1
|
Predtechenskaya M, Arbizzani CJ, Shomento SR, Borgogna TR, Voyich JM. Lung surfactant reduces Staphylococcus aureus cytotoxicity and protects host immune cells from membrane damage. Microbiol Spectr 2025:e0138624. [PMID: 40237467 DOI: 10.1128/spectrum.01386-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/20/2025] [Indexed: 04/18/2025] Open
Abstract
In this study, we identify that lung surfactant significantly reduces the cytotoxicity of Staphylococcus aureus (S. aureus) membrane-damaging toxins. Data demonstrate that natural surfactants from mice and rats and commercially available surfactant, Infasurf, protect human primary cells (neutrophils and peripheral blood mononuclear cells) from cytolytic activity caused by S. aureus supernatants. Supernatants from S. aureus grown in surfactant showed a significant reduction in plasma membrane damage against primary human cells as compared to supernatants grown without surfactant. This reduction was not due to a direct bactericidal effect of the surfactants on S. aureus growth. Rat and mouse surfactants downregulated the gene expression of saeR, the response regulator of the S. aureus two-component system SaeR/S that is responsible for the production of virulence factors which are important during lung infection and cause membrane damage in host cells. Rat and lung surfactants also reduced transcript abundance of SaeR/S-regulated genes lukF-PV, hla, and hlgA. Interestingly, the commercially available surfactant Infasurf did not recapitulate the effect of natural surfactants and did not decrease gene transcription of the virulence genes tested. These data suggest that components of natural surfactants protect lungs from S. aureus by suppressing S. aureus virulence factors and have implications for the role of surfactants in host defense against S. aureus.IMPORTANCEThis study explored the influence of lung surfactants on membrane-damaging Staphylococcus aureus (S. aureus) toxins. We demonstrate that natural and commercially available lung surfactants minimize the cytolytic capacity of S. aureus supernatants against primary human cells. Data indicate that cytolytic reduction by mouse and rat surfactants was partially due to surfactants reducing transcript abundance of virulence factors. This work identifies a novel role for surfactants and suggests their importance in modulating the severity of S. aureus lung infections.
Collapse
Affiliation(s)
- Maria Predtechenskaya
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Corbin J Arbizzani
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Sofia R Shomento
- University of Washington, School of Medicine, Seattle, Washington, USA
| | - Timothy R Borgogna
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Jovanka M Voyich
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Bartsch B, Ackerschott A, Al Zaidi M, Jamin RN, Nazir MLF, Altrogge M, Fester L, Lambertz J, Coburn M, Nickenig G, Parcina M, Zimmer S, Weisheit CK. A novel approach to studying infective endocarditis: Ultrasound-guided wire injury and bacterial challenge in mice. PLoS One 2025; 20:e0318955. [PMID: 40193365 PMCID: PMC11975138 DOI: 10.1371/journal.pone.0318955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/23/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Infective endocarditis (IE) is frequently caused by Staphylococcus aureus (S. aureus) and most commonly affects the aortic valve. Early diagnosis and treatment initiation are challenging because the involved immunological processes are poorly understood due to a lack of suitable in vivo models. OBJECTIVES To establish a novel reproducible murine IE model, based on ultrasound-guided wire injury (WI) induced endothelial damage. METHODS IE was established by inducing endothelial damage via ultrasound-guided wire injury followed by bacterial challenge with S. aureus using 104-6 colony-forming units (CFU) 24h to 72h after wire injury. Cross-sections of valvular leaflets were prepared for scanning electron microscopy (SEM) and immunofluorescence microscopy to visualize valvular invasion of macrophages, neutrophils, and S. aureus. Bacterial cultivation was carried out from blood and valve samples. Systemic immune response was assessed using flow cytometry. RESULTS Wire injury induced endothelial damage was observed in all mice after wire-injury in SEM imaging. We reliably induced IE using 105 (85%) and 106 (91%) CFU S. aureus after wire injury. Aortic regurgitation was more prevalent in wire injury mice after bacterial challenge. Mice undergoing bacterial challenge responded with significant neutrophilia and elevated pro-inflammatory cytokines in the blood. Immunofluorescence staining revealed significantly increased immune cell accumulations using our proposed model compared to controls. CONCLUSION Echocardiography and ex vivo histological staining demonstrated consistent infective endocarditis induction in our new model, combining a wire injury-induced endothelial damage and S. aureus administration. Further exploration of the initial immune cell response and biomarker expression could potentially identify indicators for early IE diagnosis and novel treatment targets.
Collapse
Affiliation(s)
- Benedikt Bartsch
- Department of Internal Medicine-II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Ansgar Ackerschott
- Department of Internal Medicine-II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Muntadher Al Zaidi
- Department of Internal Medicine-II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Raul Nicolas Jamin
- Department of Internal Medicine-II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Mariam Louis Fathy Nazir
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Moritz Altrogge
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Lars Fester
- Institute of Neuroanatomy of the University of Bonn, University Bonn, Bonn, Germany
| | - Jessica Lambertz
- Institute of Neuroanatomy of the University of Bonn, University Bonn, Bonn, Germany
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine-II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Sebastian Zimmer
- Department of Internal Medicine-II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
3
|
Hajam IA, Tsai CM, Gonzalez C, Caldera JR, Lázaro Díez M, Du X, Aralar A, Lin B, Duong W, Liu GY. Pathobiont-induced suppressive immune imprints thwart T cell vaccine responses. Nat Commun 2024; 15:10335. [PMID: 39681568 PMCID: PMC11649901 DOI: 10.1038/s41467-024-54644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Pathobionts have evolved many strategies to coexist with the host, but how immune evasion mechanisms contribute to the difficulty of developing vaccines against pathobionts is unclear. Meanwhile, Staphylococcus aureus (SA) has resisted human vaccine development to date. Here we show that prior SA exposure induces non-protective CD4+ T cell imprints, leading to the blunting of protective IsdB vaccine responses. Mechanistically, these SA-experienced CD4+ T cells express IL-10, which is further amplified by vaccination and impedes vaccine protection by binding with IL-10Rα on CD4+ T cell and inhibit IL-17A production. IL-10 also mediates cross-suppression of IsdB and sdrE multi-antigen vaccine. By contrast, the inefficiency of SA IsdB, IsdA and MntC vaccines can be overcome by co-treatment with adjuvants that promote IL-17A and IFN-γ responses. We thus propose that IL-10 secreting, SA-experienced CD4+ T cell imprints represent a staphylococcal immune escaping mechanism that needs to be taken into consideration for future vaccine development.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Juan Raphael Caldera
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- Quest Diagnostics, 33608 Ortega Hwy., San Juan Capistrano, CA, 92675, USA
| | - María Lázaro Díez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- AIDS Research Institute (IrsiCaixa). VIRus Immune Escape and VACcine Design (VIRIEVAC) Universitary Hospital German Trias i Pujol Crta Canyet s/n 08916, Badalona, Barcelona, Spain
| | - Xin Du
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - April Aralar
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - William Duong
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
4
|
Nygaard TK, Borgogna TR, Pallister KB, Predtechenskaya M, Burroughs OS, Gao A, Lubick EG, Voyich JM. The Relative Importance of Cytotoxins Produced by Methicillin-Resistant Staphylococcus aureus Strain USA300 for Causing Human PMN Destruction. Microorganisms 2024; 12:1782. [PMID: 39338457 PMCID: PMC11434515 DOI: 10.3390/microorganisms12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a prominent Gram-positive bacterial pathogen that expresses numerous cytotoxins known to target human polymorphonuclear leukocytes (PMNs or neutrophils). These include leukocidin G/H (LukGH, also known as LukAB), the Panton-Valentine leukocidin (PVL), γ-hemolysin A/B (HlgAB), γ-hemolysin B/C (HlgBC), leukocidin E/D (LukED), α-hemolysin (Hla), and the phenol-soluble modulin-α peptides (PSMα). However, the relative contribution of each of these cytotoxins in causing human PMN lysis is not clear. In this study, we used a library of cytotoxin deletion mutants in the clinically relevant methicillin-resistant S. aureus (MRSA) isolate LAC (strain ST8:USA300) to determine the relative importance of each for causing human PMN lysis upon exposure to extracellular components as well as following phagocytosis. Using flow cytometry to examine plasma membrane permeability and assays quantifying lactose dehydrogenase release, we found that PVL was the dominant extracellular factor causing human PMN lysis produced by USA300. In contrast, LukGH was the most important cytotoxin causing human PMN lysis immediately following phagocytosis with contributions from the other bicomponent leukocidins only observed at later time points. These results not only clarify the relative importance of different USA300 cytotoxins for causing human PMN destruction but also demonstrate how two apparently redundant virulence factors play distinctive roles in promoting S. aureus pathogenesis.
Collapse
Affiliation(s)
- Tyler K Nygaard
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Timothy R Borgogna
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Kyler B Pallister
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Maria Predtechenskaya
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Owen S Burroughs
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Annika Gao
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Evan G Lubick
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Jovanka M Voyich
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| |
Collapse
|
5
|
Yang C, Robledo-Avila FH, Partida-Sanchez S, Montgomery CP. α-Hemolysin-mediated endothelial injury contributes to the development of Staphylococcus aureus-induced dermonecrosis. Infect Immun 2024; 92:e0013324. [PMID: 38953668 PMCID: PMC11320951 DOI: 10.1128/iai.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Staphylococcus aureus α-hemolysin (Hla) is a pore-forming toxin critical for the pathogenesis of skin and soft tissue infections, which causes the pathognomonic lesion of cutaneous necrosis (dermonecrosis) in mouse models. To determine the mechanism by which dermonecrosis develops during S. aureus skin infection, mice were given control serum, Hla-neutralizing antiserum, or an inhibitor of Hla receptor [A-disintegrin and metalloprotease 10 (ADAM10) inhibitor] followed by subcutaneous infection by S. aureus, and the lesions were evaluated using immunohistochemistry and immunofluorescence. Hla induced apoptosis in the vascular endothelium at 6 hours post-infection (hpi), followed by apoptosis in keratinocytes at 24 hpi. The loss of vascular endothelial (VE)-cadherin expression preceded the loss of epithelial-cadherin expression. Hla also induced hypoxia in the keratinocytes at 24 hpi following vascular injury. Treatment with Hla-neutralizing antibody or ADAM10 inhibitor attenuated early cleavage of VE-cadherin, cutaneous hypoxia, and dermonecrosis. These findings suggest that Hla-mediated vascular injury with cutaneous hypoxia underlies the pathogenesis of S. aureus-induced dermonecrosis.
Collapse
Affiliation(s)
- Ching Yang
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Lichota A, Gwozdzinski K, Kowalczyk E, Kowalczyk M, Sienkiewicz M. Contribution of staphylococcal virulence factors in the pathogenesis of thrombosis. Microbiol Res 2024; 283:127703. [PMID: 38537329 DOI: 10.1016/j.micres.2024.127703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Staphylococci are responsible for many infections in humans, starting with skin and soft tissue infections and finishing with invasive diseases such as endocarditis, sepsis and pneumonia, which lead to high mortality. Patients with sepsis often demonstrate activated clotting pathways, decreased levels of anticoagulants, decreased fibrinolysis, activated endothelial surfaces and activated platelets. This results in disseminated intravascular coagulation and formation of a microthrombus, which can lead to a multiorgan failure. This review describes various staphylococcal virulence factors that contribute to vascular thrombosis, including deep vein thrombosis in infected patients. The article presents mechanisms of action of different factors released by bacteria in various host defense lines, which in turn can lead to formation of blood clots in the vessels.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland.
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | | | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
8
|
Yamazaki Y, Ito T, Tamai M, Nakagawa S, Nakamura Y. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm Regen 2024; 44:9. [PMID: 38429810 PMCID: PMC10905890 DOI: 10.1186/s41232-024-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of human bacterial infections worldwide. It is the most common causative agent of skin and soft tissue infections, and can also cause various other infections, including pneumonia, osteomyelitis, as well as life-threatening infections, such as sepsis and infective endocarditis. The pathogen can also asymptomatically colonize human skin, nasal cavity, and the intestine. S. aureus colonizes approximately 20-30% of human nostrils, being an opportunistic pathogen for subsequent infection. Its strong ability to silently spread via human contact makes it difficult to eradicate S. aureus. A major concern with S. aureus is its capacity to develop antibiotic resistance and adapt to diverse environmental conditions. The variability in the accessory gene regulator (Agr) region of the genome contributes to a spectrum of phenotypes within the bacterial population, enhancing the likelihood of survival in different environments. Agr functions as a central quorum sensing (QS) system in S. aureus, allowing bacteria to adjust gene expression in response to population density. Depending on Agr expression, S. aureus secretes various toxins, contributing to virulence in infectious diseases. Paradoxically, expressing Agr may be disadvantageous in certain situations, such as in hospitals, causing S. aureus to generate Agr mutants responsible for infections in healthcare settings. MAIN BODY This review aims to demonstrate the molecular mechanisms governing the diverse phenotypes of S. aureus, ranging from a harmless colonizer to an organism capable of infecting various human organs. Emphasis will be placed on QS and its role in orchestrating S. aureus behavior across different contexts. SHORT CONCLUSION The pathophysiology of S. aureus infection is substantially influenced by phenotypic changes resulting from factors beyond Agr. Future studies are expected to give the comprehensive understanding of S. aureus overall profile in various settings.
Collapse
Affiliation(s)
- Yuriko Yamazaki
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan.
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Stefani C, Bruchez AM, Rosasco MG, Yoshida AE, Fasano KJ, Levan PF, Lorant A, Hubbard NW, Oberst A, Stuart LM, Lacy-Hulbert A. LITAF protects against pore-forming protein-induced cell death by promoting membrane repair. Sci Immunol 2024; 9:eabq6541. [PMID: 38181093 PMCID: PMC11883904 DOI: 10.1126/sciimmunol.abq6541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Pore-forming toxins (PFTs) are the largest class of bacterial toxins and contribute to virulence by triggering host cell death. Vertebrates also express endogenous pore-forming proteins that induce cell death as part of host defense. To mitigate damage and promote survival, cells mobilize membrane repair mechanisms to neutralize and counteract pores, but how these pathways are activated is poorly understood. Here, we use a transposon-based gene activation screen to discover pathways that counteract the cytotoxicity of the archetypal PFT Staphylococcus aureus α-toxin. We identify the endolysosomal protein LITAF as a mediator of cellular resistance to PFT-induced cell death that is active against both bacterial toxins and the endogenous pore, gasdermin D, a terminal effector of pyroptosis. Activation of the ubiquitin ligase NEDD4 by potassium efflux mobilizes LITAF to recruit the endosomal sorting complexes required for transport (ESCRT) machinery to repair damaged membrane. Cells lacking LITAF, or carrying naturally occurring disease-associated mutations of LITAF, are highly susceptible to pore-induced death. Notably, LITAF-mediated repair occurs at endosomal membranes, resulting in expulsion of damaged membranes as exosomes, rather than through direct excision of pores from the surface plasma membrane. These results identify LITAF as a key effector that links sensing of cellular damage to repair.
Collapse
Affiliation(s)
- Caroline Stefani
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Anna M. Bruchez
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Mario G. Rosasco
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Anna E. Yoshida
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Kayla J. Fasano
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Department of Immunology, University of Washington; Seattle, WA, USA
| | - Paula F. Levan
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
| | - Alina Lorant
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Department of Immunology, University of Washington; Seattle, WA, USA
| | | | - Andrew Oberst
- Department of Immunology, University of Washington; Seattle, WA, USA
| | - Lynda M. Stuart
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Institute for Protein Design, Department of Biochemistry, University of Washington; Seattle, WA, USA
| | - Adam Lacy-Hulbert
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason; Seattle, WA, USA
- Department of Immunology, University of Washington; Seattle, WA, USA
| |
Collapse
|
10
|
Zhu Z, Hu Z, Li S, Fang R, Ono HK, Hu DL. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int J Mol Sci 2023; 25:395. [PMID: 38203566 PMCID: PMC10778951 DOI: 10.3390/ijms25010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton-Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| |
Collapse
|
11
|
Tian L, Wang L, Yang F, Zhou T, Jiang H. Exploring the modulatory impact of isosakuranetin on Staphylococcus aureus: Inhibition of sortase A activity and α-haemolysin expression. Virulence 2023; 14:2260675. [PMID: 37733916 PMCID: PMC10543341 DOI: 10.1080/21505594.2023.2260675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
The ubiquity of methicillin-resistant Staphylococcus aureus (MRSA) and the mounting prevalence of antibiotic resistance necessitate the identification of novel therapeutic approaches to reduce the selective pressure of antibiotics. Targeting bacterial virulence factors, such as the pivotal Sortase A (SrtA) in S. aureus for adhesion and invasion, and the salient toxin α-Hemolysin (Hla), offers a sophisticated approach to attenuate pathogenicity without bacterial elimination. Herein, we report the discovery of a flavonoid, isosakuranetin, which inhibits the activity of S. aureus SrtA. A fluorescence resonance energy transfer assay revealed that isosakuranetin exhibited a low IC50 of 21.20 μg/mL. Furthermore, isosakuranetin significantly inhibited SrtA-related virulence properties, such as bacterial adhesion to fibrinogen, biofilm formation, and invasion of A549 cells. We employed fluorescence quenching and molecular docking to determine the interactions between isosakuranetin and SrtA, revealing the key amino acid sites for binding. Importantly, isosakuranetin inhibited the haemolytic activity of S. aureus in vitro at a concentration of 32 μg/mL. Moreover, isosakuranetin effectively suppressed the transcription and expression of Hla in a dose-dependent manner and regulated the transcription of RNAIII, the upstream operator of Hla. Notably, isosakuranetin demonstrated in vivo efficacy in a mouse model of S. aureus-induced pneumonia by significantly improving survival rates and reducing lung damage. This is a valuable finding, as isosakuranetin's dual inhibitory effects on SrtA and haemolytic activity, as well as its anti-virulence activity against MRSA, make it an excellent candidate for therapeutic development.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
12
|
Beam JE, Wagner NJ, Lu KY, Parsons JB, Fowler VG, Rowe SE, Conlon BP. Inflammasome-mediated glucose limitation induces antibiotic tolerance in Staphylococcus aureus. iScience 2023; 26:107942. [PMID: 37790275 PMCID: PMC10543182 DOI: 10.1016/j.isci.2023.107942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
Staphylococcus aureus is a leading human pathogen that frequently causes relapsing infections. The failure of antibiotics to eradicate infection contributes to infection relapse. Host-pathogen interactions have a substantial impact on antibiotic susceptibility and the formation of antibiotic tolerant cells. In this study, we interrogate how a major S. aureus virulence factor, α-toxin, interacts with macrophages to alter the microenvironment of the pathogen, thereby influencing its susceptibility to antibiotics. We find α-toxin-mediated activation of the NLRP3 inflammasome induces antibiotic tolerance. Induction of tolerance is driven by increased glycolysis in the host cells, resulting in glucose limitation and ATP depletion in S. aureus. Additionally, inhibition of NLRP3 activation improves antibiotic efficacy in vitro and in vivo, suggesting that this strategy has potential as a host-directed therapeutic to improve outcomes. Our findings identify interactions between S. aureus and the host that result in metabolic crosstalk that can determine the outcome of antimicrobial therapy.
Collapse
Affiliation(s)
- Jenna E. Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikki J. Wagner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kuan-Yi Lu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B. Parsons
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
14
|
Goc A, Sumera W, Rath M, Niedzwiecki A. Inhibition of α-hemolysin activity of Staphylococcus aureus by theaflavin 3,3'-digallate. PLoS One 2023; 18:e0290904. [PMID: 37651426 PMCID: PMC10470925 DOI: 10.1371/journal.pone.0290904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
The ongoing rise in antibiotic resistance, and a waning of the introduction of new antibiotics, has resulted in limited treatment options for bacterial infections, including these caused by methicillin-resistant Staphylococcus aureus, leaving the world in a post-antibiotic era. Here, we set out to examine mechanisms by which theaflavin 3,3'-digallate (TF3) might act as an anti-hemolytic compound. In the presented study, we found that TF3 has weak bacteriostatic and bactericidal effects on Staphylococcus aureus, and strong inhibitory effect towards the hemolytic activity of its α-hemolysin (Hla) including its production and secretion. A supportive SPR assay reinforced these results and further revealed binding of TF3 to Hla with KD = 4.57×10-5 M. Interestingly, TF3 was also able to protect human primary keratinocytes from Hla-induced cell death, being at the same time non-toxic for them. Further analysis of TF3 properties revealed that TF3 blocked Hla-prompting immune reaction by inhibiting production and secretion of IL1β, IL6, and TNFα in vitro and in vivo, through affecting NFκB activity. Additionally, we observed that TF3 also markedly attenuated S. aureus-induced barrier disruption, by inhibiting Hla-triggered E-cadherin and ZO-1 impairment. Overall, by blocking activity of Hla, TF3 subsequently subdued the inflammation and protected the epithelial barrier, which is considered as beneficial to relieving skin injury.
Collapse
Affiliation(s)
- Anna Goc
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Waldemar Sumera
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Matthias Rath
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Aleksandra Niedzwiecki
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| |
Collapse
|
15
|
Sriyanti C, Siregar TN, Mudatsir M, Gani A, Hasan DI, Sutriana A. Antibacterial and anti-inflammatory activities of Nothopanax scutellarium, Moringa oleifera and Piper betle extracts on staphylococcal mastitis animal model. NARRA J 2023; 3:e176. [PMID: 38454978 PMCID: PMC10919737 DOI: 10.52225/narra.v3i2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 03/09/2024]
Abstract
Inappropriate and prolonged administration of antibiotics in mastitis could cause resistance and herbal treatment might could be one alternative treatment. Nothopanax scutellarium, Moringa oleifera, and Piper betle are medicinal plants that contain various active compounds, including antibacterial and anti-inflammatory agents, but their potential in treating mastitis is minimum. The aim of this study was to assess the effectiveness of those plants against mastitis in rabbit model induced by Staphylococcus aureus. A total of 25 lactating rabbits (Oryctolagus cuniculus) weighing 3.0±0.4 kg were grouped into five groups: healthy control; mastitis control, and three treatment groups (Nothopanax scutellarium, Moringa oleifera, and Piper betle). Except the negative control, all animals were inoculated with 0.15 mL of S. aureus containing 1.5x107 colony forming unit (CFU)/mL on eight days after giving birth. The extract was administered orally after four hours Staphylococcus aureus inoculation at a dose of 50 mg/kg body weight, twice a day for five consecutive days. The number of bacteria in the milk and the level of serum interleukin 6 (IL-6) were measured and histopathological examination of mammary gland tissues were analyzed. The log number of total plate count of Staphylococcus aureus indicated that all extract groups had significant lower of bacterial logs compared to mastitis control (all comparisons had p<0.05) with the lowest was found in Piper betle group, followed by Nothopanax scutellarium and Moringa oleifera groups. The enzyme-linked immunosorbent assay (ELISA) results showed that all ethanolic extract groups had significantly lower levels of IL-6 compared to the mastitis control (all comparisons had p<0.05). The histopathology assessment suggested that extract groups had lower infiltration of inflammatory cells such as lymphocytes and macrophages in alveoli compared to the mastitis control group. In conclusion, all three extracts contained antibacterial and anti-inflammatory activities and Piper betle had the most effective in reducing bacterial growth and IL-6 level compared to others.
Collapse
Affiliation(s)
- Cut Sriyanti
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Midwifery, Health Polytechnic of Aceh Ministry of Health, Aceh Besar, Indonesia
| | - Tongku N. Siregar
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mudatsir Mudatsir
- Department of Microbiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Azhari Gani
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Denny I. Hasan
- Laboratory of Pathology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Amalia Sutriana
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
16
|
Hazlett LD, Xu S, Somayajulu M, McClellan SA. Host-microbe interactions in cornea. Ocul Surf 2023; 28:413-423. [PMID: 34619389 PMCID: PMC8977393 DOI: 10.1016/j.jtos.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022]
Abstract
Corneal infections result through interaction between microbes and host innate immune receptors. Damage to the cornea occurs as a result of microbial virulence factors and is often exacerbated by lack of a controlled host immune response; the latter contributing to bystander damage to corneal structure. Understanding mechanisms involved in host microbial interactions is critical to development of novel therapeutic targets, ultimate control of microbial pathogenesis, and restoration of tissue homeostasis. Studies on these interactions continue to provide exciting findings directly related to this ultimate goal.
Collapse
Affiliation(s)
- Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
17
|
vom Werth KL, Kemper B, Kampmeier S, Mellmann A. Application of Digital Holographic Microscopy to Analyze Changes in T-Cell Morphology in Response to Bacterial Challenge. Cells 2023; 12:cells12050762. [PMID: 36899897 PMCID: PMC10000559 DOI: 10.3390/cells12050762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Quantitative phase imaging (QPI) is a non-invasive, label-free technique used to detect aberrant cell morphologies caused by disease, thus providing a useful diagnostic approach. Here, we evaluated the potential of QPI to differentiate specific morphological changes in human primary T-cells exposed to various bacterial species and strains. Cells were challenged with sterile bacterial determinants, i.e., membrane vesicles or culture supernatants, derived from different Gram-positive and Gram-negative bacteria. Timelapse QPI by digital holographic microscopy (DHM) was applied to capture changes in T-cell morphology over time. After numerical reconstruction and image segmentation, we calculated single cell area, circularity and mean phase contrast. Upon bacterial challenge, T-cells underwent rapid morphological changes such as cell shrinkage, alterations of mean phase contrast and loss of cell integrity. Time course and intensity of this response varied between both different species and strains. The strongest effect was observed for treatment with S. aureus-derived culture supernatants that led to complete lysis of the cells. Furthermore, cell shrinkage and loss of circular shape was stronger in Gram-negative than in Gram-positive bacteria. Additionally, T-cell response to bacterial virulence factors was concentration-dependent, as decreases in cellular area and circularity were enhanced with increasing concentrations of bacterial determinants. Our findings clearly indicate that T-cell response to bacterial stress depends on the causative pathogen, and specific morphological alterations can be detected using DHM.
Collapse
Affiliation(s)
| | - Björn Kemper
- Biomedical Technology Center of the Medical Faculty, University of Münster, 48149 Münster, Germany
| | - Stefanie Kampmeier
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-55361
| |
Collapse
|
18
|
Teymournejad O, Li Z, Beesetty P, Yang C, Montgomery CP. Toxin expression during Staphylococcus aureus infection imprints host immunity to inhibit vaccine efficacy. NPJ Vaccines 2023; 8:3. [PMID: 36693884 PMCID: PMC9873725 DOI: 10.1038/s41541-022-00598-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus infections are a major public health issue, and a vaccine is urgently needed. Despite a considerable promise in preclinical models, all vaccines tested thus far have failed to protect humans against S. aureus. Unlike laboratory mice, humans are exposed to S. aureus throughout life. In the current study, we hypothesized that prior exposure to S. aureus "imprints" the immune response to inhibit vaccine-mediated protection. We established a mouse model in which S. aureus skin and soft tissue infection (SSTI) is followed by vaccination and secondary SSTI. Unlike naïve mice, S. aureus-sensitized mice were incompletely protected against secondary SSTI by vaccination with the inactivated α-hemolysin (Hla) mutant HlaH35L. Inhibition of protection was specific for the HlaH35L vaccine and required hla expression during primary SSTI. Surprisingly, inhibition occurred at the level of vaccine-elicited effector T cells; hla expression during primary infection limited the expansion of T cells and dendritic cells and impaired vaccine-specific T cell responses. Importantly, the T cell-stimulating adjuvant CAF01 rescued inhibition and restored vaccine-mediated protection. Together, these findings identify a potential mechanism for the failure of translation of promising S. aureus vaccines from mouse models to clinical practice and suggest a path forward to prevent these devastating infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.185648.60000 0001 2175 0319Present Address: Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL US
| | - Zhaotao Li
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US
| | - Pavani Beesetty
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.231844.80000 0004 0474 0428Present Address: Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario Canada
| | - Ching Yang
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.259180.70000 0001 2298 1899Present Address: Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY US
| | - Christopher P. Montgomery
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH US ,grid.240344.50000 0004 0392 3476Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH US
| |
Collapse
|
19
|
Cao J, Zhang H, He Z, Piao Z, Zong X, Sun B. Genotypic and Phenotypic Characterization of Some psms Hypervirulent Clinical Isolates of Staphylococcus aureus in a Tertiary Hospital in Hefei, Anhui. Infect Drug Resist 2023; 16:1471-1484. [PMID: 36949844 PMCID: PMC10025015 DOI: 10.2147/idr.s399688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Background Staphylococcus aureus is a highly successful pathogen that can cause various infectious diseases, from relatively mild skin infections to life-threatening severe systemic diseases. The widespread pathogenicity of S. aureus is mainly due to its ability to produce many virulence factors that help destroy various host cells, causing disease. Our primary goal in this study was to explore the genes of highly virulent strains, to identify genes closely associated with high virulence, and to provide ideas for the treatment of infection by highly virulent clinical strains. Results This study collected 221 clinical strains from The First Affiliated Hospital Of The University of Science and Technology of China (USTC); their hemolytic abilities were tested. Eight isolates were selected based on their highly hemolytic ability and tested their hemolytic activity again; their phenotypes and gene sequences were also explored. Whole-genome sequencing (WGS) showed six plasmids (pN315, pNE131, pSJH901, pSJH101, SAP106B, and MSSA476), eight antibiotic resistance genes [blaR1, blaI, blaZ, mecA, erm(C), erm(T), tet(38), and fosB-Saur] and seventy-two virulence related genes. Three highly virulent strains, namely X21111206, 21092239, and 21112607, were found according the Galleria mellonella infection model. Therefore, we selected 10 representative virulence genes for qRT-PCR: psmα, psmβ, hlgA, hlgB, hlgC, hla, clfA, clfB, spa, and sak. Among them, the expression levels of psmα and psmβ, the three isolates, were significantly higher than the positive control NCTC8325. Conclusion Significant differences appear in the expression of virulence genes in the highly virulent strains, particularly the psmα and psmβ, It may be that the high expression of psm gene is the cause of the high virulence of Staphylococcus aureus. We can reduce the pathogenicity of Staphylococcus aureus by inhibiting the expression of psm gene, which may provide a strong basis for psm as a new target for clinical treatment of S. aureus infection.
Collapse
Affiliation(s)
- Jiaxin Cao
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Huimin Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhien He
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhongwan Piao
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- Correspondence: Baolin Sun; Zhongwan Piao, Email ;
| | - Xianchun Zong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
| | - Baolin Sun
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Correspondence: Baolin Sun; Zhongwan Piao, Email ;
| |
Collapse
|
20
|
Hinokiflavone Attenuates the Virulence of Methicillin-Resistant Staphylococcus aureus by Targeting Caseinolytic Protease P. Antimicrob Agents Chemother 2022; 66:e0024022. [PMID: 35862746 PMCID: PMC9380526 DOI: 10.1128/aac.00240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Drug-resistant bacteria was the third leading cause of death worldwide in 2019, which sounds like a cautionary note for global public health. Therefore, developing novel strategies to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections is the need of the hour. Caseinolytic protease P (ClpP) represents pivotal microbial degradation machinery in MRSA involved in bacterial homeostasis and pathogenicity, considered an ideal target for combating S. aureus infections. Herein, we identified a natural compound, hinokiflavone, that inhibited the activity of ClpP of MRSA strain USA300 with an IC50 of 34.36 μg/mL. Further assays showed that hinokiflavone reduced the virulence of S. aureus by inhibiting multiple virulence factors expression. Results obtained from cellular thermal transfer assay (CETSA), thermal shift assay (TSA), local surface plasmon resonance (LSPR) and molecular docking (MD) assay enunciated that hinokiflavone directly bonded to ClpP with confirmed docking sites, including SER-22, LYS-26 and ARG-28. In vivo, the evaluation of anti-infective activity showed that hinokiflavone in combination with vancomycin effectively protected mice from MRSA-induced fatal pneumonia, which was more potent than vancomycin alone. As mentioned above, hinokiflavone, as an inhibitor of ClpP, could be further developed into a promising adjuvant against S. aureus infections.
Collapse
|
21
|
Liu L, Wang B, Yu J, Guo Y, Yu F. NWMN2330 May Be Associated with the Virulence of Staphylococcus aureus by Increasing the Expression of hla and saeRS. Infect Drug Resist 2022; 15:2853-2864. [PMID: 35677526 PMCID: PMC9169849 DOI: 10.2147/idr.s365314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening bloodstream infections such as sepsis and endocarditis. In recent years, the emergence and increase of methicillin-resistant and multidrug-resistant S. aureus has posed a great challenge to the antibiotic treatment of infectious diseases. Anti-virulence strategies targeting virulence factors are an effective new therapy for the treatment of S. aureus infections. Results In this study, we constructed a NWMN2330 deletion mutant (Newman-ΔNWMN2330) and a complement (Newman-ΔNWMN2330-C) of S. aureus Newman to study the role of NWMN2330 in the virulence of S. aureus. Through transcriptome sequencing, it was found that the expression of 224 genes in Newman-ΔNWMN2330 was significantly different (>2-fold) compared with S. aureus Newman, and these differentially expressed genes were related to multiple functions of S. aureus. And we found that NWMN2330 could positively regulate the expression of S. aureus hla gene. Therefore, the deletion mutant Newman-ΔNWMN2330 exhibited lower hemolytic activity and lower α-toxin production than Newman. Newman-ΔNWMN2330 also exhibited lower lethality and pathogenicity in worm survival experiments and nude mouse skin abscess model. RT-qPCR results showed that compared with the wild-type strain, the expression of saeRS and hla in Newman-ΔNWMN2330 strain was significantly reduced at the mRNA level, which preliminarily indicated that NWMN2330 promoted the expression of hla by up-regulating saeRS. Discussion In general, our results indicated that NWMN2330 may be associated with the virulence of Staphylococcus aureus by increasing the expression of hla and saeRS.
Collapse
Affiliation(s)
- Li Liu
- Department of Transfusion Medicine, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jingyi Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Tsai CM, Hajam IA, Caldera JR, Liu GY. Integrating complex host-pathogen immune environments into S. aureus vaccine studies. Cell Chem Biol 2022; 29:730-740. [PMID: 35594849 DOI: 10.1016/j.chembiol.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus (SA) is a leading cause of bacterial infection and antibiotic resistance globally. Therefore, development of an effective vaccine has been a major goal of the SA field for the past decades. With the wealth of understanding of pathogenesis, the failure of all SA vaccine trials has been a surprise. We argue that experimental SA vaccines have not worked because vaccines have been studied in naive laboratory animals, whereas clinical vaccine efficacy is tested in immune environments reprogrammed by SA. Here, we review the failed SA vaccines that have seemingly defied all principles of vaccinology. We describe major SA evasion strategies and suggest that they reshape the immune environment in a way that makes vaccines prone to failures. We propose that appropriate integration of concepts of host-pathogen interaction into vaccine study designs could lead to insight critical for the development of an effective SA vaccine.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
23
|
Fernandez JS, Tuttobene MR, Montaña S, Subils T, Cantera V, Iriarte A, Tuchscherr L, Ramirez MS. Staphylococcus aureus α-Toxin Effect on Acinetobacter baumannii Behavior. BIOLOGY 2022; 11:biology11040570. [PMID: 35453769 PMCID: PMC9028598 DOI: 10.3390/biology11040570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Polymicrobial infections are more challenging to treat and are recognized as responsible for significant morbidity and mortality. It has been demonstrated that multiple Gram-negative organisms take advantage of the effects of Staphylococcus aureus α-toxin on mucosal host defense, resulting in proliferation and dissemination of the co-infecting pathogens. Through phenotypic approaches, we observed a decrease in the motility of A. baumannii A118 after exposure to cell-free conditioned media (CFCM) of S. aureus strains, USA300 and LS1. However, the motility of A. baumannii A118 was increased after exposure to the CFCM of S. aureus strains USA300 Δhla and S. aureus LSI ΔagrA. Hemolytic activity was seen in A118, in the presence of CFCM of S. aureus LS1. Further, A. baumannii A118 showed an increase in biofilm formation and antibiotic resistance to tetracycline, in the presence of CFCM of S. aureus USA300. Transcriptomic analysis of A. baumannii A118, with the addition of CFCM from S. aureus USA300, was carried out to study A. baumannii response to S. aureus’ released molecules. The RNA-seq data analysis showed a total of 463 differentially expressed genes, associated with a wide variety of functions, such as biofilm formation, virulence, and antibiotic susceptibility, among others. The present results showed that A. baumannii can sense and respond to molecules secreted by S. aureus. These findings demonstrate that A. baumannii may perceive and respond to changes in its environment; specifically, when in the presence of CFCM from S. aureus.
Collapse
Affiliation(s)
- Jennifer S. Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.F.); (M.R.T.)
| | - Marisel R. Tuttobene
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.F.); (M.R.T.)
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2000, Argentina
| | - Sabrina Montaña
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires C1113, Argentina;
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2000, Argentina;
| | - Virginia Cantera
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay; (V.C.); (A.I.)
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay; (V.C.); (A.I.)
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.F.); (M.R.T.)
- Correspondence: ; Tel.: +1-657-278-4562
| |
Collapse
|
24
|
Rudenko N, Siunov A, Zamyatina A, Melnik B, Nagel A, Karatovskaya A, Borisova M, Shepelyakovskaya A, Andreeva-Kovalevskaya Z, Kolesnikov A, Surin A, Brovko F, Solonin A. The C-terminal domain of Bacillus cereus hemolysin II oligomerizes by itself in the presence of cell membranes to form ion channels. Int J Biol Macromol 2022; 200:416-427. [PMID: 35041890 DOI: 10.1016/j.ijbiomac.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Bacillus cereus hemolysin II, a pore-forming β-barrel toxin (HlyII), has a C-terminal extension of 94 amino acid residues, designated as the C-terminal domain of HlyII (HlyIICTD). HlyIICTD is capable of forming oligomers in aqueous solutions. Oligomerization of HlyIICTD significantly increased in the presence of erythrocytes and liposomes. Its affinity for erythrocytes of various origins differed insignificantly but was noticeably higher for T-cells. HlyIICTD destroyed THP-1 monocytes and J774 macrophages, acted most effectively on Jurkat T-lymphocytes and had virtually no impact on B-cell lines. HlyIICTD was able to form ion-conducting channels on an artificial bilayer membrane.
Collapse
Affiliation(s)
- Natalia Rudenko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia.
| | - Alexander Siunov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Zamyatina
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Bogdan Melnik
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Moscow Region, Russia
| | - Alexey Nagel
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Karatovskaya
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Marina Borisova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 2 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Shepelyakovskaya
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Zhanna Andreeva-Kovalevskaya
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Kolesnikov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexey Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Fedor Brovko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Solonin
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
25
|
Wong Fok Lung T, Chan LC, Prince A, Yeaman MR, Archer NK, Aman MJ, Proctor RA. Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Front Cell Infect Microbiol 2022; 12:1060810. [PMID: 36636720 PMCID: PMC9831658 DOI: 10.3389/fcimb.2022.1060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite meritorious attempts, a S. aureus vaccine that prevents infection or mitigates severity has not yet achieved efficacy endpoints in prospective, randomized clinical trials. This experience underscores the complexity of host-S. aureus interactions, which appear to be greater than many other bacterial pathogens against which successful vaccines have been developed. It is increasingly evident that S. aureus employs strategic countermeasures to evade or exploit human immune responses. From entering host cells to persist in stealthy intracellular reservoirs, to sensing the environmental milieu and leveraging bacterial or host metabolic products to reprogram host immune responses, S. aureus poses considerable challenges for the development of effective vaccines. The fact that this pathogen causes distinct types of infections and can undergo transient genetic, transcriptional or metabolic adaptations in vivo that do not occur in vitro compounds challenges in vaccine development. Notably, the metabolic versatility of both bacterial and host immune cells as they compete for available substrates within specific tissues inevitably impacts the variable repertoire of gene products that may or may not be vaccine antigens. In this respect, S. aureus has chameleon phenotypes that have alluded vaccine strategies thus far. Nonetheless, a number of recent studies have also revealed important new insights into pathogenesis vulnerabilities of S. aureus. A more detailed understanding of host protective immune defenses versus S. aureus adaptive immune evasion mechanisms may offer breakthroughs in the development of effective vaccines, but at present this goal remains a very high bar. Coupled with the recent advances in human genetics and epigenetics, newer vaccine technologies may enable such a goal. If so, future vaccines that protect against or mitigate the severity of S. aureus infections are likely to emerge at the intersection of precision and personalized medicine. For now, the development of S. aureus vaccines or alternative therapies that reduce mortality and morbidity must continue to be pursued.
Collapse
Affiliation(s)
| | - Liana C Chan
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Richard A Proctor
- Department of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
26
|
Wan Y, Wang X, Zhang P, Zhang M, Kou M, Shi C, Peng X, Wang X. Control of Foodborne Staphylococcus aureus by Shikonin, a Natural Extract. Foods 2021; 10:foods10122954. [PMID: 34945505 PMCID: PMC8700560 DOI: 10.3390/foods10122954] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Foodborne Staphylococcus aureus (S. aureus) has attracted widespread attention due to its foodborne infection and food poisoning in human. Shikonin exhibits antibacterial activity against a variety of microorganisms, but there are few studies on its antibacterial activity against S. aureus. This study aims to explore the antibacterial activity and mechanism of shikonin against foodborne S. aureus. The results show that the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of shikonin were equal for all tested strains ranging from 35 μg/mL to 70 μg/mL. Shikonin inhibited the growth of S. aureus by reducing intracellular ATP concentrations, hyperpolarizing cell membrane, destroying the integrity of cell membrane, and changing cell morphology. At the non-inhibitory concentrations (NICs), shikonin significantly inhibited biofilm formation of S. aureus, which was attributed to inhibiting the expression of cidA and sarA genes. Moreover, shikonin also markedly inhibited the transcription and expression of virulence genes (sea and hla) in S. aureus. In addition, shikonin has exhibited antibacterial ability against both planktonic and biofilm forms of S. aureus. Importantly, in vivo results show that shikonin has excellent biocompatibility. Moreover, both the heat stability of shikonin and the antimicrobial activity of shikonin against S. aureus were excellent in food. Our findings suggest that shikonin are promising for use as a natural food additive, and it also has great potential in effectively controlling the contamination of S. aureus in food and reducing the number of illnesses associated with S. aureus.
Collapse
|
27
|
Further Insight into the Mechanism of Human PMN Lysis following Phagocytosis of Staphylococcus aureus. Microbiol Spectr 2021; 9:e0088821. [PMID: 34704790 PMCID: PMC8549732 DOI: 10.1128/spectrum.00888-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen that can cause a variety of diseases ranging from mild superficial skin infections to life-threatening conditions like necrotizing pneumonia, endocarditis, and septicemia. Polymorphonuclear leukocytes (PMNs; neutrophils in particular herein) are essential for host defense against S. aureus infections, and the microbe is phagocytosed readily. Most ingested bacteria are killed, but some S. aureus strains—such as the epidemic USA300 strain—have an enhanced ability to cause PMN lysis after phagocytosis. Although progress has been made, the mechanism for lysis after phagocytosis of S. aureus remains incompletely determined. Here, we tested the hypothesis that disruption of phagosome integrity and escape of S. aureus from the PMN phagosome into the cytoplasm precedes PMN lysis. We used USA300 wild-type and isogenic deletion strains to evaluate and/or verify the role of selected S. aureus molecules in this cytolytic process. Compared to the wild-type USA300 strain, Δagr, Δhla, ΔlukGH, and Δpsm strains each caused significantly less lysis of human PMNs 3 h and/or 6 h after phagocytosis, consistent with previous studies. Most notably, confocal microscopy coupled with selective permeabilization assays demonstrated that phagosome membrane integrity is largely maintained prior to PMN lysis after S. aureus phagocytosis. We conclude that PMN lysis does not require escape of S. aureus from the phagosome to the cytoplasm and that these are independent phenomena. The findings are consistent with the ability of S. aureus (via selected molecules) to trigger lysis of human PMNs by an undetermined signaling mechanism. IMPORTANCES. aureus strain USA300 has the ability to cause rapid lysis of human neutrophils after phagocytosis. Although this phenomenon likely contributes to the success of USA300 as a human pathogen, our knowledge of the mechanism remains incomplete. Here, we used a selective permeabilization assay coupled with confocal microscopy to demonstrate that USA300 is contained within human neutrophil phagosomes until the point of host cell lysis. Thus, consistent with a process in macrophages, S. aureus fails to escape into the neutrophil cytoplasm prior to cytolysis.
Collapse
|
28
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
29
|
Interference in Staphylococcus Aureus Biofilm and Virulence Factors Production by Human Probiotic Bacteria with Antimutagenic Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05934-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Development of combination vaccine conferring optimal protection against six pore-forming toxins of Staphylococcus aureus. Infect Immun 2021; 89:e0034221. [PMID: 34227839 DOI: 10.1128/iai.00342-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Gram-positive pathogen Staphylococcus aureus, pore-forming toxins (PFTs) such as leukocidins and hemolysins play prominent roles in staphylococcal pathogenesis by killing host immune cells and red blood cells (RBCs). However, it remains unknown which combination of toxin antigens would induce the broadest protective immune response against those toxins. In this study, by targeting six major staphylococcal PFTs (i.e., HlgAB, HlgCB, LukAB, LukED, LukSF-PV, and Hla), we generated ten recombinant toxins or toxin-subunits, three toxoids, and their rabbit antibodies. Using the cytolytic assay for RBCs and polymorphonuclear cells (PMNs), we determined the best combination of toxin antibodies conferring the broadest protection against those staphylococcal PFTs. Although anti-HlgA IgG (HlgA-IgG) showed low cross-reactivity to other toxin components, it was essential to protect rabbit and human RBCs and human PMNs. For the protection of rabbit RBCs, HlaH35L toxoid-IgG was also required, whereas, for human PMNs, LukS-IgG and LukAE323AB-IgG were essential too. When the toxin/toxoid antigens HlgA, LukS-PV, HlaH35L, and LukAE323AB were used to immunize rabbits, they increased rabbit survival; however, they did not block staphylococcal abscess formation in kidneys. Based on these results, we proposed that the combination of HlgA, LukS, HlaH35L, and LukAE323AB is the optimal vaccine component to protect human RBCs and PMNs from staphylococcal PFTs. We also concluded that a successful S. aureus vaccine requires not only those toxin antigens but also other antigens that can induce immune response blocking staphylococcal colonization.
Collapse
|
31
|
Li Z, Beesetty P, Gerges G, Kleinhenz M, Moore-Clingenpeel M, Yang C, Ahmed LB, Hensley J, Steele L, Chong AS, Montgomery CP. Impaired T lymphocyte responses during childhood Staphylococcus aureus infection. J Infect Dis 2021; 225:177-185. [PMID: 34145461 DOI: 10.1093/infdis/jiab326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Staphylococcus aureus infections are common throughout the lifespan, with recurrent infections occuring in nearly half of infected children. There is no licensed vaccine, underscoring the need to better understand how S. aureus evades protective immunity. Despite much study, the relative contributions of antibodies and T cells to protection against S. aureus infections in humans are not fully understood. METHODS We prospectively quantified S. aureus-specific antibody levels by ELISA and T cell responses by ELISpot in S. aureus-infected and healthy children. RESULTS S. aureus-specific antibody levels and T cell responses increased with age in healthy children, suggesting a coordinated development of anti-staphylococcal immunity. Antibody levels against leukotoxin E (LukE) and Panton-Valentine leukocidin (LukS-PV), but not α-hemolysin (Hla), were higher in younger infected children, compared with healthy children; these differences disappeared in older children. We observed a striking impairment of global and S. aureus-specific T cell function in children with invasive and non-invasive infection, suggesting that S. aureus-specific immune responses are dysregulated during childhood infection regardless of the infection phenotype. CONCLUSIONS These findings identify a potential mechanism by which S. aureus infection actively evades adaptive immune responses, thereby preventing the development of protective immunty and maintaining susceptibility to recurrent infection.
Collapse
Affiliation(s)
- Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pavani Beesetty
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - George Gerges
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maureen Kleinhenz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Ching Yang
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Luul B Ahmed
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Josey Hensley
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Lisa Steele
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Anita S Chong
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Christopher P Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
François B, Jafri HS, Chastre J, Sánchez-García M, Eggimann P, Dequin PF, Huberlant V, Viña Soria L, Boulain T, Bretonnière C, Pugin J, Trenado J, Hernandez Padilla AC, Ali O, Shoemaker K, Ren P, Coenjaerts FE, Ruzin A, Barraud O, Timbermont L, Lammens C, Pierre V, Wu Y, Vignaud J, Colbert S, Bellamy T, Esser MT, Dubovsky F, Bonten MJ, Goossens H, Laterre PF. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1313-1323. [PMID: 33894131 DOI: 10.1016/s1473-3099(20)30995-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Staphylococcus aureus remains a common cause of ventilator-associated pneumonia, with little change in incidence over the past 15 years. We aimed to evaluate the efficacy of suvratoxumab, a monoclonal antibody targeting the α toxin, in reducing the incidence of S aureus pneumonia in patients in the intensive care unit (ICU) who are on mechanical ventilation. METHODS We did a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial at 31 hospitals in Belgium, the Czech Republic, France, Germany, Greece, Hungary, Portugal, Spain, and Switzerland. Eligible patients were in the ICU, aged ≥18 years, were intubated and on mechanical ventilation, were positive for S aureus colonisation of the lower respiratory tract, as assessed by quantitative PCR (qPCR) analysis of endotracheal aspirate, and had not been diagnosed with new-onset pneumonia. Patients were excluded if they had confirmed or suspected acute ongoing staphylococcal disease; had received antibiotics for S aureus infection for more than 48 h within 72 h of randomisation; had a Clinical Pulmonary Infection Score of 6 or higher; had an acute physiology and chronic health evaluation II score of 25 or higher with a Glasgow coma scale (GCS) score of more than 5, or an acute physiology and chronic health evaluation II score of at least 30 with a GCS score of 5 or less; had a Sequential Organ Failure Assessment score of 9 or higher; or had active pulmonary disease that would impair the ability to diagnose pneumonia. Colonised patients were randomly assigned (1:1:1), by use of an interactive voice or web response system, to receive either a single intravenous infusion of suvratoxumab 2000 mg, suvratoxumab 5000 mg, or placebo. Randomisation was done in blocks of size four, stratified by country and by whether patients had received systemic antibiotics for S aureus infection. Patients, investigators, and study staff involved in the treatment or clinical evaluation of patients were masked to patient assignment. The primary efficacy endpoint was the incidence of S aureus pneumonia at 30 days, as determined by a masked independent endpoint adjudication committee, in all patients who received their assigned treatment (modified intention-to-treat [ITT] population). Primary safety endpoints were the incidence of treatment-emergent adverse events at 30 days, 90 days, and 190 days after treatment, and the incidence of treatment-emergent serious adverse events, adverse events of special interest, and new-onset chronic disease at 190 days after treatment. All primary safety endpoints were assessed in the modified ITT population. This trial is registered with ClinicalTrials.gov (NCT02296320) and the EudraCT database (2014-001097-34). FINDINGS Between Oct 10, 2014, and April 1, 2018, 767 patients were screened, of whom 213 patients with confirmed S aureus colonisation of the lower respiratory tract were randomly assigned to the suvratoxumab 2000 mg group (n=15), the suvratoxumab 5000 mg group (n=96), or the placebo group (n=102). Two patients in the placebo group did not receive treatment after randomisation because their clinical conditions changed and they no longer met the eligibility criteria for dosing. As adjudicated by the data monitoring committee at an interim analysis, the suvratoxumab 2000 mg group was discontinued on the basis of predefined pharmacokinetic criteria. At 30 days after treatment, 17 (18%) of 96 patients in the suvratoxumab 5000 mg group and 26 (26%) of 100 patients in the placebo group had developed S aureus pneumonia (relative risk reduction 31·9% [90% CI -7·5 to 56·8], p=0·17). The incidence of treatment-emergent adverse events at 30 days were similar between the suvratoxumab 5000 mg group (87 [91%]) and the placebo group (90 [90%]). The incidence of treatment-emergent serious adverse events at 30 days were also similar between the suvratoxumab 5000 mg group (36 [38%]) and the placebo group (32 [32%]). No significant difference in the incidence of treatment-emergent adverse events between the two groups at 90 days (89 [93%] in the suvratoxumab 5000 mg group vs 92 [92%] in the placebo group) and at 190 days (93 [94%] vs 93 [93%]) was observed. 40 (40%) patients in the placebo group and 50 (52%) in the suvratoxumab 5000 mg group had a serious adverse event at 190 days. In the suvratoxumab 5000 mg group, one (1%) patient reported at least one treatment-emergent serious adverse event related to treatment, two (2%) patients reported an adverse event of special interest, and two (2%) reported a new-onset chronic disease. INTERPRETATION In patients in the ICU receiving mechanical ventilation with qPCR-confirmed S aureus colonisation of the lower respiratory tract, the incidence of S aureus pneumonia at 30 days was not significantly lower following treatment with 5000 mg suvratoxumab than with placebo. Despite these negative results, monoclonal antibodies still represent one promising therapeutic option to reduce antibiotic consumption that require further exploration and studies. FUNDING AstraZeneca, with support from the Innovative Medicines Initiative Joint Undertaking.
Collapse
Affiliation(s)
- Bruno François
- ICU Department, Inserm CIC-1435 and UMR-1092, CRICS-TRIGGERSEP Network, CHU Dupuytren, Limoges, France.
| | - Hasan S Jafri
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Jean Chastre
- Institut de Cardiologie, Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Philippe Eggimann
- Department of Critical Care, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre-François Dequin
- CHRU de Tours, Service de Médecine Intensive Réanimation, Inserm CIC 1415 and UMR-1100, and CRICS-TRIGGERSEP Network, Tours, France
| | | | | | - Thierry Boulain
- Centre Hospitalier Régional d'Orléans, Médecine Intensive Réanimation, Orleans, France
| | - Cédric Bretonnière
- Service de Soins Intensifs-Pneumologie, Hôpital Guillaume et René Laennec, Nantes, France
| | - Jérôme Pugin
- Département d'Anesthésiologie, Pharmacologie, Soins Intensifs et Urgences, Université de Genève, Geneva, Switzerland
| | - Josep Trenado
- Intensive Care Department, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | | | - Omar Ali
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Pin Ren
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Frank E Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexey Ruzin
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp University Hospital, Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp University Hospital, Antwerp, Belgium
| | - Vadryn Pierre
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yuling Wu
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Susan Colbert
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Mark T Esser
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Filip Dubovsky
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Marc J Bonten
- Department of Medical Microbiology and Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp University Hospital, Antwerp, Belgium
| | | | | |
Collapse
|
33
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
34
|
Teymournejad O, Montgomery CP. Evasion of Immunological Memory by S. aureus Infection: Implications for Vaccine Design. Front Immunol 2021; 12:633672. [PMID: 33692805 PMCID: PMC7937817 DOI: 10.3389/fimmu.2021.633672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Recurrent S. aureus infections are common, suggesting that natural immune responses are not protective. All candidate vaccines tested thus far have failed to protect against S. aureus infections, highlighting an urgent need to better understand the mechanisms by which the bacterium interacts with the host immune system to evade or prevent protective immunity. Although there is evidence in murine models that both cellular and humoral immune responses are important for protection against S. aureus, human studies suggest that T cells are critical in determining susceptibility to infection. This review will use an “anatomic” approach to systematically outline the steps necessary in generating a T cell-mediated immune response against S. aureus. Through the processes of bacterial uptake by antigen presenting cells, processing and presentation of antigens to T cells, and differentiation and proliferation of memory and effector T cell subsets, the ability of S. aureus to evade or inhibit each step of the T-cell mediated response will be reviewed. We hypothesize that these interactions result in the redirection of immune responses away from protective antigens, thereby precluding the establishment of “natural” memory and potentially inhibiting the efficacy of vaccination. It is anticipated that this approach will reveal important implications for future design of vaccines to prevent these infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher P Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
35
|
Light Modulates Important Pathogenic Determinants and Virulence in ESKAPE Pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. J Bacteriol 2021; 203:JB.00566-20. [PMID: 33288627 DOI: 10.1128/jb.00566-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Light sensing has been extensively characterized in the human pathogen Acinetobacter baumannii at environmental temperatures. However, the influence of light on the physiology and pathogenicity of human bacterial pathogens at temperatures found in warm-blooded hosts is still poorly understand. In this work, we show that Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa (ESKAPE) priority pathogens, which have been recognized by the WHO and the CDC as critical, can also sense and respond to light at temperatures found in human hosts. Most interestingly, in these pathogens, light modulates important pathogenicity determinants as well as virulence in an epithelial infection model, which could have implications in human infections. In fact, we found that alpha-toxin-dependent hemolysis, motility, and growth under iron-deprived conditions are modulated by light in S. aureus Light also regulates persistence, metabolism, and the ability to kill competitors in some of these microorganisms. Finally, light exerts a profound effect on the virulence of these pathogens in an epithelial infection model, although the response is not the same in the different species; virulence was enhanced by light in A. baumannii and S. aureus, while in A. nosocomialis and P. aeruginosa it was reduced. Neither the BlsA photoreceptor nor the type VI secretion system (T6SS) is involved in virulence modulation by light in A. baumannii Overall, this fundamental knowledge highlights the potential use of light to control pathogen virulence, either directly or by manipulating the light regulatory switch toward the lowest virulence/persistence configuration.IMPORTANCE Pathogenic bacteria are microorganisms capable of producing disease. Dangerous bacterial pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, are responsible for serious intrahospital and community infections in humans. Therapeutics is often complicated due to resistance to multiple antibiotics, rendering them ineffective. In this work, we show that these pathogens sense natural light and respond to it by modulating aspects related to their ability to cause disease; in the presence of light, some of them become more aggressive, while others show an opposite response. Overall, we provide new understanding on the behavior of these pathogens, which could contribute to the control of infections caused by them. Since the response is distributed in diverse pathogens, this notion could prove a general concept.
Collapse
|
36
|
Fu W, He W, Ren Y, Li Z, Liu J, Liu Y, Xie Z, Xu J, Bi Q, Kong M, Lee CC, Daiss JL, Muthukrishnan G, Owen JR, Kates SL, Peng J, Xie C. Distinct expression trend of signature antigens of Staphylococcus aureus osteomyelitis correlated with clinical outcomes. J Orthop Res 2021; 39:265-273. [PMID: 33336817 PMCID: PMC7946439 DOI: 10.1002/jor.24961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
The major limitations of clinical outcome predictions of osteomyelitis mediated by Staphylococcus aureus (S. aureus) are not specific and definitive. To this end, current studies aim to investigate host immune responses of trend changes of the iron-regulated surface determinant (Isd) of IsdA, IsdB, IsdH, cell wall-modifying proteins of amidase (Amd) and glucosaminidase (Gmd), and secreted virulence factor of chemotaxis inhibitory protein S. aureus (CHIPS) and staphylococcal complement inhibitor (SCIN) longitudinally to discover their correlationship with clinical outcomes. A total of 55 patients with confirmed S. aureus infection of the long bone by clinical and laboratory methods were recruited for the study. Whole blood was collected at 0, 6, 12 months for the serum that was used to test IsdA, IsdB, IsdH, Gmd, Amd, CHIPS, and SCIN using a customized Luminex assay after clinical standard care parameters were collected. The patients were then divided into two groups: (1) infection controlled versus (2) adverse outcome based on clinical criteria for statistical analysis. We found that standard clinical parameters were unable to distinguish therapeutic outcomes. Significant overexpression of all antigens was confirmed in infection patients at 0-, 6-, and 12-month time points. A distinct expression trend and dynamic changes of IsdB, Amd, Gmd, and CHIPS were observed between infection controlled and adverse outcome patients, while the IsdA, IsdH, SCIN remained demonstrated no statistical significance. We conclude that dynamic changes of specific antigens could predict clinical outcomes of S. aureus osteomyelitis. Clinical Relevance: The trend changes of host immune responses to S. aureus specific antigens of IsdB, Gmd, Amd, and CHIPS could predict clinical outcomes of S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,The authors contributed equally
| | - Wenbin He
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,The authors contributed equally
| | - Youliang Ren
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Zhengdao Li
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Jinyue Liu
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Yi Liu
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Zhao Xie
- Department of Orthopaedic, Joint Orthopaedic Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China,Joint Orthopaedic, Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China
| | - Jianzhong Xu
- Department of Orthopaedic, Joint Orthopaedic Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China,Joint Orthopaedic, Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China
| | - Qing Bi
- Department of Orthopaedic, Joint Orthopaedic Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China,Joint Orthopaedic, Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China
| | - Mingxiang Kong
- Department of Orthopaedic, Joint Orthopaedic Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China,Joint Orthopaedic, Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China
| | - Charles C. Lee
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - John L. Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298
| | - Stephen L. Kates
- Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298
| | - Jiachen Peng
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,To whom correspondence should be addressed: Dr. Chao Xie, The Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone 585-275-0818, FAX 585-276-2177, or Dr. Jiachen Peng, Department of Orthopaedics First Affiliated Hospital of Zunyi Medical University Zunyi, 563003 China,
| | - Chao Xie
- Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,To whom correspondence should be addressed: Dr. Chao Xie, The Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone 585-275-0818, FAX 585-276-2177, or Dr. Jiachen Peng, Department of Orthopaedics First Affiliated Hospital of Zunyi Medical University Zunyi, 563003 China,
| |
Collapse
|
37
|
Clegg J, Soldaini E, Bagnoli F, McLoughlin RM. Targeting Skin-Resident Memory T Cells via Vaccination to Combat Staphylococcus aureus Infections. Trends Immunol 2020; 42:6-17. [PMID: 33309137 DOI: 10.1016/j.it.2020.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory T cells are important in adaptive immunity against many infections, rendering these cells attractive potential targets in vaccine development. Genetic and experimental evidence highlights the importance of cellular immunity in protection from Staphylococcus aureus skin infections, yet skin-resident memory T cells are, thus far, an untested component of immunity during such infections. Novel methods of generating and sampling vaccine-induced skin memory T cells are paralleled by discoveries of global, skin-wide immunosurveillance. We propose skin-resident memory CD4+ T cells as a potential missing link in the search for correlates of protection during S. aureus infections. A better appreciation of their phenotypes and functions could accelerate the development of preventive vaccines against this highly virulent and antibiotic-resistant pathogen.
Collapse
Affiliation(s)
- Jonah Clegg
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; GlaxoSmithKline, Siena, Italy
| | | | | | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
38
|
Tran VG, Venkatasubramaniam A, Adhikari RP, Krishnan S, Wang X, Le VTM, Le HN, Vu TTT, Schneider-Smith E, Aman MJ, Diep BA. Efficacy of Active Immunization With Attenuated α-Hemolysin and Panton-Valentine Leukocidin in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. J Infect Dis 2020; 221:267-275. [PMID: 31504652 DOI: 10.1093/infdis/jiz437] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a common pathogen causing infections in humans with various degrees of severity, with pneumonia being one of the most severe infections. In as much as staphylococcal pneumonia is a disease driven in large part by α-hemolysin (Hla) and Panton-Valentine leukocidin (PVL), we evaluated whether active immunization with attenuated forms of Hla (HlaH35L/H48L) alone, PVL components (LukS-PVT28F/K97A/S209A and LukF-PVK102A) alone, or combination of all 3 toxoids could prevent lethal challenge in a rabbit model of necrotizing pneumonia caused by the USA300 community-associated methicillin-resistant S. aureus (MRSA). Rabbits vaccinated with Hla toxoid alone or PVL components alone were only partially protected against lethal pneumonia, whereas those vaccinated with all 3 toxoids had 100% protection against lethality. Vaccine-mediated protection correlated with induction of polyclonal antibody response that neutralized not only α-hemolysin and PVL, but also other related toxins, produced by USA300 and other epidemic MRSA clones.
Collapse
Affiliation(s)
- Vuvi G Tran
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | | | | | | | - Xing Wang
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Vien T M Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Hoan N Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Trang T T Vu
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Erika Schneider-Smith
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - M Javad Aman
- Integrated Biotherapeutics, Inc, Rockville, Maryland
| | - Binh An Diep
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| |
Collapse
|
39
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
40
|
Bonifacius A, Goldmann O, Floess S, Holtfreter S, Robert PA, Nordengrün M, Kruse F, Lochner M, Falk CS, Schmitz I, Bröker BM, Medina E, Huehn J. Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses. Front Immunol 2020; 11:1579. [PMID: 32849537 PMCID: PMC7427519 DOI: 10.3389/fimmu.2020.01579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus can cause life-threatening diseases, and hospital- as well as community-associated antibiotic-resistant strains are an emerging global public health problem. Therefore, prophylactic vaccines or immune-based therapies are considered as alternative treatment opportunities. To develop such novel treatment approaches, a better understanding of the bacterial virulence and immune evasion mechanisms and their potential effects on immune-based therapies is essential. One important staphylococcal virulence factor is alpha-toxin, which is able to disrupt the epithelial barrier in order to establish infection. In addition, alpha-toxin has been reported to modulate other cell types including immune cells. Since CD4+ T cell-mediated immunity is required for protection against S. aureus infection, we were interested in the ability of alpha-toxin to directly modulate CD4+ T cells. To address this, murine naïve CD4+ T cells were differentiated in vitro into effector T cell subsets in the presence of alpha-toxin. Interestingly, alpha-toxin induced death of Th1-polarized cells, while cells polarized under Th17 conditions showed a high resistance toward increasing concentrations of this toxin. These effects could neither be explained by differential expression of the cellular alpha-toxin receptor ADAM10 nor by differential activation of caspases, but might result from an increased susceptibility of Th1 cells toward Ca2+-mediated activation-induced cell death. In accordance with the in vitro findings, an alpha-toxin-dependent decrease of Th1 and concomitant increase of Th17 cells was observed in vivo during S. aureus bacteremia. Interestingly, corresponding subsets of innate lymphoid cells and γδ T cells were similarly affected, suggesting a more general effect of alpha-toxin on the modulation of type 1 and type 3 immune responses. In conclusion, we have identified a novel alpha-toxin-dependent immunomodulatory strategy of S. aureus, which can directly act on CD4+ T cells and might be exploited for the development of novel immune-based therapeutic approaches to treat infections with antibiotic-resistant S. aureus strains.
Collapse
Affiliation(s)
- Agnes Bonifacius
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Goldmann
- Department Infection Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Philippe A Robert
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hanover, Germany.,DZIF, German Center for Infectious Diseases, TTU-IICH Hannover-Braunschweig Site, Hanover, Germany
| | - Ingo Schmitz
- Department Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Eva Medina
- Department Infection Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
41
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11. [PMID: 32576671 DOI: 10.31234/osf.io/9whp4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11:mBio.00735-20. [PMID: 32576671 PMCID: PMC7315118 DOI: 10.1128/mbio.00735-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Omoshaba EO, Ojo OE, Oyekunle MA, Sonibare AO, Adebayo AO. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from raw milk and nasal swabs of small ruminants in Abeokuta, Nigeria. Trop Anim Health Prod 2020; 52:2599-2608. [PMID: 32451834 DOI: 10.1007/s11250-020-02301-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), an important widespread cause of severe infection in both humans and animals, is a significant pathogen of public health concern. This study examined the presence of MRSA in 400 samples comprising 200 raw milks (145 from goat and 55 from sheep) and 200 nasal swabs (145 from goats and 55 from sheep) collected from ten different locations in Abeokuta, Nigeria. Samples were examined using standard bacteriological methods for the isolation and identification of Staphylococcus aureus and culture on oxacillin (6 μg/ml) and cefoxitin (2 μg/ml) selective media for the detection of MRSA. Suspected MRSA isolates were confirmed by latex agglutination test for the detection of penicillin-binding protein 2a (PBP2a). Antibiotic susceptibility testing was determined by Kirby Bauer disc diffusion method. Staphylococcus aureus was detected in 72 (18%) of 400 samples of which 52 (13%) were confirmed as MRSA. Methicillin-resistant S. aureus was detected in raw milk (37 of 200; 18.5%) and nasal swab (15 of 200; 7.5%). There was no significance difference (p > 0.05) in the prevalence of MRSA in sheep (37.7%) and goat (23.4%). The MRSA isolates showed resistance to ampicillin (100%), cloxacillin (100%), sulphamethoxazole-trimethoprim (100%), amoxicillin-clavulanate (84.6%), ceftriaxone (75%), cefuroxime (69.2%), erythromycin (65.4%), streptomycin (38.5%), ciprofloxacin (23.1%), pefloxacin (21.2%) and gentamicin (17.3%). The presence of multidrug-resistant MRSA in small ruminants reared in Abeokuta metropolis may be due to regular use of antibiotics and unhygienic practices by farmers. This in turn constitutes a potential public health risk to the owners, consumers of small ruminant products and the general populace.
Collapse
Affiliation(s)
- E O Omoshaba
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, P. M. B. 2240, Abeokuta, Ogun State, Nigeria.
| | - O E Ojo
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, P. M. B. 2240, Abeokuta, Ogun State, Nigeria
| | - M A Oyekunle
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, P. M. B. 2240, Abeokuta, Ogun State, Nigeria
| | - A O Sonibare
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta (FUNAAB), Abeokuta, Nigeria
| | - A O Adebayo
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, P. M. B. 2240, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
44
|
Collins MM, Behera RK, Pallister KB, Evans TJ, Burroughs O, Flack C, Guerra FE, Pullman W, Cone B, Dankoff JG, Nygaard TK, Brinsmade SR, Voyich JM. The Accessory Gene saeP of the SaeR/S Two-Component Gene Regulatory System Impacts Staphylococcus aureus Virulence During Neutrophil Interaction. Front Microbiol 2020; 11:561. [PMID: 32390958 PMCID: PMC7189620 DOI: 10.3389/fmicb.2020.00561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus (S. aureus) causes a range of diseases ranging from superficial skin and soft-tissue infections to invasive and life-threatening conditions (Klevens et al., 2007; Kobayashi et al., 2015). S. aureus utilizes the Sae sensory system to adapt to neutrophil challenge. Although the roles of the SaeR response regulator and its cognate sensor kinase SaeS have been demonstrated to be critical for surviving neutrophil interaction and for causing infection, the roles for the accessory proteins SaeP and SaeQ remain incompletely defined. To characterize the functional role of these proteins during innate immune interaction, we generated isogenic deletion mutants lacking these accessory genes in USA300 (USA300ΔsaeP and USA300ΔsaeQ). S. aureus survival was increased following phagocytosis of USA300ΔsaeP compared to USA300 by neutrophils. Additionally, secreted extracellular proteins produced by USA300ΔsaeP cells caused significantly more plasma membrane damage to human neutrophils than extracellular proteins produced by USA300 cells. Deletion of saeQ resulted in a similar phenotype, but effects did not reach significance during neutrophil interaction. The enhanced cytotoxicity of USA300ΔsaeP cells toward human neutrophils correlated with an increased expression of bi-component leukocidins known to target these immune cells. A saeP and saeQ double mutant (USA300ΔsaePQ) showed a significant increase in survival following neutrophil phagocytosis that was comparable to the USA300ΔsaeP single mutant and increased the virulence of USA300 during murine bacteremia. These data provide evidence that SaeP modulates the Sae-mediated response of S. aureus against human neutrophils and suggest that saeP and saeQ together impact pathogenesis in vivo.
Collapse
Affiliation(s)
- Madison M. Collins
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Ranjan K. Behera
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Kyler B. Pallister
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Tyler J. Evans
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Owen Burroughs
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Caralyn Flack
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Fermin E. Guerra
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Willis Pullman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Brock Cone
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Jennifer G. Dankoff
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Tyler K. Nygaard
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Shaun R. Brinsmade
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Jovanka M. Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
45
|
Blümel E, Munir Ahmad S, Nastasi C, Willerslev-Olsen A, Gluud M, Fredholm S, Hu T, Surewaard BGJ, Lindahl LM, Fogh H, Koralov SB, Rahbek Gjerdrum LM, Clark RA, Iversen L, Krejsgaard T, Bonefeld CM, Geisler C, Becker JC, Woetmann A, Andersen MH, Buus TB, Ødum N. Staphylococcus aureus alpha-toxin inhibits CD8 + T cell-mediated killing of cancer cells in cutaneous T-cell lymphoma. Oncoimmunology 2020; 9:1751561. [PMID: 32363124 PMCID: PMC7185203 DOI: 10.1080/2162402x.2020.1751561] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus and its toxins have been linked to disease progression and mortality in advanced stages of cutaneous T-cell lymphoma (CTCL). CD8+ T cells play a crucial role in anti-cancer responses and high CD8+ T cell numbers in tumor lesions are associated with a favorable prognosis in CTCL. Here, we show that CD8+ T cells from both healthy donors and Sézary syndrome patients are highly susceptible to cell death induced by Staphylococcal alpha-toxin, whereas malignant T cells are not. Importantly, alpha-toxin almost completely blocks cytotoxic killing of CTCL tumor cells by peptide-specific CD8+ T cells, leading to their escape from induced cell death and continued proliferation. These findings suggest that alpha-toxin may favor the persistence of malignant CTCL cells in vivo by inhibiting CD8+ T cell cytotoxicity. Thus, we propose a novel mechanism by which colonization with Staphylococcus aureus may contribute to cancer immune evasion and disease progression in CTCL.
Collapse
Affiliation(s)
- Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bas G. J. Surewaard
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Fogh
- Department of Dermatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, USA
| | | | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), Essen, Germany
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
von Hoven G, Qin Q, Neukirch C, Husmann M, Hellmann N. Staphylococcus aureus α-toxin: small pore, large consequences. Biol Chem 2020; 400:1261-1276. [PMID: 30951494 DOI: 10.1515/hsz-2018-0472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
The small β-pore-forming α-toxin, also termed α-hemolysin or Hla is considered to be an important virulence factor of Staphylococcus aureus. Perforation of the plasma membrane (PM) by Hla leads to uncontrolled flux of ions and water. Already a small number of toxin pores seems to be sufficient to induce complex cellular responses, many of which depend on the efflux of potassium. In this article, we discuss the implications of secondary membrane lesions, for example, by endogenous channels, for Hla-mediated toxicity, for calcium-influx and membrane repair. Activation of purinergic receptors has been proposed to be a major contributor to the lytic effects of various pore forming proteins, but new findings raise doubts that this holds true for Hla. However, the recently discovered cellular pore forming proteins gasdermin D and Mixed lineage kinase domain-like pseudokinase (MLKL) which perforate the PM from the cytosolic side might contribute to both calcium-influx-dependent damage and membrane repair. Activation of endogenous pore forming proteins by Hla above a threshold concentration could explain the apparent dependence of pore characteristics on toxin concentrations. If secondary membrane damage in the aftermath of Hla-attack contributes significantly to overall PM permeability, it might be an interesting target for new therapeutic approaches.
Collapse
Affiliation(s)
- Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Qianqian Qin
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Claudia Neukirch
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nadja Hellmann
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 30, 55128 Mainz, Germany
| |
Collapse
|
47
|
Liu L, Shen X, Yu J, Cao X, Zhan Q, Guo Y, Yu F. Subinhibitory Concentrations of Fusidic Acid May Reduce the Virulence of S. aureus by Down-Regulating sarA and saeRS to Reduce Biofilm Formation and α-Toxin Expression. Front Microbiol 2020; 11:25. [PMID: 32117092 PMCID: PMC7033611 DOI: 10.3389/fmicb.2020.00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is an important pathogen in hospital and community infections. Fusidic acid is particularly effective in treating skin and wound infections caused by staphylococci. The purpose of our study was to clarify the effect of fusidic acid on the biofilm formation and α-toxin expression of S. aureus at subinhibitory concentrations [1/64, 1/32, and 1/16 × minimum inhibitory concentration (MIC)]. A total of 504 genes greater than a twofold or less than twofold change in expression of S. aureus effected by subinhibitory concentrations of fusidic acid were found, including 232 up-regulated genes and 272 down-regulated genes, which were determined by transcriptome sequencing. Our results showed subinhibitory concentrations of fusidic acid significantly inhibited the expression of hla, spa, icaA, and cidA at the mRNA level in clinical S. aureus strains tested. And subinhibitory concentrations of fusidic acid can significantly reduce the hemolysis activity and α-toxin production of S. aureus. In addition, the subinhibitory concentrations of fusidic acid significantly inhibited biofilm formation, autolysis, cell aggregation, and polysaccharide intercellular adhesin (PIA) production of S. aureus. Moreover, fusidic acid effectively reduces the damage of mouse skin lesion area. Furthermore, fusidic acid reduced the expression of the two-component regulatory system saeRS and staphylococcal accessory gene regulator (sarA). In conclusion, our results suggested that the subinhibitory concentrations of fusidic acid may reduce the virulence of S. aureus by down-regulating sarA and saeRS to reduce biofilm formation and α-toxin expression, which will provide a theoretical basis for the clinical treatment of S. aureus infection. This is the first report that fusidic acid has an inhibitory effect on the virulence of S. aureus, and this broadens the clinical application of fusidic acid.
Collapse
Affiliation(s)
- Li Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofei Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingyi Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingwei Cao
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Zhan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Tsuiji M, Shiohara K, Takei Y, Shinohara Y, Nemoto S, Yamaguchi S, Kanto M, Itoh S, Oku T, Miyashita M, Seyama Y, Kurihara M, Tsuji T. Selective Cytotoxicity of Staphylococcal α-Hemolysin (α-Toxin) against Human Leukocyte Populations. Biol Pharm Bull 2019; 42:982-988. [PMID: 31155595 DOI: 10.1248/bpb.b18-01024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus produces a variety of exoproteins that interfere with host immune systems. We attempted to purify cytotoxins against human leukocytic cells from the culture supernatant of S. aureus by a combination of ammonium sulfate precipitation, ion-exchange chromatography on a CM-cellulose column and HPLC on a Mono S 5/50 column. A major protein possessing cytotoxicity to HL60 human promyelocytic leukemia cells was purified, and the protein was identified as α-hemolysin (Hla, α-toxin) based on its molecular weight (34 kDa) and N-terminal amino acid sequence. Flow cytometric analysis suggested differential cytotoxicity of Hla against different human peripheral blood leukocyte populations. After cell fractionation with density-gradient centrifugation, we found that peripheral blood mononuclear cells (PBMCs) were more susceptible to Hla than polymorphonuclear leukocytes. Moreover, cell surface marker analysis suggested that Hla exhibited slightly higher cytotoxicity against CD14-positive PBMCs (mainly monocytes) than CD3- or CD19-positive cells (T or B lymphocytes). From these results, we conclude that human leukocytes have different susceptibility to Hla depending on their cell lineages, and thereby the toxin may modulate the host immune response.
Collapse
Affiliation(s)
- Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Kazuyuki Shiohara
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshinori Takei
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshinori Shinohara
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Shigeyoshi Nemoto
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Satoshi Yamaguchi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Masanori Kanto
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Saotomo Itoh
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Masahiro Miyashita
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshiyuki Seyama
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | | | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
49
|
The msaABCR Operon Regulates the Response to Oxidative Stress in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00417-19. [PMID: 31427392 DOI: 10.1128/jb.00417-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus has evolved a complex regulatory network that controls a multitude of defense mechanisms against the deleterious effects of oxidative stress stimuli, subsequently leading to the pathogen's survival and persistence in the hosts. Previously, we characterized the msaABCR operon as a regulator of virulence, antibiotic resistance, and the formation of persister cells in S. aureus Deletion of the msaABCR operon resulted in the downregulation of several genes involved in resistance against oxidative stress. Notably, those included carotenoid biosynthetic genes and the ohr gene, which is involved in resistance against organic hydroperoxides. These findings led us to hypothesize that the msaABCR operon is involved in resisting oxidative stress generated in the presence of both H2O2 and organic hydroperoxides. Here, we report that a protein product of the msaABCR operon (MsaB) transcriptionally regulates the expression of the crtOPQMN operon and the ohr gene to resist in vitro oxidative stresses. In addition to its direct regulation of the crtOPQMN operon and ohr gene, we also show that MsaB is the transcriptional repressor of sarZ (repressor of ohr). Taken together, these results suggest that the msaABCR operon regulates an oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Moving forward, we plan to investigate the role of msaABCR in the persistence of S. aureus under in vivo conditions.IMPORTANCE This study shows the involvement of the msaABCR operon in resisting oxidative stress by Staphylococcus aureus generated under in vitro and ex vivo conditions. We show that MsaB regulates the expression and production of a carotenoid pigment, staphyloxanthin, which is a potent antioxidant in S. aureus We also demonstrate that MsaB regulates the ohr gene, which is involved in defending against oxidative stress generated by organic hydroperoxides. This study highlights the importance of msaABCR in the survival of S. aureus in the presence of various environmental stimuli that mainly exert oxidative stress. The findings from this study indicate the possibility that msaABCR is involved in the persistence of staphylococcal infections and therefore could be a potential antimicrobial target to overcome recalcitrant staphylococcal infections.
Collapse
|
50
|
Blümel E, Willerslev-Olsen A, Gluud M, Lindahl LM, Fredholm S, Nastasi C, Krejsgaard T, Surewaard BGJ, Koralov SB, Hu T, Persson JL, Bonefeld CM, Geisler C, Iversen L, Becker JC, Andersen MH, Woetmann A, Buus TB, Ødum N. Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4 + T cells in cutaneous T-cell lymphoma. Oncoimmunology 2019; 8:e1641387. [PMID: 31646088 PMCID: PMC6791457 DOI: 10.1080/2162402x.2019.1641387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus is implicated in disease progression in cutaneous T-cell lymphoma (CTCL). Here, we demonstrate that malignant T cell lines derived from CTCL patients as well as primary malignant CD4+ T cells from Sézary syndrome patients are considerably more resistant to alpha-toxin-induced cell death than their non-malignant counterparts. Thus, in a subset of Sézary syndrome patients the ratio between malignant and non-malignant CD4+ T cells increases significantly following exposure to alpha-toxin. Whereas toxin-induced cell death is ADAM10 dependent in healthy CD4+ T cells, resistance to alpha-toxin in malignant T cells involves both downregulation of ADAM10 as well as other resistance mechanisms. In conclusion, we provide first evidence that Staphylococcus aureus derived alpha-toxin can tilt the balance between malignant and non-malignant CD4+ T cells in CTCL patients. Consequently, alpha-toxin may promote disease progression through positive selection of malignant CD4+ T cells, identifying alpha-toxin as a putative drug target in CTCL.
Collapse
Affiliation(s)
- Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bas G. J. Surewaard
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jenny L. Persson
- Clinical Research Center, Lund University, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Charlotte Menné Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), Essen, Germany
| | - Mads Hald Andersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|