1
|
Liu Z, Xi Q, Hou M, Zou T, Liu H, Zhou X, Jin L, Zhu L, Zhang X. Loss of function variant in CIP2A associated with female infertility with early embryonic arrest and fragmentation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167228. [PMID: 38734318 DOI: 10.1016/j.bbadis.2024.167228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Early embryonic arrest and fragmentation (EEAF) is a common cause of female infertility, but the genetic causes remain to be largely unknown. CIP2A encodes the cellular inhibitor of PP2A, playing a crucial role in mitosis and mouse oocyte meiosis. METHODS Exome sequencing and Sanger sequencing were performed to identify candidate causative genes in patients with EEAF. The pathogenicity of the CIP2A variant was assessed and confirmed in cultured cell lines and human oocytes through Western blotting, semi-quantitative RT-PCR, TUNEL staining, and fluorescence localization analysis. FINDINGS We identified CIP2A (c.1510C > T, p.L504F) as a novel disease-causing gene in human EEAF from a consanguineous family. L504 is highly conserved throughout evolution. The CIP2A variant (c.1510C > T, p.L504F) reduced the expression level of the mutant CIP2A protein, leading to the abnormal aggregation of mutant CIP2A protein and cell apoptosis. Abnormal aggregation of CIP2A protein and chromosomal dispersion occurred in the patient's oocytes and early embryos. We further replicated the patient phenotype by knockdown CIP2A in human oocytes. Additionally, CIP2A deficiency resulted in decreased levels of phosphorylated ERK1/2. INTERPRETATION We first found that the CIP2A loss-of-function variant associate with female infertility characterized by EEAF. Our findings suggest the uniqueness and importance of CIP2A gene in human oocyte and early embryo development. FUNDING This work was supported by National Key Research and Development Program of China (2023YFC2706302), the National Natural Science Foundation of China (81000079, 81170165, and 81870959), the HUST Academic Frontier Youth Team (2016QYTD02), and the Key Research of Huazhong University of Science and Technology, Tongji Hospital (2022A20).
Collapse
Affiliation(s)
- Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingsong Xi
- Oncology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huihui Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
2
|
Nagelli S, Westermarck J. CIP2A coordinates phosphosignaling, mitosis, and the DNA damage response. Trends Cancer 2024; 10:52-64. [PMID: 37793965 DOI: 10.1016/j.trecan.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Human cancers share requirements for phosphorylation-dependent signaling, mitotic hyperactivity, and survival after DNA damage. The oncoprotein CIP2A (cancerous inhibitor of PP2A) can coordinate all these cancer cell characteristics. In addition to controlling cancer cell phosphoproteomes via inhibition of protein phosphatase PP2A, CIP2A directly interacts with the DNA damage protein TopBP1 (topoisomerase II-binding protein 1). Consequently, CIP2A allows DNA-damaged cells to enter mitosis and is essential for mitotic cells that are defective in homologous recombination (HR)-mediated DNA repair (e.g., BRCA mutants). The CIP2A-TopBP1 complex is also important for clustering fragmented chromosomes at mitosis. Clinically, CIP2A is a disease driver for basal-like triple-negative breast cancer (BL-TNBC) and a promising cancer therapy target across many cancer types.
Collapse
Affiliation(s)
- Srikar Nagelli
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine and FICANWest Cancer Center, University of Turku, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine and FICANWest Cancer Center, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Hu W, Liuyang Z, Tian Y, Liang J, Zhang X, Zhang H, Wang G, Huo Y, Shentu Y, Wang J, Wang X, Lu Y, Westermarck J, Man H, Liu R. CIP2A deficiency promotes depression-like behaviors in mice through inhibition of dendritic arborization. EMBO Rep 2022; 23:e54911. [PMID: 36305233 PMCID: PMC9724669 DOI: 10.15252/embr.202254911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.
Collapse
Affiliation(s)
- Wen‐Ting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyPeking University Shenzhen HospitalShenzhenChina
| | - Zhen‐Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of General Surgery, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuan Tian
- Department of BiologyBoston UniversityBostonUSA
| | - Jia‐Wei Liang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Lin Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui‐Liang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guan Wang
- Department of BiologyBoston UniversityBostonUSA
| | - Yuda Huo
- Department of BiologyBoston UniversityBostonUSA
| | - Yang‐Ping Shentu
- Department of NephrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jian‐Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - You‐ming Lu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Jukka Westermarck
- Turku Bioscience CentreUniversity of TurkuTurkuFinland
- Åbo Akademi UniversityTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Heng‐Ye Man
- Department of BiologyBoston UniversityBostonUSA
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Sun W, Tian F, Pan H, Chang X, Xia M, Hu J, Wang Y, Li R, Li W, Yang M, Zhou Z. Flurochloridone induced abnormal spermatogenesis by damaging testicular Sertoli cells in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114163. [PMID: 36240522 DOI: 10.1016/j.ecoenv.2022.114163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity whose evidence is limited, but its mechanism remains unclear. The present study was conducted to systematically explore the male reproductive toxicity of FLC, including sperm quality, spermatogenesis, toxicity targets, and potential mechanisms. METHODS Male C57BL/6 mice aged 6-7 weeks received gavage administration of FLC (365/730 mg/kg/day) for 28 consecutive days. Then, the tissue and sperm of mice were collected for analysis. We measured the gonadosomatic index and analyzed sperm concentration, motility, malformation rate, and mitochondrial membrane potential (MMP). Spermatocyte immunofluorescence staining was performed to analyze meiosis. We also performed pathological staining on the testis and epididymis tissue and TUNEL staining, immunohistochemical analysis, and ultrastructural observation on the testicular tissue. RESULTS Results showed that FLC caused testicular weight reduction, dysfunction, and architectural damage in mice, but no significant adverse effect was found in the epididymis. The exposure interfered with spermatogonial proliferation and meiosis, affecting sperm concentration, motility, kinematic parameters, morphology, and MMP, decreasing sperm quality. Furthermore, mitochondrial damage and apoptosis of testicular Sertoli cells were observed in mice treated with FLC. CONCLUSION We found that FLC has significant adverse effects on spermatogonial proliferation and meiosis. Meanwhile, apoptosis and mitochondrial damage may be the potential mechanism of Sertoli cell damage. Our study demonstrated that FLC could induce testicular Sertoli cell damage, leading to abnormal spermatogenesis, which decreased sperm quality. The data provided references for the toxicity risk and research methods of FLC application in the environment.
Collapse
Affiliation(s)
- Weiqi Sun
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China; Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Hongjie Pan
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Runsheng Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/ Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Cvrljevic AN, Butt U, Huhtinen K, Grönroos TJ, Böckelman C, Lassus H, Butzow R, Haglund C, Kaipio K, Arsiola T, Laajala TD, Connolly DC, Ristimäki A, Carpen O, Pouwels J, Westermarck J. Ovarian Cancers with Low CIP2A Tumor Expression Constitute an APR-246-Sensitive Disease Subtype. Mol Cancer Ther 2022; 21:1236-1245. [PMID: 35364610 PMCID: PMC9256766 DOI: 10.1158/1535-7163.mct-21-0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Identification of ovarian cancer patient subpopulations with increased sensitivity to targeted therapies could offer significant clinical benefit. We report that 22% of the high-grade ovarian cancer tumors at diagnosis express CIP2A oncoprotein at low levels. Furthermore, regardless of their significantly lower likelihood of disease relapse after standard chemotherapy, a portion of relapsed tumors retain their CIP2A-deficient phenotype. Through a screen for therapeutics that would preferentially kill CIP2A-deficient ovarian cancer cells, we identified reactive oxygen species inducer APR-246, tested previously in ovarian cancer clinical trials. Consistent with CIP2A-deficient ovarian cancer subtype in humans, CIP2A is dispensable for development of MISIIR-Tag-driven mouse ovarian cancer tumors. Nevertheless, CIP2A-null ovarian cancer tumor cells from MISIIR-Tag mice displayed APR-246 hypersensitivity both in vitro and in vivo. Mechanistically, the lack of CIP2A expression hypersensitizes the ovarian cancer cells to APR-246 by inhibition of NF-κB activity. Accordingly, combination of APR-246 and NF-κB inhibitor compounds strongly synergized in killing of CIP2A-positive ovarian cancer cells. Collectively, the results warrant consideration of clinical testing of APR-246 for CIP2A-deficient ovarian cancer tumor subtype patients. Results also reveal CIP2A as a candidate APR-246 combination therapy target for ovarian cancer.
Collapse
Affiliation(s)
- Anna N. Cvrljevic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Umar Butt
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine, University of Turku, Turku, Finland,Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Tove J. Grönroos
- Turku PET Centre, University of Turku, Turku, Finland,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Camilla Böckelman
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heini Lassus
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Butzow
- Department of Pathology and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki,HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Kaipio
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tiina Arsiola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Teemu D. Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Denise C. Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ari Ristimäki
- Department of Pathology and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki,HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Olli Carpen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jeroen Pouwels
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Adam S, Rossi SE, Moatti N, De Marco Zompit M, Xue Y, Ng TF, Álvarez-Quilón A, Desjardins J, Bhaskaran V, Martino G, Setiaputra D, Noordermeer SM, Ohsumi TK, Hustedt N, Szilard RK, Chaudhary N, Munro M, Veloso A, Melo H, Yin SY, Papp R, Young JTF, Zinda M, Stucki M, Durocher D. The CIP2A-TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer. NATURE CANCER 2021; 2:1357-1371. [PMID: 35121901 DOI: 10.1038/s43018-021-00266-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/10/2021] [Indexed: 05/26/2023]
Abstract
BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers.
Collapse
Affiliation(s)
- Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Silvia Emma Rossi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nathalie Moatti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mara De Marco Zompit
- Department of Gynecology, University Hospital and University of Zurich, Schlieren, Switzerland
| | - Yibo Xue
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Timothy F Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Repare Therapeutics, St-Laurent, Quebec, Canada
| | | | | | | | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sylvie M Noordermeer
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nicole Hustedt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Lonza AG, Visp, Switzerland
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Meagan Munro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Robert Papp
- Repare Therapeutics, St-Laurent, Quebec, Canada
| | | | | | - Manuel Stucki
- Department of Gynecology, University Hospital and University of Zurich, Schlieren, Switzerland
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Menolfi D, Zha S. Targeting BRCA-mutated tumors in mitosis. NATURE CANCER 2021; 2:1296-1297. [PMID: 35121918 DOI: 10.1038/s43018-021-00293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA. .,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Tarek MM, Yahia A, El-Nakib MM, Elhefnawi M. Integrative assessment of CIP2A overexpression and mutational effects in human malignancies identifies possible deleterious variants. Comput Biol Med 2021; 139:104986. [PMID: 34739970 DOI: 10.1016/j.compbiomed.2021.104986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
KIAA1524 is the gene encoding the human cancerous inhibitor of PP2A (CIP2A) protein which is regarded as a novel target for cancer therapy. It is overexpressed in 65%-90% of tissues in almost all studied human cancers. CIP2A expression correlates with cancer progression, disease aggressivity in lung cancer besides poor survival and resistance to chemotherapy in breast cancer. Herein, a pan-cancer analysis of public gene expression datasets was conducted showing significant upregulation of CIP2A in cancerous and metastatic tissues. CIP2A overexpression also correlated with poor survival of cancer patients. To determine the non-coding variants associated with CIP2A overexpression, 5'UTR and 3'UTR variants were annotated and scored using RegulomeDB and Enformer deep learning model. The 5'UTR variants rs1239349555, rs1576326380, and rs1231839144 were predicted to be potential regulators of CIP2A overexpression scoring best on RegulomeDB annotations with a high "2a" rank of supporting experimental data. These variants also scored the highest on Enformer predictions. Analysis of the 3'UTR variants of CIP2A predicted rs56255137 and rs58758610 to alter binding sites of hsa-miR-500a-5 and (hsa-miR-3671, hsa-miR-5692a) respectively. Both variants were also found in linkage disequilibrium with rs11709183 and rs147863209 respectively at r2 ≥ 0.8. The aforementioned variants were found to be eQTL hits significantly associated with CIP2A overexpression. Further, analysis of rs11709183 and rs147863209 revealed a high "2b" rank on RegulomeDB annotations indicating a probable effect on DNAse transcription factors binding. The MuTarget analysis indicated that somatic mutations in TP53 are significantly associated with upregulated CIP2A in human cancers. Analysis of missense SNPs on CIP2A solved structure predicted seven deleterious effects. Four of these variants were also predicted as structurally and functionally destabilizing to CIP2A including; rs375108755, rs147942716, rs368722879, and rs367941403. Variant rs1193091427 was predicted as a potential intronic splicing mutation that might be responsible for the novel CIP2A variant (NOCIVA) in multiple myeloma. Finally, Enrichment of the Wnt/β-catenin pathway within the CIP2A regulatory gene network suggested potential of therapeutic combinations between FTY720 with Wnt/β-catenin, Plk1 and/or HDAC inhibitors to downregulate CIP2A which has been shown to be essential for the survival of different cancer cell lines.
Collapse
Affiliation(s)
- Mohammad M Tarek
- Bioinformatics Department, Armed Forces College of Medicine (AFCM) Cairo, Egypt.
| | - Ahmed Yahia
- Otolaryngology Department, Armed Forces College of Medicine (AFCM) Cairo, Egypt
| | | | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Medical Research, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Vainonen JP, Momeny M, Westermarck J. Druggable cancer phosphatases. Sci Transl Med 2021; 13:13/588/eabe2967. [PMID: 33827975 DOI: 10.1126/scitranslmed.abe2967] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
The phosphorylation status of oncoproteins is regulated by both kinases and phosphatases. Kinase inhibitors are rarely sufficient for successful cancer treatment, and phosphatases have been considered undruggable targets for cancer drug development. However, innovative pharmacological approaches for targeting phosphatases have recently emerged. Here, we review progress in the therapeutic targeting of oncogenic Src homology region 2 domain-containing phosphatase-2 (SHP2) and tumor suppressor protein phosphatase 2A (PP2A) and select other druggable oncogenic and tumor suppressor phosphatases. We describe the modes of action for currently available small molecules that target phosphatases, their use in drug combinations, and advances in clinical development toward future cancer therapies.
Collapse
Affiliation(s)
- Julia P Vainonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland. .,Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
10
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
11
|
Laine A, Nagelli SG, Farrington C, Butt U, Cvrljevic AN, Vainonen JP, Feringa FM, Grönroos TJ, Gautam P, Khan S, Sihto H, Qiao X, Pavic K, Connolly DC, Kronqvist P, Elo LL, Maurer J, Wennerberg K, Medema RH, Joensuu H, Peuhu E, de Visser K, Narla G, Westermarck J. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res 2021; 81:4319-4331. [PMID: 34145035 DOI: 10.1158/0008-5472.can-20-3651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNA damage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. SIGNIFICANCE: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.
Collapse
Affiliation(s)
- Anni Laine
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Srikar G Nagelli
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Caroline Farrington
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Umar Butt
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anna N Cvrljevic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Julia P Vainonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Femke M Feringa
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tove J Grönroos
- Turku PET Center, University of Turku, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Xi Qiao
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), Aachen, Germany
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rene H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heikki Joensuu
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Karin de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Depletion of CIP2A inhibits the proliferation, migration, invasion and epithelial-mesenchymal transition of glioma cells. Brain Res Bull 2021; 173:14-21. [PMID: 33892085 DOI: 10.1016/j.brainresbull.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022]
Abstract
CIP2A is an oncoprotein that is overexpressed in multiple solid tumours and some malignant haematologic disorders. However, its function in glioma is poorly understood. In this study, our results demonstrated that the expression of CIP2A was higher in glioma tissues than in normal tissues. Using tissue microarrays for immunohistochemistry, we found that the intensity of CIP2A expression was higher in high-grade gliomas (grade III-IV) than in low-grade gliomas (grade I-II). In addition, we found that depletion of CIP2A inhibited glioma cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro. Taken together, our findings revealed that CIP2A was involved in glioma progression, indicating that CIP2A could be used as a potential therapeutic target in the future.
Collapse
|
13
|
Khan MM, Ullah U, Khan MH, Kong L, Moulder R, Välikangas T, Bhosale SD, Komsi E, Rasool O, Chen Z, Elo LL, Westermarck J, Lahesmaa R. CIP2A Constrains Th17 Differentiation by Modulating STAT3 Signaling. iScience 2020; 23:100947. [PMID: 32171124 PMCID: PMC7068643 DOI: 10.1016/j.isci.2020.100947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is an oncogene and a potential cancer therapy target protein. Accordingly, a better understanding of the physiological function of CIP2A, especially in the context of immune cells, is a prerequisite for its exploitation in cancer therapy. Here, we report that CIP2A negatively regulates interleukin (IL)-17 production by Th17 cells in human and mouse. Interestingly, concomitant with increased IL-17 production, CIP2A-deficient Th17 cells had increased strength and duration of STAT3 phosphorylation. We analyzed the interactome of phosphorylated STAT3 in CIP2A-deficient and CIP2A-sufficient Th17 cells and indicated together with genome-wide gene expression profiling, a role of Acylglycerol Kinase (AGK) in the regulation of Th17 differentiation by CIP2A. We demonstrated that CIP2A regulates the strength of the interaction between AGK and STAT3, and thereby modulates STAT3 phosphorylation and expression of IL-17 in Th17 cells.
Collapse
Affiliation(s)
- Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Ubaid Ullah
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Meraj H Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Lingjia Kong
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; The Broad Institute of MIT and Harvard, Cambridge, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, USA
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Doctoral Programme in Mathematics and Computer Sciences (MATTI), University of Turku, Turku, Finland
| | - Santosh Dilip Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Elina Komsi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Zhi Chen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6A, Turku, Finland.
| |
Collapse
|
14
|
Khanna A, Thoms JAI, Stringer BW, Chung SA, Ensbey KS, Jue TR, Jahan Z, Subramanian S, Anande G, Shen H, Unnikrishnan A, McDonald KL, Day BW, Pimanda JE. Constitutive CHK1 Expression Drives a pSTAT3-CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth. Mol Cancer Res 2020; 18:709-722. [PMID: 32079743 DOI: 10.1158/1541-7786.mcr-19-0934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/14/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
High-constitutive activity of the DNA damage response protein checkpoint kinase 1 (CHK1) has been shown in glioblastoma (GBM) cell lines and in tissue sections. However, whether constitutive activation and overexpression of CHK1 in GBM plays a functional role in tumorigenesis or has prognostic significance is not known. We interrogated multiple glioma patient cohorts for expression levels of CHK1 and the oncogene cancerous inhibitor of protein phosphatase 2A (CIP2A), a known target of high-CHK1 activity, and examined the relationship between these two proteins in GBM. Expression levels of CHK1 and CIP2A were independent predictors for reduced overall survival across multiple glioma patient cohorts. Using siRNA and pharmacologic inhibitors we evaluated the impact of their depletion using both in vitro and in vivo models and sought a mechanistic explanation for high CIP2A in the presence of high-CHK1 levels in GBM and show that; (i) CHK1 and pSTAT3 positively regulate CIP2A gene expression; (ii) pSTAT3 and CIP2A form a recursively wired transcriptional circuit; and (iii) perturbing CIP2A expression induces GBM cell senescence and retards tumor growth in vitro and in vivo. Taken together, we have identified an oncogenic transcriptional circuit in GBM that can be destabilized by targeting CIP2A. IMPLICATIONS: High expression of CIP2A in gliomas is maintained by a CHK1-dependent pSTAT3-CIP2A recursive loop; interrupting CIP2A induces cell senescence and slows GBM growth adding impetus to the development of CIP2A as an anticancer drug target.
Collapse
Affiliation(s)
- Anchit Khanna
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia. .,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sylvia A Chung
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Kathleen S Ensbey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Toni Rose Jue
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Zeenat Jahan
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Govardhan Anande
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Han Shen
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Kerrie L McDonald
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia. .,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
15
|
Tian J, Xu H, Zhang Y, Shi X, Wang W, Gao H, Bi Y. SAM targeting methylation by the methyl donor, a novel therapeutic strategy for antagonize PFOS transgenerational fertilitty toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109579. [PMID: 31505405 DOI: 10.1016/j.ecoenv.2019.109579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation have been suggested as possible mediators of long-term health effects of environmental stressors. This study aimed to evaluate the potential therapy of methylation of S-adenosyl-l-methionine (SAM) on PFOS induced trangeneral reproductive toxicity. In this study, postnatal 5d Sprague Dawley rats were randomly divided into four groups: control, PFOS, PFOS + SAM, and PFOS + Decitabine (DAC). The F0 rats were exposed to 5 mg/kg PFOS and SAM or DAC until PND60. The development of the offsprings were monitored without PFOS exposure. The fertility in F0, F1 rats, and change in F1 testes were observed. The results were as follows. The significant increase in F0 pregnancy rate, and survival rate in F1 offspring in PFOS + SAM relative to PFOS group were observed. Changes of birth weights and physical development in F1 offspring with SAM were approached as a corresponding variation of the control after the deparation period. No pregnant in F1 maternal rats in the PFOS and DAC groups were found, but pregnant in the SAM group. Significantly decrease in the percentage of abnormal seminiferous tubules and increase in expression of promyelocytic leukemia zinc finger (PLZF+) spermatogonial stem cells in F1 testis compared with the PFOS group. Taken together, Methyl donor SAM improve PLZF + spermatogonia stem cell proliferation, attenuate damage in testicular tissue structure, which subsequently improve the transgenerational growth retard and infertility induced by PFOS chronic stress.
Collapse
Affiliation(s)
- Jianying Tian
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, 430068, Hubei, China; Basic Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haiming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yawen Zhang
- Basic Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xinchen Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wencheng Wang
- Department of Neurology, People's Hospital of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Huanmin Gao
- Department of Neurology, People's Hospital of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Yongyi Bi
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, 430068, Hubei, China.
| |
Collapse
|
16
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
17
|
Hwang G, Verver DE, Handel MA, Hamer G, Jordan PW. Depletion of SMC5/6 sensitizes male germ cells to DNA damage. Mol Biol Cell 2018; 29:3003-3016. [PMID: 30281394 PMCID: PMC6333175 DOI: 10.1091/mbc.e18-07-0459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The structural maintenance of chromosomes complex SMC5/6 is thought to be essential for DNA repair and chromosome segregation during mitosis and meiosis. To determine the requirements of the SMC5/6 complex during mouse spermatogenesis we combined a conditional knockout allele for Smc5, with four germ cell–specific Cre-recombinase transgenes, Ddx4-Cre, Stra8-Cre, Spo11-Cre, and Hspa2-Cre, to mutate Smc5 in spermatogonia, in spermatocytes before meiotic entry, during early meiotic stages, and during midmeiotic stages, respectively. Conditional mutation of Smc5 resulted in destabilization of the SMC5/6 complex. Despite this, we observed only mild defects in spermatogenesis. Mutation of Smc5 mediated by Ddx4-Cre and Stra8-Cre resulted in partial loss of preleptotene spermatocytes; however, spermatogenesis progresses and mice are fertile. Mutation of Smc5 via Spo11-Cre or Hspa2-Cre did not result in detectable defects of spermatogenesis. Upon exposure to gamma irradiation or etoposide treatment, each conditional Smc5 mutant demonstrated an increase in the number of enlarged round spermatids with multiple acrosomes and supernumerary chromosome content. We propose that the SMC5/6 complex is not acutely required for premeiotic DNA replication and meiotic progression during mouse spermatogenesis; however, when germ cells are challenged by exogenous DNA damage, the SMC5/6 complex ensures genome integrity, and thus, fertility.
Collapse
Affiliation(s)
- G Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - D E Verver
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - M A Handel
- The Jackson Laboratory, Bar Harbor, ME 04609
| | - G Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - P W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
18
|
Enhanced expression of MycN/CIP2A drives neural crest toward a neural stem cell-like fate: Implications for priming of neuroblastoma. Proc Natl Acad Sci U S A 2018; 115:E7351-E7360. [PMID: 30021854 DOI: 10.1073/pnas.1800039115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a neural crest-derived childhood tumor of the peripheral nervous system in which MycN amplification is a hallmark of poor prognosis. Here we show that MycN is expressed together with phosphorylation-stabilizing factor CIP2A in regions of the neural plate destined to form the CNS, but MycN is excluded from the neighboring neural crest stem cell domain. Interestingly, ectopic expression of MycN or CIP2A in the neural crest domain biases cells toward CNS-like neural stem cells that express Sox2. Consistent with this, some forms of neuroblastoma have been shown to share transcriptional resemblance with CNS neural stem cells. As high MycN/CIP2A levels correlate with poor prognosis, we posit that a MycN/CIP2A-mediated cell-fate bias may reflect a possible mechanism underlying early priming of some aggressive forms of neuroblastoma. In contrast to MycN, its paralogue cMyc is normally expressed in the neural crest stem cell domain and typically is associated with better overall survival in clinical neuroblastoma, perhaps reflecting a more "normal" neural crest-like state. These data suggest that priming for some forms of aggressive neuroblastoma may occur before neural crest emigration from the CNS and well before sympathoadrenal specification.
Collapse
|
19
|
Tian Y, Chen H, Qiao L, Zhang W, Zheng J, Zhao W, Chen JJ, Zhang W. CIP2A facilitates the G1/S cell cycle transition via B-Myb in human papillomavirus 16 oncoprotein E6-expressing cells. J Cell Mol Med 2018; 22:4150-4160. [PMID: 29893470 PMCID: PMC6111863 DOI: 10.1111/jcmm.13693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Infection with high‐risk human papillomaviruses (HR‐HPVs, including HPV‐16, HPV‐18, HPV‐31) plays a central aetiologic role in the development of cervical carcinoma. The transforming properties of HR‐HPVs mainly reside in viral oncoproteins E6 and E7. E6 protein degrades the tumour suppressor p53 and abrogates cell cycle checkpoints. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that is involved in the carcinogenesis of many human malignancies. Our previous data showed that CIP2A was overexpressed in cervical cancer. However, the regulation of CIP2A by HPV‐16E6 remains to be elucidated. In this study, we demonstrated that HPV‐16E6 significantly up‐regulated CIP2A mRNA and protein expression in a p53‐degradation‐dependent manner. Knockdown of CIP2A by siRNA inhibited viability and DNA synthesis and caused G1 cell cycle arrest of 16E6‐expressing cells. Knockdown of CIP2A resulted in a significant reduction in the expression of cyclin‐dependent kinase 1 (Cdk1) and Cdk2. Although CIP2A has been reported to stabilize c‐Myc by inhibiting PP2A‐mediated dephosphorylation of c‐Myc, we have presented evidence that the regulation of Cdk1 and Cdk2 by CIP2A is dependent on transcription factor B‐Myb rather than c‐Myc. Taken together, our study reveals the role of CIP2A in abrogating the G1 checkpoint in HPV‐16E6‐expressing cells and helps in understanding the molecular basis of HPV‐induced oncogenesis.
Collapse
Affiliation(s)
- Yonghao Tian
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hanxiang Chen
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lijun Qiao
- Cancer Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wenhao Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Zheng
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weiming Zhao
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Cancer Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Yang CA, Chou IC, Cho DY, Lin CY, Huang HY, Ho YC, Liu TY, Li YH, Chang JG. Whole exome sequencing in Dandy-Walker variant with intellectual disability reveals an activating CIP2A mutation as novel genetic cause. Neurogenetics 2018; 19:157-163. [DOI: 10.1007/s10048-018-0548-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
|
21
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
22
|
Birkman EM, Elzagheid A, Jokilehto T, Avoranta T, Korkeila E, Kulmala J, Syrjänen K, Westermarck J, Sundström J. Protein phosphatase 2A (PP2A) inhibitor CIP2A indicates resistance to radiotherapy in rectal cancer. Cancer Med 2018; 7:698-706. [PMID: 29441695 PMCID: PMC5852361 DOI: 10.1002/cam4.1361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Abstract
Preoperative (chemo)radiotherapy, (C)RT, is an essential part of the treatment of rectal cancer patients, but tumor response to this therapy among patients is variable. Thus far, there are no clinical biomarkers that could be used to predict response to (C)RT or to stratify patients into different preoperative treatment groups according to their prognosis. Overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A) has been demonstrated in several cancers and is frequently associated with reduced survival. Recently, high CIP2A expression has also been indicated to contribute to radioresistance in head and neck squamous cell carcinoma, but few studies have examined the connection between CIP2A and radiation response regarding other malignancies. We have evaluated CIP2A protein expression levels in relation to tumor regression after preoperative (C)RT and survival of rectal adenocarcinoma patients. The effects of CIP2A knockdown by siRNA on cell survival were further investigated in colorectal cancer cells exposed to radiation. Patients with low‐CIP2A‐expressing tumors had more frequently moderate or excellent response to long‐course (C)RT than patients with high‐CIP2A‐expressing tumors. They also had higher 36‐month disease‐specific survival (DSS) rate in categorical analysis. In the multivariate analysis, low CIP2A expression level remained as an independent predictive factor for increased DSS. Suppression of CIP2A transcription by siRNA was found to sensitize colorectal cancer cells to irradiation and decrease their survival in vitro. In conclusion, these results suggest that by contributing to radiosensitivity of cancer cells, low CIP2A protein expression level associates with a favorable response to long‐course (C)RT in rectal cancer patients.
Collapse
Affiliation(s)
- Eva-Maria Birkman
- Department of Pathology, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Adam Elzagheid
- Department of Pathology, Faculty of Medicine, Benghazi University, Benghazi, Libya.,Department of Genetic Engineering, Biotechnology Research Center, Tripoli, Libya
| | - Terhi Jokilehto
- Department of Pathology, University of Turku, Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Tuulia Avoranta
- Department of Pathology, University of Turku, Turku, Finland.,Department of Oncology, University of Turku and Turku University Hospital, Turku, Finland
| | - Eija Korkeila
- Department of Oncology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarmo Kulmala
- Department of Oncology, University of Turku and Turku University Hospital, Turku, Finland
| | - Kari Syrjänen
- Department of Clinical Research, Biohit Oyj, Helsinki, Finland.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Jukka Westermarck
- Department of Pathology, University of Turku, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jari Sundström
- Department of Pathology, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
The role of CIP2A in cancer: A review and update. Biomed Pharmacother 2017; 96:626-633. [DOI: 10.1016/j.biopha.2017.08.146] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022] Open
|
24
|
Kim MO, Choe MH, Yoon YN, Ahn J, Yoo M, Jung KY, An S, Hwang SG, Oh JS, Kim JS. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells. Biochem Pharmacol 2017; 144:78-89. [PMID: 28813646 DOI: 10.1016/j.bcp.2017.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 2A (PP2A) is a critical tumor suppressor complex responsible for the inactivation of various oncogenes. Recently, PP2A reactivation has emerged asan anticancer strategy. Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous inhibitor of PP2A, is upregulated in many cancer cells, including non-small cell lung cancer (NSCLC) cells. We demonstrated that the antihelminthic drug niclosamide inhibited the expression of CIP2A and reactivated the tumor suppressor PP2A in NSCLC cells. We performed a drug-repurposing screen and identified niclosamide asa CIP2A suppressor in NSCLC cells. Niclosamide inhibited cell proliferation, colony formation, and tumor sphere formation, and induced mitochondrial dysfunction through increased mitochondrial ROS production in NSCLC cells; however, these effects were rescued by CIP2A overexpression, which indicated that the antitumor activity of niclosamide was dependent on CIP2A. We found that niclosamide increased PP2A activity through CIP2A inhibition, which reduced the phosphorylation of several oncogenic proteins. Moreover, we found that a niclosamide analog inhibited CIP2A expression and increased PP2A activity in several types of NSCLC cells. Finally, we showed that other well-known PP2A activators, including forskolin and FTY720, did not inhibit CIP2A and that their activities were not dependent on CIP2A. Collectively, our data suggested that niclosamide effectively suppressed CIP2A expression and subsequently activated PP2A in NSCLC cells. This provided strong evidence for the potential use of niclosamide asa PP2A-activating drug in the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Myeong-Ok Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Molecular-Targeted Drug Research Center and Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul, South Korea
| | - Min Ho Choe
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Department of Life Sciences and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Yi Na Yoon
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology, South Korea
| | - Jiyeon Ahn
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Minjin Yoo
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, South Korea
| | - Kwan-Young Jung
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, South Korea; Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sungkwan An
- Molecular-Targeted Drug Research Center and Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul, South Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, South Korea.
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology, South Korea.
| |
Collapse
|
25
|
Chen XD, Tang SX, Zhang JH, Zhang LT, Wang YW. CIP2A, an oncoprotein, is associated with cell proliferation, invasion and migration in laryngeal carcinoma cells. Oncol Rep 2017; 38:1005-1012. [PMID: 28656258 DOI: 10.3892/or.2017.5759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
Laryngeal carcinoma is one of the most common malignant tumors in otorhinolaryngology. Moreover, experimental investigation showed that cancerous inhibitor of protein phosphatase 2A (CIP2A) expressed highly in various cancers. Therefore, we investigated whether CIP2A can regulate the proliferation, invasion and migration by RNA interference in Hep-2 cells and AMC-NH-8 cells and further affect the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Overexpression of CIP2A was evaluated in tumor tissue and laryngeal cancer cell lines (Hep-2 and AMC-NH-8 cells) by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay. In a follow-up experiment, we confirmed that CIP2A siRNA effectively suppressed the cell proliferation at 48 and 72 h, and arrested cell cycle at G0/G1 in Hep-2 cells and AMC-NH-8 cells. The invasion and migration of cell in siRNA CIP2A group were markedly inhibited. Moreover, the experimental results showed that the expression levels of invasion- and migration-related genes, including E-cadherin, metastasis-associated gene 1 (MTA1) and matrix metalloproteinases-2/9 (MMP-2/9), were regulated by CIP2A siRNA. Phosphorylation levels of PI3K and AKT proteins were reduced by CIP2A siRNA. Importantly, it suggested signaling through PI3K/Akt as a critical mechanism by which CIP2A siRNA may suppress cell proliferation, invasion and migration in laryngeal carcinoma cells.
Collapse
Affiliation(s)
- Xu-Dong Chen
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo City, Zhejiang 315000, P.R. China
| | - Shi-Xiong Tang
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo City, Zhejiang 315000, P.R. China
| | - Jian-Hua Zhang
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo City, Zhejiang 315000, P.R. China
| | - Li-Tao Zhang
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo City, Zhejiang 315000, P.R. China
| | - Yao-Wen Wang
- Department of Otolaryngology, First Hospital of Ningbo City, Ningbo City, Zhejiang 315000, P.R. China
| |
Collapse
|
26
|
Wang J, Okkeri J, Pavic K, Wang Z, Kauko O, Halonen T, Sarek G, Ojala PM, Rao Z, Xu W, Westermarck J. Oncoprotein CIP2A is stabilized via interaction with tumor suppressor PP2A/B56. EMBO Rep 2017; 18:437-450. [PMID: 28174209 DOI: 10.15252/embr.201642788] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 01/20/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two-hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N-terminal CIP2A fragment (amino acids 1-560) at 3.0 Å resolution, and by subsequent structure-based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N-terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure-function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,College of Life Sciences, Nankai University, Tianjin, China
| | - Juha Okkeri
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland
| | - Karolina Pavic
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Otto Kauko
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku, Turku, Finland
| | - Tuuli Halonen
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Åbo Akademi University, Turku, Finland
| | - Grzegorz Sarek
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Päivi M Ojala
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku, Turku, Finland .,Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Zhao Q, Zhao M, Parris AB, Xing Y, Yang X. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells. Int J Oncol 2016; 49:1203-10. [PMID: 27574003 PMCID: PMC4948957 DOI: 10.3892/ijo.2016.3588] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022] Open
Abstract
Genistein is a soy isoflavone with phytoestrogen and tyrosine kinase inhibitory properties. High intake of soy/genistein has been associated with reduced breast cancer risk. Despite the advances in genistein-mediated antitumor studies, the underlying mechanisms remain unclear. In the present study, we investigated genistein-induced regulation of the cancerous inhibitor of protein phosphatase 2A (CIP2A), a novel oncogene frequently overexpressed in breast cancer, and its functional impact on genistein-induced growth inhibition and apoptosis. We demonstrated that genistein induced downregulation of CIP2A in MCF-7-C3 and T47D breast cancer cells, which was correlated with its growth inhibition and apoptotic activities. Overexpression of CIP2A attenuated, whereas CIP2A knockdown sensitized, genistein-induced growth inhibition and apoptosis. We further showed that genistein-induced downregulation of CIP2A involved both transcriptional suppression and proteasomal degradation. In particular, genistein at higher concentrations induced concurrent downregulation of E2F1 and CIP2A. Overexpression of E2F1 attenuated genistein-induced downregulation of CIP2A mRNA, indicating the role of E2F1 in genistein-induced transcriptional suppression of CIP2A. Taken together, our results identified CIP2A as a functional target of genistein and demonstrated that modulation of E2F1-mediated transcriptional regulation of CIP2A contributes to its downregulation. These data advance our understanding of genistein-induced growth inhibition and apoptosis, and support further investigation on CIP2A as a therapeutic target of relevant anticancer agents.
Collapse
Affiliation(s)
- Qingxia Zhao
- Basic Medical College of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ming Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Kannapolis, NC 28081, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Kannapolis, NC 28081, USA
| | - Ying Xing
- Basic Medical College of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biology, North Carolina Central University, Kannapolis, NC 28081, USA
| |
Collapse
|
28
|
Côme C, Cvrljevic A, Khan MM, Treise I, Adler T, Aguilar-Pimentel JA, Au-Yeung B, Sittig E, Laajala TD, Chen Y, Oeder S, Calzada-Wack J, Horsch M, Aittokallio T, Busch DH, Ollert MW, Neff F, Beckers J, Gailus-Durner V, Fuchs H, de Angelis MH, Chen Z, Lahesmaa R, Westermarck J. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection. PLoS One 2016; 11:e0152996. [PMID: 27100879 PMCID: PMC4839633 DOI: 10.1371/journal.pone.0152996] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects.
Collapse
Affiliation(s)
- Christophe Côme
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- * E-mail:
| | - Anna Cvrljevic
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mohd Moin Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), Medical Faculty, University of Turku, Turku, Finland
| | - Irina Treise
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Dermatology and Allergy, Biederstein, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Byron Au-Yeung
- Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Eleonora Sittig
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Teemu Daniel Laajala
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Yiling Chen
- Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sebastian Oeder
- Center of Allergy and Environment Munich (ZAUM), Technische Universität München (TUM), and Institute for Allergy Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich/Neuherberg, Germany
- Kühne Foundation, Christine Kühne Center for Allergy Research and Education (CK-CARE), Munich, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marion Horsch
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Markus W. Ollert
- Clinical Research Group Molecular Allergology, Center of Allergy and Environment Munich (ZAUM), Technische Universität München (TUM), and Institute for Allergy Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich/Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, Center for Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Zhi Chen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Pathology, University of Turku, Turku, Finland
| |
Collapse
|
29
|
Ventelä S, Mäkelä JA, Sears RC, Toppari J, Westermarck J. MYC is not detected in highly proliferating normal spermatogonia but is coupled with CIP2A in testicular cancers. ACTA ACUST UNITED AC 2016. [PMID: 29527532 PMCID: PMC5843371 DOI: 10.19185/matters.201602000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High MYC expression is linked to proliferative activity in most normal tissues and in cancer. MYC also supports self-renewal and proliferation of many types of tissue progenitor cells. Cancerous inhibitor of PP2A (CIP2A) promotes MYC phosphorylation and activity during intestinal crypt regeneration in vivo and in various cancers. CIP2A also supports male germ cell proliferation in vivo. However, the role of MYC in normal germ cell proliferation and spermatogonial progenitor self-renewal is currently unclear. Here, we demonstrate that male germ cells are CIP2A-positive but lack detectable levels of MYC protein; whereas MYC is highly expressed in Leydig cells and peritubular myoid cells contributing thereby to the testicular stem cell niche. On the other hand, MYC was co-expressed with CIP2A in testicular cancers. These results demonstrate that CIP2A and MYC are spatially uncoupled in the regulation of spermatogenesis, but functional relationship between these two human oncoproteins is established during testicular cancer transformation. We propose that further analysis of mechanisms of MYC silencing in spermatogonial progenitors may reveal novel fundamental information relevant to understanding of MYC expression in cancer.
Collapse
Affiliation(s)
- Sami Ventelä
- Department of Physiology, University of Turku; Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University; Centre for Biotechnology and Department of Pathology, University of Turku
| | - Juho-Antti Mäkelä
- Department of Physiology, University of Turku; Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University; Centre for Biotechnology and Department of Pathology, University of Turku
| | - Rosalie C Sears
- Department of Physiology, University of Turku; Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University; Centre for Biotechnology and Department of Pathology, University of Turku
| | - Jorma Toppari
- Department of Physiology, University of Turku; Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University; Centre for Biotechnology and Department of Pathology, University of Turku
| | - Jukka Westermarck
- Department of Physiology, University of Turku; Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University; Centre for Biotechnology and Department of Pathology, University of Turku
| |
Collapse
|
30
|
Routila J, Bilgen T, Saramäki O, Grénman R, Visakorpi T, Westermarck J, Ventelä S. Copy number increase of oncoprotein CIP2A is associated with poor patient survival in human head and neck squamous cell carcinoma. J Oral Pathol Med 2015; 45:329-37. [PMID: 26436875 DOI: 10.1111/jop.12372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND CIP2A, an inhibitor of PP2A tumour suppressor function, is a widely overexpressed biomarker of aggressive disease and poor therapy response in multiple human cancer types. METHODS CIP2A and DPPA4 copy number alterations and expression were analysed by fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) in different cell lines and a tissue microarray of 52 HNSCC patients. Results were correlated with patient survival and other clinicopathological data. RESULTS CIP2A and DPPA4 copy number increase occurred at a relatively high frequency in human HNSCC patient samples. CIP2A but not DPPA4 FISH status was significantly associated with patient survival. CIP2A detection by combining IHC with FISH yielded superior resolution in the prognostication of HNSCC. CONCLUSIONS CIP2A copy number increase is associated with poor patient survival in human HNSCC. We suggest that the reliability and prognostic value of CIP2A detection can be improved by performing FISH analysis to CIP2A IHC positive tumours.
Collapse
Affiliation(s)
- Johannes Routila
- Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Türker Bilgen
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere, Tampere, Finland.,Research and Application Centre for Scientific and Technological Investigations (NABILTEM), Namik Kemal University, Tekirdag, Turkey
| | - Outi Saramäki
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Jukka Westermarck
- Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku, Turku, Finland
| | - Sami Ventelä
- Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| |
Collapse
|
31
|
Routila J, Mäkelä JA, Luukkaa H, Leivo I, Irjala H, Westermarck J, Mäkitie A, Ventelä S. Potential role for inhibition of protein phosphatase 2A tumor suppressor in salivary gland malignancies. Genes Chromosomes Cancer 2015; 55:69-81. [DOI: 10.1002/gcc.22312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 09/06/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Johannes Routila
- The Centre for Biotechnology; University of Turku and Åbo Akademi University; Tykistökatu BioCity Turku FI-20521 Finland
| | - Juho-Antti Mäkelä
- Department of Physiology; University of Turku; Kiinamyllynkatu 10 Turku FI-20520 Finland
| | - Heikki Luukkaa
- Department of Otorhinolaryngology-Head and Neck Surgery; Turku University Hospital; Kiinamyllynkatu 4-8 Turku FI-20521 Finland
| | - Ilmo Leivo
- Department of Pathology; University of Turku; Kiinamyllynkatu 10 Turku FI-20520 Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery; Turku University Hospital; Kiinamyllynkatu 4-8 Turku FI-20521 Finland
| | - Jukka Westermarck
- The Centre for Biotechnology; University of Turku and Åbo Akademi University; Tykistökatu BioCity Turku FI-20521 Finland
- Department of Pathology; University of Turku; Kiinamyllynkatu 10 Turku FI-20520 Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery; Helsinki University Central Hospital and University of Helsinki; HUCH Helsinki FI-00029 Finland
| | - Sami Ventelä
- The Centre for Biotechnology; University of Turku and Åbo Akademi University; Tykistökatu BioCity Turku FI-20521 Finland
- Department of Otorhinolaryngology-Head and Neck Surgery; Turku University Hospital; Kiinamyllynkatu 4-8 Turku FI-20521 Finland
| |
Collapse
|
32
|
Zhang X, Xu B, Sun C, Wang L, Miao X. Knockdown of CIP2A sensitizes ovarian cancer cells to cisplatin: an in vitro study. Int J Clin Exp Med 2015; 8:16941-7. [PMID: 26629248 PMCID: PMC4659136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND CIP2A is a recently characterized oncoprotein which involves in the progression of several human malignancies. CIP2A is overexpressed in human ovarian cancer and regulates cell proliferation and apoptosis. This study was performed to investigate the role of CIP2A in ovarian cancer (OC) chemoresistance. METHODS Using DDP-resistant SKOV3 cells (SKOV3(DDP)), we first determined the effect of CIP2A silencing by siRNA-mediated knockdown of CIP2A on chemosensitivity in vitro; we then determined the effect of pCDNA3.1-mediated overexpression of CIP2A on chemosensitivity in SKOV3 cells in vitro. To elucidate the molecular mechanisms underlying CIP2A-mediated chemoresistance, the activities of AKT signaling molecules associated with CIP2A were analyzed. RESULTS Knockdown of endogenous CIP2A in SKOV3(DDP) cells resulted in the reduction in cell growth and increase in the chemosensitivity of SKOV3(DDP) cells to DDP in vitro, which may be caused by CIP2A-induced AKT activity inhibition. Notably, CIP2A overexpression could significantly decrease the sensitivities of SKOV3 cells to cisplatin, which might be ascribed to CIP2A-induced activation of the AKT pathway. CONCLUSIONS Taken together, the results suggest that CIP2A contributes to cisplatin resistance in OC. Thus, CIP2A is a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Gynecology, People’s Hospital of RizhaoRizhao, China
| | - Bin Xu
- Department of Obstetrics, People’s Hospital of RizhaoRizhao, China
| | - Chuanying Sun
- Department of Obstetrics, People’s Hospital of RizhaoRizhao, China
| | - Liming Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao UniversityQingdao, China
| | - Xia Miao
- Department of Clinical Lab, People’s Hospital of WeifangWeifang, China
| |
Collapse
|
33
|
Ventelä S, Sittig E, Mannermaa L, Mäkelä JA, Kulmala J, Löyttyniemi E, Strauss L, Cárpen O, Toppari J, Grénman R, Westermarck J. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget 2015; 6:144-58. [PMID: 25474139 PMCID: PMC4381584 DOI: 10.18632/oncotarget.2670] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022] Open
Abstract
Radiotherapy is a mainstay for treatment of many human cancer types, including head and neck squamous cell carcinoma (HNSCC). Thereby, it is clinically very relevant to understand the mechanisms determining radioresistance. Here, we identify CIP2A as an Oct4 target gene and provide evidence that they co-operate in radioresistance. Oct4 positively regulates CIP2A expression both in testicular cancer cell lines as well as in embryonic stem cells. To expand the relevance of these findings we show that Oct4 and CIP2A are co-expressed in CD24 positive side-population of patient-derived HNSCC cell lines. Most importantly, all Oct4 positive HNSCC patient samples were CIP2A positive and this double positivity was linked to poor differentiation level, and predicted for decreased patient survival among radiotherapy treated HNSCC patients. Oct4 and CIP2A expression was also linked with increased aggressiveness and radioresistancy in HNSCC cell lines. Together we demonstrate that CIP2A is a novel Oct4 target gene in stem cells and in human cancer cell lines. Clinically these results suggest that diagnostic evaluation of HNSCC tumors for Oct4 or Oct4/CIP2A positivity might help to predict HNSCC tumor radioresistancy. These results also identify both Oct4 and CIP2A as potential targets for radiosensitation.
Collapse
Affiliation(s)
- Sami Ventelä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland. Department of Physiology, University of Turku, Finland. Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Eleonora Sittig
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | - Leni Mannermaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | | | - Jarmo Kulmala
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | | | - Leena Strauss
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland
| | - Olli Cárpen
- Department of Pathology, University of Turku, Finland
| | - Jorma Toppari
- Department of Physiology, University of Turku, Finland. Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland. Department of Pathology, University of Turku, Finland
| |
Collapse
|
34
|
Myant K, Qiao X, Halonen T, Come C, Laine A, Janghorban M, Partanen JI, Cassidy J, Ogg EL, Cammareri P, Laiterä T, Okkeri J, Klefström J, Sears RC, Sansom OJ, Westermarck J. Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation. Cell Rep 2015; 12:1019-31. [PMID: 26235622 PMCID: PMC4535171 DOI: 10.1016/j.celrep.2015.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
An understanding of the mechanisms determining MYC's transcriptional and proliferation-promoting activities in vivo could facilitate approaches for MYC targeting. However, post-translational mechanisms that control MYC function in vivo are poorly understood. Here, we demonstrate that MYC phosphorylation at serine 62 enhances MYC accumulation on Lamin A/C-associated nuclear structures and that the protein phosphatase 2A (PP2A) inhibitor protein CIP2A is required for this process. CIP2A is also critical for serum-induced MYC phosphorylation and for MYC-elicited proliferation induction in vitro. Complementary transgenic approaches and an intestinal regeneration model further demonstrated the in vivo importance of CIP2A and serine 62 phosphorylation for MYC activity upon DNA damage. However, targeting of CIP2A did not influence the normal function of intestinal crypt cells. These data underline the importance of nuclear organization in the regulation of MYC phosphorylation, leading to an in vivo demonstration of a strategy for inhibiting MYC activity without detrimental physiological effects.
Collapse
Affiliation(s)
- Kevin Myant
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Xi Qiao
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Tuuli Halonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Christophe Come
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anni Laine
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mahnaz Janghorban
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Johanna I Partanen
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - John Cassidy
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Erinn-Lee Ogg
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | | | - Tiina Laiterä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Okkeri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Klefström
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK.
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
35
|
Leucine-rich repeat-containing protein 59 mediates nuclear import of cancerous inhibitor of PP2A in prostate cancer cells. Tumour Biol 2015; 36:6383-90. [PMID: 25833693 DOI: 10.1007/s13277-015-3326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
Using yeast two-hybrid analysis, we identified several novel protein interactions for the oncoprotein Cancerous Inhibitor of PP2A (CIP2A) and confirmed a subset of these interactions in human cancer cell lines. Analysis of the interaction in prostate carcinoma cells between CIP2A and leucine-rich repeat-containing protein 59 (LRRC59) suggests that CIP2A is translocated into the nucleus at G2/M through its association with LRRC59. Recent work by others has demonstrated that nuclear CIP2A disrupts mitotic checkpoints, which promotes deregulation of the cell cycle and increases cancerous phenotypes. Thus, we provide a novel therapeutic mechanism for inhibiting CIP2A function in cancerous cells via targeting the CIP2A-LRRC59 interaction.
Collapse
|
36
|
Khanna A, Pimanda JE. Clinical significance of cancerous inhibitor of protein phosphatase 2A in human cancers. Int J Cancer 2015; 138:525-32. [DOI: 10.1002/ijc.29431] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Anchit Khanna
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales (UNSW) Medicine Department; Sydney New South Wales 2052 Australia
| | - John E. Pimanda
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales (UNSW) Medicine Department; Sydney New South Wales 2052 Australia
- Department of Haematology; the Prince of Wales Hospital; Randwick New South Wales Australia
| |
Collapse
|
37
|
Haesen D, Sents W, Lemaire K, Hoorne Y, Janssens V. The Basic Biology of PP2A in Hematologic Cells and Malignancies. Front Oncol 2014; 4:347. [PMID: 25566494 PMCID: PMC4263090 DOI: 10.3389/fonc.2014.00347] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 12/30/2022] Open
Abstract
Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Ward Sents
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| |
Collapse
|
38
|
De P, Carlson J, Leyland-Jones B, Dey N. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): an oncoprotein with many hands. Oncotarget 2014; 5:4581-602. [PMID: 25015035 PMCID: PMC4148086 DOI: 10.18632/oncotarget.2127] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
Oncoprotein CIP2A a Cancerous Inhibitor of PP2A forms an "oncogenic nexus" by virtue of its control on PP2A and MYC stabilization in cancer cells. The expression and prognostic function of CIP2A in different solid tumors including colorectal carcinoma, head and neck cancers, gastric cancers, lung carcinoma, cholangiocarcinoma, esophageal cancers, pancreatic carcinoma, brain cancers, breast carcinoma, bladder cancers, ovarian carcinoma, renal cell carcinomas, tongue cancers, cervical carcinoma, prostate cancers, and oral carcinoma as well as a number of hematological malignancies are just beginning to emerge. Herein, we reviewed the recent progress in our understanding of (1) how an "oncogenic nexus" of CIP2A participates in the tumorigenic transformation of cells and (2) how we can prospect/view the clinical relevance of CIP2A in the context of cancer therapy. The review will try to understand the role of CIP2A (a) as a biomarker in cancers and evaluate the prognostic value of CIP2A in different cancers (b) as a therapeutic target in cancers and (c) in drug response and developing chemo-resistance in cancers.
Collapse
Affiliation(s)
- Pradip De
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD
| | - Jennifer Carlson
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
| | - Brian Leyland-Jones
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD
| | - Nandini Dey
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD
| |
Collapse
|
39
|
Reconstruction of mouse testicular cellular microenvironments in long-term seminiferous tubule culture. PLoS One 2014; 9:e90088. [PMID: 24619130 PMCID: PMC3949678 DOI: 10.1371/journal.pone.0090088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022] Open
Abstract
Research on spermatogonia is hampered by complex architecture of the seminiferous tubule, poor viability of testicular tissue ex vivo and lack of physiologically relevant long-term culture systems. Therefore there is a need for an in vitro model that would enable long term survival and propagation of spermatogonia. We aimed at the most simplified approach to enable all different cell types within the seminiferous tubules to contribute to the creation of a niche for spermatogonia. In the present study we describe the establishment of a co-culture of mouse testicular cells that is based on proliferative and migratory activity of seminiferous tubule cells and does not involve separation, purification or differential plating of individual cell populations. The co-culture is composed of the constituents of testicular stem cell niche: Sertoli cells [identified by expression of Wilm's tumour antigen 1 (WT1) and secretion of glial cell line-derived neurotrophic factor, GDNF], peritubular myoid cells (expressing alpha smooth muscle actin, αSMA) and spermatogonia [expressing MAGE-B4, PLZF (promyelocytic leukaemia zinc finger), LIN28, Gpr125 (G protein-coupled receptor 125), CD9, c-Kit and Nanog], and can be maintained for at least five weeks. GDNF was found in the medium at a sufficient concentration to support proliferating spermatogonial stem cells (SSCs) that were able to start spermatogenic differentiation after transplantation to an experimentally sterile recipient testis. Gdnf mRNA levels were elevated by follicle-stimulating hormone (FSH) which shows that the Sertoli cells in the co-culture respond to physiological stimuli. After approximately 2–4 weeks of culture a spontaneous formation of cord-like structures was monitored. These structures can be more than 10 mm in length and branch. They are formed by peritubular myoid cells, Sertoli cells, fibroblasts and spermatogonia as assessed by gene expression profiling. In conclusion, we have managed to establish in vitro conditions that allow spontaneous reconstruction of testicular cellular microenvironments.
Collapse
|
40
|
Liu Z, Ma L, Wen ZS, Cheng YX, Zhou GB. Ethoxysanguinarine Induces Inhibitory Effects and Downregulates CIP2A in Lung Cancer Cells. ACS Med Chem Lett 2014; 5:113-8. [PMID: 24900782 PMCID: PMC4027744 DOI: 10.1021/ml400341k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that is able to stabilize c-Myc oncogenic transcription factor and promote proliferation and transformation of cells. CIP2A is overexpressed in many primary tumors, and pharmacological inactivation of CIP2A is an emerging concept for the development of novel anticancer agents. In this study, we demonstrate that overexpression of CIP2A predicts poor prognosis in lung cancer, and a natural compound, ethoxysanguinarine (ESG), effectively downregulates CIP2A protein and its downstream signaling molecules, c-Myc and pAkt, and induces protein phosphatase 2A (PP2A) activity. ESG inhibits proliferation and induces apoptosis of lung cancer cells, and enhances the effects of cisplatin on malignant cells. Taken together, our findings demonstrate that CIP2A is inversely associated with the clinical outcome of lung cancer, and ESG can serve as a lead compound for the development of CIP2A inhibitor for cancer therapies.
Collapse
Affiliation(s)
- Zi Liu
- Division
of Molecular Carcinogenesis and Targeted Therapy for Cancer, State
Key Laboratory of Biomembrane and Membrane Biotechnology, Institute
of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- Division
of Molecular Carcinogenesis and Targeted Therapy for Cancer, State
Key Laboratory of Biomembrane and Membrane Biotechnology, Institute
of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhe-Sheng Wen
- Department
of Thoracic Surgery, The Cancer Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong-Xian Cheng
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy
of Sciences, Kunming 650201, China
| | - Guang-Biao Zhou
- Division
of Molecular Carcinogenesis and Targeted Therapy for Cancer, State
Key Laboratory of Biomembrane and Membrane Biotechnology, Institute
of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
Jeong AL, Lee S, Park JS, Han S, Jang CY, Lim JS, Lee MS, Yang Y. Cancerous inhibitor of protein phosphatase 2A (CIP2A) protein is involved in centrosome separation through the regulation of NIMA (never in mitosis gene A)-related kinase 2 (NEK2) protein activity. J Biol Chem 2013; 289:28-40. [PMID: 24214971 DOI: 10.1074/jbc.m113.507954] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is overexpressed in most human cancers and has been described as being involved in the progression of several human malignancies via the inhibition of protein phosphatase 2A (PP2A) activity toward c-Myc. However, with the exception of this role, the cellular function of CIP2A remains poorly understood. On the basis of yeast two-hybrid and coimmunoprecipitation assays, we demonstrate here that NIMA (never in mitosis gene A)-related kinase 2 (NEK2) is a binding partner for CIP2A. CIP2A exhibited dynamic changes in distribution, including the cytoplasm and centrosome, depending on the cell cycle stage. When CIP2A was depleted, centrosome separation and the mitotic spindle dynamics were impaired, resulting in the activation of spindle assembly checkpoint signaling and, ultimately, extension of the cell division time. Our data imply that CIP2A strongly interacts with NEK2 during G2/M phase, thereby enhancing NEK2 kinase activity to facilitate centrosome separation in a PP1- and PP2A-independent manner. In conclusion, CIP2A is involved in cell cycle progression through centrosome separation and mitotic spindle dynamics.
Collapse
Affiliation(s)
- Ae Lee Jeong
- From the Research Center for Women's Disease, Department of Life Systems and
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Khanna A, Pimanda JE, Westermarck J. Cancerous Inhibitor of Protein Phosphatase 2A, an Emerging Human Oncoprotein and a Potential Cancer Therapy Target. Cancer Res 2013; 73:6548-53. [DOI: 10.1158/0008-5472.can-13-1994] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Khanna A, Kauko O, Böckelman C, Laine A, Schreck I, Partanen JI, Szwajda A, Bormann S, Bilgen T, Helenius M, Pokharel YR, Pimanda J, Russel MR, Haglund C, Cole KA, Klefström J, Aittokallio T, Weiss C, Ristimäki A, Visakorpi T, Westermarck J. Chk1 targeting reactivates PP2A tumor suppressor activity in cancer cells. Cancer Res 2013; 73:6757-69. [PMID: 24072747 DOI: 10.1158/0008-5472.can-13-1002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Checkpoint kinase Chk1 is constitutively active in many cancer cell types and new generation Chk1 inhibitors show marked antitumor activity as single agents. Here we present a hitherto unrecognized mechanism that contributes to the response of cancer cells to Chk1-targeted therapy. Inhibiting chronic Chk1 activity in cancer cells induced the tumor suppressor activity of protein phosphatase protein phosphatase 2A (PP2A), which by dephosphorylating MYC serine 62, inhibited MYC activity and impaired cancer cell survival. Mechanistic investigations revealed that Chk1 inhibition activated PP2A by decreasing the transcription of cancerous inhibitor of PP2A (CIP2A), a chief inhibitor of PP2A activity. Inhibition of cancer cell clonogenicity by Chk1 inhibition could be rescued in vitro either by exogenous expression of CIP2A or by blocking the CIP2A-regulated PP2A complex. Chk1-mediated CIP2A regulation was extended in tumor models dependent on either Chk1 or CIP2A. The clinical relevance of CIP2A as a Chk1 effector protein was validated in several human cancer types, including neuroblastoma, where CIP2A was identified as an NMYC-independent prognostic factor. Because the Chk1-CIP2A-PP2A pathway is driven by DNA-PK activity, functioning regardless of p53 or ATM/ATR status, our results offer explanative power for understanding how Chk1 inhibitors mediate single-agent anticancer efficacy. Furthermore, they define CIP2A-PP2A status in cancer cells as a pharmacodynamic marker for their response to Chk1-targeted therapy.
Collapse
Affiliation(s)
- Anchit Khanna
- Authors' Affiliations: Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital; Tampere Graduate Program in Biomedicine and Biotechnology (TGPBB), University of Tampere, Tampere; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University; Department of Pathology, University of Turku; Turku Doctoral Program of Biomedical Sciences (TuBS), Turku; Department of Pathology, HUSLAB and Haartman Institute, Helsinki University, Central Hospital and University of Helsinki; University of Helsinki Institute of Biomedicine and Genome-Scale Biology Research Program; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Karlsruhe Institute of Technology, Campus North, Institute of Toxicology and Genetics, Karlsruhe, Germany; Adult Cancer Program, Lowy Cancer Centre and Prince of Wales Hospital, UNSW Medicine, University of New South Wales, Sydney, Australia; Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey; Division of Oncology, Children's Hospital of Philadelphia; and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee KH, Lee WY, Kim JH, Yoon MJ, Kim NH, Kim JH, Uhm SJ, Kim DH, Chung HJ, Song H. Characterization of GFRα-1-Positive and GFRα-1-Negative Spermatogonia in Neonatal Pig Testis. Reprod Domest Anim 2013; 48:954-60. [DOI: 10.1111/rda.12193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Affiliation(s)
- KH Lee
- Department of Animal and Food Bioscience; College of Biomedical and Health Science; Konkuk University; Chung-ju Korea Korea
| | - WY Lee
- Department of Animal and Food Bioscience; College of Biomedical and Health Science; Konkuk University; Chung-ju Korea Korea
| | - JH Kim
- Major in Animal Biotechnology; College of Animal Biotechnology; Konkuk University; Seoul Korea
| | - MJ Yoon
- Division of Animal Science and Biotechnology; Kyungpook National University; Sang-ju Korea
| | - NH Kim
- Department of Animal Science; College of Agriculture; Chungbuk National University; Choung-ju Korea
| | - JH Kim
- CHA Stem Cell Institute; Graduate School of Life Science and Biotechnology; Pochon CHA University; Seoul Korea
| | - SJ Uhm
- Department of Animal Science & Biotechnology; Sangji Youngseo College; Wonju Korea
| | - DH Kim
- Animal Biotechnology Division; National Institute of Animal Science; RDA; Suwon Korea
| | - HJ Chung
- Animal Biotechnology Division; National Institute of Animal Science; RDA; Suwon Korea
| | - H Song
- Department of Animal and Food Bioscience; College of Biomedical and Health Science; Konkuk University; Chung-ju Korea Korea
| |
Collapse
|
45
|
Laine A, Sihto H, Come C, Rosenfeldt MT, Zwolinska A, Niemelä M, Khanna A, Chan EK, Kähäri VM, Kellokumpu-Lehtinen PL, Sansom OJ, Evan GI, Junttila MR, Ryan KM, Marine JC, Joensuu H, Westermarck J. Senescence sensitivity of breast cancer cells is defined by positive feedback loop between CIP2A and E2F1. Cancer Discov 2013; 3:182-97. [PMID: 23306062 PMCID: PMC3572190 DOI: 10.1158/2159-8290.cd-12-0292] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Senescence induction contributes to cancer therapy responses and is crucial for p53-mediated tumor suppression. However, whether p53 inactivation actively suppresses senescence induction has been unclear. Here, we show that E2F1 overexpression, due to p53 or p21 inactivation, promotes expression of human oncoprotein CIP2A, which in turn, by inhibiting PP2A activity, increases stabilizing serine 364 phosphorylation of E2F1. Several lines of evidence show that increased activity of E2F1-CIP2A feedback renders breast cancer cells resistant to senescence induction. Importantly, mammary tumorigenesis is impaired in a CIP2A-deficient mouse model, and CIP2A-deficient tumors display markers of senescence induction. Moreover, high CIP2A expression predicts for poor prognosis in a subgroup of patients with breast cancer treated with senescence-inducing chemotherapy. Together, these results implicate the E2F1-CIP2A feedback loop as a key determinant of breast cancer cell sensitivity to senescence induction. This feedback loop also constitutes a promising prosenescence target for therapy of cancers with an inactivated p53-p21 pathway. SIGNIFICANCE It has been recently realized that most currently used chemotherapies exert their therapeutic effect at least partly by induction of terminal cell arrest, senescence. However, the mechanisms by which cell-intrinsic senescence sensitivity is determined are poorly understood. Results of this study identify the E2F1-CIP2A positive feedback loop as a key determinant of breast cancer cell sensitivity to senescence and growth arrest induction. Our data also indicate that this newly characterized interplay between 2 frequently overexpressed oncoproteins constitutes a promising prosenescence target for therapy of cancers with inactivated p53 and p21. Finally, these results may also facilitate novel stratification strategies for selection of patients to receive senescence-inducing cancer therapies.
Collapse
MESH Headings
- Animals
- Antinematodal Agents/pharmacology
- Autoantigens/genetics
- Autoantigens/metabolism
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cellular Senescence
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Docetaxel
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Embryo, Mammalian/cytology
- Feedback, Physiological
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- HCT116 Cells
- Humans
- Intracellular Signaling Peptides and Proteins
- MCF-7 Cells
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Reverse Transcriptase Polymerase Chain Reaction
- Taxoids/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Vinblastine/analogs & derivatives
- Vinblastine/pharmacology
- Vinorelbine
Collapse
Affiliation(s)
- Anni Laine
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Pathology, University of Turku, Turku, Finland
- Turku Doctoral Program of Biomedical Sciences, Turku, Finland
| | - Harri Sihto
- Laboratory of Molecular Oncology, Molecular Cancer Biology program, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Christophe Come
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Aleksandra Zwolinska
- Center for Human Genetics & VIB11 - Center for Biology of Disease, Laboratory for Molecular Cancer Biology, VIB-KULeuven, Leuven , Belgium
| | - Minna Niemelä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Anchit Khanna
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Edward K. Chan
- Department of Oral Biology, University of Florida, 32610-0424 Gainesville, FL, USA
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Glasgow, G61 1BD, UK
| | - Gerard I. Evan
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - Melissa R. Junttila
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - Kevin M. Ryan
- The Beatson Institute for Cancer Research, Glasgow, G61 1BD, UK
| | - Jean-Christophe Marine
- Center for Human Genetics & VIB11 - Center for Biology of Disease, Laboratory for Molecular Cancer Biology, VIB-KULeuven, Leuven , Belgium
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Central Hospital, and University of Helsinki, Helsinki, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Pathology, University of Turku, Turku, Finland
| |
Collapse
|