1
|
Şen S, Erber R. Neuronal Guidance Molecules in Bone Remodeling and Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms231710077. [PMID: 36077474 PMCID: PMC9456342 DOI: 10.3390/ijms231710077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
During orthodontic tooth movement, mechanically induced remodeling occurs in the alveolar bone due to the action of orthodontic forces. The number of factors identified to be involved in mechanically induced bone remodeling is growing steadily. With the uncovering of the functions of neuronal guidance molecules (NGMs) for skeletal development as well as for bone homeostasis, NGMs are now also among the potentially significant factors for the regulation of bone remodeling during orthodontic tooth movement. This narrative review attempts to summarize the functions of NGMs in bone homeostasis and provides insight into the currently sparse literature on the functions of these molecules during orthodontic tooth movement. Presently, four families of NGMs are known: Netrins, Slits, Semaphorins, ephrins and Eph receptors. A search of electronic databases revealed roles in bone homeostasis for representatives from all four NGM families. Functions during orthodontic tooth movement, however, were only identified for Semaphorins, ephrins and Eph receptors. For these, crucial prerequisites for participation in the regulation of orthodontically induced bone remodeling, such as expression in cells of the periodontal ligament and in the alveolar bone, as well as mechanical inducibility, were shown, which suggests that the importance of NGMs in orthodontic tooth movement may be underappreciated to date and further research might be warranted.
Collapse
Affiliation(s)
- Sinan Şen
- Department of Orthodontics, University Medical Center Schleswig-Holstein, Campus Kiel, Christian Albrechts University, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-5002-6301
| | - Ralf Erber
- Department of Orthodontics and Dentofacial Orthopedics, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Nakanishi Y, Kang S, Kumanogoh A. Crosstalk between axon guidance signaling and bone remodeling. Bone 2022; 157:116305. [PMID: 34973495 DOI: 10.1016/j.bone.2021.116305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2023]
Abstract
The maintenance of skeletal integrity is tightly regulated by two cell types, bone forming osteoblasts and bone resorbing osteoclasts. Although the role of the nervous system in regulating osteoblasts and osteoclasts was identified over a decade ago, the molecular mechanism of skeletal-neural interactions in bone homeostasis has only been studied recently. In particular, the complex roles of axon guidance molecules, such as semaphorins and ephrins, in the bone have been studied extensively. In this review, we highlight the latest advances in determining the functions of semaphorins and ephrins in the establishment and maintenance of the skeletal system, with a focus on the functional interaction between the skeletal and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Rowe DW, Hong SH, Zhang C, Shin DG, Adams DJ, Youngstrom DW, Chen L, Wu Z, Zhou Y, Maye P. Skeletal screening IMPC/KOMP using μCT and computer automated cryohistology: Application to the Efna4 KO mouse line. Bone 2021; 144:115688. [PMID: 33065355 DOI: 10.1016/j.bone.2020.115688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
The IMPC/KOMP program provides the opportunity to screen mice harboring well defined gene-inactivation mutations in a uniform genetic background. The program performs a global tissue phenotyping survey that includes skeletal x-rays and bone density measurements. Because of the relative insensitivity of the two screening tests for detecting variance in bone architecture, we initiated a secondary screen based on μCT and a cryohistolomorphological workflow that was performed on the femur and vertebral compartments on 220 randomly selected knockouts (KOs) and 36 control bone samples over a 2 1/2 year collection period provided by one of the production/phenotyping centers. The performance of the screening protocol was designed to balance throughput and cost versus sensitivity and informativeness such that the output would be of value to the skeletal biology community. Here we report the reliability of this screening protocol to establish criteria for control skeletal variance at the architectural, dynamic and cellular histomorphometric level. Unexpected properties of the control population include unusually high variance in BV/TV in male femurs and greater bone formation and bone turnover rates in the female femur and vertebral trabeculae bone compartments. However, the manner for maintaining bone formation differed between these two bone sites. The vertebral compartment relies on maintaining a greater number of bone forming surfaces while the femoral compartment utilized more matrix production per cell. The comparison of the architectural properties obtained by μCT and histomorphology revealed significant differences in values for BV/TV, Tb.Th and Tb.N which is attributable to sampling density of the two methods. However, as a screening tool, expressing the ratio of KO to the control line as obtained by either method was remarkably similar. It identified KOs with significant variance which led to a more detailed histological analysis. Our findings are exemplified by the Efna4 KO, in which a high BV/TV was identified by μCT and confirmed by histomorphometry in the femur but not in the vertebral compartment. Dynamic labeling showed a marked increase in BFR which was attributable to increased labeling surfaces. Cellular analysis confirmed partitioning of osteoblast to labeling surfaces and a marked decrease in osteoclastic activity on both labeling and quiescent surfaces. This pattern of increased bone modeling would not be expected based on prior studies of the Ephrin-Ephrin receptor signaling pathways between osteoblasts and osteoclasts. Overall, our findings underscore why unbiased screening is needed because it can reveal unknown or unanticipated genes that impact skeletal variation.
Collapse
Affiliation(s)
- David W Rowe
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America.
| | - Seung-Hyun Hong
- Computer Science & Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Caibin Zhang
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Dong-Guk Shin
- Computer Science & Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Douglas J Adams
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Li Chen
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Zhihua Wu
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Yueying Zhou
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Peter Maye
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| |
Collapse
|
4
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
5
|
Stiffel VM, Thomas A, Rundle CH, Sheng MHC, Lau KHW. The EphA4 Signaling is Anti-catabolic in Synoviocytes but Pro-anabolic in Articular Chondrocytes. Calcif Tissue Int 2020; 107:576-592. [PMID: 32816052 PMCID: PMC7606366 DOI: 10.1007/s00223-020-00747-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
The expression and activation of EphA4 in the various cell types in a knee joint was upregulated upon an intraarticular injury. To determine if EphA4 signaling plays a role in osteoarthritis, we determined whether deficient EphA4 expression (in EphA4 knockout mice) or upregulation of the EphA4 signaling (with the EfnA4-fc treatment) would alter cellular functions of synoviocytes and articular chondrocytes. In synoviocytes, deficient EphA4 expression enhanced, whereas activation of the EphA4 signaling reduced, expression and secretion of key inflammatory cytokines and matrix metalloproteases. Conversely, in articular chondrocytes, activation of the EphA4 signaling upregulated, while deficient EphA4 expression reduced, expression levels of chondrogenic genes (e.g., aggrecan, lubricin, type-2 collagen, and Sox9). EfnA4-fc treatment in wildtype, but not EphA4-deficient, articular chondrocytes promoted the formation and activity of acidic proteoglycan-producing colonies. Activation of the EphA4 signaling in articular chondrocytes upregulated Rac1/2 and downregulated RhoA via enhancing Vav1 and reducing Ephexin1 activation, respectively. However, activation of the EphA4 signaling in synoviocytes suppressed the Vav/Rac signaling while upregulated the Ephexin/Rho signaling. In summary, the EphA4 signaling in synoviocytes is largely of anti-catabolic nature through suppression of the expression of inflammatory cytokines and matrix proteases, but in articular chondrocytes the signaling is pro-anabolic in that it promotes the biosynthesis of articular cartilage. The contrasting action of the EphA4 signaling in synoviocytes as opposing to articular chondrocytes may in part be mediated through the opposite differential effects of the EphA4 signaling on the Vav/Rac signaling and Ephexin/Rho signaling in the two skeletal cell types.
Collapse
Affiliation(s)
- Virginia M Stiffel
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Alexander Thomas
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA.
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Lindsey RC, Xing W, Pourteymoor S, Godwin C, Gow A, Mohan S. Novel Role for Claudin-11 in the Regulation of Osteoblasts via Modulation of ADAM10-Mediated Notch Signaling. J Bone Miner Res 2019; 34:1910-1922. [PMID: 31112308 PMCID: PMC6813858 DOI: 10.1002/jbmr.3763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
Abstract
The claudin (Cldn) family comprises 27 members of 20 to 34 kDa transmembrane tight junction proteins. In addition to Cldns' established canonical role as barriers controlling paracellular flow of molecules, a distinct noncanonical role for them as mediators of cell signaling is now emerging. In our studies evaluating Cldn family expression levels during osteoblast differentiation, Cldn-11 showed the largest increase (60-fold). Immunohistochemistry studies revealed high Cldn-11 expression in trabecular (Tb) bone lining cells. Micro-CT analysis of femurs and vertebrae of Cldn-11 knock-out (KO) mice at 12 weeks of age exhibited a 40% (p < 0.01) reduction in Tb bone volume adjusted for tissue volume compared with control mice, a change caused by significant reductions in Tb number and thickness and increase in Tb separation. Histomorphometry and serum biomarker studies revealed that reduced bone formation, not increased resorption, is the cause for reduced Tb bone volume in the Cldn-11 KO mice. Cldn-11 KO osteoblasts expressed reduced ALP and BSP, whereas Cldn-11 overexpression in MC3T3-E1 cells increased expression of ALP and BSP. Mechanistically, Cldn-11 interacted with tetraspanin (Tspan)3 in osteoblasts, and Tspan3 knockdown reduced osteoblast differentiation. Because members of the Tspan family regulate cell functions via Notch signaling, we evaluated whether Cldn-11/Tspan3 regulates Notch signaling in osteoblasts. Accordingly, Notch targets Hey1 and Hey2 were significantly upregulated in Cldn-11 overexpressing cultures but downregulated in both Cldn-11 KO and Tspan3 knockdown osteoblasts. Because ADAM10 has been shown to interact with Tspan family members to regulate Notch signaling, we evaluated whether Cldn-11 regulates ADAM10 expression. Cldn-11 overexpressing cells express more mature ADAM10, and an ADAM10 inhibitor blocked the Cldn-11 effect on osteoblast differentiation. Based on these data, we propose Cldn-11 as a novel component of an osteoblast cell surface protein complex, comprising Tspan3 and ADAM10, which regulates Notch signaling and cell differentiation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Richard C Lindsey
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Catrina Godwin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, MI, USA.,Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
7
|
Lindsey RC, Godwin C, Mohan S. Skeletal effects of nongenomic thyroid hormone receptor beta signaling. J Endocrinol 2019; 242:173-183. [PMID: 31252404 PMCID: PMC6685746 DOI: 10.1530/joe-19-0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (TH) levels increase rapidly during the prepubertal growth period in mice, and this change is necessary for endochondral ossification of the epiphyses. This effect of TH on epiphyseal chondrocyte hypertrophy is mediated via TRβ1. In addition to its traditional genomic signaling role as a transcription factor, TRβ1 can also exert nongenomic effects by interacting with other signaling molecules such as PI3K. To investigate the role of nongenomic TRβ1 signaling in endochondral ossification, we evaluated the skeletal phenotype of TRβ147F mutant mice which exhibit a normal genomic response of TRβ1 to TH, but the nongenomic response through the PI3K pathway is impaired. Using microCT, we found that 13-week-old TRβ147F mice had significantly less trabecular bone mass at three sites. Histomorphometric analyses revealed that mineralizing surface to bone surface and BFR/BS were reduced in the mutant mice. Mechanistically, we found that activation of TRβ increased Alp and Osx expression in control but not TRβ147F osteoblasts. Since canonical β-catenin signaling has been implicated in mediating nongenomic TRβ-PI3K signaling, we evaluated the effect of TRβ1 activation on β-catenin target gene expression in MC3T3-E1 pre-osteoblasts. We found that β-catenin target genes were increased, suggesting that nongenomic TRβ1-PI3K pathway modulation of β-catenin signaling may mediate TRβ1 effects on osteoblast differentiation. Together, these results suggest that TH acting through TRβ1 regulates endochondral ossification in part via nongenomic signaling in mice. Further investigation of this nongenomic mechanism of TRβ1 signaling could lead to novel therapeutic targets for treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Richard C. Lindsey
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Catrina Godwin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
8
|
Lindsey RC, Cheng S, Mohan S. Vitamin C effects on 5-hydroxymethylcytosine and gene expression in osteoblasts and chondrocytes: Potential involvement of PHD2. PLoS One 2019; 14:e0220653. [PMID: 31390373 PMCID: PMC6685624 DOI: 10.1371/journal.pone.0220653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/20/2019] [Indexed: 12/02/2022] Open
Abstract
Vitamin C (ascorbic acid, AA) is a well-known regulator of bone and cartilage metabolism. However, the mechanisms of AA’s action in these tissues are only partly understood. In this study, we confirmed that AA contributes to bone and cartilage metabolism by showing decreased articular cartilage and trabecular bone in AA-deficient spontaneous fracture (sfx) mutant mice. In vitro, we found that AA exerts differential effects on chondrocyte and osteoblast differentiation. Since AA is known to increase levels of 5-hydroxymethylcytosine (5-hmC) and induce DNA demethylation via the ten-eleven translocases (TETs), and since prolyl hydroxylase domain-containing protein 2 (PHD2), a known mediator of AA’s effects in these tissues, is part of the same enzyme family as the TETs, we next investigated whether increases in 5-hmC might mediate some of these effects. All TETs and PHDs are expressed in chondrocytes and osteoblasts, and PHD2 is localized in both the cytoplasm and nucleus of the cell, lending plausibility to the hypothesis of altered 5-hmC content in these cells. We found that AA treatment increased levels of 5-hmC in both cell types globally, notably including promoter regions of osteoblast differentiation genes. Furthermore, inhibition of PHD2 decreased 5-hmC levels in chondrocyte differentiation gene promoters, and knockdown of Phd2 in chondrocytes reduced global 5-hmC levels, suggesting for the first time that PHD2 may itself directly mediate increases in 5-hmC in chondrocyte and osteoblast genes. Further investigation of this mechanism could lead to novel therapeutic approaches to treat debilitating diseases such as osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Richard C. Lindsey
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Shaohong Cheng
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Changes in ephrin gene expression during bone healing identify a restricted repertoire of ephrins mediating fracture repair. Histochem Cell Biol 2018; 151:43-55. [PMID: 30250975 DOI: 10.1007/s00418-018-1712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/30/2022]
Abstract
To identify the repertoire of ephrin genes that might regulate endochondral bone fracture repair, we examined changes in ephrin ligand and receptor (Eph) gene expression in fracture callus tissues during bone fracture healing. Ephrin and Eph proteins were then localized in the fracture callus tissues present when changes in gene expression were observed. Ephrin gene expression was widespread in fracture tissues, but the repertoire of ephrin genes with significant changes in expression that might suggest a regulatory role in fracture callus development was restricted to the ephrin A family members Epha4, Epha5 and the ephrin B family member Efnb1. After 3 weeks of healing, Epha4 fracture expression was downregulated from 1.3- to 0.8-fold and Epha5 fracture expression was upregulated from 1.2- to 1.5-fold of intact contralateral femur expression, respectively. Efnb1 expression was downregulated from 1.5- to 1.2-fold after 2 weeks post-fracture. These ephrin proteins were localized to fracture callus prehypertrophic chondrocytes and osteoblasts, as well as to the periosteum and fibrous tissues. The observed positive correlation between mRNA levels of EfnB1 with Col10 and Epha5 with Bglap, together with colocalized expression with their respective proteins, suggest that EfnB1 is a positive mediator of prehypertrophic chondrocyte development and that Epha5 contributes to osteoblast-mediated mineralization of fracture callus. In contrast, mRNA levels of Epha4 and Efnb1 correlated negatively with Bglap, thus suggesting a negative role for these two ephrin family members in mature osteoblast functions. Given the number of family members and widespread expression of the ephrins, a characterization of changes in ephrin gene expression provides a basis for identifying ephrin family members that might regulate the molecular pathways of bone fracture repair. This approach suggests that a highly restricted repertoire of ephrins, EfnB1 and EphA5, are the major mediators of fracture callus cartilage hypertrophy and ossification, respectively, and proposes candidates for additional functional study and eventual therapeutic application.
Collapse
|
10
|
Lindsey RC, Rundle CH, Mohan S. Role of IGF1 and EFN-EPH signaling in skeletal metabolism. J Mol Endocrinol 2018; 61:T87-T102. [PMID: 29581239 PMCID: PMC5966337 DOI: 10.1530/jme-17-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/26/2018] [Indexed: 01/11/2023]
Abstract
Insulin-like growth factor 1(IGF1) and ephrin ligand (EFN)-receptor (EPH) signaling are both crucial for bone cell function and skeletal development and maintenance. IGF1 signaling is the major mediator of growth hormone-induced bone growth, but a host of different signals and factors regulate IGF1 signaling at the systemic and local levels. Disruption of the Igf1 gene results in reduced peak bone mass in both experimental animal models and humans. Additionally, EFN-EPH signaling is a complex system which, particularly through cell-cell interactions, contributes to the development and differentiation of many bone cell types. Recent evidence has demonstrated several ways in which the IGF1 and EFN-EPH signaling pathways interact with and depend upon each other to regulate bone cell function. While much remains to be elucidated, the interaction between these two signaling pathways opens a vast array of new opportunities for investigation into the mechanisms of and potential therapies for skeletal conditions such as osteoporosis and fracture repair.
Collapse
Affiliation(s)
- Richard C Lindsey
- Musculoskeletal Disease CenterVA Loma Linda Healthcare System, Loma Linda, California, USA
- Division of BiochemistryDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Center for Health Disparities and Molecular MedicineDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Charles H Rundle
- Musculoskeletal Disease CenterVA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of MedicineLoma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease CenterVA Loma Linda Healthcare System, Loma Linda, California, USA
- Division of BiochemistryDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Center for Health Disparities and Molecular MedicineDepartment of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of MedicineLoma Linda University, Loma Linda, California, USA
| |
Collapse
|
11
|
A novel miR17/protein tyrosine phosphatase-oc/EphA4 regulatory axis of osteoclast activity. Arch Biochem Biophys 2018; 650:30-38. [PMID: 29763590 PMCID: PMC5985224 DOI: 10.1016/j.abb.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
Information about the molecular mechanisms leading to the activation of the osteoclast is relatively limited. While there is compelling evidence that the signaling mechanisms of Src and integrin β3 are essential for osteoclast activation, the regulation of these two signaling mechanisms is not fully understood. In this review, evidence supporting a novel regulatory axis of osteoclast activation that plays an upstream regulatory role in both the Src and integrin β3 signaling during osteoclast activation is discussed. This regulatory axis contains three unique components: a structurally unique transmembrane protein-tyrosine phosphatase, PTP-oc, EphA4, and miR17. In the first component, PTP-oc activates the Src signaling through dephosphorylation of the inhibitory tyr-527 of Src. This in turn activates the integrin β3 signaling, enhances the JNK2/NFκB signaling, promotes the ITAM/Syk signaling, and suppresses the ITIM/Shp1 signaling; the consequence of which is activation of the osteoclast. In the second component, EphA4 inhibits osteoclast activity by suppressing the integrin β3 signaling. PTP-oc relieves the suppressive actions of EphA4 by directly dephosphorylating EphA4. In the third component, PTP-oc expression is negatively regulated by miR17. Accordingly, suppression of miR17 during osteoclast activation upregulates the PTP-oc signaling and suppresses the EphA4 signaling, resulting in the activation of the osteoclast. This regulatory axis is unique, in that each of the three components acts to exert suppressive action on their respective immediate downstream inhibitory step. Because the final downstream event is the EphA4-mediated inhibition of osteoclast activation, the overall effect of this mechanism is the stimulation of osteoclast activity.
Collapse
|
12
|
Tosato G. Ephrin ligands and Eph receptors contribution to hematopoiesis. Cell Mol Life Sci 2017; 74:3377-3394. [PMID: 28589441 PMCID: PMC11107787 DOI: 10.1007/s00018-017-2566-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 4124, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Matsumura S, Quispe-Salcedo A, Schiller CM, Shin JS, Locke BM, Yakar S, Shimizu E. IGF-1 Mediates EphrinB1 Activation in Regulating Tertiary Dentin Formation. J Dent Res 2017; 96:1153-1161. [PMID: 28489485 DOI: 10.1177/0022034517708572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eph receptors belong to a subfamily of receptor tyrosine kinases that are activated by membrane-spanning ligands called ephrins. Previously, we demonstrated that the ephrinB1-EphB2 interaction regulates odontogenic/osteogenic differentiation from dental pulp cells (DPCs) in vitro. The goal of this study was to identify the molecular mechanisms regulated by the EphB2/ephrinB1 system that govern tertiary dentin formation in vitro and in vivo. During tooth development, ephrinB1, and EphB2 were expressed in preodontoblast and odontoblasts at postnatal day 4. EphrinB1 was continuously expressed in odontoblasts and odontoblastic processes until the completion of tooth eruption. In addition, ephrinB1 was expressed in odontoblastic processes 2 wk following tooth injury without pulp exposure, whereas EphB2 was expressed in the center of pulp niches but not odontoblasts. In a model of tooth injury with pulp exposure, ephrinB1 was strongly expressed in odontoblasts 4 wk postinjury. In vitro studies with human and mouse DPCs treated with calcium hydroxide (CH) or mineral trioxide aggregate (MTA) showed an increased expression of insulin-like growth factor 1 (IGF-1). Experiments using several inhibitors of IGF-1 receptor signaling revealed that inhibiting the Ras/Raf-1/MAPK pathway inhibited EphB2 expression, and inhibiting the PI3K/Akt/mTOR pathway specifically inhibited ephrinB1 gene expression. Tooth injury in mice with odontoblast-specific IGF-1 receptor ablation exhibited a reduced tertiary dentin volume, mineral density, and ephrinB1 expression 4 wk following injury. We conclude that the IGF-1/ephrinB1 axis plays significant roles in the early stages of tooth injury. Further research is needed to fully understand the potential of targeting ephrinB1 as a regenerative pulp therapy.
Collapse
Affiliation(s)
- S Matsumura
- 1 Department of Oral and Maxillofacial Radiology, University of Connecticut Health Center, School of Dental Medicine, Farmington, Connecticut, USA
| | - A Quispe-Salcedo
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - C M Schiller
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - J S Shin
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - B M Locke
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - S Yakar
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - E Shimizu
- 2 Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA.,3 Oral Biology Department, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
14
|
Lindsey RC, Mohan S. Thyroid hormone acting via TRβ induces expression of browning genes in mouse bone marrow adipose tissue. Endocrine 2017; 56:109-120. [PMID: 28229360 PMCID: PMC8745377 DOI: 10.1007/s12020-017-1265-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Mutant hypothyroid mouse models have recently shown that thyroid hormone is critical for skeletal development during an important prepubertal growth period. Additionally, thyroid hormone negatively regulates total body fat, consistent with the well-established effects of thyroid hormone on energy and fat metabolism. Since bone marrow mesenchymal stromal cells differentiate into both adipocytes and osteoblasts and a relationship between bone marrow adipogenesis and osteogenesis has been predicted, we hypothesized thyroid hormone deficiency during the postnatal growth period increases marrow adiposity in mice. METHODS Marrow adiposity in TH-deficient (Tshr -/-) mice treated with T3/T4, TH receptor β-specific agonist GC-1, or vehicle control was evaluated via dual-energy X-ray absorptiometry and osmium micro-computed tomography. To further examine the mechanism for thyroid hormone regulation of marrow adiposity, we used real-time RT-PCR to measure the effects of thyroid hormone on adipocyte differentiation markers in primary mouse bone marrow mesenchymal stromal cells and two mouse cell lines in vitro and in Tshr -/- mice in vivo. RESULTS Marrow adiposity increased >20% (P < 0.01) in Tshr -/- mice at 3 weeks of age, and treatment with T3/T4 when serum thyroid hormone normally increases (day 5-14) rescued this phenotype. Furthermore, GC-1 rescued this phenotype equally well, suggesting this thyroid hormone effect is in part mediated via TRβ signaling. Treatment of bone marrow mesenchymal stromal or ST2 cells with T3 or GC-1 significantly increased expression of several brown/beige fat markers. Moreover, injection of T3/T4 increased browning-specific markers in white fat of Tshr -/- mice. CONCLUSIONS These data suggest that thyroid hormone regulation of marrow adiposity is mediated at least in part via activation of TRβ signaling.
Collapse
Affiliation(s)
- Richard C Lindsey
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
15
|
Cheng S, Pourteymoor S, Alarcon C, Mohan S. Conditional Deletion of the Phd2 Gene in Articular Chondrocytes Accelerates Differentiation and Reduces Articular Cartilage Thickness. Sci Rep 2017; 7:45408. [PMID: 28349987 PMCID: PMC5368651 DOI: 10.1038/srep45408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Based on our findings that PHD2 is a negative regulator of chondrocyte differentiation and that hypoxia signaling is implicated in the pathogenesis of osteoarthritis, we investigated the consequence of disruption of the Phd2 gene in chondrocytes on the articular cartilage phenotype in mice. Immunohistochemistry detected high expression of PHD2 in the superficial zone (SZ), while PHD3 and HIF-1α (target of PHD2) are mainly expressed in the middle-deep zone (MDZ). Conditional deletion of the Phd2 gene (cKO) in chondrocytes accelerated the transition of progenitors to hypertrophic (differentiating) chondrocytes as revealed by reduced SZ thickness, and increased MDZ thickness, as well as increased chondrocyte hypertrophy. Immunohistochemistry further revealed decreased levels of progenitor markers but increased levels of hypertrophy markers in the articular cartilage of the cKO mice. Treatment of primary articular chondrocytes, in vitro, with IOX2, a specific inhibitor of PHD2, promoted articular chondrocyte differentiation. Knockdown of Hif-1α expression in primary articular chondrocytes using lentiviral vectors containing Hif-1α shRNA resulted in reduced expression levels of Vegf, Glut1, Pgk1, and Col10 compared to control shRNA. We conclude that Phd2 is a key regulator of articular cartilage development that acts by inhibiting the differentiation of articular cartilage progenitors via modulating HIF-1α signaling.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
16
|
Cheng S, Aghajanian P, Pourteymoor S, Alarcon C, Mohan S. Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice. Sci Rep 2016; 6:35748. [PMID: 27775044 PMCID: PMC5075779 DOI: 10.1038/srep35748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
Abstract
Endochondral ossification plays an important role in the formation of the primary ossification centers (POCs) and secondary ossification centers (SOCs) of mammalian long bones. However, the molecular mechanisms that regulate POC and SOC formation are different. We recently demonstrated that Prolyl Hydroxylase Domain-containing Protein 2 (Phd2) is a key mediator of vitamin C effects on bone. We investigated the role of Phd2 on endochondral ossification of the epiphyses by conditionally deleting the Phd2 gene in osteoblasts and chondrocytes. We found that the deletion of Phd2 in osteoblasts did not cause changes in bone parameters in the proximal tibial epiphyses in 5 week old mice. In contrast, deletion of Phd2 in chondrocytes resulted in increased bone mass and bone formation rate (normalized to tissue volume) in long bone epiphyses, indicating that Phd2 expressed in chondrocytes, but not osteoblasts, negatively regulates secondary ossification of epiphyses. Phd2 deletion in chondrocytes elevated mRNA expression of hypoxia-inducible factor (HIF) signaling molecules including Hif-1α, Hif-2α, Vegfa, Vegfb, and Epo, as well as markers for chondrocyte hypertrophy and mineralization such as Col10, osterix, alkaline phosphatase, and bone sialoprotein. These data suggest that Phd2 expressed in chondrocytes inhibits endochondral ossification at the epiphysis by suppressing HIF signaling pathways.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
17
|
Cheng S, Xing W, Pourteymoor S, Mohan S. Effects of Thyroxine (T4), 3,5,3'-triiodo-L-thyronine (T3) and their Metabolites on Osteoblast Differentiation. Calcif Tissue Int 2016; 99:435-42. [PMID: 27312083 DOI: 10.1007/s00223-016-0159-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
Abstract
Studies involving human genetic mutations and mutant mouse models have provided irrevocable evidence for a key role for thyroid hormones (THs) in the regulation of skeletal growth. While T3 binds to TH receptors with higher affinity than T4, T4 occupied TH receptors have also been reported in the nucleus under euthyroid conditions raising the possibility that T4 bound nuclear receptors may be biologically relevant in thyroid syndromes with elevated free T4 and reduced T3 levels. We, therefore, evaluated the direct effects of T4, T3, and their metabolites (rT3 and T2) in stimulating osteoblast differentiation using MC3T3-E1 preosteoblasts which do not produce detectable levels of deiodinases. Under serum-free conditions, a 24-h treatment of MC3T3-E1 cells with THs and their metabolites caused a dose-dependent increase in the expression of osteoblast differentiation markers, osterix, and osteocalcin. Circulating concentrations of T3 (~1 ng/ml) and T4 (~30 ng/ml) showed similar potency in stimulating osteoblast differentiation marker expression, while rT3 and T2 were less potent than T3 and T4. Moreover, T3 and T4 treatments elevated the IGF-1 mRNA level suggesting the involvement of IGF-1 signaling in the TH regulation of osteoblast differentiation. We conclude that an elevated T4 level in the absence of T3 may exert stimulatory effects on osteoblast differentiation. The establishment of cell-specific effects of T4 on osteoblasts may provide a strategy to generate T4 mimics that exert skeletal specific effects without the confounding T3 effects on other tissues.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, 11201 Benton St, Loma Linda, CA, 92357, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, 11201 Benton St, Loma Linda, CA, 92357, USA
- Departments of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, 11201 Benton St, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, 11201 Benton St, Loma Linda, CA, 92357, USA.
- Departments of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
| |
Collapse
|
18
|
Rundle CH, Xing W, Lau KHW, Mohan S. Bidirectional ephrin signaling in bone. Osteoporos Sarcopenia 2016; 2:65-76. [PMID: 30775469 PMCID: PMC6372807 DOI: 10.1016/j.afos.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
The interaction between ephrin ligands (efn) and their receptors (Eph) is capable of inducing forward signaling, from ligand to receptor, as well as reverse signaling, from receptor to ligand. The ephrins are widely expressed in many tissues, where they mediate cell migration and adherence, properties that make the efn-Eph signaling critically important in establishing and maintaining tissue boundaries. The efn-Eph system has also received considerable attention in skeletal tissues, as ligand and receptor combinations are predicted to mediate interactions between the different types of cells that regulate bone development and homeostasis. This review summarizes our current understanding of efn-Eph signaling with a particular focus on the expression and functions of ephrins and their receptors in bone.
Collapse
Affiliation(s)
- Charles H Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
19
|
Liu B, Cheng S, Xing W, Pourteymoor S, Mohan S. RE1-Silencing Transcription Factor (Rest) is a Novel Regulator of Osteoblast Differentiation. J Cell Biochem 2016; 116:1932-8. [PMID: 25727884 DOI: 10.1002/jcb.25148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022]
Abstract
RE1-silencing transcription factor (Rest) has been identified as a master negative regulator of neuronal differentiation. Nothing is known about Rest function in bone cells. In this study, we examined the Rest expression levels and role during osteoblast differentiation. We found that Rest is abundantly expressed in bone marrow stromal cells, calvarial osteoblasts, and MC3T3-E1 osteoblasts. Treatment of primary osteoblasts with ascorbic acid (AA) down regulated Rest mRNA expression at an early stage, but not in later stages of differentiation. Consistent with treatment of primary cultures, AA treatment of MC3T3-E1 cells significantly reduced Rest protein expression at day 3 and at day 8 after initiation of osteoblast differentiation. Treatment of bone marrow stromal cells with BMP-2 and dexamethasone, but not IGF-I for 3 days greatly decreased Rest mRNA expression. To test the function of Rest during osteoblast differentiation, Rest expression was knocked down in MC3T3-E1 cell subclones segregated on the basis of ALP activity (differentiation status) using lentivirus expressing shRNA against Rest. An 80% knockdown of Rest expression decreased Osterix (Osx) expression by 52-57% and as a result, increased both basal and AA induced ALP expression and activity in the subclone that expresses low basal level of ALP (undifferentiated). By contrast, a 98% knockdown of Rest expression in cells that express high basal levels of ALP (differentiated cells) caused a significant reduction in Osx expression, basal and AA induced ALP expression and activity. These data suggest that Rest regulates early osteoblast differentiation via modulating Rest expression that is independent of Osx expression.
Collapse
Affiliation(s)
- Bo Liu
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California.,Department of Orthopedics, The 3rd Xiangya Hosptial, Central South University, Changsha, Hunan, China.,Departments of Medicine, Loma Linda University, Loma Linda, California
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California.,Departments of Medicine, Loma Linda University, Loma Linda, California
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California.,Departments of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
20
|
Iida A, Xing W, Docx MKF, Nakashima T, Wang Z, Kimizuka M, Van Hul W, Rating D, Spranger J, Ohashi H, Miyake N, Matsumoto N, Mohan S, Nishimura G, Mortier G, Ikegawa S. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J Med Genet 2016; 53:568-74. [PMID: 27055475 DOI: 10.1136/jmedgenet-2016-103756] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/19/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Osteosclerotic metaphyseal dysplasia (OSMD) is a unique form of osteopetrosis characterised by severe osteosclerosis localised to the bone ends. The mode of inheritance is autosomal recessive. Its genetic basis is not known. OBJECTIVE To identify the disease gene for OSMD. METHODS AND RESULTS By whole exome sequencing in a boy with OSMD, we identified a homozygous 7 bp deletion (c.5938_5944delGAGTGGT) in the LRRK1 gene. His skeletal phenotype recapitulated that seen in the Lrrk1-deficient mouse. The shared skeletal hallmarks included severe sclerosis in the undermodelled metaphyses and epiphyseal margins of the tubular bones, costal ends, vertebral endplates and margins of the flat bones. The deletion is predicted to result in an elongated LRRK1 protein (p.E1980Afs*66) that lacks a part of its WD40 domains. In vitro functional studies using osteoclasts from Lrrk1-deficient mice showed that the deletion was a loss of function mutation. Genetic analysis of LRRK1 in two unrelated patients with OSMD suggested that OSMD is a genetically heterogeneous condition. CONCLUSIONS This is the first study to identify the causative gene of OSMD. Our study provides evidence that LRRK1 plays a critical role in the regulation of bone mass in humans.
Collapse
Affiliation(s)
- Aritoshi Iida
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis Memorial VA Medical Center, Loma Linda, California, USA Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Martine K F Docx
- Department of Paediatric Chronic Diseases and Nephrology, Queen Paola Children's Hospital, Antwerp, Belgium
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate school of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan Japan Science and Technology Agency, PRESTO, Tokyo, Japan
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan State Key Laboratory of Medical Molecular Biology, McKusick-Zhang Center for Genetic Medicine and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mamori Kimizuka
- Department of Orthopaedics, National Rehabilitation Center for Disabled Children, Tokyo, Japan
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Dietz Rating
- Department of Pediatrics, St Annastiftskinderkrankenhaus, Ludwigshafen, Germany
| | - Jürgen Spranger
- Centre for Pediatrics and Adolescent Medicine, Freiburg, Germany
| | - Hirohumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis Memorial VA Medical Center, Loma Linda, California, USA Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan Department of Orthopaedics, National Rehabilitation Center for Disabled Children, Tokyo, Japan
| |
Collapse
|
21
|
Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 2016; 17:240-56. [PMID: 26790531 DOI: 10.1038/nrm.2015.16] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Collapse
|
22
|
Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med 2016; 37:565-74. [PMID: 26782642 PMCID: PMC4771119 DOI: 10.3892/ijmm.2016.2457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023] Open
Abstract
This study was carried out in order to investigate bone dysfunction and the involvement of bradykinin receptors and the Eph/Ephrin signaling pathway in osteoblasts and in mice with diabetes-related osteoporosis in response to exposure to high glucose. Osteogenic transdifferentiation was inhibited when the osteoblasts were exposed to high glucose, and the expression levels of bone formation-related genes [Runx2 and alkaline phosphatase (ALP)] were decreased, while those of bone resorption-related genes [matrix metalloproteinase (MMP)9 and carbonic anhydrase II (CAII)] were increased. Moreover, the mRNA and protein expression levels of bradykinin receptor B1 (BK1R)/bradykinin receptor B2 (BK2R) and EphB2/EphrinB2 were significantly decreased in the osteoblasts following exposure to high glucose. Intriguingly, the interaction between BK2R and EphB2/EphrinB2 was confirmed, and BK2R loss-of-function significantly decreased the mRNA and protein expression levels of EphB2/EphrinB4. In vivo, hyperglycemia induced the disequilibrium of calcium homeostasis through the inhibition of bone formation and the acceleration of bone resorption, which was manifested by the reduction of trabecular bone mass of the primary and secondary spongiosa, as well as by the increase in the number of mature osteoclasts throughout the proximal tibial metaphysis in mice with diabetes-related osteoporosis. Furthermore, the mRNA and protein expression levels of BK1R/BK2R and EphB2/EphrinB2 in the tibias of the mice with diabetes-related osteoporosis were significantly decreased. These results demonstrate that bradykinin receptors and the EphB4/EphrinB2 pathway mediate the development of complications in mice with diabetes-related osteoporosis and suggest that the inactivation of bradykinin receptors and the EphB4/EphrinB2 pathway enhance the severity of complications in mice with diabetes-related osteoporosis.
Collapse
Affiliation(s)
- Min Wu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Wenting Ai
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Lin Chen
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
23
|
Popov C, Kohler J, Docheva D. Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. Front Aging Neurosci 2016; 7:246. [PMID: 26779014 PMCID: PMC4701947 DOI: 10.3389/fnagi.2015.00246] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
Abstract
Tendon tissues, due to their composition and function, are prone to suffer age-related degeneration and diseases as well as to respond poorly to current repair strategies. It has been suggested that local stem cells, named tendon stem/progenitor cells (TSPCs), play essential roles in tendon maintenance and healing. Recently, we have shown that TSPC exhibit a distinct age-related phenotype involving transcriptomal shift, poor self-renewal, and elevated senescence coupled with reduced cell migration and actin dynamics. Here, we report for the first time the significant downregulation of the ephrin receptors EphA4, EphB2 and B4 and ligands EFNB1 in aged-TSPC (A-TSPC). Rescue experiments, by delivery of target-specific clustered proteins, revealed that activation of EphA4- or EphB2-dependent reverse signaling could restore the migratory ability and normalize the actin turnover of A-TSPC. However, only EphA4-Fc stimulation improved A-TSPC cell proliferation to levels comparable to young-TSPC (Y-TSPC). Hence, our novel data suggests that decreased expression of ephrin receptors during tendon aging and degeneration limits the establishment of appropriate cell-cell interactions between TSPC and significantly diminished their proliferation, motility, and actin turnover. Taken together, we could propose that this mechanism might be contributing to the inferior and delayed tendon healing common for aged individuals.
Collapse
Affiliation(s)
- Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Julia Kohler
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
24
|
Cheng S, Xing W, Pourteymoor S, Schulte J, Mohan S. Conditional Deletion of Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Gene Reveals Its Essential Role in Chondrocyte Function and Endochondral Bone Formation. Endocrinology 2016; 157:127-40. [PMID: 26562260 PMCID: PMC4701886 DOI: 10.1210/en.2015-1473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Weirong Xing
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Jan Schulte
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Subburaman Mohan
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| |
Collapse
|
25
|
Abstract
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.
Collapse
Key Words
- Eph receptor
- Eph receptor, Erythropoietin-producing hepatocellular carcinoma cell receptor
- FGF, Fibroblast growth factor
- IGF-1, Insulin-like growth factor-1
- JNK, c-Jun N-terminal kinase
- MAPK, Mitogen activated protein kinase
- NFAT, Nuclear factor of activated T-cells
- RGS3, Regulator of G-protein signaling 3
- STAT3, Signal transducer and activator of transcription 3
- TAZ, Tafazzin
- TCR, T cell receptor
- TEC, Thymic epithelial cell
- TGF, Transforming growth factor
- ZHX2, Zinc fingers and homeoboxes 2
- ascidian development
- bone
- cell proliferation
- differentiation
- ephrin
- ephrin, Eph receptor interacting protein
- hindbrain
- keratinocytes
- neural progenitors
- p120GAP, GTPase activating protein
- thymocytes
Collapse
Affiliation(s)
- David G Wilkinson
- a Division of Developmental Neurobiology; MRC National Institute for Medical Research ; London , UK
| |
Collapse
|
26
|
Yan X, Ye TW. Early molecular responses of bone to estrogen deficiency induced by ovariectomy in rats. Int J Clin Exp Med 2015; 8:5470-5477. [PMID: 26131125 PMCID: PMC4483909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The study was performed to investigate bone deteriorations and the molecular responses of bone to early estrogen deficiency induced by ovariectomy (OVX) in rats. METHODS The female rats were subjected to OVX (4 or 8 week) and sham (4 or 8 week) operation. All rats were killed 4 week or 8 week after the surgical operation. The biomarkers in serum and urine were measured. Hematoxylin & Eosin and tartate-resistant acid phosphatase staining were performed on paraffin-embedded bone sections. Expression of genes and proteins were analyzed by reverse transcription polymerase chain reaction and western blotting respectively. RESULTS The OVX rats showed the decreased level of serum Ca and the increased level of urinary Ca excretion at 8 week post-OVX. The level of PTH and TRACP-5b increased at 4 and 8 week post-OVX. At both 4 and 8 week, FGF-23 was significantly lower in OVX rats than sham rats. The H&E staining showed remarkable bone abnormalities, including increased disconnections and separation of trabecular bone network in proximal metaphysis of tibia at OVX (4 and 8 week) group. In addition, the mRNA expression ratio of OPG/RANKL was reduced in the proximal tibia. The mRNA expression of MMP-9, CAII, EphA2 and ephrinA2, and the protein expression of EphA2 and ephrinA2 were markedly up-regulated in the proximal tibia. Moreover, the mRNA expression of TGF-β, EphB4 and ephrinB2, and the protein expression of EphB4 and ephrinB2 were down-regulated in proximal metaphysis of tibia at OVX group. CONCLUSIONS The endogenous estrogen deficiency was detrimental to bone, and the underlying mechanism was mediated, at least partially, through the local bone Eph/ephrin signaling pathway.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopaedics, The 445 Hospital of The Chinese People’s Liberation Army338 West Huaihai Road, Shanghai 200052, China
| | - Tian-Wen Ye
- Department of Orthopaedics, Changzheng Hospital of The Second Military Medical University415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
27
|
Cheng Y, Wang WL, Liang JJ. Genistein attenuates glucocorticoid-induced bone deleterious effects through regulation Eph/ephrin expression in aged mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:394-403. [PMID: 25755727 PMCID: PMC4348890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study was performed to investigate bone deteriorations and the involvement of skeletal Eph/ephrin signaling pathway of GIOP aged mice in response to the treatment of genistein. METHODS The biomarkers in serum and urine were measured, tibias were taken for the measurement on gene and protein expression and histomorphology analysis, and femurs were taken for the measurement on bone Ca and three-dimensional architecture of trabecular bone. RESULTS Genistein showed a greater increase in bone Ca, BMD and significantly increased FGF-23 and OCN, reduced TRACP-5b, PTH and CTX in GIOP mice. Genistein reversed DXM-induced trabecular deleterious effects and stimulated bone remodeling. The treatment of DXM group with genistein significantly elevated the ratio of OPG/RANKL. Moreover, genistein administration down-regulated the mRNA and protein expression of Eph A2 and ephrin A2 in tibia of the GIOP mice. In contrast, the mRNA and protein expression of Eph B4 and ephrin B2 were increased in mice treated by DXM with genistein as compared to the DXM single treatment. CONCLUSIONS DXM-induced trabecular bone micro-structure deterioration in aged mice was involved in the regulation of the Eph receptors and ephrin ligands. Genistein might represent a therapy with bone-forming as well as an anti-resorptive activity in GIOP mice. The underlying mechanism was mediated, at least partially, through regulation Eph/ephrin signaling.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University678 Furong Road, Hefei 230601, China
| | - Wei-Lin Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, The Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University66 Tongan Road, Tianjin 300070, China
| | - Jun-Jun Liang
- Department of Neurosurgery, The People’s Hospital of Anqiu246 Jiankang Road, Weifang 262100, China
| |
Collapse
|
28
|
Cheng S, Xing W, Pourteymoor S, Mohan S. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development. J Bone Miner Res 2014; 29:2276-86. [PMID: 24753072 DOI: 10.1002/jbmr.2258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 01/04/2023]
Abstract
We have previously shown that the increase in osterix (Osx) expression during osteoblast maturation is dependent on the activity of the prolyl hydroxylase domain-containing protein 2 (Phd2), a key regulator of protein levels of the hypoxia-inducible factor family proteins in many tissues. In this study, we generated conditional Phd2 knockout mice (cKO) in osteoblast lineage cells by crossing floxed Phd2 mice with a Col1α2-iCre line to investigate the function of Phd2 in vivo. The cKO mice developed short stature and premature death at 12 to 14 weeks of age. Bone mineral content, bone area, and bone mineral density were decreased in femurs and tibias, but not vertebrae of the cKO mice compared to WT mice. The total volume (TV), bone volume (BV), and bone volume fraction (BV/TV) in the femoral trabecular bones of cKO mice were significantly decreased. Cross-sectional area of the femoral mid-diaphysis was also reduced in the cKO mice. The reduced bone size and trabecular bone volume in the cKO mice were a result of impaired bone formation but not bone resorption as revealed by dynamic histomorphometric analyses. Bone marrow stromal cells derived from cKO mice formed fewer and smaller nodules when cultured with mineralization medium. Quantitative RT-PCR and immunohistochemistry detected reduced expression of Osx, osteocalcin, and bone sialoprotein in cKO bone cells. These data indicate that Phd2 plays an important role in regulating bone formation in part by modulating expression of Osx and bone formation marker genes.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA, USA
| | | | | | | |
Collapse
|
29
|
Wang Y, Menendez A, Fong C, ElAlieh HZ, Chang W, Bikle DD. Ephrin B2/EphB4 mediates the actions of IGF-I signaling in regulating endochondral bone formation. J Bone Miner Res 2014; 29:1900-13. [PMID: 24677183 PMCID: PMC4108521 DOI: 10.1002/jbmr.2196] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/14/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
Abstract
Ephrin B2/EphB4 mediates interactions among osteoblasts (OBs), osteoclasts (OCLs), and chondrocytes to regulate their differentiation. We investigated the role of ephrin B2/EphB4 signaling in mediating the anabolic effects of insulin-like growth factor-I (IGF-I) and parathyroid hormone (PTH) on those cells and overall endochondral bone formation. Immunohistochemistry demonstrated that the expression of ephrin B2 in OBs, OCLs, and osteocytes, and the expression of EphB4 in OBs and osteocytes was dramatically decreased in global IGF-I knockout mice. Inactivation of EphB4 by EphB4 small, interfering RNA (siRNA) in cultured bone marrow stromal cells significantly decreased the mRNA levels of OB differentiation markers and abolished the stimulatory effects of IGF-I on these markers. Blocking the interaction of EphB4 and ephrin B2 in the OB-OCL cocultures with the EphB4 specific peptide TNYL-RAW or deletion of ephrin B2 in OCL prior to coculture led to fewer and smaller tartrate-resistant acid phosphatase (TRAP)-positive cells, decreased expression of OB differentiation markers, and blunted response to IGF-I for both OCL and OB differentiation. In the growth plate, both ephrin B2 and EphB4 are expressed in late stage proliferating and prehypertrophic chondrocytes, and their expression was decreased in mice lacking the IGF-I receptor specifically in chondrocytes. In vitro, blocking the interaction of EphB4 and ephrin B2 in chondrogenic ATDC5 cells with TNYL-RAW significantly decreased both basal and IGF1-induced expression of type II and type X collagen. In the cocultures of ATDC5 cells and spleen cells (osteoclast precursors), TNYL-RAW decreased the numbers of TRAP-positive cells and the expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and receptor activator of NF-κB (RANK), and blocked their stimulation by IGF-I. Our data indicate that IGF-I/IGF-IR signaling promotes OB, OCL, and chondrocyte differentiation via ephrin B2/EphB4 mediated cell-cell communication.
Collapse
Affiliation(s)
- Yongmei Wang
- Endocrine Unit, University of California, Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Stiffel V, Amoui M, Sheng MHC, Mohan S, Lau KHW. EphA4 receptor is a novel negative regulator of osteoclast activity. J Bone Miner Res 2014; 29:804-19. [PMID: 23983218 DOI: 10.1002/jbmr.2084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/07/2013] [Accepted: 08/20/2013] [Indexed: 11/11/2022]
Abstract
Of the ephrin (Eph) receptors, mature osteoclasts express predominantly EphA4. This study sought to determine if EphA4 has a regulatory role in osteoclasts. Treatment of RAW/C4 cells with Epha4 small interfering RNAs (siRNAs) increased average size, Ctsk mRNA expression level, and bone resorption activity of the derived osteoclast-like cells. Activation of the EphA4 signaling in osteoclast precursors with EfnA4-fc chimeric protein reduced cell size and resorption activity of the derived osteoclasts. Homozygous Epha4 null mice had substantially less trabecular bone in femur and vertebra compared to wild-type controls. The bone loss was due to a decrease in trabecular number and an increase in trabecular spacing, but not to an increase in osteoclast-lined bone surface or an increase in the number of osteoclasts on bone surface. Dynamic histomorphometry and serum biomarker analyses indicate that bone formation in Epha4 null mice was reduced slightly but not significantly. Osteoclasts of Epha4 null mice were also larger, expressed higher levels of Mmp3 and Mmp9 mRNAs, and exhibited greater bone resorption activity than wild-type osteoclasts in vitro. Deficient Epha4 expression had no effects on the total number of osteoclast formed in response to receptor activator of NF-κB ligand nor on apoptosis of osteoclasts in vitro. It also did not affect the protein-tyrosine phosphorylation status of its ligands, EfnB2, EfnA2, and EfnA4, in osteoclasts. Deficient Epha4 expression in Epha4 null osteoclasts activated the β3 -integrin signaling through reduced phosphorylation of the tyr-747 residue, which led to increased binding of the stimulatory talin and reduced binding of the inhibitory Dok1 to β3 -integrin. This in turn activated Vav3 and the bone resorption activity of osteoclasts. In conclusion, we demonstrate for the first time that EphA4 is a potent negative regulator of osteoclastic activity, mediated in part through increased Dok1 binding to β3 -integrin via an increase in EphA4-dependent tyr-747 phosphorylation.
Collapse
Affiliation(s)
- Virginia Stiffel
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | | | | | | | | |
Collapse
|
31
|
Henriksen K, Karsdal MA, Martin TJ. Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 2014; 94:88-97. [PMID: 23700149 DOI: 10.1007/s00223-013-9741-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/28/2013] [Indexed: 12/15/2022]
Abstract
In the bone remodeling process that takes place throughout the skeleton at bone multicellular units, intercellular communication processes are crucial. The osteoblast lineage has long been known to program osteoclast formation and hence resorption, but the preservation of bone mass and integrity requires tight control of remodeling. This needs local controls that ensure availability of mesenchymal precursors and the provision of local signals that promote differentiation through the osteoblast lineage. Some signals can come from growth factors released from resorbed bone matrix, and there is increasing evidence that the osteoclast lineage itself produces factors that can either enhance or inhibit osteoblast differentiation and hence bone formation. A number of such factors have been identified from predominantly in vitro experiments. The coupling of bone formation to resorption is increasingly recognized as a complex, dynamic process that results from the input of many local factors of cell and matrix origin that can either promote or inhibit bone formation.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience Biomarkers and Research, 2730, Herlev, Denmark
| | | | | |
Collapse
|
32
|
Xing W, Liu J, Cheng S, Vogel P, Mohan S, Brommage R. Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis. J Bone Miner Res 2013; 28:1962-74. [PMID: 23526378 PMCID: PMC9528686 DOI: 10.1002/jbmr.1935] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023]
Abstract
To assess the roles of Lrrk1 and Lrrk2, we examined skeletal phenotypes in Lrrk1 and Lrrk2 knockout (KO) mice. Lrrk1 KO mice exhibit severe osteopetrosis caused by dysfunction of multinucleated osteoclasts, reduced bone resorption in endocortical and trabecular regions, and increased bone mineralization. Lrrk1 KO mice have lifelong accumulation of bone and respond normally to the anabolic actions of teriparatide treatment, but are resistant to ovariectomy-induced bone boss. Precursors derived from Lrrk1 KO mice differentiate into multinucleated cells in response to macrophage colony-stimulating factor (M-CSF)/receptor activator of NF-κB ligand (RANKL) treatment, but these cells fail to form peripheral sealing zones and ruffled borders, and fail to resorb bone. The phosphorylation of cellular Rous sarcoma oncogene (c-Src) at Tyr-527 is significantly elevated whereas at Tyr-416 is decreased in Lrrk1-deficient osteoclasts. The defective osteoclast function is partially rescued by overexpression of the constitutively active form of Y527F c-Src. Immunoprecipitation assays in osteoclasts detected a physical interaction of Lrrk1 with C-terminal Src kinase (Csk). Lrrk2 KO mice do not show obvious bone phenotypes. Precursors derived from Lrrk2 KO mice differentiate into functional multinucleated osteoclasts. Our finding of osteopetrosis in Lrrk1 KO mice provides convincing evidence that Lrrk1 plays a critical role in negative regulation of bone mass in part through modulating the c-Src signaling pathway in mice.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cheng S, Xing W, Zhou X, Mohan S. Haploinsufficiency of osterix in chondrocytes impairs skeletal growth in mice. Physiol Genomics 2013; 45:917-23. [PMID: 23943855 DOI: 10.1152/physiolgenomics.00111.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osterix (Osx) is essential for both intramembranous or endochondral bone formation. Osteoblast-specific ablation of Osx using Col1α1-Cre resulted in osteopenia, because of impaired osteoblast differentiation in adult mice. Since Osx is also known to be expressed in chondrocytes, we evaluated the role of Osx expressed in chondrocytes by examining the skeletal phenotype of mice with conditional disruption of Osx in Col2α1-expressing chondrocytes. Surprisingly, Cre-positive mice that were homozygous for Osx floxed alleles died after birth. Alcian blue and alizarin red staining revealed that the lengths of skeleton, femur, and vertebrae were reduced by 21, 26, and 14% (P < 0.01), respectively, in the knockout (KO) compared with wild-type mice. To determine if haploid insufficiency of Osx in chondrocytes influenced postnatal skeletal growth, we compared skeletal phenotype of floxed heterozygous mice that were Cre-positive or Cre-negative. Body length was reduced by 8% (P < 0.001), and areal BMD of total body, femur, and tibia was reduced by 5, 7, and 8% (P < 0.05), respectively, in mice with conditional disruption of one allele of Osx in chondrocytes. Micro-CT showed reduced cortical volumetric bone mineral density and trabecular bone volume to total volume in the femurs of Osx(flox/+);col2α1-Cre mice. Histological analysis revealed that the impairment of longitudinal growth was associated with disrupted growth plates in the Osx(flox/+);col2α1-Cre mice. Primary chondrocytes isolated from KO embryos showed reduced expression of chondral ossification markers but elevated expression of chondrogenesis markers. Our findings indicate that Osx expressed in chondrocytes regulates bone growth in part by regulating chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, Loma Linda, California
| | | | | | | |
Collapse
|
34
|
Cheng S, Kesavan C, Mohan S, Qin X, Alarcon CM, Wergedal J, Xing W. Transgenic overexpression of ephrin b1 in bone cells promotes bone formation and an anabolic response to mechanical loading in mice. PLoS One 2013; 8:e69051. [PMID: 23874863 PMCID: PMC3708903 DOI: 10.1371/journal.pone.0069051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
To test if ephrin B1 overexpression enhances bone mass, we generated transgenic mice overexpressing ephrin B1 under the control of a 3.6 kb rat collagen 1A1 promoter (Col3.6-Tgefnb1). Col3.6-Tgefnb1 mice express 6-, 12- and 14-fold greater levels of full-length ephrin B1 protein in bone marrow stromal cells, calvarial osteoblasts, and osteoclasts, respectively. The long bones of both genders of Col3.6-Tgefnb1 mice have increased trabecular bone volume, trabecular number, and trabecular thickness and decreased trabecular separation. Enhanced bone formation and decreased bone resorption contributed to this increase in trabecular bone mass in Col3.6-Tgefnb1 mice. Consistent with these findings, our in vitro studies showed that overexpression of ephrin B1 increased osteoblast differentiation and mineralization, osterix and collagen 1A1 expression in bone marrow stromal cells. Interaction of ephrin B1 with soluble clustered EphB2-Fc decreased osteoclast precursor differentiation into multinucleated cells. Furthermore, we demonstrated that the mechanical loading-induced increase in EphB2 expression and newly formed bone were significantly greater in the Col3.6-Tgefnb1 mice than in WT littermate controls. Our findings that overexpression of ephrin B1 in bone cells enhances bone mass and promotes a skeletal anabolic response to mechanical loading suggest that manipulation of ephrin B1 actions in bone may provide a means to sensitize the skeleton to mechanical strain to stimulate new bone formation.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
- Department of Physiology, Loma Linda University, Loma Linda, California, United States of America
| | - Xuezhong Qin
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Catrina M. Alarcon
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
| | - Jon Wergedal
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Takyar FM, Tonna S, Ho PWM, Crimeen-Irwin B, Baker EK, Martin TJ, Sims NA. EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. J Bone Miner Res 2013; 28:912-25. [PMID: 23165727 DOI: 10.1002/jbmr.1820] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/04/2012] [Accepted: 10/29/2012] [Indexed: 11/11/2022]
Abstract
Previous reports indicate that ephrinB2 expression by osteoblasts is stimulated by parathyroid hormone (PTH) and its related protein (PTHrP) and that ephrinB2/EphB4 signaling between osteoblasts and osteoclasts stimulates osteoblast differentiation while inhibiting osteoclast differentiation. To determine the role of the ephrinB2/EphB4 interaction in the skeleton, we used a specific inhibitor, soluble EphB4 (sEphB4), in vitro and in vivo. sEphB4 treatment of cultured osteoblasts specifically inhibited EphB4 and ephrinB2 phosphorylation and reduced mRNA levels of late markers of osteoblast/osteocyte differentiation (osteocalcin, dentin matrix protein-1 [DMP-1], sclerostin, matrix-extracellular phosphoglycoprotein [MEPE]), while substantially increasing RANKL. sEphB4 treatment in vivo in the presence and absence of PTH increased osteoblast formation and mRNA levels of early osteoblast markers (Runx2, alkaline phosphatase, Collagen 1α1, and PTH receptor [PTHR1]), but despite a substantial increase in osteoblast numbers, there was no significant change in bone formation rate or in late markers of osteoblast/osteocyte differentiation. Rather, in the presence of PTH, sEphB4 treatment significantly increased osteoclast formation, an effect that prevented the anabolic effect of PTH, causing instead a decrease in trabecular number. This enhancement of osteoclastogenesis by sEphB4 was reproduced in vitro but only in the presence of osteoblasts. These data indicate that ephrinB2/EphB4 signaling within the osteoblast lineage is required for late stages of osteoblast differentiation and, further, restricts the ability of osteoblasts to support osteoclast formation, at least in part by limiting RANKL production. This indicates a key role for the ephrinB2/EphB4 interaction within the osteoblast lineage in osteoblast differentiation and support of osteoclastogenesis.
Collapse
Affiliation(s)
- Farzin M Takyar
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Matsuo K, Otaki N. Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases. Cell Adh Migr 2012; 6:148-56. [PMID: 22660185 PMCID: PMC3499314 DOI: 10.4161/cam.20888] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bones cannot properly form or be maintained without cell-cell interactions through ephrin ligands and Eph receptors. Cell culture analysis and evaluation of genetic mouse models and human diseases reveal various ephrins and Eph functions in the skeletal system. Migration, attachment and spreading of mesenchymal stem cells are regulated by ephrinB ligands and EphB receptors. ephrinB1 loss-of-function is associated with craniofrontonasal syndrome (CFNS) in humans and mice. In bone remodeling, ephrinB2 is postulated to act as a “coupling stimulator.” In that case, bidirectional signaling between osteoclastic ephrinB2 and osteoblastic EphB4 suppresses osteoclastic bone resorption and enhances osteoblastic bone formation, facilitating the transition between these two states. Parathyroid hormone (PTH) induces ephrinB2 in osteoblasts and enhances osteoblastic bone formation. In contrast to ephrinB2, ephrinA2 acts as a “coupling inhibitor,” since ephrinA2 reverse signaling into osteoclasts enhances osteoclastogenesis and EphA2 forward signaling into osteoblasts suppresses osteoblastic bone formation and mineralization. Furthermore, ephrins and Ephs likely modulate pathological conditions such as osteoarthritis, rheumatoid arthritis, multiple myeloma and osteosarcoma. This review focuses on ephrin/Eph-mediated cell-cell interactions in bone biology.
Collapse
Affiliation(s)
- Koichi Matsuo
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, Tokyo, Japan.
| | | |
Collapse
|