1
|
Velloso FJ, Shankar S, Parpura V, Rakic P, Levison SW. Neural Stem Cells in Adult Mammals are not Astrocytes. ASN Neuro 2022; 14:17590914221134739. [PMID: 36330653 PMCID: PMC9638700 DOI: 10.1177/17590914221134739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
At the turn of the 21st century studies of the cells that resided in the adult mammalian subventricular zone (SVZ) characterized the neural stem cells (NSCs) as a subtype of astrocyte. Over the ensuing years, numerous studies have further characterized the properties of these NSCs and compared them to parenchymal astrocytes. Here we have evaluated the evidence collected to date to establish whether classifying the NSCs as astrocytes is appropriate and useful. We also performed a meta-analysis with 4 previously published datasets that used cell sorting and unbiased single-cell RNAseq to highlight the distinct gene expression profiles of adult murine NSCs and niche astrocytes. On the basis of our understanding of the properties and functions of astrocytes versus the properties and functions of NSCs, and from our comparative transcriptomic analyses we conclude that classifying the adult mammalian NSC as an astrocyte is potentially misleading. From our vantage point, it is more appropriate to refer to the cells in the adult mammalian SVZ that retain the capacity to produce new neurons and macroglia as NSCs without attaching the term "astrocyte-like."
Collapse
Affiliation(s)
- Fernando Janczur Velloso
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Sandhya Shankar
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham,
Birmingham, AL, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT,
USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New
Haven, CT, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
2
|
Zhao X, Wang Y, Wait E, Mankowski W, Bjornsson CS, Cohen AR, Zuloaga KL, Temple S. 3D Image Analysis of the Complete Ventricular-Subventricular Zone Stem Cell Niche Reveals Significant Vasculature Changes and Progenitor Deficits in Males Versus Females with Aging. Stem Cell Reports 2021; 16:836-850. [PMID: 33836145 PMCID: PMC8072131 DOI: 10.1016/j.stemcr.2021.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
With age, neural stem cell (NSC) function in the adult ventricular-subventricular zone (V-SVZ) declines, reducing memory and cognitive function in males; however, the impact on females is not well understood. To obtain a global view of how age and sex impact the mouse V-SVZ, we constructed 3D montages after multiplex immunostaining, and used computer-based 3D image analysis to quantify data across the entire niche at 2, 18, and 22 months. We discovered dramatic sex differences in the aging of the V-SVZ niche vasculature, which regulates NSC activity: females showed increased diameter but decreased vessel density with age, while males showed decreased diameter and increased tortuosity and vessel density. Accompanying these vascular changes, males showed significant decline in NSC numbers, progenitor cell proliferation, and more disorganized migrating neuroblast chains with age; however, females did not. By examining the entire 3D niche, we found significant sex differences, with females being relatively spared through very old age.
Collapse
Affiliation(s)
- Xiuli Zhao
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Eric Wait
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA; Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Walt Mankowski
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19103, USA
| | | | - Andrew R Cohen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Kristen L Zuloaga
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
3
|
Winkelman MA, Koppes AN, Koppes RA, Dai G. Bioengineering the neurovascular niche to study the interaction of neural stem cells and endothelial cells. APL Bioeng 2021; 5:011507. [PMID: 33688617 PMCID: PMC7932757 DOI: 10.1063/5.0027211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of mammalian neural stem cells (NSCs) to self-renew and differentiate throughout adulthood has made them ideal to study neurogenesis and attractive candidates for neurodegenerative disease therapies. In the adult mammalian brain, NSCs are maintained in the neurovascular niche (NVN) where they are found near the specialized blood vessels, suggesting that brain endothelial cells (BECs) are prominent orchestrators of NSC fate. However, most of the current knowledge of the mammalian NVN has been deduced from nonhuman studies. To circumvent the challenges of in vivo studies, in vitro models have been developed to better understand the reciprocal cellular mechanisms of human NSCs and BECs. This review will cover the current understanding of mammalian NVN biology, the effects of endothelial cell-derived signals on NSC fate, and the in vitro models developed to study the interactions between NSCs and BECs.
Collapse
Affiliation(s)
- Max A Winkelman
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Moon H, Jeon SG, Kim JI, Kim HS, Lee S, Kim D, Park S, Moon M, Chung H. Pharmacological Stimulation of Nurr1 Promotes Cell Cycle Progression in Adult Hippocampal Neural Stem Cells. Int J Mol Sci 2019; 21:E4. [PMID: 31861329 PMCID: PMC6982043 DOI: 10.3390/ijms21010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.
Collapse
Affiliation(s)
- Haena Moon
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243, Korea;
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Sangho Lee
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Dongok Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seungjoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| |
Collapse
|
5
|
Role of mTOR Complexes in Neurogenesis. Int J Mol Sci 2018; 19:ijms19051544. [PMID: 29789464 PMCID: PMC5983636 DOI: 10.3390/ijms19051544] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Collapse
|
6
|
Crouch EE, Doetsch F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat Protoc 2018; 13:738-751. [PMID: 29565899 DOI: 10.1038/nprot.2017.158] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vasculature is emerging as a key contributor to brain function during neurodevelopment and in mature physiological and pathological states. The brain vasculature itself also exhibits regional heterogeneity, highlighting the need to develop approaches for purifying cells from different microregions. Previous approaches for isolation of endothelial cells and pericytes have predominantly required transgenic mice and large amounts of tissue, and have resulted in impure populations. In addition, the prospective purification of brain pericytes has been complicated by the fact that widely used pericyte markers are also expressed by other cell types in the brain. Here, we describe the detailed procedures for simultaneous isolation of pure populations of endothelial cells and pericytes directly from adult mouse brain microregions using fluorescence-activated cell sorting (FACS) with antibodies against CD31 (endothelial cells) and CD13 (pericytes). This protocol is scalable and takes ∼5 h, including microdissection of the region of interest, enzymatic tissue dissociation, immunostaining, and FACS. This protocol allows the isolation of brain vascular cells from any mouse strain under diverse conditions; these cells can be used for multiple downstream applications, including in vitro and in vivo experiments, and transcriptomic, proteomic, metabolomic, epigenomic, and single-cell analysis.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
7
|
Abstract
Purpose of Review Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Recent Findings Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. Summary This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Neha Bhatt
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Antonin Bourdieu
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Karen K Hirschi
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| |
Collapse
|
8
|
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18:419-434. [PMID: 28515434 PMCID: PMC5759779 DOI: 10.1038/nrn.2017.48] [Citation(s) in RCA: 838] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral blood flow (CBF) regulation is essential for normal brain function. The mammalian brain has evolved a unique mechanism for CBF control known as neurovascular coupling. This mechanism ensures a rapid increase in the rate of CBF and oxygen delivery to activated brain structures. The neurovascular unit is composed of astrocytes, mural vascular smooth muscle cells and pericytes, and endothelia, and regulates neurovascular coupling. This Review article examines the cellular and molecular mechanisms within the neurovascular unit that contribute to CBF control, and neurovascular dysfunction in neurodegenerative disorders such as Alzheimer disease.
Collapse
Affiliation(s)
- Kassandra Kisler
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Axel Montagne
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
9
|
The vasculature as a neural stem cell niche. Neurobiol Dis 2017; 107:4-14. [PMID: 28132930 DOI: 10.1016/j.nbd.2017.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing progenitors that generate progeny that differentiate into neurons and glia. NSCs in the adult mammalian brain are generally quiescent. Environmental stimuli such as learning or exercise can activate quiescent NSCs, inducing them to proliferate and produce new neurons and glia. How are these behaviours coordinated? The neurovasculature, the circulatory system of the brain, is a key component of the NSC microenvironment, or 'niche'. Instructive signals from the neurovasculature direct NSC quiescence, proliferation, self-renewal and differentiation. During ageing, a breakdown in the niche accompanies NSC dysfunction and cognitive decline. There is much interest in reversing these changes and enhancing NSC activity by targeting the neurovasculature therapeutically. Here we discuss principles of neurovasculature-NSC crosstalk, and the implications for the design of NSC-based therapies. We also consider the emerging contributions to this field of the model organism Drosophila melanogaster.
Collapse
|
10
|
Koutsakis C, Kazanis I. How Necessary is the Vasculature in the Life of Neural Stem and Progenitor Cells? Evidence from Evolution, Development and the Adult Nervous System. Front Cell Neurosci 2016; 10:35. [PMID: 26909025 PMCID: PMC4754404 DOI: 10.3389/fncel.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Augmenting evidence suggests that such is the functional dependance of neural stem cells (NSCs) on the vasculature that they normally reside in “perivascular niches”. Two examples are the “neurovascular” and the “oligovascular” niches of the adult brain, which comprise specialized microenvironments where NSCs or oligodendrocyte progenitor cells survive and remain mitotically active in close proximity to blood vessels (BVs). The often observed co-ordination of angiogenesis and neurogenesis led to these processes being described as “coupled”. Here, we adopt an evo-devo approach to argue that some stages in the life of a NSC, such as specification and commitment, are independent of the vasculature, while stages such as proliferation and migration are largely dependent on BVs. We also explore available evidence on the possible involvement of the vasculature in other phenomena such as the diversification of NSCs during evolution and we provide original data on the senescence of NSCs in the subependymal zone stem cell niche. Finally, we will comment on the other side of the story; that is, on how much the vasculature is dependent on NSCs and their progeny.
Collapse
Affiliation(s)
- Christos Koutsakis
- Laboratory of Developmental Biology, Department of Biology, University of Patras Patras, Greece
| | - Ilias Kazanis
- Laboratory of Developmental Biology, Department of Biology, University of PatrasPatras, Greece; Wellcome Trust-MRC Cambridge Stem Cell Institute, University of CambridgeCambridge, UK
| |
Collapse
|
11
|
Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H. NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells 2015; 33:253-64. [PMID: 25205248 DOI: 10.1002/stem.1846] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/29/2014] [Indexed: 01/05/2023]
Abstract
Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside diphosphates and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell-rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long-term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in cAMP response element-binding protein phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion.
Collapse
Affiliation(s)
- Kristine Gampe
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Licht T, Keshet E. The vascular niche in adult neurogenesis. Mech Dev 2015; 138 Pt 1:56-62. [PMID: 26103548 DOI: 10.1016/j.mod.2015.06.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 01/03/2023]
Abstract
Blood vessels (BVs) not only serve as conduits for oxygen and nutrients but may also fulfill perfusion-independent functions. A growing body of data suggests that blood vessels are an integral component of stem cell niches, including stem cell niches in the adult brain. This review summarizes in vivo studies supporting the contention that blood vessels may indeed control function of neuronal stem cells (NSCs) residing in the two major neurogenic niches of the adult brain, namely the sub-ventricular zone and the hippocampus. The review discusses different modes of BV-NSC communication and possible mechanisms by which BV may modulate NSC behavior and responses to external stimuli.
Collapse
Affiliation(s)
- Tamar Licht
- Dept. of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Eli Keshet
- Dept. of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
13
|
Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci 2015; 35:4528-39. [PMID: 25788671 DOI: 10.1523/jneurosci.1188-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.
Collapse
|
14
|
MacVicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020388. [PMID: 25818565 DOI: 10.1101/cshperspect.a020388] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuronal activity results in increased blood flow in the brain, a response named functional hyperemia. Astrocytes play an important role in mediating this response. Neurotransmitters released from active neurons evoke Ca(2+) increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid from astrocyte endfeet onto blood vessels. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels, whereas 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K(+) from astrocyte endfeet may also contribute to vasodilation. Oxygen modulates astrocyte regulation of blood flow. Under normoxic conditions, astrocytic Ca(2+) signaling results in vasodilation, whereas under hyperoxic conditions, vasoconstriction is favored. Astrocytes also contribute to the generation of vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone. Under pathological conditions, including Alzheimer's disease and diabetic retinopathy, disruption of normal astrocyte physiology can compromise the regulation of blood flow.
Collapse
Affiliation(s)
- Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
15
|
Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol Dis 2015; 73:189-203. [DOI: 10.1016/j.nbd.2014.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/27/2014] [Accepted: 09/12/2014] [Indexed: 11/28/2022] Open
|
16
|
Abstract
Light stimulation evokes neuronal activity in the retina, resulting in the dilation of retinal blood vessels and increased blood flow. This response, named functional hyperemia, brings oxygen and nutrients to active neurons. However, it remains unclear which vessels mediate functional hyperemia. We have characterized blood flow regulation in the rat retina in vivo by measuring changes in retinal vessel diameter and red blood cell (RBC) flux evoked by a flickering light stimulus. We found that, in first- and second-order arterioles, flicker evoked large (7.5 and 5.0%), rapid (0.73 and 0.70 s), and consistent dilations. Flicker-evoked dilations in capillaries were smaller (2.0%) and tended to have a slower onset (0.97 s), whereas dilations in venules were smaller (1.0%) and slower (1.06 s) still. The proximity of pericyte somata did not predict capillary dilation amplitude. Expression of the contractile protein α-smooth muscle actin was high in arterioles and low in capillaries. Unexpectedly, we found that blood flow in the three vascular layers was differentially regulated. Flicker stimulation evoked far larger dilations and RBC flux increases in the intermediate layer capillaries than in the superficial and deep layer capillaries (2.6 vs 0.9 and 0.7% dilation; 25.7 vs 0.8 and 11.3% RBC flux increase). These results indicate that functional hyperemia in the retina is driven primarily by active dilation of arterioles. The dilation of intermediate layer capillaries is likely mediated by active mechanisms as well. The physiological consequences of differential regulation in the three vascular layers are discussed.
Collapse
|
17
|
Fitzsimons CP, van Bodegraven E, Schouten M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP, Biojone C, Joca S, Steinbusch HWM, Lunnon K, Mastroeni DF, Mill J, Lucassen PJ, Coleman PD, van den Hove DLA, Rutten BPF. Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease. Mol Neurodegener 2014; 9:25. [PMID: 24964731 PMCID: PMC4080757 DOI: 10.1186/1750-1326-9-25] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Emma van Bodegraven
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Roy Lardenoije
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Konstantinos Kompotis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Mark van den Hurk
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Department Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Biojone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Samia Joca
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Harry WM Steinbusch
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Diego F Mastroeni
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Paul D Coleman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Daniel LA van den Hove
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Bart PF Rutten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
18
|
Sawada M, Matsumoto M, Sawamoto K. Vascular regulation of adult neurogenesis under physiological and pathological conditions. Front Neurosci 2014; 8:53. [PMID: 24672424 PMCID: PMC3955849 DOI: 10.3389/fnins.2014.00053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/26/2014] [Indexed: 01/16/2023] Open
Abstract
Neural stem cells in the mammalian adult brain continuously produce new neurons throughout life. Accumulating evidence in rodents suggests that various aspects of adult neurogenesis, including the genesis, migration, and maturation of new neurons, are regulated by factors derived from blood vessels and their microenvironment. Brain injury enhances both neurogenesis and angiogenesis, thereby promoting the cooperative regeneration of neurons and blood vessels. In this paper, we briefly review the mechanisms for the vascular regulation of adult neurogenesis in the ventricular-subventricular zone under physiological and pathological conditions, and discuss their clinical potential for brain regeneration strategies.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Mami Matsumoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| |
Collapse
|
19
|
Young SZ, Lafourcade CA, Platel JC, Lin TV, Bordey A. GABAergic striatal neurons project dendrites and axons into the postnatal subventricular zone leading to calcium activity. Front Cell Neurosci 2014; 8:10. [PMID: 24478632 PMCID: PMC3904109 DOI: 10.3389/fncel.2014.00010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/07/2014] [Indexed: 01/01/2023] Open
Abstract
GABA regulates the behavior of neuroblasts and neural progenitor cells in the postnatal neurogenic subventricular zone (SVZ) through GABAA receptor (GABAAR)-mediated calcium increases. However, the source of GABA necessary for sufficient GABAAR-mediated depolarization and calcium increase has remained speculative. Here, we explored whether GABAergic striatal neurons functionally connect with SVZ cells. Using patch clamp recordings or single cell electroporation, striatal neurons along the SVZ were filled with a fluorescent dye revealing that they send both dendrites and axons into the SVZ. About 93% of the recorded neurons were medium spiny or aspiny GABAergic neurons and each neuron sent 3-4 processes into the SVZ covering ~56 μm. Using calcium imaging, we found that depolarization of striatal neurons led to increased calcium activity in SVZ cells that were mediated by GABAAR activation. Collectively, these findings undercover a novel mode of signaling in the SVZ providing a mechanism of brain activity-mediated regulation of postnatal neurogenesis through GABAergic striatal activity.
Collapse
Affiliation(s)
- Stephanie Z Young
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Carlos A Lafourcade
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Jean-Claude Platel
- Developmental Biology, Aix-Marseille University, IBDML, CNRS, UMR7288 Marseille, France
| | - Tiffany V Lin
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Angélique Bordey
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
20
|
Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L, Zhao LR. Novel pathological features and potential therapeutic approaches for CADASIL: insights obtained from a mouse model of CADASIL. THERAPEUTIC TARGETS FOR NEUROLOGICAL DISEASES 2014; 1. [PMID: 30090853 DOI: 10.14800/ttnd.434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common condition of hereditary stroke and vascular dementia. CADASIL is caused by Notch3 mutation, leading to progressive degeneration of vascular smooth muscle cells (vSMCs) of the small arteries in the brain. However, the pathogenesis of CADASIL remains largely unknown, and treatment that can stop or delay the progression of CADASIL is not yet available. Using both wild type mice and transgenic mice carrying the human mutant Notch3 gene (CADASIL mice), we have recently characterized the pathological features of CADASIL and determined the therapeutic efficacy of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) in CADASIL. Our findings have revealed novel pathological changes in the endothelium of cerebral capillaries and in the neural stem cells (NSCs). We have also observed the impairment of cognitive function in CADASIL mice. Moreover, SCF+G-CSF treatment improves cognitive function, inhibits Notch3 mutation-induced vSMC degeneration, cerebral blood bed reduction, cerebral capillary damage, and NSC loss, and increases neurogenesis and angiogenesis. Here we compile an overview of our recently published studies, which provide new insights into understanding the pathogenesis of CADASIL and developing therapeutic strategies for this devastating neurological disease.
Collapse
Affiliation(s)
- Xiao-Yun Liu
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Maria E Gonzalez-Toledo
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Austin Fagan
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Wei-Ming Duan
- Department of Anatomy, Capital Medical University, Beijing 100069, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Yanying Liu
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Siyuan Zhang
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Bin Li
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Chun-Shu Piao
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Lila Nelson
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Li-Ru Zhao
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA.,Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA.,Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, 13210, USA.,Department of Neurobiology, Capital Medical University, Beijing 100069, China, Beijing 100069, China
| |
Collapse
|
21
|
Cui Y, Li J, Yuan TF. Vascular niche for astrocyte proliferation: limited and in situ. CNS Neurosci Ther 2013; 19:641-2. [PMID: 23826723 DOI: 10.1111/cns.12145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
22
|
Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci 2013; 70:1727-37. [PMID: 23475068 PMCID: PMC11113886 DOI: 10.1007/s00018-013-1280-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factor-A (abbreviated throughout this review as VEGF) is mostly known for its angiogenic activity, for its activity as a vascular permeability factor, and for its vascular survival activity [1]. There is a growing body of evidence, however, that VEGF fulfills additional less 'traditional' functions in multiple organs, both during development, as well as homeostatic functions in fully developed organs. This review focuses on the multiple roles of VEGF in the adult brain and is less concerned with the roles played by VEGF during brain development, functions described elsewhere in this review series. Most functions of VEGF that are essential for proper brain development are, in fact, dispensable in the adult brain as was clearly demonstrated using a conditional brain-specific VEGF loss-of-function (LOF) approach. Thus, in contrast to VEGF LOF in the developing brain, a process which is detrimental for the growth and survival of blood vessels and leads to massive neuronal apoptosis [2-4], continued signaling by VEGF in the mature brain is no longer required for maintaining already established cerebral vasculature and its inhibition does not cause appreciable vessel regression, hypoxia or apoptosis [4-7]. Yet, VEGF continues to be expressed in the adult brain in a constitutive manner. Moreover, VEGF is expressed in the adult brain in a region-specific manner and in distinctive spatial patterns incompatible with an angiogenic role (see below), strongly suggesting angiogenesis-independent and possibly also perfusion-independent functions. Here we review current knowledge on some of these 'non-traditional', often unexpected homeostatic VEGF functions, including those unrelated to its effects on the brain vasculature. These effects could be mediated directly (on non-vascular cells expressing cognate VEGF receptors) or indirectly (via the endothelium). Experimental approaches aimed at distinguishing between these possibilities for each particular VEGF function will be described. This review is only concerned with homeostatic functions of VEGF in the normal, non-injured brain. The reader is referred elsewhere in this series for a review on VEGF actions in response to various forms of brain injury and/or brain pathology.
Collapse
Affiliation(s)
- Tamar Licht
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
23
|
Neural progenitor cells regulate capillary blood flow in the postnatal subventricular zone. J Neurosci 2013; 32:16435-48. [PMID: 23152626 DOI: 10.1523/jneurosci.1457-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the postnatal subventricular zone (SVZ), S phase entry of neural progenitor cells (NPCs) correlates with a local increase in blood flow. However, the cellular mechanism controlling this hemodynamic response remains unknown. We show that a subpopulation of SVZ cells, astrocyte-like cells or B-cells, sends projections ensheathing pericytes on SVZ capillaries in young mice. We examined whether calcium increases in pericytes or B-cells led to a vascular response in acute slices using the P2Y(2/4) receptor (P2Y(2/4)R) agonist UTP, electrical stimulation, or transgenic mice expressing exogenous Gq-coupled receptors (MrgA1) in B-cells. UTP increased calcium in pericytes leading to capillary constrictions. Electrical stimulation induced calcium propagation in SVZ cells followed by capillary constrictions involving purinergic receptors. In transgenic mice, selective calcium increases in B-cells induced P2Y(2/4)R-dependent capillary constrictions, suggesting that B-cells release ATP activating purinergic receptors on pericytes. Interestingly, in the presence of a P2Y(2/4)R blocker, dilation was observed. Intraventricular UTP injection transiently decreased blood flow monitored in vivo using laser Doppler flowmetry. Using neonatal electroporation, we expressed MrgA1 in slow cycling radial glia-derived B1 cells, i.e., NPCs. Intraventricular injection of an MrgA1 ligand increased blood flow in the SVZ. Thus, upon intracellular calcium increases B-cells/NPCs release ATP and vasodilating factors that activate purinergic receptors on pericytes triggering a vascular response and blood flow increase in vivo. Considering that NPCs receive signals from other SVZ cells, these findings further suggest that NPCs act as transducers of neurometabolic coupling in the SVZ.
Collapse
|
24
|
Culver JC, Vadakkan TJ, Dickinson ME. A specialized microvascular domain in the mouse neural stem cell niche. PLoS One 2013; 8:e53546. [PMID: 23308251 PMCID: PMC3538546 DOI: 10.1371/journal.pone.0053546] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/03/2012] [Indexed: 12/27/2022] Open
Abstract
The microenvironment of the subependymal zone (SEZ) neural stem cell niche is necessary for regulating adult neurogenesis. In particular, signaling from the microvasculature is essential for adult neural stem cell maintenance, but microvascular structure and blood flow dynamics in the SEZ are not well understood. In this work, we show that the mouse SEZ constitutes a specialized microvascular domain defined by unique vessel architecture and reduced rates of blood flow. Additionally, we demonstrate that hypoxic conditions are detectable in the ependymal layer that lines the ventricle, and in a subpopulation of neurons throughout the SEZ and striatum. Together, these data highlight previously unidentified features of the SEZ neural stem cell niche, and further demonstrate the extent of microvascular specialization in the SEZ microenvironment.
Collapse
Affiliation(s)
- James C. Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tegy J. Vadakkan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|