two conceptually different mechanisms for polyamine activity are discussed: direct participation of polyamines in translational regulation and the indirect production of hydrogen peroxide as a defensive mechanism against pathogens. By describing the multifaceted functions of polyamines, this review underscores the profound significance of these compounds in enabling plants to adapt and thrive in challenging environments.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain;
| |
Collapse
|
6
|
Edet OU, Ubi BE, Ishii T. Genomic analysis of a spontaneous unifoliate mutant reveals gene candidates associated with compound leaf development in Vigna unguiculata [L] Walp. Sci Rep 2024; 14:10654. [PMID: 38724579 PMCID: PMC11082238 DOI: 10.1038/s41598-024-61062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular mechanisms which underpin compound leaf development in some legumes have been reported, but there is no previous study on the molecular genetic control of compound leaf formation in Vigna unguiculata (cowpea), an important dryland legume of African origin. In most studied species with compound leaves, class 1 KNOTTED-LIKE HOMEOBOX genes expressed in developing leaf primordia sustain morphogenetic activity, allowing leaf dissection and the development of leaflets. Other genes, such as, SINGLE LEAFLET1 in Medicago truncatula and Trifoliate in Solanum lycopersicum, are also implicated in regulating compound leaf patterning. To set the pace for an in-depth understanding of the genetics of compound leaf development in cowpea, we applied RNA-seq and whole genome shotgun sequence datasets of a spontaneous cowpea unifoliate mutant and its trifoliate wild-type cultivar to conduct comparative reference-based gene expression, de novo genome-wide isoform switch, and genome variant analyses between the two genotypes. Our results suggest that genomic variants upstream of LATE ELONGATED HYPOCOTYL and down-stream of REVEILLE4, BRASSINOSTERIOD INSENSITIVE1 and LATERAL ORGAN BOUNDARIES result in down-regulation of key components of cowpea circadian rhythm central oscillator and brassinosteroid signaling, resulting in unifoliate leaves and brassinosteroid-deficient-like phenotypes. We have stated hypotheses that will guide follow-up studies expected to provide more insights.
Collapse
Affiliation(s)
- Offiong Ukpong Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
- Department of Crop Science, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria.
| | - Benjamin Ewa Ubi
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
7
|
Wu K, Fu Y, Ren Y, Liu L, Zhang X, Ruan M. Turnip crinkle virus-encoded suppressor of RNA silencing suppresses mRNA decay by interacting with Arabidopsis XRN4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:744-755. [PMID: 37522642 DOI: 10.1111/tpj.16402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Plant cells employ intricate defense mechanisms, including mRNA decay pathways, to counter viral infections. Among the RNA quality control (RQC) mechanisms, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD) pathways play critical roles in recognizing and cleaving aberrant mRNA molecules. Turnip crinkle virus (TCV) is a plant virus that triggers mRNA decay pathways, but it has also evolved strategies to evade this antiviral defense. In this study, we investigated the activation of mRNA decay during TCV infection and its impact on TCV RNA accumulation. We found that TCV infection induced the upregulation of essential mRNA decay factors, indicating their involvement in antiviral defense and the capsid protein (CP) of TCV, a well-characterized viral suppressor of RNA silencing (VSR), also compromised the mRNA decay-based antiviral defense by targeting AtXRN4. This interference with mRNA decay was supported by the observation that TCV CP stabilized a reporter transcript with a long 3' untranslated region (UTR). Moreover, TCV CP suppressed the decay of known NMD target transcripts, further emphasizing its ability to modulate host RNA control mechanisms. Importantly, TCV CP physically interacted with AtXRN4, providing insight into the mechanism of viral interference with mRNA decay. Overall, our findings reveal an alternative strategy employed by TCV, wherein the viral coat protein suppresses the mRNA decay pathway to facilitate viral infection.
Collapse
Affiliation(s)
- Kunxin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yan Fu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yanli Ren
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Linyu Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| |
Collapse
|
8
|
Nishii Y, Koyama D, Fukushima H, Takahashi T. Suppression of the dwarf phenotype of an Arabidopsis mutant defective in thermospermine biosynthesis by a synonymous codon change in the SAC51 uORF. Mol Genet Genomics 2023; 298:1505-1514. [PMID: 37845372 DOI: 10.1007/s00438-023-02076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
Thermospermine plays a critical role in negatively regulating xylem development in angiosperms. A mutant of Arabidopsis thaliana that is defective in thermospermine biosynthesis, acaulis5 (acl5), exhibits a dwarf phenotype with excessive xylem formation. Mechanistically thermospermine acts in attenuating the inhibitory effect of an evolutionarily conserved upstream open reading frame (uORF) on the main ORF of SAC51, which encodes a basic helix-loop-helix protein involved in xylem repression. Here, we revealed that a semidominant suppressor of acl5, sac503, which partially restores the acl5 phenotype, has a point mutation in the conserved uORF of SAC51 with no amino acid substitution in the deduced peptide sequence. In transgenic lines carrying the β-glucuronidase (GUS) reporter gene fused with the SAC51 5' region containing the uORF, the mutant construct was shown to confer higher GUS activity than does the wild-type SAC51 construct. We confirmed that sac503 mRNA was more stable than SAC51 mRNA in acl5. These results suggest that the single-base change in sac503 positively affects the translation of its main ORF instead of thermospermine. We further found that the uORF-GUS fusion protein could be synthesized in planta from the wild-type and sac503 translational fusion constructs.
Collapse
Affiliation(s)
- Yuichi Nishii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700 8530, Japan
| | - Daiki Koyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700 8530, Japan
| | - Hiroko Fukushima
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700 8530, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700 8530, Japan.
| |
Collapse
|
9
|
Nagarajan VK, Stuart CJ, DiBattista AT, Accerbi M, Caplan JL, Green PJ. RNA degradome analysis reveals DNE1 endoribonuclease is required for the turnover of diverse mRNA substrates in Arabidopsis. THE PLANT CELL 2023; 35:1936-1955. [PMID: 37070465 PMCID: PMC10226599 DOI: 10.1093/plcell/koad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 05/30/2023]
Abstract
In plants, cytoplasmic mRNA decay is critical for posttranscriptionally controlling gene expression and for maintaining cellular RNA homeostasis. Arabidopsis DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a cytoplasmic mRNA decay factor that interacts with proteins involved in mRNA decapping and nonsense-mediated mRNA decay (NMD). There is limited information on the functional role of DNE1 in RNA turnover, and the identities of its endogenous targets are unknown. In this study, we utilized RNA degradome approaches to globally investigate DNE1 substrates. Monophosphorylated 5' ends, produced by DNE1, should accumulate in mutants lacking the cytoplasmic exoribonuclease XRN4, but be absent from DNE1 and XRN4 double mutants. In seedlings, we identified over 200 such transcripts, most of which reflect cleavage within coding regions. While most DNE1 targets were NMD-insensitive, some were upstream ORF (uORF)-containing and NMD-sensitive transcripts, indicating that this endoribonuclease is required for turnover of a diverse set of mRNAs. Transgenic plants expressing DNE1 cDNA with an active-site mutation in the endoribonuclease domain abolished the in planta cleavage of transcripts, demonstrating that DNE1 endoribonuclease activity is required for cleavage. Our work provides key insights into the identity of DNE1 substrates and enhances our understanding of DNE1-mediated mRNA decay.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Catherine J Stuart
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Anna T DiBattista
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Monica Accerbi
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of
Delaware, Newark, DE 19713-1316, USA
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| |
Collapse
|
10
|
Misra CS, Sousa AGG, Barros PM, Kermanov A, Becker JD. Cell-type-specific alternative splicing in the Arabidopsis germline. PLANT PHYSIOLOGY 2023; 192:85-101. [PMID: 36515615 PMCID: PMC10152659 DOI: 10.1093/plphys/kiac574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 05/03/2023]
Abstract
During sexual reproduction in flowering plants, the two haploid sperm cells (SCs) embedded within the cytoplasm of a growing pollen tube are carried to the embryo sac for double fertilization. Pollen development in flowering plants is a dynamic process that encompasses changes at transcriptome and epigenome levels. While the transcriptome of pollen and SCs in Arabidopsis (Arabidopsis thaliana) is well documented, previous analyses have mostly been based on gene-level expression. In-depth transcriptome analysis, particularly the extent of alternative splicing (AS) at the resolution of SC and vegetative nucleus (VN), is still lacking. Therefore, we performed RNA-seq analysis to generate a spliceome map of Arabidopsis SCs and VN isolated from mature pollen grains. Based on our de novo transcriptome assembly, we identified 58,039 transcripts, including 9,681 novel transcripts, of which 2,091 were expressed in SCs and 3,600 in VN. Four hundred and sixty-eight genes were regulated both at gene and splicing levels, with many having functions in mRNA splicing, chromatin modification, and protein localization. Moreover, a comparison with egg cell RNA-seq data uncovered sex-specific regulation of transcription and splicing factors. Our study provides insights into a gamete-specific AS landscape at unprecedented resolution.
Collapse
Affiliation(s)
- Chandra Shekhar Misra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Anton Kermanov
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
11
|
The biological functions of nonsense-mediated mRNA decay in plants: RNA quality control and beyond. Biochem Soc Trans 2023; 51:31-39. [PMID: 36695509 DOI: 10.1042/bst20211231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved quality control pathway that inhibits the expression of transcripts containing premature termination codon. Transcriptome and phenotypic studies across a range of organisms indicate roles of NMD beyond RNA quality control and imply its involvement in regulating gene expression in a wide range of physiological processes. Studies in moss Physcomitrella patens and Arabidopsis thaliana have shown that NMD is also important in plants where it contributes to the regulation of pathogen defence, hormonal signalling, circadian clock, reproduction and gene evolution. Here, we provide up to date overview of the biological functions of NMD in plants. In addition, we discuss several biological processes where NMD factors implement their function through NMD-independent mechanisms.
Collapse
|
12
|
Cymerman MA, Saul H, Farhi R, Vexler K, Gottlieb D, Berezin I, Shaul O. Plant transcripts with long or structured upstream open reading frames in the NDL2 5' UTR can escape nonsense-mediated mRNA decay in a reinitiation-independent manner. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:91-103. [PMID: 36169317 DOI: 10.1093/jxb/erac385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Many eukaryotic transcripts contain upstream open reading frames (uORFs). Translated uORFs can inhibit the translation of main ORFs by imposing the need for reinitiation of translation. Translated uORFs can also lead to transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. In mammalian cells, translated uORFs were shown to target their transcripts to NMD if the uORFs were long (>23-32 amino acids), structured, or inhibit reinitiation. Reinitiation was shown to rescue uORF-containing mammalian transcripts from NMD. Much less is known about the significance of the length, structure, and reinitiation efficiency of translated uORFs for NMD targeting in plants. Although high-throughput studies suggested that uORFs do not globally reduce plant transcript abundance, it was not clear whether this was due to NMD-escape-permitting parameters of uORF recognition, length, structure, or reinitiation efficiency. We expressed in Arabidopsis reporter genes that included NDL2 5' untranslated region and various uORFs with modulation of the above parameters. We found that transcripts can escape NMD in plants even when they include efficiently translated uORFs up to 70 amino acids long, or structured uORFs, in the absence of reinitiation. These data highlight an apparent difference between the rules that govern the exposure of uORF-containing transcripts to NMD in mammalian and plant cells.
Collapse
Affiliation(s)
- Miryam A Cymerman
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Helen Saul
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Farhi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Karina Vexler
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dror Gottlieb
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Irina Berezin
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orit Shaul
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
13
|
Matsuo H, Fukushima H, Kurokawa S, Kawano E, Okamoto T, Motose H, Takahashi T. Loss of function of an Arabidopsis homologue of JMJD6 suppresses the dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis. FEBS Lett 2022; 596:3005-3014. [PMID: 35962471 DOI: 10.1002/1873-3468.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
In Arabidopsis thaliana, the ACL5 gene encodes thermospermine synthase and its mutant, acl5, exhibits a dwarf phenotype with excessive xylem formation. Studies of suppressor mutants of acl5 reveal the involvement of thermospermine in enhancing mRNA translation of the SAC51 gene family. We show here that a mutant, sac59, which partially suppresses the acl5 phenotype, has a point mutation in JMJ22 encoding a D6-class Jumonji C protein (JMJD6). A T-DNA insertion allele, jmj22-2, also partially suppressed the acl5 phenotype while mutants of its closest two homologs JMJ21 and JMJ20 had no such effects, suggesting a unique role for JMJ22 in plant development. We found that mRNAs of the SAC51 family are more stabilized in acl5 jmj22-2 than in acl5.
Collapse
Affiliation(s)
- Hirotoshi Matsuo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroko Fukushima
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shinpei Kurokawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eri Kawano
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takashi Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroyasu Motose
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Synthetic memory circuits for stable cell reprogramming in plants. Nat Biotechnol 2022; 40:1862-1872. [PMID: 35788565 DOI: 10.1038/s41587-022-01383-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 01/14/2023]
Abstract
Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the potential to integrate multiple customizable input signals through a processing unit constructed from biological parts to produce a predictable and programmable output. Here we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo, demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Specifically, using recombinases and plant control elements, we activated transgenes in YES, OR and AND gates and repressed them in NOT, NOR and NAND gates; we also implemented the A NIMPLY B gate that combines activation and repression. Through use of genetic recombination, these circuits create stable long-term changes in expression and recording of past stimuli. This highly compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealized traits into plants.
Collapse
|
15
|
Kärblane K, Firth AE, Olspert A. Turnip Mosaic Virus Transcriptional Slippage Dynamics and Distribution in RNA Subpopulations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:835-844. [PMID: 35671468 DOI: 10.1094/mpmi-03-22-0060-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Potyviruses comprise the largest and most important group of plant positive-strand RNA viruses. The potyviral cell-to-cell movement protein P3N-PIPO is expressed via transcriptional slippage at a conserved GAAAAAA sequence, leading to insertion of an extra 'A' in a proportion of viral transcripts. Transcriptional slippage is determined by the potyviral replicase, the conserved slippery site, and its flanking nucleotides. Here, we investigate the dynamics of transcriptional slippage at different slip-site sequences, infection stages, and environmental conditions. We detect a modest increase in the level of transcripts with insertion towards later timepoints. In addition, we investigate the fate of transcripts with insertion by separately looking at different RNA subpopulations: (+)RNA, (-)RNA, translated RNA, and virion RNA. We find differences in insertional slippage between (+)RNA and (-)RNA but not other subpopulations. Our results suggest that there can be selection against the use of (-)RNAs with insertions as templates for transcription or replication and demonstrate that insertional slippage can occur at high frequency also during (-)RNA synthesis. Since transcripts with insertions are potential targets for degradation, we investigate the connection to nonsense-mediated decay (NMD). We find that these transcripts are targeted to NMD, but we only observe an impact on the level of transcripts with insertion when the insertional slippage rate is high. Together, these results further our understanding of the mechanism and elucidate the dynamics of potyviral transcriptional slippage. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Kairi Kärblane
- Department of Chemistry and Biotechnology, Faculty of Science, Tallinn University of Technology, Tallinn, Akadeemia tee 15, 12618, Estonia
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, U.K
| | - Allan Olspert
- Department of Chemistry and Biotechnology, Faculty of Science, Tallinn University of Technology, Tallinn, Akadeemia tee 15, 12618, Estonia
| |
Collapse
|
16
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
17
|
Potapova NA. Nonsense Mutations in Eukaryotes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:400-412. [PMID: 35790376 DOI: 10.1134/s0006297922050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Nonsense mutations are a type of mutations which results in a premature termination codon occurrence. In general, these mutations have been considered to be among the most harmful ones which lead to premature protein translation termination and result in shortened nonfunctional polypeptide. However, there is evidence that not all nonsense mutations are harmful as well as some molecular mechanisms exist which allow to avoid pathogenic effects of these mutations. This review addresses relevant information on nonsense mutations in eukaryotic genomes, characteristics of these mutations, and different molecular mechanisms preventing or mitigating harmful effects thereof.
Collapse
Affiliation(s)
- Nadezhda A Potapova
- Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Moscow, 127051, Russia.
| |
Collapse
|
18
|
Causier B, Hopes T, McKay M, Paling Z, Davies B. Plants utilise ancient conserved peptide upstream open reading frames in stress-responsive translational regulation. PLANT, CELL & ENVIRONMENT 2022; 45:1229-1241. [PMID: 35128674 PMCID: PMC9305500 DOI: 10.1111/pce.14277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/08/2023]
Abstract
The regulation of protein synthesis plays an important role in the growth and development of all organisms. Upstream open reading frames (uORFs) are commonly found in eukaryotic messenger RNA transcripts and typically attenuate the translation of associated downstream main ORFs (mORFs). Conserved peptide uORFs (CPuORFs) are a rare subset of uORFs, some of which have been shown to conditionally regulate translation by ribosome stalling. Here, we show that Arabidopsis CPuORF19, CPuORF46 and CPuORF47, which are ancient in origin, regulate translation of any downstream ORF, in response to the agriculturally significant environmental signals, heat stress and water limitation. Consequently, these CPuORFs represent a versatile toolkit for inducible gene expression with broad applications. Finally, we note that different classes of CPuORFs may operate during distinct phases of translation, which has implications for the bioengineering of these regulatory factors.
Collapse
Affiliation(s)
- Barry Causier
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Mary McKay
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Zachary Paling
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Brendan Davies
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
19
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
20
|
Kim S, Kim JA, Kang H, Kim DH. A premature stop codon in BrFLC2 transcript results in early flowering in oilseed-type Brassica rapa plants. PLANT MOLECULAR BIOLOGY 2022; 108:241-255. [PMID: 35064421 DOI: 10.1007/s11103-021-01231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nonsense-mediated mRNA decay (NMD)-mediated degradation of BrFLC2 transcripts is the main cause of rapid flowering of oilseed-type B. rapa 'LP08' plants. Many Brassica species require vernalization (long-term winter-like cooling) for transition to the reproductive stage. In the past several decades, scientific efforts have been made to discern the molecular mechanisms underlying vernalization in many species. Thus, to identify the key regulators required for vernalization in Brassica rapa L., we constructed a linkage map composed of 7833 single nucleotide polymorphism markers using the late-flowering Chinese cabbage (B. rapa L. ssp. pekinensis) inbred line 'Chiifu' and the early-flowering yellow sarson (B. rapa L. ssp. trilocularis) line 'LP08' and identified a single major QTL on the upper-arm of the chromosome A02. In addition, we compared the transcriptomes of the lines 'Chiifu' and 'LP08' at five vernalization time points, including both non-vernalized and post-vernalization conditions. We observed that BrFLC2 was significantly downregulated in the early flowering 'LP08' and had two deletion sites (one at 4th exon and the other at 3' downstream region) around the BrFLC2 genomic region compared with the BrFLC2 genomic region in 'Chiifu'. Large deletion at 3' downstream region did not significantly affect transcription of both sense BrFLC2 transcript and antisense transcript, BrFLC2as along vernalization time course. However, the other deletion at 4th exon of BrFLC2 resulted in the generation of premature stop codon in BrFLC2 transcript in LP08 line. Cycloheximide treatment of LP08 line showed the de-repressed level of BrFLC2 in LP08, suggesting that low transcript level of BrFLC2 in LP08 might be caused by nonsense-mediated mRNA decay removing the nonsense transcript of BrFLC2. Collectively, this study provides a better understanding of the molecular mechanisms underlying floral transition in B. rapa.
Collapse
Affiliation(s)
- Sujeong Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea.
| |
Collapse
|
21
|
Nasim Z, Fahim M, Hwang H, Susila H, Jin S, Youn G, Ahn JH. Nonsense-mediated mRNA decay modulates Arabidopsis flowering time via the SET DOMAIN GROUP 40-FLOWERING LOCUS C module. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7049-7066. [PMID: 34270724 DOI: 10.1093/jxb/erab331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The nonsense-mediated mRNA decay (NMD) surveillance system clears aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. Although loss of the core NMD proteins UP-FRAMESHIFT1 (UPF1) and UPF3 leads to late flowering in Arabidopsis, the underlying mechanism remains elusive. Here, we showed that mutations in UPF1 and UPF3 cause temperature- and photoperiod-independent late flowering. Expression analyses revealed high FLOWERING LOCUS C (FLC) mRNA levels in upf mutants; in agreement with this, the flc mutation strongly suppressed the late flowering of upf mutants. Vernalization accelerated flowering of upf mutants in a temperature-independent manner. FLC transcript levels rose in wild-type plants upon NMD inhibition. In upf mutants, we observed increased enrichment of H3K4me3 and reduced enrichment of H3K27me3 in FLC chromatin. Transcriptome analyses showed that SET DOMAIN GROUP 40 (SDG40) mRNA levels increased in upf mutants, and the SDG40 transcript underwent NMD-coupled alternative splicing, suggesting that SDG40 affects flowering time in upf mutants. Furthermore, NMD directly regulated SDG40 transcript stability. The sdg40 mutants showed decreased H3K4me3 and increased H3K27me3 levels in FLC chromatin, flowered early, and rescued the late flowering of upf mutants. Taken together, these results suggest that NMD epigenetically regulates FLC through SDG40 to modulate flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College Peshawar, Pakistan
| | - Hocheol Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
22
|
HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Int J Mol Sci 2021; 22:ijms22147440. [PMID: 34299060 PMCID: PMC8306789 DOI: 10.3390/ijms22147440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.
Collapse
|
23
|
A novel deletion variant in CLN3 with highly variable expressivity is responsible for juvenile neuronal ceroid lipofuscinoses. Acta Neurol Belg 2021; 121:737-748. [PMID: 33783722 DOI: 10.1007/s13760-021-01655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Mutations in CLN3 (OMIM: 607042) are associated with juvenile neuronal ceroid lipofuscinoses (JNCL)-a rare neurodegenerative disease with early retinal degeneration and progressive neurologic deterioration. The study aimed to determine the underlying genetic factors justifying the NCL phenotype in a large Iraqi consanguineous family. Four affected individuals with an initial diagnosis of NCL were recruited. By doing neuroimaging and also pertinent clinical examinations, e.g. fundus examination, due to heterogeneity of neurodevelopmental disorders, the proband was subjected to the paired-end whole-exome sequencing to identify underlying genetic factors. The candidate variant was also confirmed by Sanger sequencing. Various in silico predictions were used to show the pathogenicity of the variant. This study revealed a novel homozygous frameshift variant-NM_000086.2: c.1127del; p.(Leu376Argfs*15)-in the exon 14 of the CLN3 gene as the most likely disease-causing variant. Three out of 4 patients showed bilateral vision loss (< 7 years) and retinal degeneration with macular changes in both eyes. Electroencephalography demonstrated the loss of normal posterior alpha rhythm and also low amplitude multifocal slow waves. Brain magnetic resonance imaging of the patients with a high degree of deterioration showed mild cerebral and cerebellar cortical atrophy, mild ventriculomegaly, thinning of the corpus callosum and vermis, and non-specific periventricular white matter signal changes in the occipital area. The novel biallelic deletion variant of CLN3 was identified that most probably led to JNCL with variable expressivity of the phenotype. This study also expanded our understanding of the clinical and genetic spectrum of JNCL.
Collapse
|
24
|
Lopez-Ortiz C, Peña-Garcia Y, Bhandari M, Abburi VL, Natarajan P, Stommel J, Nimmakayala P, Reddy UK. Identification of miRNAs and Their Targets Involved in Flower and Fruit Development across Domesticated and Wild Capsicum Species. Int J Mol Sci 2021; 22:ijms22094866. [PMID: 34064462 PMCID: PMC8125703 DOI: 10.3390/ijms22094866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild Capsicum species. In this study, we used high-throughput sequencing to analyze the miRNA content at three developmental stages (flower, small fruit, and middle fruit) from two cultivated (C. baccatum and C. annuum) and two wild (C. chacoense and C. eximium) pepper species. This analysis revealed 22 known and 27 novel miRNAs differentially expressed across species and tissues. A number of stage- and species-specific miRNAs were identified, and Gene Ontology terms were assigned to 138 genes targeted by the miRNAs. Most Gene Ontology terms were for the categories "genetic information processing", "signaling and cellular processes", "amino acid metabolism", and "carbohydrate metabolism". Enriched KEGG analysis revealed the pathways amino acids, sugar and nucleotide metabolism, starch and sucrose metabolism, and fructose-mannose metabolism among the principal ones regulated by miRNAs during pepper fruit ripening. We predicted miRNA-target gene interactions regulating flowering time and fruit development, including miR156/157 with SPL genes, miR159 with GaMYB proteins, miR160 with ARF genes, miR172 with AP2-like transcription factors, and miR408 with CLAVATA1 gene across the different Capsicum species. In addition, novel miRNAs play an important role in regulating interactions potentially controlling plant pathogen defense and fruit quality via fructokinase, alpha-L-arabinofuranosidase, and aromatic and neutral amino acid transporter. Overall, the small RNA-sequencing results from this study represent valuable information that provides a solid foundation for uncovering the miRNA-mediated mechanisms of flower and fruit development between domesticated and wild Capsicum species.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Yadira Peña-Garcia
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Menuka Bhandari
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Venkata Lakshmi Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA, ARS, Beltsville, MD 20705, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
- Correspondence:
| |
Collapse
|
25
|
Zorin EA, Afonin AM, Kulaeva OA, Gribchenko ES, Shtark OY, Zhukov VA. Transcriptome Analysis of Alternative Splicing Events Induced by Arbuscular Mycorrhizal Fungi ( Rhizophagus irregularis) in Pea ( Pisum sativum L.) Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1700. [PMID: 33287282 PMCID: PMC7761762 DOI: 10.3390/plants9121700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022]
Abstract
Alternative splicing (AS), a process that enables formation of different mRNA isoforms due to alternative ways of pre-mRNA processing, is one of the mechanisms for fine-tuning gene expression. Currently, the role of AS in symbioses formed by plants with soil microorganisms is not fully understood. In this work, a comprehensive analysis of the transcriptome of garden pea (Pisum sativum L.) roots in symbiosis with arbuscular mycorrhiza was performed using RNAseq and following bioinformatic analysis. AS profiles of mycorrhizal and control roots were highly similar, intron retention accounting for a large proportion of the observed AS types (67%). Using three different tools (SUPPA2, DRIMSeq and IsoformSwitchAnalyzeR), eight genes with AS events specific for mycorrhizal roots of pea were identified, among which four were annotated as encoding an apoptosis inhibitor protein, a serine/threonine-protein kinase, a dehydrodolichyl diphosphate synthase, and a pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1. In pea mycorrhizal roots, the isoforms of these four genes with preliminary stop codons leading to a truncated ORFs were up-regulated. Interestingly, two of these four genes demonstrating mycorrhiza-specific AS are related to the process of splicing, thus forming parts of the feedback loops involved in fine-tuning of gene expression during mycorrhization.
Collapse
Affiliation(s)
| | | | | | | | | | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (E.A.Z.); (A.M.A.); (O.A.K.); (E.S.G.); (O.Y.S.)
| |
Collapse
|
26
|
Hegde N, Doddamani D, Kushalappa AC. Identification and functional characterisation of late blight resistance polymorphic genes in Russet Burbank potato cultivar. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:88-102. [PMID: 32741427 DOI: 10.1071/fp19327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
In plants, the biosynthesis of the phenylpropanoid, flavonoid and fatty acid pathway monomers, polymers and conjugated metabolites play a vital role in disease resistance. These are generally deposited to reinforce cell walls to contain the pathogen to the site of infection. Identification of sequence variants in genes that biosynthesise these resistance metabolites can explain the mechanisms of disease resistance. The resistant and susceptible genotypes inoculated with Phytophthora infestans were RNA sequenced to identify the single nucleotide polymorphisms (SNPs) and insertion/deletion (InDel) variations. The SNPs/InDels were annotated and classified into different categories based on their effect on gene functions. In the selected 25 biosynthetic genes overlapping 39 transcripts, a total of 52 SNPs/InDels were identified in the protein-coding (CDS) regions. These were categorised as deleterious based on prediction of their effects on protein structure and function. The SNPs/InDels data obtained in this study can be used in genome editing to enhance late blight resistance in Russet Burbank and other potato cultivars.
Collapse
Affiliation(s)
- Niranjan Hegde
- Department of Plant Science, McGill University, Ste.-Anne-de-Bellevue, QC, Canada
| | | | - Ajjamada C Kushalappa
- Department of Plant Science, McGill University, Ste.-Anne-de-Bellevue, QC, Canada; and Corresponding author.
| |
Collapse
|
27
|
Nasim Z, Fahim M, Gawarecka K, Susila H, Jin S, Youn G, Ahn JH. Role of AT1G72910, AT1G72940, and ADR1-LIKE 2 in Plant Immunity under Nonsense-Mediated mRNA Decay-Compromised Conditions at Low Temperatures. Int J Mol Sci 2020; 21:E7986. [PMID: 33121126 PMCID: PMC7663611 DOI: 10.3390/ijms21217986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16 °C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16 °C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College University, Peshawar 25120, Pakistan;
| | - Katarzyna Gawarecka
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| |
Collapse
|
28
|
Li YR, Liu MJ. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 2020; 30:1418-1433. [PMID: 32973042 PMCID: PMC7605272 DOI: 10.1101/gr.261834.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Translation initiation is a key step determining protein synthesis. Studies have uncovered a number of alternative translation initiation sites (TISs) in mammalian mRNAs and showed their roles in reshaping the proteome. However, the extent to which alternative TISs affect gene expression across plants remains largely unclear. Here, by profiling initiating ribosome positions, we globally identified in vivo TISs in tomato and Arabidopsis and found thousands of genes with more than one TIS. Of the identified TISs, >19% and >20% were located at unannotated AUG and non-AUG sites, respectively. CUG and ACG were the most frequently observed codons at non-AUG TISs, a phenomenon also found in mammals. In addition, although alternative TISs were usually found in both orthologous genes, the TIS sequences were not conserved, suggesting the conservation of alternative initiation mechanisms but flexibility in using TISs. Unlike upstream AUG TISs, the presence of upstream non-AUG TISs was not correlated with the translational repression of main open reading frames, a pattern observed across plants. Also, the generation of proteins with diverse N-terminal regions through the use of alternative TISs contributes to differential subcellular localization, as mutating alternative TISs resulted in the loss of organelle localization. Our findings uncovered the hidden coding potential of plant genomes and, importantly, the constraint and flexibility of translational initiation mechanisms in the regulation of gene expression across plant species.
Collapse
Affiliation(s)
- Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
29
|
Raxwal VK, Simpson CG, Gloggnitzer J, Entinze JC, Guo W, Zhang R, Brown JWS, Riha K. Nonsense-Mediated RNA Decay Factor UPF1 Is Critical for Posttranscriptional and Translational Gene Regulation in Arabidopsis. THE PLANT CELL 2020; 32:2725-2741. [PMID: 32665305 PMCID: PMC7474300 DOI: 10.1105/tpc.20.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 05/19/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an RNA control mechanism that has also been implicated in the broader regulation of gene expression. Nevertheless, a role for NMD in genome regulation has not yet been fully assessed, partially because NMD inactivation is lethal in many organisms. Here, we performed an in-depth comparative analysis of Arabidopsis (Arabidopsis thaliana) mutants lacking the NMD-related proteins UPF3, UPF1, and SMG7. We found different impacts of these proteins on NMD and the Arabidopsis transcriptome, with UPF1 having the biggest effect. Transcriptome assembly in UPF1-null plants revealed genome-wide changes in alternative splicing, suggesting that UPF1 functions in splicing. The inactivation of UPF1 led to translational repression, as manifested by a global shift in mRNAs from polysomes to monosomes and the downregulation of genes involved in translation and ribosome biogenesis. Despite these global changes, NMD targets and mRNAs expressed at low levels with short half-lives were enriched in the polysomes of upf1 mutants, indicating that UPF1/NMD suppresses the translation of aberrant RNAs. Particularly striking was an increase in the translation of TIR domain-containing, nucleotide binding, leucine-rich repeat (TNL) immune receptors. The regulation of TNLs via UPF1/NMD-mediated mRNA stability and translational derepression offers a dynamic mechanism for the rapid activation of TNLs in response to pathogen attack.
Collapse
Affiliation(s)
- Vivek K Raxwal
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | | | - Juan Carlos Entinze
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
30
|
Erfatpour M, Pauls KP. A R2R3-MYB gene-based marker for the non-darkening seed coat trait in pinto and cranberry beans (Phaseolus vulgaris L.) derived from 'Wit-rood boontje'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1977-1994. [PMID: 32112124 PMCID: PMC7237406 DOI: 10.1007/s00122-020-03571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The gene Phvul.010G130600 which codes for a MYB was shown to be tightly associated with seed coat darkening in Phaseolus vulgaris and a single nucleotide deletion in the allele in Wit-rood disrupts a transcription activation region that likely prevents its functioning in this non-darkening genotype. The beige and white background colors of the seed coats of conventional pinto and cranberry beans turn brown through a process known as postharvest darkening (PHD). Seed coat PHD is attributed to proanthocyanidin accumulation and its subsequent oxidation in the seed coat. The J gene is an uncharacterized classical genetic locus known to be responsible for PHD in common bean (P. vulgaris) and individuals that are homozygous for its recessive allele have a non-darkening (ND) seed coat phenotype. A previous study identified a major colorimetrically determined QTL for seed coat color on chromosome 10 that was associated with the ND trait. The objectives of this study were to identify a gene associated with seed coat postharvest darkening in common bean and understand its function in promoting seed coat darkening. Amplicon sequencing of 21 candidate genes underlying the QTL associated with the ND trait revealed a single nucleotide deletion (c.703delG) in the candidate gene Phvul.010G130600 in non-darkening recombinant inbred lines derived from crosses between ND 'Wit-rood boontje' and a regular darkening pinto genotype. In silico analysis indicated that Phvul.010G130600 encodes a protein with strong amino acid sequence identity (70%) with a R2R3-MYB-type transcription factor MtPAR, which has been shown to regulate proanthocyanidin biosynthesis in Medicago truncatula seed coat tissue. The deletion in the 'Wit-rood boontje' allele of Phvul.010G130600 likely causes a translational frame shift that disrupts the function of a transcriptional activation domain contained in the C-terminus of the R2R3-MYB. A gene-based dominant marker was developed for the dominant allele of Phvul.010G130600 which can be used for marker-assisted selection of ND beans.
Collapse
Affiliation(s)
- M Erfatpour
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K P Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
31
|
Jung HW, Panigrahi GK, Jung GY, Lee YJ, Shin KH, Sahoo A, Choi ES, Lee E, Man Kim K, Yang SH, Jeon JS, Lee SC, Kim SH. Pathogen-Associated Molecular Pattern-Triggered Immunity Involves Proteolytic Degradation of Core Nonsense-Mediated mRNA Decay Factors During the Early Defense Response. THE PLANT CELL 2020; 32:1081-1101. [PMID: 32086363 PMCID: PMC7145493 DOI: 10.1105/tpc.19.00631] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), an mRNA quality control process, is thought to function in plant immunity. A subset of fully spliced (FS) transcripts of Arabidopsis (Arabidopsis thaliana) resistance (R) genes are upregulated during bacterial infection. Here, we report that 81.2% and 65.1% of FS natural TIR-NBS-LRR (TNL) and CC-NBS-LRR transcripts, respectively, retain characteristics of NMD regulation, as their transcript levels could be controlled posttranscriptionally. Both bacterial infection and the perception of bacteria by pattern recognition receptors initiated the destruction of core NMD factors UP-FRAMESHIFT1 (UPF1), UPF2, and UPF3 in Arabidopsis within 30 min of inoculation via the independent ubiquitination of UPF1 and UPF3 and their degradation via the 26S proteasome pathway. The induction of UPF1 and UPF3 ubiquitination was delayed in mitogen-activated protein kinase3 (mpk3) and mpk6, but not in salicylic acid-signaling mutants, during the early immune response. Finally, previously uncharacterized TNL-type R transcripts accumulated in upf mutants and conferred disease resistance to infection with a virulent Pseudomonas strain in plants. Our findings demonstrate that NMD is one of the main regulatory processes through which PRRs fine-tune R transcript levels to reduce fitness costs and achieve effective immunity.
Collapse
Affiliation(s)
- Ho Won Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Gagan Kumar Panigrahi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
- School of Applied Sciences, Centurion University of Technology and Management, Odisha 752050, India
| | - Ga Young Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Yu Jeong Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ki Hun Shin
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Annapurna Sahoo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Eun Su Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Eunji Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Kyung Man Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Sung Chul Lee
- School of Biological Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang Hyon Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
32
|
Kathare PK, Dharmasiri S, Vincill ED, Routray P, Ahmad I, Roberts DM, Dharmasiri N. Arabidopsis PIC30 encodes a major facilitator superfamily transporter responsible for the uptake of picolinate herbicides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:18-33. [PMID: 31710151 DOI: 10.1111/tpj.14608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Picloram is an auxinic herbicide that is widely used for controlling broad leaf weeds. However, its mechanism of transport into plants is poorly understood. In a genetic screen for picloram resistance, we identified three Arabidopsis mutant alleles of PIC30 (PICLORAM RESISTANT30) that are specifically resistant to picolinates, but not to other auxins. PIC30 is a previously uncharacterized gene that encodes a major facilitator superfamily (MFS) transporter. Similar to most members of MFS, PIC30 contains 12 putative transmembrane domains, and PIC30-GFP fusion protein selectively localizes to the plasma membrane. In planta transport assays demonstrate that PIC30 specifically transports picloram, but not indole-3-acetic acid (IAA). Functional analysis of Xenopus laevis oocytes injected with PIC30 cRNA demonstrated PIC30 mediated transport of picloram and several anions, including nitrate and chloride. Consistent with these roles of PIC30, three allelic pic30 mutants are selectively insensitive to picolinate herbicides, while pic30-3 is also defective in chlorate (analogue of nitrate) transport and also shows reduced uptake of 15NO3- . Overexpression of PIC30 fully complements both picloram and chlorate insensitive phenotypes of pic30-3. Despite the continued use of picloram as an herbicide, a transporter for picloram was not known until now. This work provides insight into the mechanisms of plant resistance to picolinate herbicides and also shed light on the possible endogenous function of PIC30 protein.
Collapse
Affiliation(s)
- Praveen K Kathare
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Sunethra Dharmasiri
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666
| | - Eric D Vincill
- Department of Biochemistry, and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Pratyush Routray
- Department of Biochemistry, and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Idrees Ahmad
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666
| | - Daniel M Roberts
- Department of Biochemistry, and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Nihal Dharmasiri
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666
| |
Collapse
|
33
|
Ibrahim AEC, van Dolleweerd CJ, Drake PMW, Ma JKC. Development of a minigenome cassette for Lettuce necrotic yellows virus: A first step in rescuing a plant cytorhabdovirus. PLoS One 2020; 15:e0229877. [PMID: 32134974 PMCID: PMC7058326 DOI: 10.1371/journal.pone.0229877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Rhabdoviruses are enveloped negative-sense RNA viruses that have numerous biotechnological applications. However, recovering plant rhabdoviruses from cDNA remains difficult due to technical difficulties such as the need for concurrent in planta expression of the viral genome together with the viral nucleoprotein (N), phosphoprotein (P) and RNA-dependent RNA polymerase (L) and viral genome instability in E. coli. Here, we developed a negative-sense minigenome cassette for Lettuce necrotic yellows virus (LNYV). We introduced introns into the unstable viral ORF and employed Agrobacterium tumefaciens to co-infiltrate Nicotiana with the genes for the N, P, and L proteins together with the minigenome cassette. The minigenome cassette included the Discosoma sp. red fluorescent protein gene (DsRed) cloned in the negative-sense between the viral trailer and leader sequences which were placed between hammerhead and hepatitis delta ribozymes. In planta DsRed expression was demonstrated by western blotting while the appropriate splicing of introduced introns was confirmed by sequencing of RT-PCR product.
Collapse
Affiliation(s)
- Ahmad E. C. Ibrahim
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Craig J. van Dolleweerd
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Pascal M. W. Drake
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Julian K-C. Ma
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| |
Collapse
|
34
|
Sulkowska A, Auber A, Sikorski PJ, Silhavy DN, Auth M, Sitkiewicz E, Jean V, Merret RM, Bousquet-Antonelli CC, Kufel J. RNA Helicases from the DEA(D/H)-Box Family Contribute to Plant NMD Efficiency. PLANT & CELL PHYSIOLOGY 2020; 61:144-157. [PMID: 31560399 DOI: 10.1093/pcp/pcz186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.
Collapse
Affiliation(s)
- Aleksandra Sulkowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Pawel J Sikorski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dï Niel Silhavy
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Mariann Auth
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Ewa Sitkiewicz
- Proteomics Laboratory, Biophysics Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Viviane Jean
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Rï My Merret
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Cï Cile Bousquet-Antonelli
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
35
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
36
|
Ohtani M, Wachter A. NMD-Based Gene Regulation-A Strategy for Fitness Enhancement in Plants? PLANT & CELL PHYSIOLOGY 2019; 60:1953-1960. [PMID: 31111919 DOI: 10.1093/pcp/pcz090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental responses. In this review, we will briefly summarize our current knowledge of the recognition and degradation of NMD targets, followed by an account of NMD's regulation and physiological functions. We will specifically discuss plant-specific aspects of RNA quality control and its functional contribution to the fitness and environmental responses of plants.
Collapse
Affiliation(s)
- Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
37
|
Kesarwani AK, Lee HC, Ricca PG, Sullivan G, Faiss N, Wagner G, Wunderling A, Wachter A. Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1986-1999. [PMID: 31368494 DOI: 10.1093/pcp/pcz141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/06/2019] [Indexed: 05/16/2023]
Abstract
Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG) 7, but not UPF2, are under feedback control in both dicots. In the monocot investigated in this study, only SMG7 was slightly induced upon NMD inhibition. The detection of the endogenous NMD factor proteins in Arabidopsis thaliana substantiated a negative correlation between NMD activity and SMG7 amounts. Furthermore, evidence was provided that SMG7 is required for the dephosphorylation of UPF1. Our comprehensive and comparative study of NMD feedback control in plants reveals complex and species-specific attenuation of this RNA surveillance pathway, with critical implications for the numerous functions of NMD in physiology and stress responses.
Collapse
Affiliation(s)
- Anil K Kesarwani
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Hsin-Chieh Lee
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Patrizia G Ricca
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Sullivan
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Natalie Faiss
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Anna Wunderling
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
38
|
Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B. The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res 2019; 46:5822-5836. [PMID: 29596649 PMCID: PMC6009662 DOI: 10.1093/nar/gky225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants.
Collapse
Affiliation(s)
- James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
39
|
Li R, Huang Y, Zhang Q, Zhou H, Jin P, Ma F. The miR-317 functions as a negative regulator of Toll immune response and influences Drosophila survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:19-27. [PMID: 30708026 DOI: 10.1016/j.dci.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The miR-317 has been revealed to involve in the reproductive response and the larval ovary morphogenesis of Drosophila. However, whether the miR-317 can also regulate Drosophila innate immune responses, which remains unclear to date. Here we have verified that miR-317 can directly target the 3'UTR of Dif-Rc to down-regulate the expression levels of AMP Drs to negatively control Drosophila Toll immune response in vivo and vitro. Specially, the Dif is an important transcription factor of Toll pathway with four transcripts (Dif-Ra, Dif-Rb, Dif-Rc and Dif-Rd). Our results show that miR-317 only targets to Dif-Rc, but not Dif-Ra/b/d, implying that miRNAs can regulate different isoforms of an alternative splicing gene to fine tune immune responses and maintain homeostasis in post-transcriptional level. Furthermore, we have demonstrated that the miR-317 sponge can restore the expression levels of Drs and Dif-Rc at mRNA and protein levels. Remarkably, during Gram-positive bacterial infection, the overexpressed miR-317 flies have poor survival outcome, whereas the knockout miR-317 flies have favorable survival compared to the control group, respectively, suggesting that the miR-317 might play a key role in Drosophila survival. Taken together, our current works not only reveal an innate immune function and a novel regulation pattern of miR-317, but also provide a new insight into the underlying molecular mechanisms of immunity disorder influencing on Drosophila survival.
Collapse
Affiliation(s)
- Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Qi Zhang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
40
|
Lukhovitskaya N, Ryabova LA. Cauliflower mosaic virus transactivator protein (TAV) can suppress nonsense-mediated decay by targeting VARICOSE, a scaffold protein of the decapping complex. Sci Rep 2019; 9:7042. [PMID: 31065034 PMCID: PMC6504953 DOI: 10.1038/s41598-019-43414-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
During pathogenesis, viruses hijack the host cellular machinery to access molecules and sub-cellular structures needed for infection. We have evidence that the multifunctional viral translation transactivator/viroplasmin (TAV) protein from Cauliflower mosaic virus (CaMV) can function as a suppressor of nonsense-mediated mRNA decay (NMD). TAV interacts specifically with a scaffold protein of the decapping complex VARICOSE (VCS) in the yeast two-hybrid system, and co-localizes with components of the decapping complex in planta. Notably, plants transgenic for TAV accumulate endogenous NMD-elicited mRNAs, while decay of AU-rich instability element (ARE)-signal containing mRNAs are not affected. Using an agroinfiltration-based transient assay we confirmed that TAV specifically stabilizes mRNA containing a premature termination codon (PTC) in a VCS-dependent manner. We have identified a TAV motif consisting of 12 of the 520 amino acids in the full-length sequence that is critical for both VCS binding and the NMD suppression effect. Our data suggest that TAV can intercept NMD by targeting the decapping machinery through the scaffold protein VARICOSE, indicating that 5'-3' mRNA decapping is a late step in NMD-related mRNA degradation in plants.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
41
|
Shi Y, Su Z, Yang H, Wang W, Jin G, He G, Siddique AN, Zhang L, Zhu A, Xue R, Zhang C. Alternative splicing coupled to nonsense-mediated mRNA decay contributes to the high-altitude adaptation of maca (Lepidium meyenii). Gene 2019; 694:7-18. [PMID: 30716438 DOI: 10.1016/j.gene.2018.12.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
Alpine plants remain the least studied plant communities in terrestrial ecosystems. However, how they adapt to high-altitude environments is far from clear. Here, we used RNA-seq to investigate a typical alpine plant maca (Lepidium meyenii) to understand its high-altitude adaptation at transcriptional and post-transcriptional level. At transcriptional level, we found that maca root significantly up-regulated plant immunity genes in day-time comparing to night-time, and up-regulated abiotic (cold/osmotic) stress response genes in Nov and Dec comparing to Oct. In addition, 17 positively selected genes were identified, which could be involved in mitochondrion. At post-transcriptional level, we found that maca had species-specific characterized alternative splicing (AS) profile which could be influenced by stress environments. For example, the alternative 3' splice site events (A3SS, 39.62%) were predominate AS events in maca, rather than intron retention (IR, 23.17%). Interestingly, besides serine/arginine-rich (SR) proteins and long non-coding RNAs (lncRNAs), a lot of components in nonsense-mediated mRNA decay (NMD) were identified under differential alternative splicing (DAS), supporting AS coupled to NMD as essential mechanisms for maca's stress responses and high-altitude adaptation. Taken together, we first attempted to unveil maca's high-altitude adaptation mechanisms based on transcriptome and post-transcriptome evidence. Our data provided valuable insights to understand the high-altitude adaptation of alpine plants.
Collapse
Affiliation(s)
- Yong Shi
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zechun Su
- Alpine Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang, Yunnan 674100, China
| | - Hong Yang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Wang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Guihua Jin
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqing He
- Alpine Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang, Yunnan 674100, China
| | - Abu Nasar Siddique
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Department of Biotechnology, Bacha Khan University, Charsadda 24420, Pakistan
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Andan Zhu
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Runguang Xue
- Alpine Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang, Yunnan 674100, China.
| | - Chengjun Zhang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
42
|
Poidevin L, Unal D, Belda-Palazón B, Ferrando A. Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. PLANTS 2019; 8:plants8040109. [PMID: 31022874 PMCID: PMC6524035 DOI: 10.3390/plants8040109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey.
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
43
|
Lorenzo-Orts L, Witthoeft J, Deforges J, Martinez J, Loubéry S, Placzek A, Poirier Y, Hothorn LA, Jaillais Y, Hothorn M. Concerted expression of a cell cycle regulator and a metabolic enzyme from a bicistronic transcript in plants. NATURE PLANTS 2019; 5:184-193. [PMID: 30737513 DOI: 10.1038/s41477-019-0358-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/04/2019] [Indexed: 05/15/2023]
Abstract
Eukaryotic mRNAs frequently contain upstream open reading frames (uORFs), encoding small peptides that may control translation of the main ORF (mORF). Here, we report the characterization of a distinct bicistronic transcript in Arabidopsis. We analysed loss-of-function phenotypes of the inorganic polyphosphatase TRIPHOSPHATE TUNNEL METALLOENZYME 3 (AtTTM3), and found that catalytically inactive versions of the enzyme could fully complement embryo and growth-related phenotypes. We could rationalize these puzzling findings by characterizing a uORF in the AtTTM3 locus encoding CELL DIVISION CYCLE PROTEIN 26 (CDC26), an orthologue of the cell cycle regulator. We demonstrate that AtCDC26 is part of the plant anaphase promoting complex/cyclosome (APC/C), regulates accumulation of APC/C target proteins and controls cell division, growth and embryo development. AtCDC26 and AtTTM3 are translated from a single transcript conserved across the plant lineage. While there is no apparent biochemical connection between the two gene products, AtTTM3 coordinates AtCDC26 translation by recruiting the transcript into polysomes. Our work highlights that uORFs may encode functional proteins in plant genomes.
Collapse
Affiliation(s)
- Laura Lorenzo-Orts
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
| | - Janika Witthoeft
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Jacobo Martinez
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Aleksandra Placzek
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
| |
Collapse
|
44
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
45
|
Chaudhary S, Khokhar W, Jabre I, Reddy ASN, Byrne LJ, Wilson CM, Syed NH. Alternative Splicing and Protein Diversity: Plants Versus Animals. FRONTIERS IN PLANT SCIENCE 2019; 10:708. [PMID: 31244866 PMCID: PMC6581706 DOI: 10.3389/fpls.2019.00708] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 05/11/2023]
Abstract
Plants, unlike animals, exhibit a very high degree of plasticity in their growth and development and employ diverse strategies to cope with the variations during diurnal cycles and stressful conditions. Plants and animals, despite their remarkable morphological and physiological differences, share many basic cellular processes and regulatory mechanisms. Alternative splicing (AS) is one such gene regulatory mechanism that modulates gene expression in multiple ways. It is now well established that AS is prevalent in all multicellular eukaryotes including plants and humans. Emerging evidence indicates that in plants, as in animals, transcription and splicing are coupled. Here, we reviewed recent evidence in support of co-transcriptional splicing in plants and highlighted similarities and differences between plants and humans. An unsettled question in the field of AS is the extent to which splice isoforms contribute to protein diversity. To take a critical look at this question, we presented a comprehensive summary of the current status of research in this area in both plants and humans, discussed limitations with the currently used approaches and suggested improvements to current methods and alternative approaches. We end with a discussion on the potential role of epigenetic modifications and chromatin state in splicing memory in plants primed with stresses.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Lee J. Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Cornelia M. Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Naeem H. Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
- *Correspondence: Naeem H. Syed,
| |
Collapse
|
46
|
Ganesan R, Leszyk J, Jacobson A. Selective profiling of ribosomes associated with yeast Upf proteins. Methods 2018; 155:58-67. [PMID: 30593864 DOI: 10.1016/j.ymeth.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomes associated with nonsense-mediated decay factors Upf1, Upf2, or Upf3 were purified by immunoprecipitation, and enrichment and stoichiometry of Upf factors and ribosomal proteins were analyzed by western blot and mass spectrometry. Using a small RNA library preparation protocol that eliminates in-gel RNA and cDNA size selection and incorporates four random nucleotides on each side of the ribosome-protected RNA fragment allowed recovery, detection, and analysis of all size classes of protected fragments from a sample simultaneously.
Collapse
Affiliation(s)
- Robin Ganesan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States
| | - John Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States.
| |
Collapse
|
47
|
Chicois C, Scheer H, Garcia S, Zuber H, Mutterer J, Chicher J, Hammann P, Gagliardi D, Garcia D. The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:119-132. [PMID: 29983000 DOI: 10.1111/tpj.14022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The RNA helicase UP-FRAMESHIFT (UPF1) is a key factor of nonsense-mediated decay (NMD), a mRNA decay pathway involved in RNA quality control and in the fine-tuning of gene expression. UPF1 recruits UPF2 and UPF3 to constitute the NMD core complex, which is conserved across eukaryotes. No other components of UPF1-containing ribonucleoproteins (RNPs) are known in plants, despite its key role in regulating gene expression. Here, we report the identification of a large set of proteins that co-purify with the Arabidopsis UPF1, either in an RNA-dependent or RNA-independent manner. We found that like UPF1, several of its co-purifying proteins have a dual localization in the cytosol and in P-bodies, which are dynamic structures formed by the condensation of translationally repressed mRNPs. Interestingly, more than half of the proteins of the UPF1 interactome also co-purify with DCP5, a conserved translation repressor also involved in P-body formation. We identified a terminal nucleotidyltransferase, ribonucleases and several RNA helicases among the most significantly enriched proteins co-purifying with both UPF1 and DCP5. Among these, RNA helicases are the homologs of DDX6/Dhh1, known as translation repressors in humans and yeast, respectively. Overall, this study reports a large set of proteins associated with the Arabidopsis UPF1 and DCP5, two components of P-bodies, and reveals an extensive interaction network between RNA degradation and translation repression factors. Using this resource, we identified five hitherto unknown components of P-bodies in plants, pointing out the value of this dataset for the identification of proteins potentially involved in translation repression and/or RNA degradation.
Collapse
Affiliation(s)
- Clara Chicois
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Shahïnez Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
48
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
49
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
50
|
Tappiban P, Sraphet S, Srisawad N, Smith DR, Triwitayakorn K. Identification and expression of genes in response to cassava bacterial blight infection. J Appl Genet 2018; 59:391-403. [DOI: 10.1007/s13353-018-0457-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
|