1
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Mondal J, Huse JT. Neurotransmitter power plays: the synaptic communication nexus shaping brain cancer. Acta Neuropathol Commun 2025; 13:85. [PMID: 40307951 PMCID: PMC12042361 DOI: 10.1186/s40478-025-02009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Gliomas and brain metastases are notorious for their dismal prognosis and low survival rates, a challenge exacerbated by our incomplete grasp of the complex dynamics that govern brain cancers. Recently, a groundbreaking paradigm shift has emerged, highlighting the crucial role of synaptic communication between neurons and brain tumor cells in reshaping neuronal signaling to favor tumor growth. This review delves into the pivotal interplay of synaptic mechanisms, focusing on excitatory glutamatergic and inhibitory GABAergic pathways. Glutamatergic synapses utilize glutamate to propagate excitatory signals, while GABAergic synapses employ gamma-aminobutyric acid (GABA) to inhibit neuronal firing. Glutamatergic signaling can be broadly classified into ionotropic (NMDAR, AMPAR and kainite receptors) and metabotropic subtypes. The harmonious orchestration of these synaptic types is essential for normal brain function, and their dysregulation is implicated in neurodegenerative disorders such as Alzheimer's disease and epilepsy. Emerging evidence reveals that glioma and brain metastatic cells exploit these synaptic pathways and neurotransmitters to enhance their proliferation and survival. In this review, we will first explore the intricate mechanisms underlying glutamatergic and GABAergic signaling. Next, we will summarize recent advancements in understanding how brain cancer cells hijack these pathways to their advantage. Finally, we will propose novel therapeutic strategies aimed at disrupting the aberrant neuron-tumor synaptic communication, offering potential treatment strategies for combating these otherwise incurable brain cancers.
Collapse
Affiliation(s)
- Jayanta Mondal
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Nateghi S, Rezayof A, Kouhkan F, Delphi L, Davisaraei YB, Rostami F, Tirgar F, Sepehri H. Growth of the prefrontal cortical glioblastoma altered cognitive and emotional behaviors via mediating miRNAs and GABA-A receptor signaling pathways in rats. Brain Res Bull 2025; 221:111227. [PMID: 39875028 DOI: 10.1016/j.brainresbull.2025.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABAA receptor agonist, directly into the mPFC-GBM (1 µg/rat/2.5 μl) following tumor induction decreased tumor volume and weight, resulting in an increased survival rate. Conversely, a higher dose of muscimol (6 µg/rat/2.5 μl) increased tumor size and reduced survival. Behavioral alterations induced by GBM, including anxiety-like responses, exploratory behaviors, locomotor activity, and memory formation, were assessed using anxiety-like behavior task, the hole-board test, and the novel object recognition test. Muscimol treatment dose-dependently affected these behaviors in the animals with the mPFC-GBM, bringing their performance with that of the sham group at the dose of 1 µg/rat/2.5 μl. Changes in specific miRNAs expressions, including miR-208, -290-295, -345, -743 and -802 were associated with the growth of the mPFC-GBM under muscimol treatment. These findings suggest that GBM growth into the mPFC profoundly impacts cognitive and emotional behaviors which can be improved by muscimol treatment. Considering that the expression levels of targeted miRNAs could be influenced by the growth of the mPFC-GBM, both with or without muscimol treatment, these non-coding RNAs might serve as potential biomarkers for GBM.
Collapse
Affiliation(s)
- Sepide Nateghi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yavar Bagheri Davisaraei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addictions Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Houri Sepehri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Laurenge A, Castro-Vega LJ, Huberfeld G. Reciprocal interactions between glioma and tissue-resident cells fueling tumor progression. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:177-190. [PMID: 40148044 DOI: 10.1016/b978-0-443-19102-2.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Gliomas are the most frequent primary brain tumor and are essentially incurable. While nondiffuse gliomas are circumscribed, diffuse gliomas display an aggressive behavior characterized by tumor cell migration over large distances into the brain parenchyma, thereby precluding curative surgical resection. Almost all diffuse gliomas progress and recur as higher grades and become resistant to standard-of-care treatments. It is being increasingly recognized that glioma cells establish functional interactions with cells residing in the tumor microenvironment. Of these, tumor-associated microglia and macrophages (TAMs) play critical roles in immunosuppression through modulation of the extracellular matrix, and the secretion of molecules such as cytokines, neurotrophic factors, and micro-RNAs (miRNAs). Conversely, glioma cell signals influence cell states and drive the metabolic reprogramming of TAMs. Similarly, emergent evidence indicates that neuronal activity influences glioma by released factors and by establishing functional synapses with glioma cells to promote tumor growth and invasion. Glioma cells also affect local neuronal activities and maintain connections through microtube gap junctions to amplify local effects. Here, we discuss the molecular mechanisms underlying bidirectional interactions between glioma cells and TAMs, as well as between glioma cells and neurons. A better understanding of these cellular cross talks is crucial for the development of novel therapeutic strategies for diffuse gliomas.
Collapse
Affiliation(s)
- Alice Laurenge
- Genetics & Development of Brain Tumors Laboratory, ICM - Paris Brain Institute, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-Oncology Department, F-75013, Paris, France
| | - Luis Jaime Castro-Vega
- Genetics & Development of Brain Tumors Laboratory, ICM - Paris Brain Institute, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Gilles Huberfeld
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France; Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France.
| |
Collapse
|
5
|
Pan J, Yan D, Liang Y, Yang L, Hu C, Chen M. Bioinformatic analysis constructs an optimal prognostic index for survival-related variables (OPISV) based on whole-genome expression data in Glioblastoma. Int J Biol Macromol 2024; 282:137184. [PMID: 39505178 DOI: 10.1016/j.ijbiomac.2024.137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Using clinical information and transcriptomic sequencing data from glioblastoma (GBM) patients in the TCGA database to perform gene-by-gene analysis that is aligned with individual patient characteristics and develop an optimal prognostic index of survival-related variables (OPISV) through iterative machine learning techniques to predict the prognosis of GBM patients. STUDY DESIGN The TCGA dataset was utilized as the training dataset, while two GEO datasets served as independent validation cohorts. Initially, survival analysis (p < 0.001***), differential gene expression analysis (p < 0.05*), and univariate Cox regression analysis (p < 0.05*) were employed to identify genes that are highly correlated with patient prognosis and exhibit significant differences in survival status. Subsequently, incorporating the non-excludable variable of age, a multivariate Cox regression analysis was performed in a stepwise manner to construct the OPISV. Finally, logistic and LASSO regressions were used to validate the association between the identified genes and patient survival. The OPISV performance is evaluated and its potential mechanisms are explored. RESULTS Age, CTSD, PTPRN, PTPRN2, NSUN5, DNAJC30 and SOX21 emerged as the optimal variables through multivariate Cox regression iterations. Further analysis characterized Age, PTPRN and DNAJC30 as independent prognostic risk factors for constructing OPISV, which is validated with external GEO datasets and GEPIA database. In OPISV_high populations, significantly upregulated GABAergic synapse function was exposed. Differential genes identified from gene clustering of the GABAergic synapse pathway and gene module highly correlated with GABAergic synapse in the WGCNA analysis are pointing unequivocally to the glioma progress. CONCLUSION OPISV is feasible for predicting patient survival, as it may serve as a potential mechanism underlying the involvement of GABAergic synapses in the progression of GBM.
Collapse
Affiliation(s)
- Junjia Pan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Department of Anesthesiology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dejun Yan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yaoe Liang
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lin Yang
- Department of Anesthesiology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Rehabilitation Medicine Institute of Panyu District, Guangzhou, Guangdong, China
| | - Chun Hu
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
6
|
Ren P, Bao H, Wang S, Wang Y, Bai Y, Lai J, Yi L, Liu Q, Li W, Zhang X, Sun L, Liu Q, Cui X, Zhang X, Liang P, Liang X. Multi-scale brain attributes contribute to the distribution of diffuse glioma subtypes. Int J Cancer 2024; 155:1670-1683. [PMID: 38949756 DOI: 10.1002/ijc.35068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Gliomas are primary brain tumors and are among the most malignant types. Adult-type diffuse gliomas can be classified based on their histological and molecular signatures as IDH-wildtype glioblastoma, IDH-mutant astrocytoma, and IDH-mutant and 1p/19q-codeleted oligodendroglioma. Recent studies have shown that each subtype of glioma has its own specific distribution pattern. However, the mechanisms underlying the specific distributions of glioma subtypes are not entirely clear despite partial explanations such as cell origin. To investigate the impact of multi-scale brain attributes on glioma distribution, we constructed cumulative frequency maps for diffuse glioma subtypes based on T1w structural images and evaluated the spatial correlation between tumor frequency and diverse brain attributes, including postmortem gene expression, functional connectivity metrics, cerebral perfusion, glucose metabolism, and neurotransmitter signaling. Regression models were constructed to evaluate the contribution of these factors to the anatomic distribution of different glioma subtypes. Our findings revealed that the three different subtypes of gliomas had distinct distribution patterns, showing spatial preferences toward different brain environmental attributes. Glioblastomas were especially likely to occur in regions enriched with synapse-related pathways and diverse neurotransmitter receptors. Astrocytomas and oligodendrogliomas preferentially occurred in areas enriched with genes associated with neutrophil-mediated immune responses. The functional network characteristics and neurotransmitter distribution also contributed to oligodendroglioma distribution. Our results suggest that different brain transcriptomic, neurotransmitter, and connectomic attributes are the factors that determine the specific distributions of glioma subtypes. These findings highlight the importance of bridging diverse scales of biological organization when studying neurological dysfunction.
Collapse
Affiliation(s)
- Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Wang
- Medical Imaging Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Bai
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiacheng Lai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenting Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyu Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Sun
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qiuyi Liu
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xuehua Cui
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiushi Zhang
- Medical Imaging Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Soeung V, Puchalski RB, Noebels JL. The complex molecular epileptogenesis landscape of glioblastoma. Cell Rep Med 2024; 5:101691. [PMID: 39168100 PMCID: PMC11384957 DOI: 10.1016/j.xcrm.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The cortical microenvironment surrounding malignant glioblastoma is a source of depolarizing crosstalk favoring hyperexcitability, tumor expansion, and immune evasion. Neosynaptogenesis, excess glutamate, and altered intrinsic membrane currents contribute to excitability dyshomeostasis, yet only half of the cases develop seizures, suggesting that tumor and host genomics, along with location, rather than mass effect, play a critical role. We analyzed the spatial contours and expression of 358 clinically validated human epilepsy genes in the human glioblastoma transcriptome compared to non-tumor adult and developing cortex datasets. Nearly half, including dosage-sensitive genes whose expression levels are securely linked to monogenic epilepsy, are strikingly enriched and aberrantly regulated at the leading edge, supporting a complex epistatic basis for peritumoral epileptogenesis. Surround hyperexcitability induced by complex patterns of proepileptic gene expression may explain the limited efficacy of narrowly targeted antiseizure medicines and the persistence of epilepsy following tumor resection and clarify why not all brain tumors provoke seizures.
Collapse
Affiliation(s)
- Victoria Soeung
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph B Puchalski
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Hogan A, Mut M. Neurosteroids in Glioma: A Novel Therapeutic Concept. Life (Basel) 2024; 14:975. [PMID: 39202716 PMCID: PMC11355226 DOI: 10.3390/life14080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Glioma, a diverse group of brain and spinal cord tumors arising from glial cells, is characterized by varying degrees of malignancy, with some types exhibiting highly aggressive behavior, rapid proliferation, and invasive growth patterns, posing significant therapeutic challenges. This review delves into the complex interactions between glioma cells, neurotransmitters, and neurosteroids, emphasizing their potential as therapeutic targets. Key neurotransmitters, like glutamate and gamma-aminobutyric acid (GABA), play crucial roles in glioma growth, invasion, and treatment response. This review examines the involvement of neurosteroids in glioma biology and explores innovative therapeutic strategies targeting these systems. It encompasses the biosynthesis and mechanisms of neurosteroids, interactions between gliomas and neurotransmitters, the spatial distribution of neurosteroid synthesis in gliomas, the role of ion channels, hormonal influences, enzyme modulation, and the neuroimmune system in glioma progression. Additionally, it highlights the potential of neurosteroids to modulate these pathways for therapeutic benefit.
Collapse
Affiliation(s)
- Ava Hogan
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA;
| | - Melike Mut
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
9
|
Liu H, Pan Z, Lin X, Chen L, Yang Q, Zhang W, Dai L, Zhang Y, Li W, Chen Y, Peng K, Wanggou S, Zeng F, Li X. A potassium-chloride co-transporter with altered genome architecture functions as a suppressor in glioma. J Cell Mol Med 2024; 28:e18352. [PMID: 38685685 PMCID: PMC11058328 DOI: 10.1111/jcmm.18352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhouyang Pan
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuelei Lin
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Long Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qi Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wang Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yinhua Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kang Peng
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Feiyue Zeng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuejun Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
10
|
Sussman JH, Oldridge DA, Yu W, Chen CH, Zellmer AM, Rong J, Parvaresh-Rizi A, Thadi A, Xu J, Bandyopadhyay S, Sun Y, Wu D, Emerson Hunter C, Brosius S, Ahn KJ, Baxter AE, Koptyra MP, Vanguri RS, McGrory S, Resnick AC, Storm PB, Amankulor NM, Santi M, Viaene AN, Zhang N, Raedt TD, Cole K, Tan K. A longitudinal single-cell and spatial multiomic atlas of pediatric high-grade glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583588. [PMID: 38496580 PMCID: PMC10942465 DOI: 10.1101/2024.03.06.583588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome sequencing, and CODEX spatial proteomics to capture the evolution of the tumor microenvironment during progression following treatment. We found that the canonical neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor cell states in a pediatric cohort and observed differential tumor-myeloid interactions between malignant cell states. We identified key transcriptional regulators of pHGG cell states and did not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We showed that essential neuromodulators and the interferon response are upregulated post-therapy along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of longitudinal pHGG captures the key features of therapy response that support distinction from its adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.
Collapse
Affiliation(s)
- Jonathan H. Sussman
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek A. Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Wenbao Yu
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Abigail M. Zellmer
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jiazhen Rong
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | | | - Anusha Thadi
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Cellular and Molecular Biology Graduate Group, Perelman School of
Medicine, University of Pennsylvania, PA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, Perelman School of Medicine,
University of Pennsylvania, PA
| | - David Wu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - C. Emerson Hunter
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie Brosius
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Amy E. Baxter
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mateusz P. Koptyra
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Rami S. Vanguri
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie McGrory
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Adam C. Resnick
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Nduka M. Amankulor
- Department of Neurosurgery, Perelman School of Medicine,
Philadelphia, PA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nancy Zhang
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | - Thomas De Raedt
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Kristina Cole
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
- Center for Single Cell Biology, Children’s Hospital of
Philadelphia, Philadelphia, PA
| |
Collapse
|
11
|
Untiet V. Astrocytic chloride regulates brain function in health and disease. Cell Calcium 2024; 118:102855. [PMID: 38364706 DOI: 10.1016/j.ceca.2024.102855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
Joghataei MT, Bakhtiarzadeh F, Dehghan S, Ketabforoush AHME, Golab F, Zarbakhsh S, Ahmadirad N. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci 2023; 83:677-690. [PMID: 37563091 DOI: 10.1002/jdn.10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.
Collapse
Affiliation(s)
| | - Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers (Basel) 2023; 15:5539. [PMID: 38067243 PMCID: PMC10705208 DOI: 10.3390/cancers15235539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Approximately 30% of glioma patients are able to survive beyond one year postdiagnosis. And this short time is often overshadowed by glioma-associated epilepsy. This condition severely impairs the patient's quality of life and causes great suffering. The genetic, molecular and cellular mechanisms underlying tumour development and epileptogenesis remain incompletely understood, leading to numerous unanswered questions. The various types of gliomas, namely glioblastoma, astrocytoma and oligodendroglioma, demonstrate distinct seizure susceptibility and disease progression patterns. Patterns have been identified in the presence of IDH mutations and epilepsy, with tumour location in cortical regions, particularly the frontal lobe, showing a more frequent association with seizures. Altered expression of TP53, MGMT and VIM is frequently detected in tumour cells from individuals with epilepsy associated with glioma. However, understanding the pathogenesis of these modifications poses a challenge. Moreover, hypoxic effects induced by glioma and associated with the HIF-1a factor may have a significant impact on epileptogenesis, potentially resulting in epileptiform activity within neuronal networks. We additionally hypothesise about how the tumour may affect the functioning of neuronal ion channels and contribute to disruptions in the blood-brain barrier resulting in spontaneous depolarisations.
Collapse
Affiliation(s)
- Mariia Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ekaterina Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Tikhon Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Victoria Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| |
Collapse
|
14
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
15
|
Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules 2023; 13:1503. [PMID: 37892185 PMCID: PMC10605193 DOI: 10.3390/biom13101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
16
|
Arslan A. Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach. Heliyon 2023; 9:e20218. [PMID: 37809401 PMCID: PMC10559982 DOI: 10.1016/j.heliyon.2023.e20218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Critical for brain development, neurodevelopmental and network disorders, the GABRA1 gene encodes for the α1 subunit, an abundantly and developmentally expressed subunit of heteropentameric gamma-aminobutyric acid A receptors (GABAARs) mediating primary inhibition in the brain. Mutations of the GABAAR subunit genes including GABRA1 gene are associated with epilepsy, a group of syndromes, characterized by unprovoked seizures and diagnosed by integrative approach, that involves genetic testing. Despite the diagnostic use of genetic testing, a large fraction of the GABAAR subunit gene variants including the variants of GABRA1 gene is not known in terms of their molecular consequence, a challenge for precision and personalized medicine. Addressing this, one hundred thirty-seven GABRA1 gene variants of unknown clinical significance have been extracted from the ClinVar database and computationally analyzed for pathogenicity. Eight variants (L49H, P59L, W97R, D99G, G152S, V270G, T294R, P305L) are predicted as pathogenic and mapped to the α1 subunit's extracellular domain (ECD), transmembrane domains (TMDs) and extracellular linker. This is followed by the integration with relevant data for cellular pathology and severity of the epilepsy syndromes retrieved from the literature. Our results suggest that the pathogenic variants in the ECD of GABRA1 (L49H, P59L, W97R, D99G, G152S) will probably manifest decreased surface expression and reduced current with mild epilepsy phenotypes while V270G, T294R in the TMDs and P305L in the linker between the second and the third TMDs will likely cause reduced cell current with severe epilepsy phenotypes. The results presented in this study provides insights for clinical genetics and wet lab experimentation.
Collapse
Affiliation(s)
- Ayla Arslan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
17
|
Bao H, Ren P, Yi L, Lv Z, Ding W, Li C, Li S, Li Z, Yang X, Liang X, Liang P. New insights into glioma frequency maps: From genetic and transcriptomic correlate to survival prediction. Int J Cancer 2023; 152:998-1012. [PMID: 36305649 PMCID: PMC10100131 DOI: 10.1002/ijc.34336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023]
Abstract
Increasing evidence indicates that glioma topographic location is linked to the cellular origin, molecular alterations and genetic profile. This research aims to (a) reveal the underlying mechanisms of tumor location predilection in glioblastoma multiforme (GBM) and lower-grade glioma (LGG) and (b) leverage glioma location features to predict prognosis. MRI images from 396 GBM and 190 LGG (115 astrocytoma and 75 oligodendroglioma) patients were standardized to construct frequency maps and analyzed by voxel-based lesion-symptom mapping. We then investigated the spatial correlation between glioma distribution with gene expression in healthy brains. We also evaluated transcriptomic differences in tumor tissue from predilection and nonpredilection sites. Furthermore, we quantitively characterized tumor anatomical localization and explored whether it was significantly related to overall survival. Finally, we employed a support vector machine to build a survival prediction model for GBM patients. GBMs exhibited a distinct location predilection from LGGs. GBMs were nearer to the subventricular zone and more likely to be localized to regions enriched with synaptic signaling, whereas astrocytoma and oligodendroglioma tended to occur in areas associated with the immune response. Synapse, neurotransmitters and calcium ion channel-related genes were all activated in GBM tissues coming from predilection regions. Furthermore, we characterized tumor location features in terms of a series of tumor-to-predilection distance metrics, which were able to predict GBM 1-year survival status with an accuracy of 0.71. These findings provide new perspectives on our understanding of tumor anatomic localization. The spatial features of glioma are of great value in individual therapy and prognosis prediction.
Collapse
Affiliation(s)
- Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China.,Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wencai Ding
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Siyang Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhipeng Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xue Yang
- Department of Information, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
18
|
Yang Y, Ren L, Li W, Zhang Y, Zhang S, Ge B, Yang H, Du G, Tang B, Wang H, Wang J. GABAergic signaling as a potential therapeutic target in cancers. Biomed Pharmacother 2023; 161:114410. [PMID: 36812710 DOI: 10.1016/j.biopha.2023.114410] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
GABA is the most common inhibitory neurotransmitter in the vertebrate central nervous system. Synthesized by glutamic acid decarboxylase, GABA could specifically bind with two GABA receptors to transmit inhibition signal stimuli into cells: GABAA receptor and GABAB receptor. In recent years, emerging studies revealed that GABAergic signaling not only participated in traditional neurotransmission but was involved in tumorigenesis as well as regulating tumor immunity. In this review, we summarize the existing knowledge of the GABAergic signaling pathway in tumor proliferation, metastasis, progression, stemness, and tumor microenvironment as well as the underlying molecular mechanism. We also discussed the therapeutical advances in targeting GABA receptors to provide the theoretical basis for pharmacological intervention of GABAergic signaling in cancer treatment especially immunotherapy.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
19
|
New LE, Yanagawa Y, McConkey GA, Deuchars J, Deuchars SA. GABAergic regulation of cell proliferation within the adult mouse spinal cord. Neuropharmacology 2023; 223:109326. [PMID: 36336067 DOI: 10.1016/j.neuropharm.2022.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.
Collapse
Affiliation(s)
- Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University, Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Susan A Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
20
|
Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers (Basel) 2023; 15:cancers15030849. [PMID: 36765806 PMCID: PMC9913334 DOI: 10.3390/cancers15030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Current therapies for Glioblastoma multiforme (GBM) focus on eradicating primary tumors using radiotherapy, chemotherapy and surgical resection, but have limited success in controlling the invasive spread of glioma cells into a healthy brain, the major factor driving short survival times for patients post-diagnosis. Transcriptomic analyses of GBM biopsies reveal clusters of membrane signaling proteins that in combination serve as robust prognostic indicators, including aquaporins and ion channels, which are upregulated in GBM and implicated in enhanced glioblastoma motility. Accumulating evidence supports our proposal that the concurrent pharmacological targeting of selected subclasses of aquaporins and ion channels could impede glioblastoma invasiveness by impairing key cellular motility pathways. Optimal sets of channels to be selected as targets for combined therapies could be tailored to the GBM cancer subtype, taking advantage of differences in patterns of expression between channels that are characteristic of GBM subtypes, as well as distinguishing them from non-cancerous brain cells such as neurons and glia. Focusing agents on a unique channel fingerprint in GBM would further allow combined agents to be administered at near threshold doses, potentially reducing off-target toxicity. Adjunct therapies which confine GBM tumors to their primary sites during clinical treatments would offer profound advantages for treatment efficacy.
Collapse
|
21
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
22
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
23
|
Hills KE, Kostarelos K, Wykes RC. Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma. Front Mol Neurosci 2022; 15:903115. [PMID: 35832394 PMCID: PMC9271928 DOI: 10.3389/fnmol.2022.903115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and advanced form of primary malignant tumor occurring in the adult central nervous system, and it is frequently associated with epilepsy, a debilitating comorbidity. Seizures are observed both pre- and post-surgical resection, indicating that several pathophysiological mechanisms are shared but also prompting questions about how the process of epileptogenesis evolves throughout GBM progression. Molecular mutations commonly seen in primary GBM, i.e., in PTEN and p53, and their associated downstream effects are known to influence seizure likelihood. Similarly, various intratumoral mechanisms, such as GBM-induced blood-brain barrier breakdown and glioma-immune cell interactions within the tumor microenvironment are also cited as contributing to network hyperexcitability. Substantial alterations to peri-tumoral glutamate and chloride transporter expressions, as well as widespread dysregulation of GABAergic signaling are known to confer increased epileptogenicity and excitotoxicity. The abnormal characteristics of GBM alter neuronal network function to result in metabolically vulnerable and hyperexcitable peri-tumoral tissue, properties the tumor then exploits to favor its own growth even post-resection. It is evident that there is a complex, dynamic interplay between GBM and epilepsy that promotes the progression of both pathologies. This interaction is only more complicated by the concomitant presence of spreading depolarization (SD). The spontaneous, high-frequency nature of GBM-associated epileptiform activity and SD-associated direct current (DC) shifts require technologies capable of recording brain signals over a wide bandwidth, presenting major challenges for comprehensive electrophysiological investigations. This review will initially provide a detailed examination of the underlying mechanisms that promote network hyperexcitability in GBM. We will then discuss how an investigation of these pathologies from a network level, and utilization of novel electrophysiological tools, will yield a more-effective, clinically-relevant understanding of GBM-related epileptogenesis. Further to this, we will evaluate the clinical relevance of current preclinical research and consider how future therapeutic advancements may impact the bidirectional relationship between GBM, SDs, and seizures.
Collapse
Affiliation(s)
- Kate E. Hills
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Catalan Institute for Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, Barcelona, Spain
| | - Robert C. Wykes
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Robert C. Wykes
| |
Collapse
|
24
|
Feng YH, Lim SW, Lin HY, Wang SA, Hsu SP, Kao TJ, Ko CY, Hsu TI. Allopregnanolone suppresses glioblastoma survival through decreasing DPYSL3 and S100A11 expression. J Steroid Biochem Mol Biol 2022; 219:106067. [PMID: 35114375 DOI: 10.1016/j.jsbmb.2022.106067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Allopregnanolone (allo) is a physiological regulator of neuronal activity that treats multiple neurological disorders. Allo penetrates the blood-brain barrier with very high efficiency, implying that allo can treat CNS-related diseases, including glioblastoma (GBM), which always recurs after standard therapy. Hence, this study aimed to determine whether allo has a therapeutic effect on GBM. We found that allo enhanced temozolomide (TMZ)-suppressed cell survival and proliferation of TMZ-resistant cells. In particular, allo enhanced TMZ-inhibited cell migration and TMZ-induced apoptosis. Additionally, allo strongly induced DNA damage characterized by γH2Ax. Furthermore, quantitative proteomic analysis, iTRAQ, showed that allo significantly decreased the levels of DPYSL3, S100A11, and S100A4, reflecting the poor prognosis of patients with GBM confirmed by differential gene expression and survival analysis. Moreover, single-cell RNA-Seq revealed that S100A11, expressed in malignant cells, oligodendrocytes, and macrophages, was significantly associated with immune cell infiltration. Furthermore, overexpression of DPYSL3 or S100A11 prevented allo-induced cell death. In conclusion, allo suppresses GBM cell survival by decreasing DPYSL3/S100A11 expression and inducing DNA damage.
Collapse
Affiliation(s)
| | - Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Neurosurgery, Chi-Mei Medical Center, Tainan 722, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Hong-Yi Lin
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Shao-An Wang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
25
|
Preparation, characterization, and in vivo biodistribution study of intranasal 131I-clonazepam-loaded phospholipid magnesome as a promising brain delivery system: Biodistribution and pharmacokinetic behavior of intranasal 131I-Clonazepam loaded phospholipid magnesome as a potential brain targeting system. Eur J Pharm Sci 2021; 169:106089. [PMID: 34863872 DOI: 10.1016/j.ejps.2021.106089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Clonazepam (CP) is a potent long-acting nitrobenzodiazepine derivative that could be used for targeting peripheral benzodiazepine receptors. Phospholipid magnesome is a new vesicular nanosystem recently developed for brain targeting. Improving the uptake of 131I-CP to the brain might be effective for the diagnosis and/or radiotherapy of certain brain diseases and/or tumors. METHODS CP was radiolabeled with 131I using direct electrophilic substitution reaction. Quality control of 131I-CP was performed using different techniques. Different formulas of 131I-CP were prepared and characterized according to particle size and polydispersity index. The structural features of the optimized formula were then interpreted using transmission electron microscopy and scanning electron microscopy, whereas pharmacokinetic and in vivo behaviors were estimated using the intravenous and intranasal delivery routes. RESULTS The heart and blood demonstrated lower uptake of 131I-CP, which inevitably decreased the nontarget effects of radioiodine. Intranasally administered 131I-CP-loaded magnesomes (INMg) had noticeably higher brain uptake (7.1 ± 0.09%ID/g) with rapid onset of action within 5 min and effective pharmacokinetic behavior. INMg had a drug targeting efficiency and nose-to-brain direct transport percentage of 121.1% and 94.6%, respectively as well as a relative bioavailability of 441.04 ± 75.5%. CONCLUSION The present study showed that 131I-CP-loaded magnesomes can be a beneficial brain-targeting approach for improving the diagnosis and/or radiotherapy of certain brain diseases.
Collapse
|
26
|
Bhattacharya D, Gawali VS, Kallay L, Toukam DK, Koehler A, Stambrook P, Krummel DP, Sengupta S. Therapeutically leveraging GABA A receptors in cancer. Exp Biol Med (Maywood) 2021; 246:2128-2135. [PMID: 34649481 DOI: 10.1177/15353702211032549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
γ-aminobutyric acid or GABA is an amino acid that functionally acts as a neurotransmitter and is critical to neurotransmission. GABA is also a metabolite in the Krebs cycle. It is therefore unsurprising that GABA and its receptors are also present outside of the central nervous system, including in immune cells. This observation suggests that GABAergic signaling impacts events beyond brain function and possibly human health beyond neurological disorders. Indeed, GABA receptor subunits are expressed in pathological disease states, including in disparate cancers. The role that GABA and its receptors may play in cancer development and progression remains unclear. If, however, those cancers have functional GABA receptors that participate in GABAergic signaling, it raises an important question whether these signaling pathways might be targetable for therapeutic benefit. Herein we summarize the effects of modulating Type-A GABA receptor signaling in various cancers and highlight how Type-A GABA receptors could emerge as a novel therapeutic target in cancer.
Collapse
Affiliation(s)
- Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Vaibhavkumar S Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Donatien K Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Peter Stambrook
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
27
|
Parmigiani E, Scalera M, Mori E, Tantillo E, Vannini E. Old Stars and New Players in the Brain Tumor Microenvironment. Front Cell Neurosci 2021; 15:709917. [PMID: 34690699 PMCID: PMC8527006 DOI: 10.3389/fncel.2021.709917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the direct interaction between cancer cells and tumor microenvironment (TME) has emerged as a crucial regulator of tumor growth and a promising therapeutic target. The TME, including the surrounding peritumoral regions, is dynamically modified during tumor progression and in response to therapies. However, the mechanisms regulating the crosstalk between malignant and non-malignant cells are still poorly understood, especially in the case of glioma, an aggressive form of brain tumor. The presence of unique brain-resident cell types, namely neurons and glial cells, and an exceptionally immunosuppressive microenvironment pose additional important challenges to the development of effective treatments targeting the TME. In this review, we provide an overview on the direct and indirect interplay between glioma and neuronal and glial cells, introducing new players and mechanisms that still deserve further investigation. We will focus on the effects of neural activity and glial response in controlling glioma cell behavior and discuss the potential of exploiting these cellular interactions to develop new therapeutic approaches with the aim to preserve proper brain functionality.
Collapse
Affiliation(s)
- Elena Parmigiani
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marta Scalera
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | | | - Elena Tantillo
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| |
Collapse
|
28
|
Dey S, Doddamani RS, Banerjee Dixit A, Tripathi M, Sharma MC, Chandra PS, Banerjee J. Altered Spontaneous Glutamatergic and GABAergic Activity in the Peritumoral Cortex of Low-Grade Gliomas Presenting With History of Seizures. Front Neurosci 2021; 15:689769. [PMID: 34262432 PMCID: PMC8273299 DOI: 10.3389/fnins.2021.689769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
The peritumoral regions of WHO grade II gliomas, like astrocytoma and oligodendroglioma, have been reported to show epileptiform activities. An imbalance of glutamatergic and GABAergic mechanisms is primarily responsible for the generation of epileptiform activities. Here we have compared the electrophysiological properties of pyramidal neurons in intraoperative peritumoral specimens obtained from glioma patients with (GS) and without (GN) a history of seizures at presentation. Histology and immunohistochemistry were performed to assess the infiltration of proliferating cells at the peritumoral tissues. Whole-cell patch clamp technique was performed to measure the spontaneous glutamatergic and GABAergic activity onto pyramidal neurons in the peritumoral samples of GS (n = 11) and GN (n = 15) patients. The cytoarchitecture of the peritumoral tissues was devoid of Ki67 immuno-positive cells. We observed a higher frequency of spontaneous glutamatergic and GABAergic activities onto pyramidal neurons of the peritumoral samples of GS patients. Our findings suggest that, in spite of similar histopathological features, the pyramidal neurons in the peritumoral samples of GS and GN patients showed differences in spontaneous excitatory and inhibitory synaptic neurotransmission. An alteration in postsynaptic currents may contribute to the spontaneous epileptiform activity in GS patients.
Collapse
Affiliation(s)
- Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Aparna Banerjee Dixit
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Meher Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Lu J, Peng Y, Huang R, Feng Z, Fan Y, Wang H, Zeng Z, Ji Y, Wang Y, Wang Z. Elevated TYROBP expression predicts poor prognosis and high tumor immune infiltration in patients with low-grade glioma. BMC Cancer 2021; 21:723. [PMID: 34162355 PMCID: PMC8220692 DOI: 10.1186/s12885-021-08456-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
Background Tyrosine protein tyrosine kinase binding protein (TYROBP) binds non-covalently to activated receptors on the surface of various immune cells, and mediates signal transduction and cellular activation. It is dysregulated in various malignancies, although little is known regarding its role in low-grade glioma. The aim of this study is to explore the clinicopathological significance, prognostic value and immune signature of TYROBP expression in low-grade glioma (LGG). Methods The differentially expressed genes (DEGs) between glioma samples and normal tissues were identified from two GEO microarray datasets using the limma package. The DEGs overlapping across both datasets were functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. STRING database was used to establish the protein-protein interaction (PPI) of the DEGs. The PPI network was visualized by Cytoscape and cytoHubba, and the core module and hub genes were identified. The expression profile of TYROBP and patient survival were validated in the Oncomine, GEPIA2 and CGGA databases. The correlation between TYROBP expression and the clinicopathologic characteristics were evaluated. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed by R based on the LGG data from TCGA. The TIMER2.0 database was used to determine the correlation between TYROBP expression and tumor immune infiltrating cells in the LGG patients. Univariate and multivariate Cox regression analyses were performed to determine the prognostic impact of clinicopathological factors via TCGA database. Results Sixty-two overlapping DEGs were identified in the 2 datasets, and were mainly enriched in the response to wounding, focal adhesion, GTPase activity and Parkinson disease pathways. TYROBP was identified through the PPI network and cytoHubba. TYROBP expression levels were significantly higher in the LGG tissues compared to the normal tissues, and was associated with worse prognosis and poor clinicopathological parameters. In addition, GSEA showed that TYROBP was positively correlated to neutrophil chemotaxis, macrophage activation, chemokine signaling pathway, JAK-STAT signaling pathway, and negatively associated with gamma aminobutyric acid signaling pathway, neurotransmitter transport, neuroactive ligand receptor intersection etc. TIMER2.0 and ssGSEA showed that TYROBP expression was significantly associated with the infiltration of neutrophils, macrophages, myeloid dendritic cells and monocytes. The infiltration of the M2 phenotype macrophages, cancer-associated fibroblasts and myeloid dendritic cells correlated to worse prognosis in LGG patients. Finally, multivariate analysis showed that elevated TYROBP expression is an independent risk factor for LGG. Conclusion TYROBP is dysregulated in LGG and correlates with immune infiltration. It is a potential therapeutic target and prognostic marker for LGG.
Collapse
Affiliation(s)
- Jiajie Lu
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yuecheng Peng
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Rihong Huang
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Zejia Feng
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yongyang Fan
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haojian Wang
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Zhaorong Zeng
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yunxiang Ji
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Zhaotao Wang
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
30
|
GABAergic signaling by cells of the immune system: more the rule than the exception. Cell Mol Life Sci 2021; 78:5667-5679. [PMID: 34152447 PMCID: PMC8316187 DOI: 10.1007/s00018-021-03881-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.
Collapse
|
31
|
Wang L, Liu Y, Yu Z, Gong J, Deng Z, Ren N, Zhong Z, Cai H, Tang Z, Cheng H, Chen S, He Z. Mir-139-5p inhibits glioma cell proliferation and progression by targeting GABRA1. J Transl Med 2021; 19:213. [PMID: 34001135 PMCID: PMC8130534 DOI: 10.1186/s12967-021-02880-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma is an extremely aggressive malignant neoplasm of the central nervous system. MicroRNA (miRNA) are known to bind to specific target mRNA to regulate post-transcriptional gene expression and are, therefore, currently regarded as promising biomarkers for glioma diagnosis and prognosis. The aim of the present study was to examine the pathogenesis and potential molecular markers of glioma by comparing the differential expression of miRNA and mRNA between glioma tissue and peritumor brain tissue. We explored the impact of screened core miRNA and mRNA on cell proliferation, invasion, and migration of glioma. An miRNA expression profile dataset (GSE90603) and a transcriptome profile dataset (GSE90598) were downloaded from combined miRNA-mRNA microarray chips in the Gene Expression Omnibus (GEO) database. Overall, 59 differentially expressed miRNAs (DEMs) and 419 differentially expressed genes (DEGs) were identified using the R limma software package. FunRich software was used to predict DEM target genes and miRNA-gene pairs, and Perl software was used to find overlapping genes between DEGs and DEM target genes. There were 129 overlapping genes regulated by nine miRNAs between target genes of the DEMs and DEGs. The Chinese Glioma Genome Atlas(CGGA) was analyzed in order to identify miRNAs with diagnostic and prognostic significance. MiR-139-5p, miR-137, and miR-338-3p were validated to be significantly linked to prognosis in glioma patients. Finally, we validated that miR-139-5p affected glioma malignant biological behavior via targeting gamma-aminobutyric acid A receptor alpha 1(GABRA1) through rescue experiments. Low miR-139-5p expression was correlated with survival probability and World Health Organization (WHO) grade. MiR-139-5p overexpression inhibited cell proliferation, migration, and invasion of glioma in vitro. GABRA1 was identified as a functional downstream target of miR-139-5p. Decreased GABRA1 expression was related to similar biological roles as miR-139-5p overexpression while upregulation of GABRA1 effectively reversed the inhibition effects of miR-139-5p. These results demonstrate a novel axis for miR-139-5p/GABRA1 in glioma progression and provide potential prognostic predictors and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China.
| | - Yan Liu
- Department of Neurology, Changsha Central Hospital, University of South China, No.161 Shaoshan road, Yuhua district, Changsha, 410007, Hunan, China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou People's Hospital, The Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou, 570208, Hainan, China
| | - Jianwu Gong
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhiyong Deng
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Nianjun Ren
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhe Zhong
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Hao Cai
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Haofeng Cheng
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Shuai Chen
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China.
| |
Collapse
|
32
|
Gong T, Zhang X, Wei X, Yuan S, Saleh MG, Song Y, Edden RA, Wang G. GSH and GABA decreases in IDH1-mutated low-grade gliomas detected by HERMES spectral editing at 3 T in vivo. Neurochem Int 2020; 141:104889. [PMID: 33115694 PMCID: PMC7704685 DOI: 10.1016/j.neuint.2020.104889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutational status is an important prognostic biomarker in gliomas. γ-aminobutyric acid (GABA) and reduced glutathione (GSH) play an important role in energy production, which is related to tumor progression. Hadamard Encoding and Reconstruction of Mega-Edited Spectroscopy (HERMES) is able to detect GABA and GSH in healthy controls. This study aims to examine GABA and GSH alterations in IDH1-mutated low-grade gliomas using HERMES. We prospectively enrolled 14 suspected low-grade gliomas and 6 healthy control patients in this study, all cases underwent a 3 T MRI scan, including T1-weighted imaging and HERMES acquisition with a volume of interest 3 × 3 × 3 cm3. HERMES detects a "GABA+" signal that includes contributions from macromolecules and homocarnosine. GABA+ and GSH in tumor foci (group 1), contralateral cerebral regions (group 2) and healthy controls (group 3) were quantified using Gannet. The fitting errors and SNR of HERMES for GABA+ and GSH were analyzed; FWHM of the unsuppressed water signal was also recorded. The Wilcoxon signed-rank test was performed to test for differences between contralateral GABA+ and GSH levels, and differences in GABA+, GSH and fitting errors/SNR between the three groups were analyzed using analysis of variance (ANOVA). Eleven IDH1-mutant low-grade gliomas (5 Female and 6 Male, age 33-69) and 6 healthy subjects (2 Female and 4 Male, age 35-60) were finally enrolled this study. The mean water linewidth across all subjects was 9.67 ± 2.28 Hz. The Wilcoxon signed-rank test revealed that GABA+ and GSH were decreased significantly in glioma foci compared with contralateral regions, whereas no differences were seen between the left and right regions in healthy controls. ANOVA showed that GABA+ and GSH levels in tumor were lower than contralaterally and in healthy controls, while no differences were observed between the contralateral healthy tissue and healthy controls. No differences of fitting errors or SNR were found between tumors, contralateral regions or healthy controls. Our results suggest that HERMES is a reliable tool to simultaneously measure GABA and GSH alterations in low-grade gliomas with IDH1 mutations.
Collapse
Affiliation(s)
- Tao Gong
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xia Zhang
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinhong Wei
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | | | - Muhammad G Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yulu Song
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Richard A Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
33
|
Bhandage AK, Olivera GC, Kanatani S, Thompson E, Loré K, Varas-Godoy M, Barragan A. A motogenic GABAergic system of mononuclear phagocytes facilitates dissemination of coccidian parasites. eLife 2020; 9:60528. [PMID: 33179597 PMCID: PMC7685707 DOI: 10.7554/elife.60528] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) serves diverse biological functions in prokaryotes and eukaryotes, including neurotransmission in vertebrates. Yet, the role of GABA in the immune system has remained elusive. Here, a comprehensive characterization of human and murine myeloid mononuclear phagocytes revealed the presence of a conserved and tightly regulated GABAergic machinery with expression of GABA metabolic enzymes and transporters, GABA-A receptors and regulators, and voltage-dependent calcium channels. Infection challenge with the common coccidian parasites Toxoplasma gondii and Neospora caninum activated GABAergic signaling in phagocytes. Using gene silencing and pharmacological modulators in vitro and in vivo in mice, we identify the functional determinants of GABAergic signaling in parasitized phagocytes and demonstrate a link to calcium responses and migratory activation. The findings reveal a regulatory role for a GABAergic signaling machinery in the host-pathogen interplay between phagocytes and invasive coccidian parasites. The co-option of GABA underlies colonization of the host by a Trojan horse mechanism.
Collapse
Affiliation(s)
- Amol K Bhandage
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sachie Kanatani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Cancer Cell Biology Laboratory, Center for Cell Biology and Biomedicine (CEBICEM), Faculty of Medicine and Science, Universidad San Sebastian, Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
34
|
Knott EL, Leidenheimer NJ. A Targeted Bioinformatics Assessment of Adrenocortical Carcinoma Reveals Prognostic Implications of GABA System Gene Expression. Int J Mol Sci 2020; 21:ijms21228485. [PMID: 33187258 PMCID: PMC7697095 DOI: 10.3390/ijms21228485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but deadly cancer for which few treatments exist. Here, we have undertaken a targeted bioinformatics study of The Cancer Genome Atlas (TCGA) ACC dataset focusing on the 30 genes encoding the γ-aminobutyric acid (GABA) system—an under-studied, evolutionarily-conserved system that is an emerging potential player in cancer progression. Our analysis identified a subset of ACC patients whose tumors expressed a distinct GABA system transcriptome. Transcript levels of ABAT (encoding a key GABA shunt enzyme), were upregulated in over 40% of tumors, and this correlated with several favorable clinical outcomes including patient survival; while enrichment and ontology analysis implicated two cancer-related biological pathways involved in metastasis and immune response. The phenotype associated with ABAT upregulation revealed a potential metabolic heterogeneity among ACC tumors associated with enhanced mitochondrial metabolism. Furthermore, many GABAA receptor subunit-encoding transcripts were expressed, including two (GABRB2 and GABRD) prognostic for patient survival. Transcripts encoding GABAB receptor subunits and GABA transporters were also ubiquitously expressed. The GABA system transcriptome of ACC tumors is largely mirrored in the ACC NCI-H295R cell line, suggesting that this cell line may be appropriate for future functional studies investigating the role of the GABA system in ACC cell growth phenotypes and metabolism.
Collapse
|
35
|
Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F. Emerging intersections between neuroscience and glioma biology. Nat Neurosci 2019; 22:1951-1960. [PMID: 31719671 DOI: 10.1038/s41593-019-0540-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
The establishment of neuronal and glial networks in the brain depends on the activities of neural progenitors, which are influenced by cell-intrinsic mechanisms, interactions with the local microenvironment and long-range signaling. Progress in neuroscience has helped identify key factors in CNS development. In parallel, studies in recent years have increased our understanding of molecular and cellular factors in the development and growth of primary brain tumors. To thrive, glioma cells exploit pathways that are active in normal CNS progenitor cells, as well as in normal neurotransmitter signaling. Furthermore, tumor cells of incurable gliomas integrate into communicating multicellular networks, where they are interconnected through neurite-like cellular protrusions. In this Review, we discuss evidence that CNS development, organization and function share a number of common features with glioma progression and malignancy. These include mechanisms used by cells to proliferate and migrate, interact with their microenvironment and integrate into multicellular networks. The emerging intersections between the fields of neuroscience and neuro-oncology considered in this review point to new research directions and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany. .,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Zhang H, Zhang L, Tang Y, Wang C, Chen Y, Shu J, Zhang K. Systemic screening identifies GABRD, a subunit gene of GABAA receptor as a prognostic marker in adult IDH wild-type diffuse low-grade glioma. Biomed Pharmacother 2019; 118:109215. [PMID: 31545245 DOI: 10.1016/j.biopha.2019.109215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Currently, no reliable prognostic biomarkers have been identified for adult IDH wild-type (WT) diffuse low grade glioma (LGG). With data from The Cancer Genome Atlas (TCGA)-LGG, we examined the prognostic value of GABAA receptor subunits in adult IDH WT LGG. Using 2016 WHO CNS tumor classification, we re-classified the TCGA-LGG and identified 95 IDH WT patients. Among 16 GABAA receptor subunit genes with RNA-seq data, eight genes showed significantly different expression in IDH WT LGG compared with IDH mutant (MT) cases. Among these genes, only GABRD expression was related to overall survival (OS) status. Preserved GABRD expression was independently associated with longer OS (HR: 0.799, 95%CI: 0.691-0.925, p = 0.003) in IDH WT LGG. GABRD expression showed a moderately negative correlation with tumor infiltration macrophage (TIM) and CSF1 expression. The methylation status of 34 CpG sites across GABRD gene was checked and only cg13916816 showed a moderately negative correlation with GABRD expression. In conclusion, GABRD expression might serve as a potential independent prognostic marker in patients with IDH WT LGG. Meanwhile, its expression was negatively correlated with the extent of TIM, which might help to explain the favorable survival outcome. Cg13916816 might be a critical CpG site influencing GABRD expression in IDH WT LGG.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Lixia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Yumin Tang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Chaoji Wang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Yiding Chen
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Jinjun Shu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Kexian Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
37
|
Saberbaghi T, Wong R, Rutka JT, Wang GL, Feng ZP, Sun HS. Role of Cl− channels in primary brain tumour. Cell Calcium 2019; 81:1-11. [DOI: 10.1016/j.ceca.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
|
38
|
Kallay L, Keskin H, Ross A, Rupji M, Moody OA, Wang X, Li G, Ahmed T, Rashid F, Stephen MR, Cottrill KA, Nuckols TA, Xu M, Martinson DE, Tranghese F, Pei Y, Cook JM, Kowalski J, Taylor MD, Jenkins A, Pomeranz Krummel DA, Sengupta S. Modulating native GABA A receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death. J Neurooncol 2019; 142:411-422. [PMID: 30725256 PMCID: PMC6478651 DOI: 10.1007/s11060-019-03115-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Pediatric brain cancer medulloblastoma (MB) standard-of-care results in numerous comorbidities. MB is comprised of distinct molecular subgroups. Group 3 molecular subgroup patients have the highest relapse rates and after standard-of-care have a 20% survival. Group 3 tumors have high expression of GABRA5, which codes for the α5 subunit of the γ-aminobutyric acid type A receptor (GABAAR). We are advancing a therapeutic approach for group 3 based on GABAAR modulation using benzodiazepine-derivatives. METHODS We performed analysis of GABR and MYC expression in MB tumors and used molecular, cell biological, and whole-cell electrophysiology approaches to establish presence of a functional 'druggable' GABAAR in group 3 cells. RESULTS Analysis of expression of 763 MB tumors reveals that group 3 tumors share high subgroup-specific and correlative expression of GABR genes, which code for GABAAR subunits α5, β3 and γ2 and 3. There are ~ 1000 functional α5-GABAARs per group 3 patient-derived cell that mediate a basal chloride-anion efflux of 2 × 109 ions/s. Benzodiazepines, designed to prefer α5-GABAAR, impair group 3 cell viability by enhancing chloride-anion efflux with subtle changes in their structure having significant impact on potency. A potent, non-toxic benzodiazepine ('KRM-II-08') binds to the α5-GABAAR (0.8 µM EC50) enhancing a chloride-anion efflux that induces mitochondrial membrane depolarization and in response, TP53 upregulation and p53, constitutively phosphorylated at S392, cytoplasmic localization. This correlates with pro-apoptotic Bcl-2-associated death promoter protein localization. CONCLUSION GABRA5 expression can serve as a diagnostic biomarker for group 3 tumors, while α5-GABAAR is a therapeutic target for benzodiazepine binding, enhancing an ion imbalance that induces apoptosis.
Collapse
Affiliation(s)
- Laura Kallay
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Havva Keskin
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Ross
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia A Moody
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Wang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kirsten A Cottrill
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - T Austin Nuckols
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Maxwell Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deborah E Martinson
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Frank Tranghese
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
| | - Andrew Jenkins
- Departments of Anesthesiology & Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel A Pomeranz Krummel
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| | - Soma Sengupta
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| |
Collapse
|
39
|
A novel action of lacosamide on GABA A currents sets the ground for a synergic interaction with levetiracetam in treatment of epilepsy. Neurobiol Dis 2018; 115:59-68. [PMID: 29621596 DOI: 10.1016/j.nbd.2018.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/03/2018] [Accepted: 03/30/2018] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is one of the most common chronic neurological diseases, and its pharmacological treatment holds great importance for both physicians and national authorities, especially considering the high proportion of drug-resistant patients (about 30%). Lacosamide (LCM) is an effective and well-tolerated new-generation antiepileptic drug (AED), currently licensed as add-on therapy for partial-onset seizures. However, LCM mechanism of action is still a matter of debate, although its effect on the voltage sensitive sodium channels is by far the most recognized. This study aimed to retrospectively analyze a cohort of 157 drug-resistant patients treated with LCM to describe the most common and effective therapeutic combinations and to investigate if the LCM can affect also GABAA-mediated neurotransmission as previously shown for levetiracetam (LEV). In our cohort, LEV resulted the compound most frequently associated with LCM in the responder subgroup. We therefore translated this clinical observation into the laboratory bench by taking advantage of the technique of "membrane micro-transplantation" in Xenopus oocytes and electrophysiological approaches to study human GABAA-evoked currents. In cortical brain tissues from refractory epileptic patients, we found that LCM reduces the use-dependent GABA impairment (i.e., "rundown") that it is considered one of the specific hallmarks of drug-resistant epilepsies. Notably, in line with our clinical observations, we found that the co-treatment with subthreshold concentrations of LCM and LEV, which had no effect on GABAA currents on their own, reduced GABA impairment in drug-resistant epileptic patients, and this effect was blocked by PKC inhibitors. Our findings demonstrate, for the first time, that LCM targets GABAA receptors and that it can act synergistically with LEV, improving the GABAergic function. This novel mechanism might contribute to explain the clinical efficacy of LCM-LEV combination in several refractory epileptic patients.
Collapse
|
40
|
Taherian Fard A, Ragan MA. Modeling the Attractor Landscape of Disease Progression: a Network-Based Approach. Front Genet 2017; 8:48. [PMID: 28458684 PMCID: PMC5394169 DOI: 10.3389/fgene.2017.00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Genome-wide regulatory networks enable cells to function, develop, and survive. Perturbation of these networks can lead to appearance of a disease phenotype. Inspired by Conrad Waddington's epigenetic landscape of cell development, we use a Hopfield network formalism to construct an attractor landscape model of disease progression based on protein- or gene-correlation networks of Parkinson's disease, glioma, and colorectal cancer. Attractors in this landscape correspond to normal and disease states of the cell. We introduce approaches to estimate the size and robustness of these attractors, and take a network-based approach to study their biological features such as the key genes and their functions associated with the attractors. Our results show that the attractor of cancer cells is wider than the attractor of normal cells, suggesting a heterogeneous nature of cancer. Perturbation analysis shows that robustness depends on characteristics of the input data (number of samples per time-point, and the fraction which converge to an attractor). We identify unique gene interactions at each stage, which reflect the temporal rewiring of the gene regulatory network (GRN) with disease progression. Our model of the attractor landscape, constructed from large-scale gene expression profiles of individual patients, captures snapshots of disease progression and identifies gene interactions specific to different stages, opening the way for development of stage-specific therapeutic strategies.
Collapse
Affiliation(s)
- Atefeh Taherian Fard
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
41
|
Blanchart A, Fernando R, Häring M, Assaife-Lopes N, Romanov RA, Andäng M, Harkany T, Ernfors P. Endogenous GAB AA receptor activity suppresses glioma growth. Oncogene 2016; 36:777-786. [PMID: 27375015 DOI: 10.1038/onc.2016.245] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.
Collapse
Affiliation(s)
- A Blanchart
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - R Fernando
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - M Häring
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - N Assaife-Lopes
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - R A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - M Andäng
- Department of Physiology and Pharmacology, Biophysics of Stem Cell and Tissue Growth, Karolinska Institutet, Stockholm, Sweden
| | - T Harkany
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - P Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Huberfeld G, Vecht CJ. Seizures and gliomas — towards a single therapeutic approach. Nat Rev Neurol 2016; 12:204-16. [DOI: 10.1038/nrneurol.2016.26] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Simon OJ, Müntefering T, Grauer OM, Meuth SG. The role of ion channels in malignant brain tumors. J Neurooncol 2015; 125:225-35. [PMID: 26334315 DOI: 10.1007/s11060-015-1896-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022]
Abstract
Malignant gliomas are the most common primary brain tumors and have poor clinical prognosis, despite multimodal therapeutic strategies. In recent years, ion channels have emerged as major players in tumor pathophysiology regarding all hallmarks of cancer. Since ion channels are easily accessible structures, they may prove to be effective targets for canner therapy, although their broad expression pattern and role in physiological processes should be taken into consideration. This review summarizes the current knowledge on the role of ion channels in the pathophysiology of malignant gliomas, especially glioblastoma, and evaluates their potential role in targeted antiglioma therapy.
Collapse
Affiliation(s)
- Ole J Simon
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Thomas Müntefering
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Oliver M Grauer
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
44
|
Bacolod MD, Das SK, Sokhi UK, Bradley S, Fenstermacher DA, Pellecchia M, Emdad L, Sarkar D, Fisher PB. Examination of Epigenetic and other Molecular Factors Associated with mda-9/Syntenin Dysregulation in Cancer Through Integrated Analyses of Public Genomic Datasets. Adv Cancer Res 2015; 127:49-121. [PMID: 26093898 DOI: 10.1016/bs.acr.2015.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mda-9/Syntenin (melanoma differentiation-associated gene 9) is a PDZ domain containing, cancer invasion-related protein. In this study, we employed multiple integrated bioinformatic approaches to identify the probable epigenetic factors, molecular pathways, and functionalities associated with mda-9 dysregulation during cancer progression. Analyses of publicly available genomic data (e.g., expression, copy number, methylation) from TCGA, GEO, ENCODE, and Human Protein Atlas projects led to the following observations: (a) mda-9 expression correlates with both copy number and methylation level of an intronic CpG site (cg1719774) located downstream of the CpG island, (b) cg1719774 methylation is a likely prognostic marker in glioma, (c) among 22 cancer types, melanoma exhibits the highest mda-9 level, and lowest level of methylation at cg1719774, (d) cg1719774 hypomethylation is also associated with histone modifications (at the mda-9 locus) indicative of more active transcription, (e) using Gene Set Enrichment Analysis (GSEA), and the Virtual Gene Overexpression or Repression (VIGOR) analytical scheme, we were able to predict mda-9's association with extracellular matrix organization (e.g., MMPs, collagen, integrins), IGFBP2 and NF-κB signaling pathways, phospholipid metabolism, cytokines (e.g., interleukins), CTLA-4, and components of complement cascade pathways. Indeed, previous publications have shown that many of the aforementioned genes and pathways are associated with mda-9's functionality.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Upneet K Sokhi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Steven Bradley
- VCU Bioinformatics Program, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David A Fenstermacher
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
45
|
Hu G, Wei B, Wang L, Wang L, Kong D, Jin Y, Sun Z. Analysis of gene expression profiles associated with glioma progression. Mol Med Rep 2015; 12:1884-90. [PMID: 25845910 PMCID: PMC4464167 DOI: 10.3892/mmr.2015.3583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to investigate changes at the transcript level that are associated with spontaneous astrocytoma progression, and further, to discover novel targets for glioma diagnosis and therapy. GSE4290 microarray data downloaded from Gene Expression Omnibus were used to identify the differentially expressed genes (DGEs) by significant analysis of microarray (SAM). The Short Time Series Expression Miner (STEM) method was then applied to class these DEGs based on their degrees of differentiation in the process of tumor progression. Finally, EnrichNet was used to perform the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis based on a protein-protein interaction (PPI) network. A total of 4,506 DEGs were detected, and the number of DEGs was the highest in grade IV cells (2,580 DEGs). These DEGs were classified into nine clusters by the STEM method. In total, 11 KEGG pathways with XD-scores larger than the threshold (0.96) were obtained. The DEGs enriched in pathways 1 (extracellular matrix-receptor interaction), 3 (phagosome) and 6 (type I diabetes mellitus) mainly belonged to cluster 5. Pathway 2 (long-term potentiation), 4 (Vibrio cholerae infection) and 5 (epithelial cell signaling in Helicobacter pylori infection) was involved with DEGs that belonged to different clusters. Significant changes in gene expression occurred during glioma progression. Pathways 1, 3 and 6 may be important for the deterioration of glioma into glioblastoma, and pathways 2, 4 and 5 may have a role at each stage during glioma progression. The associated DEGs, including SV2, NMDAR and mGluRs, may be suitable as biomarkers or therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Guozhang Hu
- Department of Emergency Medicine, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lina Wang
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Le Wang
- Department of Opthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Daliang Kong
- Department of Emergency Medicine, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Jin
- Department of Neurology, Jilin Oilfield General Hospital, Songyuan 131200, P.R. China
| | - Zhigang Sun
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
46
|
Campbell SL, Robel S, Cuddapah VA, Robert S, Buckingham SC, Kahle KT, Sontheimer H. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 2015; 63:23-36. [PMID: 25066727 PMCID: PMC4237714 DOI: 10.1002/glia.22730] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/07/2022]
Abstract
Seizures frequently accompany gliomas and often escalate to peritumoral epilepsy. Previous work revealed the importance of tumor-derived excitatory glutamate (Glu) release mediated by the cystine-glutamate transporter (SXC) in epileptogenesis. We now show a novel contribution of GABAergic disinhibition to disease pathophysiology. In a validated mouse glioma model, we found that peritumoral parvalbumin-positive GABAergic inhibitory interneurons are significantly reduced, corresponding with deficits in spontaneous and evoked inhibitory neurotransmission. Most remaining peritumoral neurons exhibit elevated intracellular Cl(-) concentration ([Cl(-) ]i ) and consequently depolarizing, excitatory gamma-aminobutyric acid (GABA) responses. In these neurons, the plasmalemmal expression of KCC2, which establishes the low [Cl(-) ]i required for GABAA R-mediated inhibition, is significantly decreased. Interestingly, reductions in inhibition are independent of Glu release, but the presence of both decreased inhibition and decreased SXC expression is required for epileptogenesis. We suggest GABAergic disinhibition renders peritumoral neuronal networks hyper-excitable and susceptible to seizures triggered by excitatory stimuli, and propose KCC2 as a therapeutic target.
Collapse
Affiliation(s)
- Susan L. Campbell
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Robel
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishnu A. Cuddapah
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie Robert
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School; and Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
47
|
Babateen O, Jin Z, Bhandage A, Korol SV, Westermark B, Forsberg Nilsson K, Uhrbom L, Smits A, Birnir B. Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from human glioblastoma. Eur J Pharmacol 2014; 748:101-7. [PMID: 25510230 DOI: 10.1016/j.ejphar.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
GABAA receptors are pentameric chloride ion channels that are opened by GABA. We have screened a cell line derived from human glioblastoma, U3047MG, for expression of GABAA receptor subunit isoforms and formation of functional ion channels. We identified GABAA receptors subunit α2, α3, α5, β1, β2, β3, δ, γ3, π, and θ mRNAs in the U3047MG cell line. Whole-cell GABA-activated currents were recorded and the half-maximal concentration (EC₅₀) for the GABA-activated current was 36 μM. The currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and enhanced by the benzodiazepine diazepam (1 μM) and the general anesthetics etomidate and propofol (50 μM). In line with the expressed GABAA receptors containing at least the α3β3θ subunits, the receptors were highly sensitive to etomidate (EC₅₀=55 nM). Immunocytochemistry identified expression of the α3 and β3 subunit proteins. Our results show that the GABAA receptors in the glial cell line are functional and are modulated by classical GABAA receptor drugs. We propose that the U3047MG cell line may be used as a model system to study GABAA receptors function and pharmacology in glial cells.
Collapse
Affiliation(s)
- Omar Babateen
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - AmolK Bhandage
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg Nilsson
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja Smits
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
48
|
Zhang X, Du Z, Liu J, He J. Γ-aminobutyric acid receptors affect the progression and migration of tumor cells. J Recept Signal Transduct Res 2014; 34:431-9. [DOI: 10.3109/10799893.2013.856918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Abstract
This review covers the isolation, chemical structure, biological activity, structure activity relationships including synthesis of chemical probes, and pharmacological characterization of neuroactive marine natural products; 302 references are cited.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | |
Collapse
|
50
|
Chang C, Shi H, Wang C, Wang J, Geng N, Jiang X, Wang X. Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett 2012; 531:204-8. [PMID: 23103713 DOI: 10.1016/j.neulet.2012.10.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/13/2012] [Accepted: 10/18/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM MicroRNA-375 (miR-375) is frequently demonstrated to be frequently dysregulated and functions as a tumor suppressor or an oncogene in different cancer types. However, its roles in human gliomas have not been reported. The aim of this study was to investigate the expression pattern and clinical significance of miR-375 in patients with gliomas. METHODS Real-time quantitative RT-PCR assay was performed to detect miR-375 expression in human gliomas and non-neoplastic brain tissues. Then, the association of miR-375 expression with clinicopathological factors and prognosis of glioma patients was also statistically analyzed. RESULTS miR-375 expression was significantly decreased on average in glioma tissues relative to non-neoplastic brain tissues (P<0.0001) with ascending pathological grade. Then, the low miR-375 expression in glioma tissues was significantly associated with advanced pathological grade (P=0.003) and low Karnofsky performance score (KPS, P=0.01). Moreover, both univariate and multivariate Cox regression analyses determined that loss of miR-375 expression effectively predicted the decreased overall survival in patients with gliomas. CONCLUSIONS These findings offer the first convinced evidence that the downregulation of miR-375 expression in human gliomas may play an inhibitory role during the tumor development. This miRNA might function as a candidate unfavorable prognostic marker for human gliomas.
Collapse
Affiliation(s)
- Chongwang Chang
- Neurosurgery Department, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | | | | | | | | | | | | |
Collapse
|