1
|
Lea IA, Buerger AN, Feifarek D, Mihalchik A, Heintz MM, Haws LC, Nyambego H, Goyak K, Palermo C, Borghoff SJ. Evaluation of the endocrine disrupting potential of Di-isononyl phthalate. Curr Res Toxicol 2025; 8:100220. [PMID: 40092461 PMCID: PMC11910676 DOI: 10.1016/j.crtox.2025.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Low molecular weight ortho-phthalate compounds have been implicated in disruption of androgen pathways when exposure occurs during the masculinization programming window. Di-isononyl phthalate (DINP) is a high molecular weight phthalate and a high production volume chemical. To understand the potential for DINP and its metabolites to disrupt endocrine pathways, a weight of evidence assessment was conducted according to the European Chemicals Agency (ECHA)/ European Food Safety Authority (EFSA) Endocrine Disruptor Guidance (2018). Toxicological data related to estrogen (E), androgen (A), thyroid (T), or steroidogenesis (S) pathways was assessed. Literature searches returned 110 articles from which data were extracted and assessed in conjunction with 105 high-throughput assays. An in-silico assessment of the EATS activity for DINP metabolites also was conducted. Based on the available evidence, DINP did not elicit thyroid- or estrogen-related apical outcomes in vivo. There were no studies evaluating thyroid hormone levels in vivo which, according to the ECHA/EFSA guidance, constitutes a data gap and prevents a conclusion being drawn on the T-pathway. The E, A, and S-pathways were sufficiently assessed to conclude on the endocrine disrupting potential of DINP. Based on the lack of apical outcomes, DINP did not disrupt the E-pathway. For the A and S-pathways, there was limited evidence to support adverse apical outcomes, so a mode of action assessment using a structured adverse outcome pathway (AOP) framework was performed. No biologically plausible link could be established between the key events in the hypothesized AOP that lead to adverse outcomes. Further, no dose or temporal concordance for A- and S-mediated findings were identified. Therefore, DINP does not meet the ECHA/EFSA criteria to be considered an endocrine disruptor.
Collapse
Affiliation(s)
- I A Lea
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - A N Buerger
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - D Feifarek
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - A Mihalchik
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - M M Heintz
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - L C Haws
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - H Nyambego
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, USA
| | - K Goyak
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, USA
| | - C Palermo
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, USA
| | - S J Borghoff
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| |
Collapse
|
2
|
Wankanit S, Zidoune H, Bignon-Topalovic J, Schlick L, Houzelstein D, Fusée L, Boukri A, Nouri N, McElreavey K, Bashamboo A, Elzaiat M. Evidence for NR2F2/COUP-TFII involvement in human testis development. Sci Rep 2024; 14:17869. [PMID: 39090159 PMCID: PMC11294483 DOI: 10.1038/s41598-024-68860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.
Collapse
Affiliation(s)
- Somboon Wankanit
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | | | - Laurène Schlick
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Denis Houzelstein
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Leila Fusée
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Ken McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Maëva Elzaiat
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
3
|
Almamoun R, Pierozan P, Karlsson O. Mechanistic screening of reproductive toxicity in a novel 3D testicular co-culture model shows significant impairments following exposure to low-dibutyl phthalate concentrations. Arch Toxicol 2024; 98:2695-2709. [PMID: 38769170 PMCID: PMC11272729 DOI: 10.1007/s00204-024-03767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
To improve the mechanistic screening of reproductive toxicants in chemical-risk assessment and drug development, we have developed a three-dimensional (3D) heterogenous testicular co-culture model from neonatal mice. Di-n-butyl phthalate (DBP), an environmental contaminant that can affect reproductive health negatively, was used as a model compound to illustrate the utility of the in vitro model. The cells were treated with DBP (1 nM to 100 µM) for 7 days. Automated high-content imaging confirmed the presence of cell-specific markers of Leydig cells (CYP11A1 +), Sertoli cells (SOX9 +), and germ cells (DAZL +). Steroidogenic activity of Leydig cells was demonstrated by analyzing testosterone levels in the culture medium. DBP induced a concentration-dependent reduction in testosterone levels and decreased the number of Leydig cells compared to vehicle control. The levels of steroidogenic regulator StAR and the steroidogenic enzyme CYP11A1 were decreased already at the lowest DBP concentration (1 nM), demonstrating upstream effects in the testosterone biosynthesis pathway. Furthermore, exposure to 10 nM DBP decreased the levels of the germ cell-specific RNA binding protein DAZL, central for the spermatogenesis. The 3D model also captured the development of the Sertoli cell junction proteins, N-cadherin and Zonula occludens protein 1 (ZO-1), critical for the blood-testis barrier. However, DBP exposure did not significantly alter the cadherin and ZO-1 levels. Altogether, this 3D in vitro system models testicular cellular signaling and function, making it a powerful tool for mechanistic screening of developmental testicular toxicity. This can open a new avenue for high throughput screening of chemically-induced reproductive toxicity during sensitive developmental phases.
Collapse
Affiliation(s)
- Radwa Almamoun
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden.
| |
Collapse
|
4
|
Ferrari MTM, Silva ESDN, Nishi MY, Batista RL, Mendonca BB, Domenice S. Testicular differentiation in 46,XX DSD: an overview of genetic causes. Front Endocrinol (Lausanne) 2024; 15:1385901. [PMID: 38721146 PMCID: PMC11076692 DOI: 10.3389/fendo.2024.1385901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 01/18/2025] Open
Abstract
In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.
Collapse
Affiliation(s)
- Maria Tereza Martins Ferrari
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elinaelma Suelane do Nascimento Silva
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mirian Yumie Nishi
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Loch Batista
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Jiang K, Jorgensen JS. Fetal Leydig cells: What we know and what we don't. Mol Reprod Dev 2024; 91:e23739. [PMID: 38480999 PMCID: PMC11135463 DOI: 10.1002/mrd.23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 05/24/2024]
Abstract
During male fetal development, testosterone plays an essential role in the differentiation and maturation of the male reproductive system. Deficient fetal testosterone production can result in variations of sex differentiation that may cause infertility and even increased tumor incidence later in life. Fetal Leydig cells in the fetal testis are the major androgen source in mammals. Although fetal and adult Leydig cells are similar in their functions, they are two distinct cell types, and therefore, the knowledge of adult Leydig cells cannot be directly applied to understanding fetal Leydig cells. This review summarizes our current knowledge of fetal Leydig cells regarding their cell biology, developmental biology, and androgen production regulation in rodents and human. Fetal Leydig cells are present in basement membrane-enclosed clusters in between testis cords. They originate from the mesonephros mesenchyme and the coelomic epithelium and start to differentiate upon receiving a Desert Hedgehog signal from Sertoli cells or being released from a NOTCH signal from endothelial cells. Mature fetal Leydig cells produce androgens. Human fetal Leydig cell steroidogenesis is LHCGR (Luteinizing Hormone Chronic Gonadotropin Receptor) dependent, while rodents are not, although other Gαs -protein coupled receptors might be involved in rodent steroidogenesis regulation. Fetal steroidogenesis ceases after sex differentiation is completed, and some fetal Leydig cells dedifferentiate to serve as stem cells for adult testicular cell types. Significant gaps are acknowledged: (1) Why are adult and fetal Leydig cells different? (2) What are bona fide progenitor and fetal Leydig cell markers? (3) Which signaling pathways and transcription factors regulate fetal Leydig cell steroidogenesis? It is critical to discover answers to these questions so that we can understand vulnerable targets in fetal Leydig cells and the mechanisms for androgen production that when disrupted, leads to variations in sex differentiation that range from subtle to complete sex reversal.
Collapse
Affiliation(s)
- Keer Jiang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joan S. Jorgensen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Matsuyama S, DeFalco T. Steroid hormone signaling: multifaceted support of testicular function. Front Cell Dev Biol 2024; 11:1339385. [PMID: 38250327 PMCID: PMC10796553 DOI: 10.3389/fcell.2023.1339385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Embryonic development and adult physiology are dependent on the action of steroid hormones. In particular, the reproductive system is reliant on hormonal signaling to promote gonadal function and to ensure fertility. Here we will describe hormone receptor functions and their impacts on testicular function, focusing on a specific group of essential hormones: androgens, estrogens, progesterone, cortisol, and aldosterone. In addition to focusing on hormone receptor function and localization within the testis, we will highlight the effects of altered receptor signaling, including the consequences of reduced and excess signaling activity. These hormones act through various cellular pathways and receptor types, emphasizing the need for a multifaceted research approach to understand their critical roles in testicular function. Hormones exhibit intricate interactions with each other, as evidenced, for example, by the antagonistic effects of progesterone on mineralocorticoid receptors and cortisol's impact on androgens. In light of research findings in the field demonstrating an intricate interplay between hormones, a systems biology approach is crucial for a nuanced understanding of this complex hormonal network. This review can serve as a resource for further investigation into hormonal support of male reproductive health.
Collapse
Affiliation(s)
- Satoko Matsuyama
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
Ferreira LGA, Kizys MML, Gama GAC, Pachernegg S, Robevska G, Sinclair AH, Ayers KL, Dias-da-Silva MR. COUP-TFII regulates early bipotential gonad signaling and commitment to ovarian progenitors. Cell Biosci 2024; 14:3. [PMID: 38178246 PMCID: PMC10768475 DOI: 10.1186/s13578-023-01182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The absence of expression of the Y-chromosome linked testis-determining gene SRY in early supporting gonadal cells (ESGC) leads bipotential gonads into ovarian development. However, genetic variants in NR2F2, encoding three isoforms of the transcription factor COUP-TFII, represent a novel cause of SRY-negative 46,XX testicular/ovotesticular differences of sex development (T/OT-DSD). Thus, we hypothesized that COUP-TFII is part of the ovarian developmental network. COUP-TFII is known to be expressed in interstitial/mesenchymal cells giving rise to steroidogenic cells in fetal gonads, however its expression and function in ESGCs have yet to be explored. RESULTS By differentiating induced pluripotent stem cells into bipotential gonad-like cells in vitro and by analyzing single cell RNA-sequencing datasets of human fetal gonads, we identified that NR2F2 expression is highly upregulated during bipotential gonad development along with markers of bipotential state. NR2F2 expression was detected in early cell populations that precede the steroidogenic cell emergence and that retain a multipotent state in the undifferentiated gonad. The ESGCs differentiating into fetal Sertoli cells lost NR2F2 expression, whereas pre-granulosa cells remained NR2F2-positive. When examining the NR2F2 transcript variants individually, we demonstrated that the canonical isoform A, disrupted by frameshift variants previously reported in 46,XX T/OT-DSD patients, is nearly 1000-fold more highly expressed than other isoforms in bipotential gonad-like cells. To investigate the genetic network under COUP-TFII regulation in human gonadal cell context, we generated a NR2F2 knockout (KO) in the human granulosa-like cell line COV434 and studied NR2F2-KO COV434 cell transcriptome. NR2F2 ablation downregulated markers of ESGC and pre-granulosa cells. NR2F2-KO COV434 cells lost the enrichment for female-supporting gonadal progenitor and acquired gene signatures more similar to gonadal interstitial cells. CONCLUSIONS Our findings suggest that COUP-TFII has a role in maintaining a multipotent state necessary for commitment to the ovarian development. We propose that COUP-TFII regulates cell fate during gonad development and impairment of its function may disrupt the transcriptional plasticity of ESGCs. During early gonad development, disruption of ESGC plasticity may drive them into commitment to the testicular pathway, as observed in 46,XX OT-DSD patients with NR2F2 haploinsufficiency.
Collapse
Affiliation(s)
- Lucas G A Ferreira
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Marina M L Kizys
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriel A C Gama
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Svenja Pachernegg
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Magnus R Dias-da-Silva
- Laboratory of Molecular and Translational Endocrinology (LEMT), Endocrinology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Ham J, Jang H, Song G, Lim W. Cypermethrin induces endoplasmic reticulum stress and autophagy, leads to testicular dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166167. [PMID: 37567297 DOI: 10.1016/j.scitotenv.2023.166167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Cypermethrin is a pyrethroid insecticide that is used to control insects and protect crops. However, pesticide residues and their possible toxicity to non-target animals such as mammals are concerning. Although cypermethrin reduces testosterone levels, the molecular mechanisms involved, particularly those regarding endoplasmic reticulum (ER) stress and autophagy regulation, have not yet been fully elucidated. In this study, we demonstrated testicular toxicity of cypermethrin in mouse Leydig (TM3) and Sertoli (TM4) cells. Cypermethrin suppresses TM3 and TM4 cell proliferation and induces apoptosis. Moreover, it interrupted calcium homeostasis in intracellular organelles and dissipated mitochondrial membrane polarization in mouse testicular cells. Moreover, we verified the accumulation of Sqstm1/p62 protein in the mitochondria of cypermethrin-treated TM3 and TM4 cells. Furthermore, we confirmed that cypermethrin activated autophagy and the ER stress pathway in a time-dependent manner in both cell types. Finally, we determined that cypermethrin downregulated testicular function-related genes, steroidogenesis, and spermatogenesis in mouse testis cells. Therefore, we conclude that cypermethrin regulates autophagy and ER stress, leading to testicular dysfunction.
Collapse
Affiliation(s)
- Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyewon Jang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Hattori A, Fukami M. Nuclear Receptor Gene Variants Underlying Disorders/Differences of Sex Development through Abnormal Testicular Development. Biomolecules 2023; 13:691. [PMID: 37189438 PMCID: PMC10135730 DOI: 10.3390/biom13040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Gonadal development is the first step in human reproduction. Aberrant gonadal development during the fetal period is a major cause of disorders/differences of sex development (DSD). To date, pathogenic variants of three nuclear receptor genes (NR5A1, NR0B1, and NR2F2) have been reported to cause DSD via atypical testicular development. In this review article, we describe the clinical significance of the NR5A1 variants as the cause of DSD and introduce novel findings from recent studies. NR5A1 variants are associated with 46,XY DSD and 46,XX testicular/ovotesticular DSD. Notably, both 46,XX DSD and 46,XY DSD caused by the NR5A1 variants show remarkable phenotypic variability, to which digenic/oligogenic inheritances potentially contribute. Additionally, we discuss the roles of NR0B1 and NR2F2 in the etiology of DSD. NR0B1 acts as an anti-testicular gene. Duplications containing NR0B1 result in 46,XY DSD, whereas deletions encompassing NR0B1 can underlie 46,XX testicular/ovotesticular DSD. NR2F2 has recently been reported as a causative gene for 46,XX testicular/ovotesticular DSD and possibly for 46,XY DSD, although the role of NR2F2 in gonadal development is unclear. The knowledge about these three nuclear receptors provides novel insights into the molecular networks involved in the gonadal development in human fetuses.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
10
|
Astuto MC, Benford D, Bodin L, Cattaneo I, Halldorsson T, Schlatter J, Sharpe RM, Tarazona J, Younes M. Applying the adverse outcome pathway concept for assessing non-monotonic dose responses: biphasic effect of bis(2-ethylhexyl) phthalate (DEHP) on testosterone levels. Arch Toxicol 2023; 97:313-327. [PMID: 36336711 DOI: 10.1007/s00204-022-03409-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Male reproduction is one of the primary health endpoints identified in rodent studies for some phthalates, such as DEHP (Bis(2-ethylhexyl) phthalate), DBP (Dibutyl phthalate), and BBP (Benzyl butyl phthalate). The reduction in testosterone level was used as an intermediate key event for grouping some phthalates and to establish a reference point for risk assessment. Phthalates, and specifically DEHP, are one of the chemicals for which the greatest number of non-monotonic dose responses (NMDRs) are observed. These NMDRs cover different endpoints and situations, often including testosterone levels. The presence of NMDR has been the subject of some debate within the area of chemical risk assessment, which is traditionally anchored around driving health-based guidance values for apical endpoints that typically follow a clear monotonic dose-response. The consequence of NMDR for chemical risk assessment has recently received considerable attention amongst regulatory agencies, which confirmed its relevance particularly for receptor-mediated effects. The present review explores the relationship between DEHP exposure and testosterone levels, investigating the biological plausibility of the observed NMDRs. The Adverse Outcome Pathway (AOP) concept is applied to integrate NMDRs into Key Event Relationships (KERs) for exploring a mechanistic understanding of initial key events and possibly associated reproductive and non-reproductive adverse outcomes.
Collapse
Affiliation(s)
- M C Astuto
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy.
| | - D Benford
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - L Bodin
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - I Cattaneo
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - T Halldorsson
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy.,Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - J Schlatter
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - R M Sharpe
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - J Tarazona
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - M Younes
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| |
Collapse
|
11
|
Bhattacharya I, Dey S. Emerging concepts on Leydig cell development in fetal and adult testis. Front Endocrinol (Lausanne) 2023; 13:1086276. [PMID: 36686449 PMCID: PMC9851038 DOI: 10.3389/fendo.2022.1086276] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Leydig cells (Lc) reside in the interstitial compartment of the testis and are the target of Luteinising hormone (LH) for Testosterone (T) production, thus critically regulates male fertility. Classical histological studies have identified two morphologically different populations of Lc during testicular development [fetal (FLc) and adult (ALc)]. Recent progress in ex vivo cell/organ culture, genome-wide analysis, genetically manipulated mouse models, lineage tracing, and single-cell RNA-seq experiments have revealed the diverse cellular origins with differential transcriptomic and distinct steroidogenic outputs of these populations. FLc originates from both coelomic epithelium and notch-active Nestin-positive perivascular cells located at the gonad-mesonephros borders, and get specified as Nr5a1 (previously known as Ad4BP/SF-1) expressing cells by embryonic age (E) 12.5 days in fetal mouse testes. These cells produce androstenedione (precursor of T, due to lack of HSD17β3 enzyme) and play critical a role in initial virilization and patterning of the male external genitalia. However, in neonatal testis, FLc undergoes massive regression/dedifferentiation and gradually gets replaced by T-producing ALc. Very recent studies suggest a small fraction (5-20%) of FLc still persists in adult testis. Both Nestin-positive perivascular cells and FLc are considered to be the progenitor populations for ALc. This minireview article summarizes the current understanding of Lc development in fetal and adult testes highlighting their common or diverse cellular (progenitor/stem) origins with respective functional significance in both rodents and primates. (227 words).
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, School of Biological Science, Central University of Kerala, Periye, Kerala, India
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Matilionyte G, Rimmer MP, Spears N, Anderson RA, Mitchell RT. Cisplatin Effects on the Human Fetal Testis - Establishing the Sensitive Period for (Pre)Spermatogonial Loss and Relevance for Fertility Preservation in Pre-Pubertal Boys. Front Endocrinol (Lausanne) 2022; 13:914443. [PMID: 35909565 PMCID: PMC9330899 DOI: 10.3389/fendo.2022.914443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Exposure to chemotherapy during childhood can impair future fertility. Studies using in vitro culture have shown exposure to platinum-based alkylating-like chemotherapy reduces the germ cell number in the human fetal testicular tissues. We aimed to determine whether effects of exposure to cisplatin on the germ cell sub-populations are dependent on the gestational age of the fetus and what impact this might have on the utility of using human fetal testis cultures to model chemotherapy exposure in childhood testis. Methods We utilised an in vitro culture system to culture pieces of human fetal testicular tissues (total n=23 fetuses) from three different gestational age groups (14-16 (early), 17-19 (mid) and 20-22 (late) gestational weeks; GW) of the second trimester. Tissues were exposed to cisplatin or vehicle control for 24 hours, analysing the tissues 72 and 240 hours post-exposure. Number of germ cells and their sub-populations, including gonocytes and (pre)spermatogonia, were quantified. Results Total germ cell number and number of both germ cell sub-populations were unchanged at 72 hours post-exposure to cisplatin in the testicular tissues from fetuses of the early (14-16 GW) and late (20-22 GW) second trimester. In the testicular tissues from fetuses of mid (17-19 GW) second trimester, total germ cell and gonocyte number were significantly reduced, whilst (pre)spermatogonial number was unchanged. At 240 hours post-exposure, the total number of germ cells and that of both sub-populations was significantly reduced in the testicular tissues from fetuses of mid- and late-second trimester, whilst germ cells in early-second trimester tissues were unchanged at this time-point. Conclusions In vitro culture of human fetal testicular tissues can be a useful model system to investigate the effects of chemotherapy-exposure on germ cell sub-populations during pre-puberty. Interpretation of the results of such studies in terms of relevance to later (infant and pre-pubertal) developmental stages should take into account the changes in germ cell composition and periods of germ cell sensitivity in the human fetal testis.
Collapse
Affiliation(s)
- Gabriele Matilionyte
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael P Rimmer
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Norah Spears
- Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Diabetes and Endocrinology, Royal Hospital for Children & Young People, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Mo JY, Yan YS, Lin ZL, Liu R, Liu XQ, Wu HY, Yu JE, Huang YT, Sheng JZ, Huang HF. Gestational diabetes mellitus suppresses fetal testis development in mice. Biol Reprod 2022; 107:148-156. [PMID: 35774031 DOI: 10.1093/biolre/ioac138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of Gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig and Sertoli cells. Pregnant mice were treated on gestational day (GD) 6.5 and 12.5 with streptozotocin (STZ, 100 mg/kg) or vehicle (sodium citrate buffer). Leydig and Sertoli cell development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of DHH in Sertoli cells of testes of male offspring. Fetal Leydig cell number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/β-Catenin signaling was activated and Gsk3β signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.
Collapse
Affiliation(s)
- Jia-Ying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yi-Shang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Zhong-Liang Lin
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Rui Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Xuan-Qi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Hai-Yan Wu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jia-En Yu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yu-Tong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jian-Zhong Sheng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - He-Feng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Ivell R, Mamsen LS, Andersen CY, Anand-Ivell R. Expression and Role of INSL3 in the Fetal Testis. Front Endocrinol (Lausanne) 2022; 13:868313. [PMID: 35464060 PMCID: PMC9019166 DOI: 10.3389/fendo.2022.868313] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which is produced and secreted by the fetal Leydig cells in the testes only. It appears to be undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is expressed by the mesenchymal cells of the gubernacular ligament linking the testes to the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the gubernaculum which then retains the testes in the inguinal region, while the remainder of the abdominal organs grow away in an antero-dorsal direction. This represents the first phase of testis descent and is followed later in pregnancy by the second inguino-scrotal phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
15
|
Development of a putative adverse outcome pathway network for male rat reproductive tract abnormalities with specific considerations for the androgen sensitive window of development. Curr Res Toxicol 2021; 2:254-271. [PMID: 34401750 PMCID: PMC8350458 DOI: 10.1016/j.crtox.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Structured approaches like the adverse outcome pathway (AOP) framework offer great potential for depicting complex toxicological processes in a manner that can facilitate informed integration of mechanistic information in regulatory decisions. While this concept provides a structure for organizing evidence and facilitates consistency in evidence integration; the process, inputs, and manner in which AOPs and AOP networks are developed is still evolving. Following the OECD guiding principles of AOP development, we propose three AOPs for male reproductive tract abnormalities and derive a putative AOP network. The AOPs were developed using a fundamental understanding of the developmental biology of the organs of interest, paying close attention to the gestational timing of key events (KEs) to very specifically inform the domain of life stage applicability for the key event relationships (KERs). Chemical stressor data primarily from studies on low molecular weight phthalates (LMWPs) served to 'bound' the pathways of focus in this dynamic period of development and were integrated with the developmental biology data through an iterative process to define KEs and conclude on the extent of evidence in support of the KERs. The AOPs developed describe the linkage between 1) a decrease in Insl3 gene expression and cryptorchidism, 2) the sustained expression of Coup-tfII and hypospadias and 3) the sustained expression of Coup-tfII and altered Wolffian duct development/ epididymal agenesis. A putative AOP network linking AOP2 and AOP3 through decreased steroidogenic biosynthetic protein expression and converging of all AOPS at the population level impaired fertility adverse outcome is proposed. The network depiction specifies and displays the KEs aligned with their occurrence in gestational time. The pathways and network described herein are intended to catalyze collaborative initiatives for expansion into a larger network to enable effective data collection and inform alternative approaches for identifying stressors impacting this sensitive period of male reproductive tract development.
Collapse
Key Words
- AGD, Anogenital distance
- AO, Adverse Outcome
- AOP, Adverse Outcome Pathway
- Adverse outcome pathway
- Adverse outcome pathway network
- DBP, Dibutyl phthalate
- DEHP, Di(2-ethylhexyl)phthalate
- DHT, 5α-dihydrotestosterone
- DPP, Dipentyl phthalate
- E, Embryonic day (ED1=GD1 gestational day 1)
- GD, Gestational day (GD1=ED1 embryonic day 1)
- KE, Key event
- KER, Key event relationship
- LMWP, low molecular weight phthalate straight chain length of the esterified alcohols between 3 and 6 carbon atoms
- MPW, male programming window
- Male programming window
- Phthalate
Collapse
|
16
|
Xia K, Ma Y, Feng X, Deng R, Ke Q, Xiang AP, Deng C. Endosialin defines human stem Leydig cells with regenerative potential. Hum Reprod 2021; 35:2197-2212. [PMID: 32951040 PMCID: PMC7518712 DOI: 10.1093/humrep/deaa174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is endosialin a specific marker of human stem Leydig cells (SLCs) with the ability to differentiate into testosterone-producing Leydig cells (LCs) in vitro and in vivo? SUMMARY ANSWER Endosialin is a specific marker of human SLCs which differentiate into testosterone-producing LCs in vitro and in vivo. WHAT IS KNOWN ALREADY Human SLCs have been identified and isolated using the marker platelet-derived growth factor receptor α (PDGFRα) or nerve growth factor receptor (NGFR). However, the specificity was not high; thus, LCs and germ cells could be mistakenly sorted as SLCs if PDGFRα or NGFR was used as a marker for human SLCs isolation. STUDY DESIGN, SIZE, DURATION Firstly, we re-evaluated the specificity of PDGFRα and NGFR for SLCs in adult human testes. Then we analysed the previously published single-cell sequencing data and found that endosialin may identify human SLCs. Subsequently, we sorted endosialin+ cells from four human donors and characterized their self-renewal and multipotent properties. To assess whether endosialin+ cells have the potential to differentiate into functional LCs in vitro, these cells were stimulated by differentiation-inducing medium. We next assessed the in vivo regenerative potential of human endosialin+ cells after xenotransplantation into the testes of immunodeficient mice. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell sequencing analysis, immunofluorescence and flow cytometry were used to characterize human testis tissues. In vitro colony formation, multipotent differentiation (adipogenic, osteogenic and chondrogenic) and Leydig cell-lineage induction were used to assess stem cell activity. Xenotransplantation into 3-week-old immunodeficient mice was used to determine in vivo regenerative potential. Endpoint measures included testosterone measurements, cell proliferation, immunofluorescence, flow cytometry and quantitative RT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE The results indicate that endosialin is a specific marker of SLCs compared with PDGFRα and NGFR. Additionally, endosialin+ cells isolated from human testes show extensive proliferation and differentiation potential in vitro: their self-renewal ability was inferred by the formation of spherical clones derived from a single cell. Moreover, these cells could differentiate into functional LCs that secreted testosterone in response to LH in a concentration-dependent manner in vitro. These self-renewal and differentiation properties reinforce the proposal that human testicular endosialin+ cells are SLCs. Furthermore, transplanted human endosialin+ cells appear to colonize the murine host testes, localize to peritubular and perivascular regions, proliferate measurably and differentiate partially into testosterone-producing LCs in vivo. LARGE SCALE DATA NA. LIMITATIONS, REASONS FOR CAUTION Owing to the difficulty in collecting human testis tissue, the sample size was limited. The functions of endosialin on SLCs need to be elucidated in future studies. WIDER IMPLICATIONS OF THE FINDINGS A discriminatory marker, endosialin, for human SLCs purification is a prerequisite to advance research in SLCs and logically promote further clinical translation of SLCs-based therapies for male hypogonadism. STUDY FUNDING/COMPETING INTEREST(S) A.P.X. was supported by the National Key Research and Development Program of China (2017YFA0103802 and 2018YFA0107200). C.D. was supported by the National Natural Science Foundation of China (81971314) and the Natural Science Foundation of Guangdong Province, China (2018B030311039). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
17
|
Ham J, You S, Lim W, Song G. Pyridaben induces mitochondrial dysfunction and leads to latent male reproductive abnormalities. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104731. [PMID: 33357553 DOI: 10.1016/j.pestbp.2020.104731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
As an organochloride pesticide, pyridaben (PDB) has been used on various plants, including fruiting plants and other crops. Because of emerging concerns regarding exposure to pesticides, the deleterious effects of PDB, including neuronal disease and reproductive abnormalities, have been determined. However, the intracellular mechanisms that contribute to the effects of PDB on the male reproductive system are still unknown. Therefore, we investigated the effects of PDB on the male reproductive organ, focusing on the testes using mouse testicular cells. We demonstrated that PDB suppressed cellular proliferation of mouse Leydig (TM3) and Sertoli (TM4) cells. Additionally, PDB disturbed calcium homeostasis via mitochondrial dysfunction and activation of endoplasmic reticulum stress. Furthermore, PDB inhibited transcriptional gene expression regarding the cell cycle, as well as steroidogenesis and spermatogenesis, which are the primary functions of TM3 and TM4 cells. Moreover, we verified via western blot analysis that PDB dysregulated the intracellular cell signaling pathways in mitochondrial-associated membranes and the Mapk/Pi3k pathway. Lastly, we confirmed that PDB efficiently suppressed the spheroid formation of TM3 and TM4 cells mimicking an in vivo environment. Collectively, the current results indicate that PDB induces testicular toxicity and male reproductive abnormalities by inducing mitochondrial dysfunction, endoplasmic reticulum stress and calcium imbalance.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Wu K, Li Y, Pan P, Li Z, Yu Y, Huang J, Ma F, Tian L, Fang Y, Wang Y, Lin H, Ge RS. Gestational vinclozolin exposure suppresses fetal testis development in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111053. [PMID: 32888615 DOI: 10.1016/j.ecoenv.2020.111053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Vinclozolin is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor and is thought to be related to abnormalities of the reproductive tract. However, its mechanism of inducing abnormalities of the male reproductive tract is still unclear. The purpose of this study was to study the effect of gestational vinclozolin exposure on the development of rat fetal Leydig cells. Female pregnant Sprague-Dawley rats were exposed to vinclozolin (0, 25, 50, and 100 mg/kg body weight/day) by gavage from gestational day 14-21. Vinclozolin dose-dependently reduced serum testosterone levels at doses of 50 and 100 mg/kg and the anogenital distance at 100 mg/kg. RNA-seq, qPCR, and Western blotting showed that vinclozolin down-regulated the expression of Nr5a1, Sox9, Lhcgr, Cyp11a1, Hsd3b1, Hsd17b3, Amh, Pdgfa, and Dhh and their encoded proteins. Vinclozolin reduced the number of NR2F2-positive stem Leydig cells at a dose of 100 mg/kg and enhanced autophagy in the testes. In conclusion, vinclozolin disrupts reproductive tract development and testis development in male fetal rats via several pathways.
Collapse
Affiliation(s)
- Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jianjian Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lili Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yinghui Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Han Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
19
|
Application of a combined aggregate exposure pathway and adverse outcome pathway (AEP-AOP) approach to inform a cumulative risk assessment: A case study with phthalates. Toxicol In Vitro 2020; 66:104855. [PMID: 32278033 DOI: 10.1016/j.tiv.2020.104855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Advancements in measurement and modeling capabilities are providing unprecedented access to estimates of chemical exposure and bioactivity. With this influx of new data, there is a need for frameworks that help organize and disseminate information on chemical hazard and exposure in a manner that is accessible and transparent. A case study approach was used to demonstrate integration of the Adverse Outcome Pathway (AOP) and Aggregate Exposure Pathway (AEP) frameworks to support cumulative risk assessment of co-exposure to two phthalate esters that are ubiquitous in the environment and that are associated with disruption of male sexual development in the rat: di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP). A putative AOP was developed to guide selection of an in vitro assay for derivation of bioactivity values for DEHP and DnBP and their metabolites. AEPs for DEHP and DnBP were used to extract key exposure data as inputs for a physiologically based pharmacokinetic (PBPK) model to predict internal metabolite concentrations. These metabolite concentrations were then combined using in vitro-based relative potency factors for comparison with an internal dose metric, resulting in an estimated margin of safety of ~13,000. This case study provides an adaptable workflow for integrating exposure and toxicity data by coupling AEP and AOP frameworks and using in vitro and in silico methodologies for cumulative risk assessment.
Collapse
|
20
|
Sipilä P, Junnila A, Hakkarainen J, Huhtaniemi R, Mairinoja L, Zhang FP, Strauss L, Ohlsson C, Kotaja N, Huhtaniemi I, Poutanen M. The lack of HSD17B3 in male mice results in disturbed Leydig cell maturation and endocrine imbalance akin to humans with HSD17B3 deficiency. FASEB J 2020; 34:6111-6128. [PMID: 32190925 DOI: 10.1096/fj.201902384r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 11/11/2022]
Abstract
Hydroxysteroid (17β) dehydrogenase type 3 (HSD17B3) deficiency causes a disorder of sex development in humans, where affected males are born with female-appearing external genitalia, but are virilized during puberty. The hormonal disturbances observed in the Hsd17b3 knockout mice (HSD17B3KO), generated in the present study, mimic those found in patients with HSD17B3 mutations. Identical to affected humans, serum T in the adult HSD17B3KO mice was within the normal range, while a striking increase was detected in serum A-dione concentration. This resulted in a marked reduction of the serum T/A-dione ratio, a diagnostic hallmark for the patients with HSD17B3 deficiency. However, unlike humans, male HSD17B3KO mice were born with normally virilized phenotype, but presenting with delayed puberty. In contrast to the current belief, data from HSD17B3KO mice show that the circulating T largely originates from the testes, indicating a strong compensatory mechanism in the absence of HSD17B3. The lack of testicular malignancies in HSD17B3KO mice supports the view that testis tumors in human patients are due to associated cryptorchidism. The HSD17B3KO mice presented also with impaired Leydig cell maturation and signs of undermasculinization in adulthood. The identical hormonal disturbances between HSD17B3 deficient knockout mice and human patients make the current mouse model valuable for understanding the mechanism of the patient phenotypes, as well as endocrinopathies and compensatory steroidogenic mechanisms in HSD17B3 deficiency.
Collapse
Affiliation(s)
- P Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - A Junnila
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - J Hakkarainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - R Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - L Mairinoja
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - F P Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - L Strauss
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - C Ohlsson
- Institute of Medicine, the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - N Kotaja
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - I Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - M Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland.,Institute of Medicine, the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
21
|
Spade DJ, Hall SJ, Wortzel JD, Reyes G, Boekelheide K. All-trans Retinoic Acid Disrupts Development in Ex Vivo Cultured Fetal Rat Testes. II: Modulation of Mono-(2-ethylhexyl) Phthalate Toxicity. Toxicol Sci 2020; 168:149-159. [PMID: 30476341 DOI: 10.1093/toxsci/kfy283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Humans are universally exposed to low levels of phthalate esters (phthalates), which are used to plasticize polyvinyl chloride. Phthalates exert adverse effects on the development of seminiferous cords in the fetal testis through unknown toxicity pathways. To investigate the hypothesis that phthalates alter seminiferous cord development by disrupting retinoic acid (RA) signaling in the fetal testis, gestational day 15 fetal rat testes were exposed for 1-3 days to 10-6 M all-trans retinoic acid (ATRA) alone or in combination with 10-6-10-4 M mono-(2-ethylhexyl) phthalate (MEHP) in ex vivo culture. As previously reported, exogenous ATRA reduced seminiferous cord number. This effect was attenuated in a concentration-dependent fashion by MEHP co-exposure. ATRA and MEHP-exposed testes were depleted of DDX4-positive germ cells but not Sertoli cells. MEHP alone enhanced the expression of the RA receptor target Rbp1 and the ovary development-associated genes Wnt4 and Nr0b1, and suppressed expression of the Leydig cell marker, Star, and the germ cell markers, Ddx4 and Pou5f1. In co-exposures, MEHP predominantly enhanced the gene expression effects of ATRA, but the Wnt4 and Nr0b1 concentration-responses were nonlinear. Similarly, ATRA increased the number of cells expressing the granulosa cell marker FOXL2 in testis cultures, but this induction was attenuated by addition of MEHP. These results indicate that MEHP can both enhance and inhibit actions of ATRA during fetal testis development and provide evidence that RA signaling is a target for phthalate toxicity in the fetal testis.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Jeremy D Wortzel
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Gerardo Reyes
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912.,Division of Natural Sciences, College of Mount Saint Vincent, Riverdale, New York 10471
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
22
|
Hamanaka K, Takata A, Uchiyama Y, Miyatake S, Miyake N, Mitsuhashi S, Iwama K, Fujita A, Imagawa E, Alkanaq AN, Koshimizu E, Azuma Y, Nakashima M, Mizuguchi T, Saitsu H, Wada Y, Minami S, Katoh-Fukui Y, Masunaga Y, Fukami M, Hasegawa T, Ogata T, Matsumoto N. MYRF haploinsufficiency causes 46,XY and 46,XX disorders of sex development: bioinformatics consideration. Hum Mol Genet 2020; 28:2319-2329. [PMID: 30985895 DOI: 10.1093/hmg/ddz066] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Disorders of sex development (DSDs) are defined as congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. In many DSD cases, genetic causes remain to be elucidated. Here, we performed a case-control exome sequencing study comparing gene-based burdens of rare damaging variants between 26 DSD cases and 2625 controls. We found exome-wide significant enrichment of rare heterozygous truncating variants in the MYRF gene encoding myelin regulatory factor, a transcription factor essential for oligodendrocyte development. All three variants occurred de novo. We identified an additional 46,XY DSD case of a de novo damaging missense variant in an independent cohort. The clinical symptoms included hypoplasia of Müllerian derivatives and ovaries in 46,XX DSD patients, defective development of Sertoli and Leydig cells in 46,XY DSD patients and congenital diaphragmatic hernia in one 46,XY DSD patient. As all of these cells and tissues are or partly consist of coelomic epithelium (CE)-derived cells (CEDC) and CEDC developed from CE via proliferaiton and migration, MYRF might be related to these processes. Consistent with this hypothesis, single-cell RNA sequencing of foetal gonads revealed high expression of MYRF in CE and CEDC. Reanalysis of public chromatin immunoprecipitation sequencing data for rat Myrf showed that genes regulating proliferation and migration were enriched among putative target genes of Myrf. These results suggested that MYRF is a novel causative gene of 46,XY and 46,XX DSD and MYRF is a transcription factor regulating CD and/or CEDC proliferation and migration, which is essential for development of multiple organs.
Collapse
Affiliation(s)
| | | | - Yuri Uchiyama
- Department of Human Genetics.,Department of Oncology
| | - Satoko Miyatake
- Department of Human Genetics.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | - Yoshiki Azuma
- Department of Human Genetics.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuka Wada
- Department of Neonatology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Sawako Minami
- Deparment of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | |
Collapse
|
23
|
van den Bergen JA, Robevska G, Eggers S, Riedl S, Grover SR, Bergman PB, Kimber C, Jiwane A, Khan S, Krausz C, Raza J, Atta I, Davis SR, Ono M, Harley V, Faradz SMH, Sinclair AH, Ayers KL. Analysis of variants in GATA4 and FOG2/ZFPM2 demonstrates benign contribution to 46,XY disorders of sex development. Mol Genet Genomic Med 2020; 8:e1095. [PMID: 31962012 PMCID: PMC7057099 DOI: 10.1002/mgg3.1095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023] Open
Abstract
Background GATA‐binding protein 4 (GATA4) and Friend of GATA 2 protein (FOG2, also known as ZFPM2) form a heterodimer complex that has been shown to influence transcription of genes in a number of developmental systems. Recent evidence has also shown these genes play a role in gonadal sexual differentiation in humans. Previously we identified four variants in GATA4 and an unexpectedly large number of variants in ZFPM2 in a cohort of individuals with 46,XY Differences/Disorders of Sex Development (DSD) (Eggers et al, Genome Biology, 2016; 17: 243). Method Here, we review variant curation and test the functional activity of GATA4 and ZFPM2 variants. We assess variant transcriptional activity on gonadal specific promoters (Sox9 and AMH) and variant protein–protein interactions. Results Our findings support that the majority of GATA4 and ZFPM2 variants we identified are benign in their contribution to 46,XY DSD. Indeed, only one variant, in the conserved N‐terminal zinc finger of GATA4, was considered pathogenic, with functional analysis confirming differences in its ability to regulate Sox9 and AMH and in protein interaction with ZFPM2. Conclusions Our study helps define the genetic factors contributing to 46,XY DSD and suggests that the majority of variants we identified in GATA4 and ZFPM2/FOG2 are not causative.
Collapse
Affiliation(s)
| | - Gorjana Robevska
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia
| | - Stefanie Eggers
- Research Genomics, Murdoch Children's Research Institute, Parkville, Vic., Australia
| | - Stefan Riedl
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,Paediatric Department, Medical University of Vienna, Vienna, Austria
| | - Sonia R Grover
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatric and Adolescent Gynaecology, Royal Children's Hospital Melbourne, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Philip B Bergman
- Department of Paediatric Endocrinology and Diabetes, Monash Children's Hospital, Clayton, Vic., Australia.,Department of Paediatrics, Monash University, Clayton, Vic., Australia
| | - Chris Kimber
- Department of Paediatric Urology, Monash Children's Hospital, Clayton, Vic., Australia
| | - Ashish Jiwane
- Department of Urology, Sydney Children's Hospital Randwick, Randwick, NSW, Australia
| | - Sophy Khan
- Surgical Department, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio", University of Florence, Firenze, Toscana, Italy
| | - Jamal Raza
- Paediatric Department, National Institute of Child Health, Karachi City, Sindh, Pakistan
| | - Irum Atta
- Paediatric Department, National Institute of Child Health, Karachi City, Sindh, Pakistan
| | - Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Makato Ono
- Department of Paediatrics, Tokyo Bay Urayasu Ichikawa Iryo Center, Urayasu, Chiba, Japan
| | - Vincent Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Sultana M H Faradz
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine, Diponegoro University (FMDU), Semarang, Indonesia
| | - Andrew H Sinclair
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Katie L Ayers
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
24
|
Shima Y. Development of fetal and adult Leydig cells. Reprod Med Biol 2019; 18:323-330. [PMID: 31607792 PMCID: PMC6780029 DOI: 10.1002/rmb2.12287] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In mammals, two distinct Leydig cell populations, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs), appear in the prenatal and postnatal testis, respectively. Although the functional differences between these cell types have been well described, the developmental relationship between FLCs and ALCs has not been fully understood. In this review, I focus on the cellular origins of FLCs and ALCs as well as the developmental and functional links between them. METHODS I surveyed previous reports about FLC and/or ALC development and summarized the findings. MAIN FINDINGS Fetal Leydig cells and ALCs were identified to have separate origins in the fetal and neonatal testis, respectively. However, several studies suggested that FLCs and ALCs share a common progenitor pool. Moreover, perturbation of FLC development at the fetal stage induces ALC dysfunction in adults, suggesting a functional link between FLCs and ALCs. Although the lineage relationship between FLCs and ALCs remains controversial, a recent study suggested that some FLCs dedifferentiate at the fetal stage, and that these cells serve as ALC stem cells. CONCLUSION Findings obtained from animal studies might provide clues to the causative mechanisms of male reproductive dysfunctions such as testicular dysgenesis syndrome in humans.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of AnatomyKawasaki Medical SchoolKurashikiOkayamaJapan
| |
Collapse
|
25
|
Mehanovic S, Mendoza-Villarroel RE, Viger RS, Tremblay JJ. The Nuclear Receptor COUP-TFII Regulates Amhr2 Gene Transcription via a GC-Rich Promoter Element in Mouse Leydig Cells. J Endocr Soc 2019; 3:2236-2257. [PMID: 31723721 PMCID: PMC6839530 DOI: 10.1210/js.2019-00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
The nuclear receptor chicken ovalbumin upstream promoter–transcription factor type II (COUP-TFII)/NR2F2 is expressed in adult Leydig cells, and conditional deletion of the Coup-tfii/Nr2f2 gene impedes their differentiation. Steroid production is also reduced in COUP-TFII–depleted Leydig cells, supporting an additional role in steroidogenesis for this transcription factor. COUP-TFII action in Leydig cells remains to be fully characterized. In the present work, we report that COUP-TFII is an essential regulator of the gene encoding the anti-Müllerian hormone receptor type 2 (Amhr2), which participates in Leydig cell differentiation and steroidogenesis. We found that Amhr2 mRNA levels are reduced in COUP-TFII–depleted MA-10 Leydig cells. Consistent with this, COUP-TFII directly activates a −1486 bp fragment of the mouse Amhr2 promoter in transient transfection assays. The COUP-TFII responsive region was localized between −67 and −34 bp. Chromatin immunoprecipitation assay confirmed COUP-TFII recruitment to the proximal Amhr2 promoter whereas DNA precipitation assay revealed that COUP-TFII associates with the −67/−34 bp region in vitro. Even though the −67/−34 bp region contains an imperfect nuclear receptor element, COUP-TFII–mediated activation of the Amhr2 promoter requires a GC-rich sequence at −39 bp known to bind the specificity protein (SP)1 transcription factor. COUP-TFII transcriptionally cooperates with SP1 on the Amhr2 promoter. Mutations that altered the GCGGGGCGG sequence at −39 bp abolished COUP-TFII–mediated activation, COUP-TFII/SP1 cooperation, and reduced COUP-TFII binding to the proximal Amhr2 promoter. Our data provide a better understanding of the mechanism of COUP-TFII action in Leydig cells through the identification and regulation of the Amhr2 promoter as a novel target.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
26
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Arzuaga X, Walker T, Yost EE, Radke EG, Hotchkiss AK. Use of the Adverse Outcome Pathway (AOP) framework to evaluate species concordance and human relevance of Dibutyl phthalate (DBP)-induced male reproductive toxicity. Reprod Toxicol 2019; 96:445-458. [PMID: 31260805 PMCID: PMC10067323 DOI: 10.1016/j.reprotox.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
Dibutyl phthalate (DBP) is a phthalate ester used as a plasticizer, and solvent. Studies using rats consistently report that DBP exposure disrupts normal development of the male reproductive system in part via inhibition of androgen synthesis. However, studies using xenograft models report that in human fetal testis DBP exposure is unlikely to impair testosterone synthesis. These results question the validity of the rat model for assessment of male reproductive effects caused by DBP. The Adverse Outcome Pathway (AOP) framework was used to evaluate the available evidence for DBP-induced toxicity to the male reproductive system. Three relevant biological elements were identified: 1) fetal rats are more sensitive than other rodents and human fetal xenografts to DBP-induced anti-androgenic effects, 2) DBP-induced androgen-independent adverse outcomes are conserved amongst different mammalian models and human fetal testis xenografts, and 3) DBP-induced anti-androgenic effects are conserved in different mammalian species when exposure occurs during postnatal life stages.
Collapse
Affiliation(s)
- Xabier Arzuaga
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America.
| | - Teneille Walker
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Erin E Yost
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| | - Elizabeth G Radke
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Andrew K Hotchkiss
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| |
Collapse
|
28
|
Zhang J, Hu G, Huang B, Zhuo D, Xu Y, Li H, Zhan X, Ge RS, Xu Y. Dexamethasone suppresses the differentiation of stem Leydig cells in rats in vitro. BMC Pharmacol Toxicol 2019; 20:32. [PMID: 31133074 PMCID: PMC6537393 DOI: 10.1186/s40360-019-0312-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 05/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is an established fact that excess of glucocorticoids could cause the harmful effects, such as suppression on the male reproduction. Although glucocorticoids pharmacologically inhibit the Leydig cell function, their roles in Leydig cell development are unclear. Therefore, the present study was designed to investigate effects of synthetic glucocorticoid dexamethasone (DEX) on rat stem Leydig cell proliferation and differentiation. METHODS Male Sprague-Dawley rats received a single intraperitoneal injection of 75 mg/kg EDS to eliminate Leydig cells and an in vitro culture system of the seminiferous tubules was established from Leydig cell-depleted testis. Using basal medium and Leydig cell differentiation-inducing medium (LIM) in the culture system, we examined the effects of DEX (0-100 nM) on the proliferation and differentiation of the stem Leydig cells in vitro, respectively. RESULTS Results showed that LIM is a good agent to induce stem Leydig cell differentiation into Leydig cells that produce testosterone in vitro. DEX inhibited the differentiation of stem Leydig cells by reducing the expression levels of Cyp17a1 and Scarb1 and that NR3C1 antagonist RU38486 reversed the DEX-mediated effects. However, DEX are not involved with the proliferation of stem Leydig cells. CONCLUSIONS DEX suppressed the differentiation of rat Leydig cells in vitro and glucocorticoid-induced effects acted through NR3C1. This suppression partially targets on Cyp17a1 and Scarb1 gene expression.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Department of Urology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Guanghui Hu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Bisheng Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Dong Zhuo
- Department of Urology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Yujie Xu
- Department of Urology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Huitao Li
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangcheng Zhan
- Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ren-Shan Ge
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
Repouskou A, Panagiotidou E, Panagopoulou L, Bisting PL, Tuck AR, Sjödin MOD, Lindberg J, Bozas E, Rüegg J, Gennings C, Bornehag CG, Damdimopoulou P, Stamatakis A, Kitraki E. Gestational exposure to an epidemiologically defined mixture of phthalates leads to gonadal dysfunction in mouse offspring of both sexes. Sci Rep 2019; 9:6424. [PMID: 31015488 PMCID: PMC6478857 DOI: 10.1038/s41598-019-42377-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/29/2019] [Indexed: 11/17/2022] Open
Abstract
The increasing concern for the reproductive toxicity of abundantly used phthalates requires reliable tools for exposure risk assessment to mixtures of chemicals, based on real life human exposure and disorder-associated epidemiological evidence. We herein used a mixture of four phthalate monoesters (33% mono-butyl phthalate, 16% mono-benzyl phthalate, 21% mono-ethyl hexyl phthalate, and 30% mono-isononyl phthalate), detected in 1st trimester urine of 194 pregnant women and identified as bad actors for a shorter anogenital distance (AGD) in their baby boys. Mice were treated with 0, 0.26, 2.6 and 13 mg/kg/d of the mixture, corresponding to 0x, 10x, 100x, 500x levels detected in the pregnant women. Adverse outcomes detected in the reproductive system of the offspring in pre-puberty and adulthood included reduced AGD index and gonadal weight, changes in gonadal histology and altered expression of key regulators of gonadal growth and steroidogenesis. Most aberrations were apparent in both sexes, though more pronounced in males, and exhibited a non-monotonic pattern. The phthalate mixture directly affected expression of steroidogenesis as demonstrated in a relevant in vitro model. The detected adversities at exposures close to the levels detected in pregnant women, raise concern on the existing safety limits for early-life human exposures and emphasizes the need for re-evaluation of the exposure risk.
Collapse
Affiliation(s)
- Anastasia Repouskou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emily Panagiotidou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Biology-Biochemistry laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Lydia Panagopoulou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Astrud R Tuck
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Marcus O D Sjödin
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Johan Lindberg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Evangelos Bozas
- Pediatric Research laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Joëlle Rüegg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
- IMM -Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carl-Gustaf Bornehag
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Karlstad University, Karlstad, Sweden
| | - Pauliina Damdimopoulou
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Antonios Stamatakis
- Biology-Biochemistry laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Efthymia Kitraki
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
30
|
Diethylstilbestrol induces morphological changes in the spermatogonia, Sertoli cells and Leydig cells of adult rat. Res Vet Sci 2019; 124:433-438. [PMID: 31082573 DOI: 10.1016/j.rvsc.2019.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/28/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
It is now established that diethylstilbestrol (DES) has damaging effects on the male reproductive system. However, to date there have been no studies morphological analysis of adult rat testes upon treatment with DES. Here, we examined whether DES has any significant morphological effect on steroidogenesis and spermatogenesis. DES was injected subcutaneously at 3 μg/day and 30 μg/day in adult male Sprague-Dawley (SD) rats for two different treatment lengths (1 or 3 weeks), after which rats were necropsied. TUNEL labeling, cell counting, and morphological analysis were used to evaluate the effects of DES. A high dose of DES and longer exposure severely affected the cellular development of the testis. Specifically, DES treatment disrupted both steroidogenesis and spermatogenesis by decreasing the number of spermatogonia, Sertoli cells, and Leydig cells in a dose- and time-dependent manner. Thus, DES may account for decreases in the number of spermatogenic cells, Sertoli cells and Leydig cells, which in turn may lead to reduced fertility in males.
Collapse
|
31
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
32
|
A perivascular niche for multipotent progenitors in the fetal testis. Nat Commun 2018; 9:4519. [PMID: 30375389 PMCID: PMC6207726 DOI: 10.1038/s41467-018-06996-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022] Open
Abstract
Androgens responsible for male sexual differentiation in utero are produced by Leydig cells in the fetal testicular interstitium. Leydig cells rarely proliferate and, hence, rely on constant differentiation of interstitial progenitors to increase their number during fetal development. The cellular origins of fetal Leydig progenitors and how they are maintained remain largely unknown. Here we show that Notch-active, Nestin-positive perivascular cells in the fetal testis are a multipotent progenitor population, giving rise to Leydig cells, pericytes, and smooth muscle cells. When vasculature is disrupted, perivascular progenitor cells fail to be maintained and excessive Leydig cell differentiation occurs, demonstrating that blood vessels are a critical component of the niche that maintains interstitial progenitor cells. Additionally, our data strongly supports a model in which fetal Leydig cell differentiation occurs by at least two different means, with each having unique progenitor origins and distinct requirements for Notch signaling to maintain the progenitor population. Leydig cells are steroidogenic cells in the testes and produce the androgens required for male development and spermatogenesis. Here the authors show that a multipotent progenitor population producing Leydig cells, pericytes and smooth muscle cells is maintained in a perivascular niche within the mouse fetal testis.
Collapse
|
33
|
Rotgers E, Jørgensen A, Yao HHC. At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad. Endocr Rev 2018; 39:739-759. [PMID: 29771299 PMCID: PMC6173476 DOI: 10.1210/er.2018-00010] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
The reproductive endocrine systems are vastly different between males and females. This sexual dimorphism of the endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. Most gonadal somatic cells arise from the adrenogonadal primordium. After separation of the adrenal and gonadal primordia, the gonadal somatic cells initiate sex-specific differentiation during gonadal sex determination with the specification of the supporting cell lineages: Sertoli cells in the testis vs granulosa cells in the ovary. The supporting cell lineages then facilitate the differentiation of the steroidogenic cell lineages, Leydig cells in the testis and theca cells in the ovary. Proper differentiation of these cell types defines the somatic cell environment that is essential for germ cell development, hormone production, and establishment of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modeled using genetically modified mouse models. In this review, we focus on the fate decision processes from the initial stage of formation of the adrenogonadal primordium in the embryo to the maintenance of the somatic cell identities in the gonads when they become fully differentiated in adulthood.
Collapse
Affiliation(s)
- Emmi Rotgers
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, Denmark
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
34
|
Bashamboo A, Eozenou C, Jorgensen A, Bignon-Topalovic J, Siffroi JP, Hyon C, Tar A, Nagy P, Sólyom J, Halász Z, Paye-Jaouen A, Lambert S, Rodriguez-Buritica D, Bertalan R, Martinerie L, Rajpert-De Meyts E, Achermann JC, McElreavey K. Loss of Function of the Nuclear Receptor NR2F2, Encoding COUP-TF2, Causes Testis Development and Cardiac Defects in 46,XX Children. Am J Hum Genet 2018; 102:487-493. [PMID: 29478779 PMCID: PMC5985285 DOI: 10.1016/j.ajhg.2018.01.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/26/2018] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from murine studies suggests that mammalian sex determination is the outcome of an imbalance between mutually antagonistic male and female regulatory networks that canalize development down one pathway while actively repressing the other. However, in contrast to testis formation, the gene regulatory pathways governing mammalian ovary development have remained elusive. We performed exome or Sanger sequencing on 79 46,XX SRY-negative individuals with either unexplained virilization or with testicular/ovotesticular disorders/differences of sex development (TDSD/OTDSD). We identified heterozygous frameshift mutations in NR2F2, encoding COUP-TF2, in three children. One carried a c.103_109delGGCGCCC (p.Gly35Argfs∗75) mutation, while two others carried a c.97_103delCCGCCCG (p.Pro33Alafs∗77) mutation. In two of three children the mutation was de novo. All three children presented with congenital heart disease (CHD), one child with congenital diaphragmatic hernia (CDH), and two children with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). The three children had androgen production, virilization of external genitalia, and biochemical or histological evidence of testicular tissue. We demonstrate a highly significant association between the NR2F2 loss-of-function mutations and this syndromic form of DSD (p = 2.44 × 10−8). We show that COUP-TF2 is highly abundant in a FOXL2-negative stromal cell population of the fetal human ovary. In contrast to the mouse, these data establish COUP-TF2 as a human “pro-ovary” and “anti-testis” sex-determining factor in female gonads. Furthermore, the data presented here provide additional evidence of the emerging importance of nuclear receptors in establishing human ovarian identity and indicate that nuclear receptors may have divergent functions in mouse and human biology.
Collapse
|
35
|
Neirijnck Y, Calvel P, Kilcoyne KR, Kühne F, Stévant I, Griffeth RJ, Pitetti JL, Andric SA, Hu MC, Pralong F, Smith LB, Nef S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J 2018; 32:3321-3335. [PMID: 29401624 DOI: 10.1096/fj.201700769rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin family of growth factors (insulin, IGF1, and IGF2) are critical in sex determination, adrenal differentiation, and testicular function. Notably, the IGF system has been reported to mediate the proliferation of steroidogenic cells. However, the precise role and contribution of the membrane receptors mediating those effects, namely, insulin receptor (INSR) and type-I insulin-like growth factor receptor (IGF1R), have not, to our knowledge, been investigated. We show here that specific deletion of both Insr and Igf1r in steroidogenic cells in mice leads to severe alterations of adrenocortical and testicular development. Double-mutant mice display drastic size reduction of both adrenocortex and testes, with impaired corticosterone, testosterone, and sperm production. Detailed developmental analysis of the testes revealed that fetal Leydig cell (LC) function is normal, but there is a failure of adult LC maturation and steroidogenic function associated with accumulation of progenitor LCs (PLCs). Cell-lineage tracing revealed PLC enrichment is secondary to Insr and Igf1r deletion in differentiated adult LCs, suggesting a feedback mechanism between cells at different steps of differentiation. Taken together, these data reveal the cell-autonomous and nonautonomous roles of the IGF system for proper development and maintenance of steroidogenic lineages.-Neirijnck, Y., Calvel, P., Kilcoyne, K. R., Kühne, F., Stévant, I., Griffeth, R. J., Pitetti, J.-L., Andric, S. A., Hu, M.-C., Pralong, F., Smith, L. B., Nef, S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre Calvel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Karen R Kilcoyne
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Richard J Griffeth
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jean-Luc Pitetti
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Silvana A Andric
- Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - François Pralong
- Department of Internal Medicine, University Hospital, Lausanne, Switzerland; and
| | - Lee B Smith
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, United Kingdom.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
36
|
Svechnikov K, Savchuk I, Morvan ML, Antignac JP, Le Bizec B, Söder O. Phthalates Exert Multiple Effects on Leydig Cell Steroidogenesis. Horm Res Paediatr 2018; 86:253-263. [PMID: 26559938 DOI: 10.1159/000440619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Humans are significantly exposed to phthalates via food packaging, cosmetics and medical devices such as tubings and catheters. Testicular Leydig cells (LCs) are suggested to be among the main targets of phthalate toxicity in the body. However, their sensitivity to phthalates is species-dependent. This paper describes the response of the LCs from different species (mouse, rat and human) to phthalate exposure in different experimental paradigms (in vivo, ex vivo and in vitro), with particular focus on mechanisms of phthalate action on LC steroidogenesis. A comprehensive analysis of the impact of phthalate diesters and phthalate monoesters on LCs in different stages of their development is presented and possible mechanisms of phthalates action are discussed. Finally novel, not yet fully elucidated sites of action of phthalate monoesters on the backdoor pathway of 5α-dihydrotestosterone biosynthesis in immature mouse LCs and their effects on steroidogenesis and redox state in adult mouse LCs are reported.
Collapse
Affiliation(s)
- Konstantin Svechnikov
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Karolinska Institute and University Hospital, Q2:08, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Dibutyl phthalate induced testicular dysgenesis originates after seminiferous cord formation in rats. Sci Rep 2017; 7:2521. [PMID: 28566680 PMCID: PMC5451485 DOI: 10.1038/s41598-017-02684-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/18/2017] [Indexed: 11/08/2022] Open
Abstract
Administration of dibutyl phthalate (DBP) to pregnant rats causes reproductive disorders in male offspring, resulting from suppression of intratesticular testosterone, and is used as a model for human testicular dysgenesis syndrome (TDS). DBP exposure in pregnancy induces focal dysgenetic areas in fetal testes that appear between e19.5–e21.5, manifesting as focal aggregation of Leydig cells and ectopic Sertoli cells (SC). Our aim was to identify the origins of the ectopic SC. Time-mated female rats were administered 750 mg/kg/day DBP in three different time windows: full window (FW; e13.5–e20.5), masculinisation programming window (MPW; e15.5–e18.5), late window (LW; e19.5–e20.5). We show that DBP-MPW treatment produces more extensive and severe dysgenetic areas, with more ectopic SC and germ cells (GC) than DBP-FW treatment; DBP-LW induces no dysgenesis. Our findings demonstrate that ectopic SC do not differentiate de novo, but result from rupture of normally formed seminiferous cords beyond e20.5. The more severe testis dysgenesis in DBP-MPW animals may result from the presence of basally migrating GC and a weakened basal lamina, whereas GC migration was minimal in DBP-FW animals. Our findings provide the first evidence for how testicular dysgenesis can result after normal testis differentiation/development and may be relevant to understanding TDS in human patients.
Collapse
|
38
|
Shima Y, Morohashi KI. Leydig progenitor cells in fetal testis. Mol Cell Endocrinol 2017; 445:55-64. [PMID: 27940302 DOI: 10.1016/j.mce.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells play pivotal roles in masculinization of organisms by producing androgens. At least two distinct Leydig cell populations sequentially emerge in the mammalian testis. Leydig cells in the fetal testis (fetal Leydig cells) appear just after initial sex differentiation and induce masculinization of male fetuses. Although there has been a debate on the fate of fetal Leydig cells in the postnatal testis, it has been generally believed that fetal Leydig cells regress and are completely replaced by another Leydig cell population, adult Leydig cells. Recent studies revealed that gene expression patterns are different between fetal and adult Leydig cells and that the androgens produced in fetal Leydig cells are different from those in adult Leydig cells in mice. Although these results suggested that fetal and adult Leydig cells have distinct origins, several recent studies of mouse models support the hypothesis that fetal and adult Leydig cells arise from a common progenitor pool. In this review, we first provide an overview of previous knowledge, mainly from mouse studies, focusing on the cellular origins of fetal Leydig cells and the regulatory mechanisms underlying fetal Leydig cell differentiation. In addition, we will briefly discuss the functional differences of fetal Leydig cells between human and rodents. We will also discuss recent studies with mouse models that give clues for understanding how the progenitor cells in the fetal testis are subsequently destined to become fetal or adult Leydig cells.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
39
|
van den Driesche S, Kilcoyne KR, Wagner I, Rebourcet D, Boyle A, Mitchell R, McKinnell C, Macpherson S, Donat R, Shukla CJ, Jorgensen A, Meyts ERD, Skakkebaek NE, Sharpe RM. Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. JCI Insight 2017; 2:e91204. [PMID: 28352662 DOI: 10.1172/jci.insight.91204] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The testicular dysgenesis syndrome (TDS) hypothesis, which proposes that common reproductive disorders of newborn and adult human males may have a common fetal origin, is largely untested. We tested this hypothesis using a rat model involving gestational exposure to dibutyl phthalate (DBP), which suppresses testosterone production by the fetal testis. We evaluated if induction of TDS via testosterone suppression is restricted to the "masculinization programming window" (MPW), as indicated by reduction in anogenital distance (AGD). We show that DBP suppresses fetal testosterone equally during and after the MPW, but only DBP exposure in the MPW causes reduced AGD, focal testicular dysgenesis, and TDS disorders (cryptorchidism, hypospadias, reduced adult testis size, and compensated adult Leydig cell failure). Focal testicular dysgenesis, reduced size of adult male reproductive organs, and TDS disorders and their severity were all strongly associated with reduced AGD. We related our findings to human TDS cases by demonstrating similar focal dysgenetic changes in testes of men with preinvasive germ cell neoplasia (GCNIS) and in testes of DBP-MPW animals. If our results are translatable to humans, they suggest that identification of potential causes of human TDS disorders should focus on exposures during a human MPW equivalent, especially if negatively associated with offspring AGD.
Collapse
Affiliation(s)
- Sander van den Driesche
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen R Kilcoyne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ida Wagner
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Diane Rebourcet
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ashley Boyle
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rod Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris McKinnell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheila Macpherson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Roland Donat
- Edinburgh Urological Cancer Group, Department of Urology, Western General Hospital, Edinburgh, United Kingdom
| | - Chitranjan J Shukla
- Edinburgh Urological Cancer Group, Department of Urology, Western General Hospital, Edinburgh, United Kingdom
| | - Anne Jorgensen
- Department of Growth & Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Niels E Skakkebaek
- Department of Growth & Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Wen Q, Cheng CY, Liu YX. Development, function and fate of fetal Leydig cells. Semin Cell Dev Biol 2016; 59:89-98. [PMID: 26968934 PMCID: PMC5016207 DOI: 10.1016/j.semcdb.2016.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
During fetal testis development, fetal Leydig cells (FLCs) are found to be originated from multiple progenitor cells. FLC specification and function are under tight regulation of specific genes and signaling proteins. Furthermore, Sertoli cells play a crucial role to regulate FLC differentiation during fetal testis development. FLC progenitor- and FLC-produced biomolecules are also involved in the differentiation and activity of rodent FLCs. The main function of FLCs is to produce androgens to masculinize XY embryos. However, FLCs are capable of producing androstenedione but not testosterone due to the lack of 17β-HSD (17β-hydroxysteroid dehydrogenase), but fetal Sertoli cells express 17β-HSD which thus transforms androstenedione to testosterone in the fetal testis. On the other hand, FLCs produce activin A to regulate Sertoli cell proliferation, and Sertoli cells in turn modulate testis cord expansion. It is now generally accepted that adult Leydig cells (ALCs) gradually replace FLCs during postnatal development to produce testosterone to support spermatogenesis as FLCs undergo degeneration in neonatal and pre-pubertal testes. However, based on studies using genetic tracing mouse models, FLCs are found to persist in adult testes, making up ∼20% of total Leydig cells. In this review, we evaluate the latest findings regarding the development, function and fate of FLCs during fetal and adult testis development.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065, United States.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
van den Driesche S, Macdonald J, Anderson RA, Johnston ZC, Chetty T, Smith LB, Mckinnell C, Dean A, Homer NZ, Jorgensen A, Camacho-Moll ME, Sharpe RM, Mitchell RT. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model. Sci Transl Med 2016; 7:288ra80. [PMID: 25995226 DOI: 10.1126/scitranslmed.aaa4097] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; P = 0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; P = 0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect.
Collapse
Affiliation(s)
- Sander van den Driesche
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Joni Macdonald
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Zoe C Johnston
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Tarini Chetty
- Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Chris Mckinnell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Afshan Dean
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Natalie Z Homer
- Edinburgh CRF Mass Spectrometry Core, Centre for Cardiovascular Science, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Anne Jorgensen
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.,University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Maria-Elena Camacho-Moll
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| |
Collapse
|
42
|
Dean A, van den Driesche S, Wang Y, McKinnell C, Macpherson S, Eddie SL, Kinnell H, Hurtado-Gonzalez P, Chambers TJ, Stevenson K, Wolfinger E, Hrabalkova L, Calarrao A, Bayne RA, Hagen CP, Mitchell RT, Anderson RA, Sharpe RM. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences. Sci Rep 2016; 6:19789. [PMID: 26813099 PMCID: PMC4728385 DOI: 10.1038/srep19789] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters.
Collapse
Affiliation(s)
- Afshan Dean
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sander van den Driesche
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Yili Wang
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chris McKinnell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sheila Macpherson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sharon L Eddie
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Hazel Kinnell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Pablo Hurtado-Gonzalez
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tom J Chambers
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kerrie Stevenson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Elke Wolfinger
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lenka Hrabalkova
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ana Calarrao
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rosey Al Bayne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Casper P Hagen
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
43
|
Potter SJ, Kumar DL, DeFalco T. Origin and Differentiation of Androgen-Producing Cells in the Gonads. Results Probl Cell Differ 2016; 58:101-134. [PMID: 27300177 DOI: 10.1007/978-3-319-31973-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
44
|
Larney C, Bailey TL, Koopman P. Conservation analysis of sequences flanking the testis-determining gene Sry in 17 mammalian species. BMC DEVELOPMENTAL BIOLOGY 2015; 15:34. [PMID: 26444262 PMCID: PMC4595323 DOI: 10.1186/s12861-015-0085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sex determination in mammals requires expression of the Y-linked gene Sry in the bipotential genital ridges of the XY embryo. Even minor delay of the onset of Sry expression can result in XY sex reversal, highlighting the need for accurate gene regulation during sex determination. However, the location of critical regulatory elements remains unknown. Here, we analysed Sry flanking sequences across many species, using newly available genome sequences and computational tools, to better understand Sry's genomic context and to identify conserved regions predictive of functional roles. METHODS Flanking sequences from 17 species were analysed using both global and local sequence alignment methods. Multiple motif searches were employed to characterise common motifs in otherwise unconserved sequence. RESULTS We identified position-specific conservation of binding motifs for multiple transcription factor families, including GATA binding factors and Oct/Sox dimers. In contrast with the landscape of extremely low sequence conservation around the Sry coding region, our analysis highlighted a strongly conserved interval of ~106 bp within the Sry promoter (which we term the Sry Proximal Conserved Interval, SPCI). We further report that inverted repeats flanking murine Sry are much larger than previously recognised. CONCLUSIONS The unusually fast pace of sequence drift on the Y chromosome sharpens the likely functional significance of both the SPCI and the identified binding motifs, providing a basis for future studies of the role(s) of these elements in Sry regulation.
Collapse
Affiliation(s)
- Christian Larney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
45
|
Wang Y, Liu W, Yang Q, Yu M, Zhang Z. Di (2-ethylhexyl) phthalate exposure during pregnancy disturbs temporal sex determination regulation in mice offspring. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
van den Driesche S, McKinnell C, Calarrão A, Kennedy L, Hutchison GR, Hrabalkova L, Jobling MS, Macpherson S, Anderson RA, Sharpe RM, Mitchell RT. Comparative effects of di(n-butyl) phthalate exposure on fetal germ cell development in the rat and in human fetal testis xenografts. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:223-30. [PMID: 25514601 PMCID: PMC4348744 DOI: 10.1289/ehp.1408248] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 12/12/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Phthalate exposure induces germ cell effects in the fetal rat testis. Although experimental models have shown that the human fetal testis is insensitive to the steroidogenic effects of phthalates, the effects on germ cells have been less explored. OBJECTIVES We sought to identify the effects of phthalate exposure on human fetal germ cells in a dynamic model and to establish whether the rat is an appropriate model for investigating such effects. METHODS We used immunohistochemistry, immunofluorescence, and quantitative real-time polymerase chain reaction to examine Sertoli and germ cell markers on rat testes and human fetal testis xenografts after exposure to vehicle or di(n-butyl) phthalate (DBP). Our study included analysis of germ cell differentiation markers, proliferation markers, and cell adhesion proteins. RESULTS In both rat and human fetal testes, DBP exposure induced similar germ cell effects, namely, germ cell loss (predominantly undifferentiated), induction of multinucleated gonocytes (MNGs), and aggregation of differentiated germ cells, although the latter occurred rarely in the human testes. The mechanism for germ cell aggregation and MNG induction appears to be loss of Sertoli cell-germ cell membrane adhesion, probably due to Sertoli cell microfilament redistribution. CONCLUSIONS Our findings provide the first comparison of DBP effects on germ cell number, differentiation, and aggregation in human testis xenografts and in vivo in rats. We observed comparable effects on germ cells in both species, but the effects in the human were muted compared with those in the rat. Nevertheless, phthalate effects on germ cells have potential implications for the next generation, which merits further study. Our results indicate that the rat is a human-relevant model in which to explore the mechanisms for germ cell effects.
Collapse
Affiliation(s)
- Sander van den Driesche
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Teerds KJ, Huhtaniemi IT. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update 2015; 21:310-28. [PMID: 25724971 DOI: 10.1093/humupd/dmv008] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. METHODS Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. RESULTS Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of the FLC population, there is consensus about the essential role of gonadotrophins in testosterone production. Like the FLC population, adult Leydig cells (ALC) in rodents arise from stem cells, which have their origin in the fetal testis. In contrast, in primates the ALC population is thought to originate from FLC, which undergo several cycles of regression and redifferentiation before giving rise to the mature ALC population, as well as from differentiation of stem cells/precursor cells. Despite this difference in origin, both in primates and rodents the formation of the mature and functionally active ALC population is critically dependent on the pituitary gonadotrophin, LH. From studies on rodents considerable knowledge has emerged on factors that are involved besides LH in the regulation of this developmental process. Whether the same factors also play a role in the development of the mature primate LC population awaits further investigation. CONCLUSION Distinct populations of LC develop along the life span of males, including fetal, neonatal (primates) and ALC. Despite differences in the LC lineages of rodents and primates, the end product is a mature population of LC with the main function to provide androgens necessary for the maintenance of spermatogenesis and extra-gonadal androgen actions.
Collapse
Affiliation(s)
- Katja J Teerds
- Human and Animal Physiology, Wageningen University, De Elst 1, 6709 WD, Wageningen, The Netherlands
| | - Ilpo T Huhtaniemi
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN London, UK Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
48
|
Spade DJ, McDonnell EV, Heger NE, Sanders JA, Saffarini CM, Gruppuso PA, De Paepe ME, Boekelheide K. Xenotransplantation models to study the effects of toxicants on human fetal tissues. ACTA ACUST UNITED AC 2014; 101:410-22. [PMID: 25477288 DOI: 10.1002/bdrb.21131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human-relevant mechanistic data on the many tissue-level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Li L, Bu T, Su H, Chen Z, Liang Y, Zhang G, Zhu D, Shan Y, Xu R, Hu Y, Li J, Hu G, Lian Q, Ge RS. Inutero exposure to diisononyl phthalate caused testicular dysgenesis of rat fetal testis. Toxicol Lett 2014; 232:466-74. [PMID: 25445723 DOI: 10.1016/j.toxlet.2014.11.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 01/02/2023]
Abstract
Diisononyl phthalate (DINP) is a synthetic material that has been widely used as a substitute for other plasticizers prohibited due to reproductive toxicity in consumer products. Some phthalates have been associated with testicular dysgenesis syndrome in male fetus when female pregnant dams were exposed to them. The present study investigated effects of DINP on fetal Leydig cell function and testis development. Female pregnant Sprague Dawley rats received control vehicle (corn oil) or DINP (10, 100, 500, and 1000 mg/kg) by oral gavage from gestational day (GD) 12 to 21. At GD 21.5, testicular testosterone production, fetal Leydig cell numbers and distribution, testicular gene and protein expression levels were examined. DINP showed dose-dependent increase of fetal Leydig cell aggregation with the low observed adverse-effect level (LOAEL) of 10 mg/kg and multinucleated gonocyte with LOAEL of 100 mg/kg. At 10 mg/kg, DINP also significantly increased fetal Leydig cell size, but inhibited insulin-like 3 and 3β-hydroxysteroid dehydrogenase gene expression and protein levels. DINP inhibited testicular testosterone levels at 1000 mg/kg. The results indicate that in utero exposure to DINP affects the expression levels of some fetal Leydig cell steroidogenic genes, gonocyte multinucleation and Leydig cell aggregation.
Collapse
Affiliation(s)
- Linxi Li
- Center of Scientific Research, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tiao Bu
- Center of Scientific Research, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huina Su
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhichuan Chen
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuyuan Liang
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gaolong Zhang
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Danyan Zhu
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuanyuan Shan
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Renai Xu
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuanyuan Hu
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Junwei Li
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guoxin Hu
- Department of Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qingquan Lian
- Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Center of Scientific Research, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, The 2nd Affiliated Hospital & Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
50
|
Rastetter RH, Bernard P, Palmer JS, Chassot AA, Chen H, Western PS, Ramsay RG, Chaboissier MC, Wilhelm D. Marker genes identify three somatic cell types in the fetal mouse ovary. Dev Biol 2014; 394:242-52. [DOI: 10.1016/j.ydbio.2014.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 12/28/2022]
|