1
|
Biersteker R, Larsen OF, Wuhrer M, Huizinga TWJ, Toes REM, Hafkenscheid L. Variable domain glycosylation as a marker and modulator of immune responses: Insights into autoimmunity and B-cell malignancies. Semin Immunol 2025; 78:101946. [PMID: 40158366 DOI: 10.1016/j.smim.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Glycosylation of antibodies is essential for shaping immune responses, as it contributes significantly to antibody function and diversity. While immunoglobulin G (IgG) Fc glycosylation is well-characterized, variable domain glycosylation (VDG) introduces an additional and less understood layer of complexity. Notably, VDG is associated with rheumatoid arthritis, where disease-specific IgG autoantibodies abundantly express this modification. Moreover, its presence on these antibodies correlates with disease progression in at-risk individuals and therapeutic outcomes. Emerging evidence links increased VDG levels to other autoimmune diseases and B-cell malignancies, highlighting its potential as both a marker and modulator in disease onset and progression. Importantly, VDG on IgG is now recognized to influence antigen binding, enhance antibody stability, and modulate interactions with the human neonatal Fc receptor. In addition, glycans in the antigen-binding domains of autoreactive B-cell receptors (BCRs) can significantly impact B cell activation. In follicular lymphoma and other B-cell malignancies, the presence of N-glycosylation sites in the immunoglobulin variable domains leads to the introduction of oligomannose glycans, which are postulated to bind to mannose-specific lectins. This interaction might promote antigen-independent activation of BCRs, thereby supporting malignant B cell survival and proliferation. Here, we explore the regulatory pathways of VDG and its functional roles across both physiological and pathological conditions, underscoring its prevalence and significance in various autoimmune diseases and B-cell malignancies. Ultimately, advancing our understanding of the regulatory factors influencing VDG and its functional implications could be highly rewarding for identifying potential therapeutic targets and strategies to prevent and treat autoimmune diseases and B-cell malignancies.
Collapse
Affiliation(s)
- Roxane Biersteker
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Oliver F Larsen
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
2
|
van Oostveen WM, Huizinga TWJ, Fehres CM. Pathogenic role of anti-nuclear autoantibodies in systemic sclerosis: Insights from other rheumatic diseases. Immunol Rev 2024; 328:265-282. [PMID: 39248128 PMCID: PMC11659924 DOI: 10.1111/imr.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease characterized by vasculopathy, fibrosis, and dysregulated immunity, with hallmark autoantibodies targeting nuclear antigens such as centromere protein (ACA) and topoisomerase I (ATA). These autoantibodies are highly prevalent and disease-specific, rarely coexisting, thus serving as crucial biomarkers for SSc diagnosis. Despite their diagnostic value, their roles in SSc pathogenesis remain unclear. This review summarizes current literature on ACA and ATA in SSc, comparing them to autoantibodies in other rheumatic diseases to elucidate their potential pathogenic roles. Similarities are drawn with anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis, particularly regarding disease specificity and minimal pathogenic impact of antigen binding. In addition, differences between ANA and ACPA in therapeutic responses and Fab glycosylation patterns are reviewed. While ACA and ATA are valuable for disease stratification and monitoring activity, understanding their origins and the associated B cell responses is critical for advancing therapeutic strategies for SSc.
Collapse
Affiliation(s)
| | - Tom W. J. Huizinga
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Cynthia M. Fehres
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Melo-Braga MN, Carvalho MB, Ferreira MCE, Lavinder J, Abbasi A, Palmisano G, Thaysen-Andersen M, Sajadi MM, Ippolito GC, Felicori LF. Unveiling the multifaceted landscape of N-glycosylation in antibody variable domains: Insights and implications. Int J Biol Macromol 2024; 257:128362. [PMID: 38029898 PMCID: PMC11003471 DOI: 10.1016/j.ijbiomac.2023.128362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
N-glycosylation at the antibody variable domain has emerged as an important modification influencing antibody function. Despite its significance, information regarding its role and regulation remains limited. To address this gap, we comprehensively explored antibody structures housing N-glycosylation within the Protein Data Bank, yielding fresh insights into this intricate landscape. Our findings revealed that among 208 structures, N-glycosylation was more prevalent in human and mouse antibodies containing IGHV1-8 and IGHV2-2 germline genes, respectively. Moreover, our research highlights the potential for somatic hypermutation to introduce N-glycosylation sites by substituting polar residues (Ser or Thr) in germline variable genes with asparagine. Notably, our study underscores the prevalence of N-glycosylation in antiviral antibodies, especially anti-HIV. Besides antigen-antibody interaction, our findings suggest that N-glycosylation may impact antibody specificity, affinity, and avidity by influencing Fab dimer formation and complementary-determining region orientation. We also identified different glycan structures in HIV and SARS-CoV-2 antibody proteomic datasets, highlighting disparities from the N-glycan structures between PDB antibodies and biological repertoires further highlighting the complexity of N-glycosylation patterns. Our findings significantly enrich our understanding of the N-glycosylation's multifaceted characteristics within the antibody variable domain. Additionally, they underscore the pressing imperative for a more comprehensive characterization of its impact on antibody function.
Collapse
Affiliation(s)
- Marcella Nunes Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Milene Barbosa Carvalho
- Departamento de Ciência da Computação da Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil
| | - Manuela Cristina Emiliano Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jason Lavinder
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Abdolrahim Abbasi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Mohammad M Sajadi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Liza F Felicori
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Victor JR, Nahm DH. Mechanism underlying polyvalent IgG-induced regulatory T cell activation and its clinical application: Anti-idiotypic regulatory T cell theory for immune tolerance. Front Immunol 2023; 14:1242860. [PMID: 38094290 PMCID: PMC10716439 DOI: 10.3389/fimmu.2023.1242860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The regulatory T (Treg) cells constitute a functionally defined subpopulation of T cells that modulate the immune system and maintain immune tolerance through suppression of the development of autoimmune responses to self-antigens and allergic reactions to external antigens. Reduction in the number or function of Treg cells has been suggested as a key immune abnormality underlying the development of autoimmune and allergic diseases. In vitro studies have demonstrated that purified polyvalent immunoglobulin G (IgG) from multiple healthy blood donors can exert immunomodulatory effects on Treg cells. Incubation of polyvalent human IgG with purified CD4+CD25high T cells increased the intracellular expression of interleukin (IL)-10. Intravenous administration of polyvalent human IgG induced significant expansions of CD4+ Foxp3+ Treg cells and clinical improvements in patients with autoimmune diseases. In human clinical trials, intramuscular administration of autologous total IgG significantly increased the percentage of IL-10-producing CD4+ Treg cells in the peripheral blood of healthy subjects and provided significant clinical improvements in patients with atopic dermatitis. These results suggest a clinical usefulness of polyvalent IgG-induced activation of Treg cells in human subjects. This review proposes a new hypothesis for immune tolerance mechanism by integrating the pre-existing "idiotypic network theory" and "Treg cell theory" into an "anti-idiotypic Treg cell theory." Based on this hypothesis, an "active anti-idiotypic therapy" for allergic and autoimmune diseases using autologous polyvalent IgG (as immunizing antigens) is suggested as follows: (1) Intramuscular or subcutaneous administration of autologous polyvalent IgG produces numerous immunogenic peptides derived from idiotypes of autologous IgG through processing of dendritic cells, and these peptides activate anti-idiotypic Treg cells in the same subject. (2) Activated anti-idiotypic Treg cells secrete IL-10 and suppress Th2 cell response to allergens and autoimmune T cell response to self-antigens. (3) These events can induce a long-term clinical improvements in patients with allergic and autoimmune diseases. Further studies are needed to evaluate the detailed molecular mechanism underlying polyvalent IgG-induced Treg cell activation and the clinical usefulness of this immunomodulatory therapy for autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), Sao Paulo, Brazil
| | - Dong-Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
6
|
Tsai CY, Li KJ, Shen CY, Lu CH, Lee HT, Wu TH, Ng YY, Tsao YP, Hsieh SC, Yu CL. Decipher the Immunopathological Mechanisms and Set Up Potential Therapeutic Strategies for Patients with Lupus Nephritis. Int J Mol Sci 2023; 24:10066. [PMID: 37373215 PMCID: PMC10298725 DOI: 10.3390/ijms241210066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Lupus nephritis (LN) is one of the most severe complications in patients with systemic lupus erythematosus (SLE). Traditionally, LN is regarded as an immune complex (IC) deposition disease led by dsDNA-anti-dsDNA-complement interactions in the subendothelial and/or subepithelial basement membrane of glomeruli to cause inflammation. The activated complements in the IC act as chemoattractants to chemically attract both innate and adaptive immune cells to the kidney tissues, causing inflammatory reactions. However, recent investigations have unveiled that not only the infiltrating immune-related cells, but resident kidney cells, including glomerular mesangial cells, podocytes, macrophage-like cells, tubular epithelial cells and endothelial cells, may also actively participate in the inflammatory and immunological reactions in the kidney. Furthermore, the adaptive immune cells that are infiltrated are genetically restricted to autoimmune predilection. The autoantibodies commonly found in SLE, including anti-dsDNA, are cross-reacting with not only a broad spectrum of chromatin substances, but also extracellular matrix components, including α-actinin, annexin II, laminin, collagen III and IV, and heparan sulfate proteoglycan. Besides, the glycosylation on the Fab portion of IgG anti-dsDNA antibodies can also affect the pathogenic properties of the autoantibodies in that α-2,6-sialylation alleviates, whereas fucosylation aggravates their nephritogenic activity. Some of the coexisting autoantibodies, including anti-cardiolipin, anti-C1q, anti-ribosomal P autoantibodies, may also enhance the pathogenic role of anti-dsDNA antibodies. In clinical practice, the identification of useful biomarkers for diagnosing, monitoring, and following up on LN is quite important for its treatments. The development of a more specific therapeutic strategy to target the pathogenic factors of LN is also critical. We will discuss these issues in detail in the present article.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Immunology & Rheumatology, Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Hui-Ting Lee
- MacKay Memorial Hospital & MacKay Medical College, New Taipei City 25245, Taiwan;
| | - Tsai-Hung Wu
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Yee-Yung Ng
- Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan;
| | - Yen-Po Tsao
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| |
Collapse
|
7
|
Differences in IgG autoantibody Fab glycosylation across autoimmune diseases. J Allergy Clin Immunol 2023:S0091-6749(23)00091-X. [PMID: 36716825 DOI: 10.1016/j.jaci.2022.10.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.
Collapse
|
8
|
Koers J, Derksen N, Falkenburg W, Ooijevaar-de Heer P, Nurmohamed MT, Wolbink GJ, Rispens T. Elevated Fab glycosylation of anti-hinge antibodies. Scand J Rheumatol 2023; 52:25-32. [PMID: 34726124 DOI: 10.1080/03009742.2021.1986959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is characterized by systemic inflammation and the presence of anti-citrullinated protein antibodies (ACPAs), which contain remarkably high levels of Fab glycosylation. Anti-hinge antibodies (AHAs) recognize immunoglobulin G (IgG) hinge neoepitopes exposed following cleavage by inflammation-associated proteases, and are also frequently observed in RA, and at higher levels compared to healthy controls (HCs). Here, we investigated AHA specificity and levels of Fab glycosylation as potential immunological markers for RA. METHOD AHA serum levels, specificity, and Fab glycosylation were determined for the IgG1/4-hinge cleaved by matrix metalloproteinase-3, cathepsin G, pepsin, or IdeS, using enzyme-linked immunosorbent assay and lectin affinity chromatography, in patients with early active RA (n = 69) and HCs (n = 97). RESULTS AHA reactivity was detected for all hinge neoepitopes in both RA patients and HCs. Reactivity against CatG-IgG1-F(ab´)2s and pepsin-IgG4-F(ab´)2s was more prevalent in RA. Moreover, all AHA responses showed increased Fab glycosylation levels in both RA patients and HCs. CONCLUSIONS AHA responses are characterized by elevated levels of Fab glycosylation and highly specific neoepitope recognition, not just in RA patients but also in HCs. These results suggest that extensive Fab glycosylation may develop in response to an inflammatory proteolytic microenvironment, but is not restricted to RA.
Collapse
Affiliation(s)
- J Koers
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nil Derksen
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wjj Falkenburg
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - P Ooijevaar-de Heer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M T Nurmohamed
- Department of Rheumatology, Reade, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands.,Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, VU University Medical Center, Amsterdam, The Netherlands
| | - G J Wolbink
- Department of Rheumatology, Reade, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - T Rispens
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Fei Z, Pan B, Pei R, Chen Z, Du X, Cao H, Li C. Efficacy and safety of blood derivatives therapy in Alzheimer's disease: a systematic review and meta-analysis. Syst Rev 2022; 11:256. [PMID: 36443888 PMCID: PMC9706869 DOI: 10.1186/s13643-022-02115-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Blood derivatives therapy is a conventional clinical treatment, while the treatment for Alzheimer's disease (AD) is relatively novel. To provide clinical references for treating AD, this meta-analysis was performed to evaluate the efficacy and safety of blood derivatives therapy on the patients with AD. METHODS A systematic articles search was performed for eligible studies published up to December 6, 2021 through the PubMed, Embase, Cochrane library, ClinicalTrials.gov , Chinese National Knowledge Infrastructure database, and Wanfang databases. The included articles were screened by using rigorous inclusion and exclusion criteria. Study selection and data-extraction were performed by two authors independently. Random effects model or fixed effects model was used. Quality of studies and risk of bias were evaluated according to the Cochrane risk of bias tool. All analyses were conducted using Review Manager 5.4. The study was designed and conducted according to the Preferring Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. RESULTS A total of three plasma administrations (two plasma exchange and one young plasma infusion) and five intravenous immunoglobulin (IVIG) randomized controlled trials with a sample size of 1148 subjects diagnosed with AD were included. There was no significant difference in cognitive improvement and all-cause discontinuation between intervention and placebo groups (RR 1.10, 95% CI 0.79-1.54). And Intervention groups showed not a statistically significant improvement in cognition of included subjects measured by the ADAS-Cog (MD 0.36, 95% CI 0.87-1.59), ADCS-ADL (MD -1.34, 95% CI - 5.01-2.32) and NPI (MD 2.20, 95% CI 0.07-4.32) score compared to the control groups. IVIG is well tolerated for AD patients even under the maximum dose (0.4 g/kg), but it is inferior to placebo in Neuropsychiatric Inventory scale in AD patients (MD 2.19, 95% CI 0.02-4.37). CONCLUSIONS The benefits of blood derivatives therapy for AD are limited. It is necessary to perform well-designed randomized controlled trials with large sample sizes focusing on the appropriate blood derivatives for the specific AD sub-populations in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021233886.
Collapse
Affiliation(s)
- Zhangcheng Fei
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Bo Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Renjun Pei
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Zhongsheng Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China.
| |
Collapse
|
10
|
Liou LB, Wang TY, Liu IJ, Wu HC, Ke PY, Fang YF, Chen YF. α-2,6-sialic acid/IgG anti-dsDNA ratios correlate with human lupus disease activity and possible mechanisms: A pilot study. Lupus 2022; 31:927-938. [DOI: 10.1177/09612033221099766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To study the association of α2,6-sialic acid (SIA) content in serum IgG anti-dsDNA with human systemic lupus erythematosus disease activity index (SLEDAI) and the effect of sialylated and desialylated (deSIA) IgG anti-dsDNA on lupus B cells. Methods Blood from lupus patients was collected to determine the ratio of SIA in isolated IgG anti-dsDNA over serum IgG anti-dsDNA (SIA/IgG anti-dsDNA) ratios, which were plotted against SLEDAI using a receiver-operating-characteristics curve. Lupus B cells were cultured in vitro with chimeric sialylated IgG anti-dsDNA and its deSIA form. Culture supernatants were assayed for anti-inflammatory IL-10 and SIA/IgG anti-dsDNA ratios, which were compared among different pre-treatment groups using t-tests. Results The area-under-the-curve (AUC) for anti-dsDNA levels against SLEDAI was 0.791 positively (95% confidence interval [C.I.]: 0.699–0.884) and SIA/IgG anti-dsDNA ratios against SLEDAI yielded an AUC of 0.705 inversely (95% C.I: 0.601–0.809): not significantly different. SIA/IgG anti-dsDNA ratios discriminated significantly between patients without and patients with proteinuria ( p = .046). SIA/IgG anti-dsDNA ratios correlated significantly and positively with serum C3c and C4 levels. Pre-treatment with IgG anti-dsDNA and its immune complexes (dsDNA/IgG anti-dsDNA IC) induced higher IL-10 from lupus B cells than medium pre-treatment (most p < .01 from day 2 to day 5 culture). DeSIA IgG anti-dsDNA IC induced lower IL-10 ( p < .05) and lower SIA/IgG anti-dsDNA ratios ( p < .001) from lupus B cells than medium and dsDNA pre-treatment. Conclusion α2,6-SIA/IgG anti-dsDNA ratios inversely forecasted SLEDAI scores. Possible mechanisms may be due to the different effects of sialylated and deSIA IgG anti-dsDNA on lupus B cells in terms of IL-10 secretion and SIA/IgG anti-dsDNA ratios.
Collapse
Affiliation(s)
- Lieh-bang Liou
- Division of Rheumatology, Allergy and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-yi Wang
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Fan Fang
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yen-Fu Chen
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
11
|
Pernin V, Bec N, Beyze A, Bourgeois A, Szwarc I, Champion C, Chauvin A, Rene C, Mourad G, Merville P, Visentin J, Perrochia H, Couzi L, Larroque C, Le Quintrec M. IgG3 donor-specific antibodies with a proinflammatory glycosylation profile may be associated with the risk of antibody-mediated rejection after kidney transplantation. Am J Transplant 2022; 22:865-875. [PMID: 34863025 DOI: 10.1111/ajt.16904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/25/2023]
Abstract
The pathogenicity of de novo donor-specific antibodies (dnDSA) varies according to their characteristics. While their MFI, complement-fixing ability, and IgG3 subclass are associated with ABMR occurrence and graft loss, they are not fully predictive of outcomes. We investigated the role of the Fc glycosylation of IgG3 dnDSA in ABMR occurrence using mass spectrometry after isolation by single HLA antigen beads. Between 2014 and 2018, we enrolled 54 patients who developed dnDSA (ABMR- n = 24; ABMR+ n = 30) in two French transplant centers. Fucosylation, galactosylation, GlcNAc bisection, and sialylation of IgG3 dnDSA were compared between ABMR+ and ABMR- patients. IgG3 dnDSA from ABMR+ patients exhibited significantly lower sialylation (7.5% vs. 10.5%, p < .001) and higher GlcNAc bisection (20.6% vs. 17.4%, p = .008). Fucosylation and galactosylation were similar in both groups. DSA glycosylation was not correlated with DSA MFI. In a multivariate analysis, low IgG3 sialylation, high IgG3%, time from transplantation to kidney biopsy, and tacrolimus-free regimen were independent predictive factors of ABMR. We conclude that a proinflammatory glycosylation profile of IgG3 dnDSA is associated with a risk of ABMR occurrence. Further studies are needed to confirm the clinical interest of DSA glycosylation and to clarify its role in determining the risk of ABMR and graft survival.
Collapse
Affiliation(s)
- Vincent Pernin
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Nicole Bec
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Anaïs Beyze
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Alexis Bourgeois
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France
| | - Ilan Szwarc
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France
| | - Coralie Champion
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France
| | - Anthony Chauvin
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Céline Rene
- Department of immunology, CHU Montpellier, Montpellier, France
| | - Georges Mourad
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Pierre Merville
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Pellegrin University Hospital, Bordeaux, France.,ImmunoConcEpT, UMR CNRS 5164, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Jonathan Visentin
- ImmunoConcEpT, UMR CNRS 5164, Bordeaux, France.,Université de Bordeaux, Bordeaux, France.,Department of Immunology and Immunogenetics, Pellegrin University Hospital, Bordeaux, France
| | - Helene Perrochia
- Department of Pathology, Montpellier University Hospital, Montpellier, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Pellegrin University Hospital, Bordeaux, France.,ImmunoConcEpT, UMR CNRS 5164, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | | | - Moglie Le Quintrec
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
12
|
Kissel T, Hafkenscheid L, Wesemael TJ, Tamai M, Kawashiri SY, Kawakami A, El-Gabalawy HS, van Schaardenburg D, Rantapää-Dahlqvist S, Wuhrer M, van der Helm-van Mil AHM, Allaart CF, van der Woude D, Scherer HU, Toes REM, Huizinga TWJ. IgG Anti-Citrullinated Protein Antibody Variable Domain Glycosylation Increases Before the Onset of Rheumatoid Arthritis and Stabilizes Thereafter: A Cross-Sectional Study Encompassing ~1,500 Samples. Arthritis Rheumatol 2022; 74:1147-1158. [PMID: 35188715 PMCID: PMC9544857 DOI: 10.1002/art.42098] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 01/03/2023]
Abstract
Objective The autoimmune response in rheumatoid arthritis (RA) is marked by the presence of anti–citrullinated protein antibodies (ACPAs). A notable feature of IgG ACPA is the abundant expression of N‐linked glycans in the variable domain. However, the presence of ACPA variable domain glycosylation (VDG) across disease stages, and its response to therapy, are poorly described. To understand its dynamics, we investigated the abundance of IgG ACPA VDG in 1,498 samples from individuals in different clinical stages. Methods Using liquid chromatography, we analyzed IgG ACPA VDG profiles in 7 different cohorts from Japan, Canada, The Netherlands, and Sweden. We assessed 106 healthy individuals, 228 individuals with presymptomatic RA, 277 individuals with arthralgia, 307 patients with new‐onset/early RA, and 117 RA patients after prespecified treatment regimens. Additionally, we measured VDG in 234 samples from patients with RA who did or did not achieve long‐term drug‐free remission (DFR) during up to 16 years follow‐up. Results IgG ACPA VDG significantly increased (P < 0.0001) toward disease onset and was associated with ACPA levels and epitope spreading prior to diagnosis. A slight increase in VDG was observed in patients with established RA, with a moderate influence of treatment (P = 0.007). In patients in whom DFR was later achieved, IgG ACPA VDG was already reduced at the time of RA onset. Conclusion The abundance of IgG ACPA VDG increases toward RA onset and correlates with maturation of the ACPA response. While IgG ACPA VDG levels are fairly stable in established disease, a lower degree of VDG at RA onset correlates with DFR. Although the underlying biologic mechanisms remain elusive, our data support the concept that VDG relates to an expansion of the ACPA response in the pre‐disease phase and contributes to disease development.
Collapse
Affiliation(s)
- Theresa Kissel
- Leiden University Medical Center, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Leiden University Medical Center, Leiden, The Netherlands, and Technical University of Denmark, Lyngby, Denmark
| | | | - Mami Tamai
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-Ya Kawashiri
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Dirkjan van Schaardenburg
- Amsterdam Rheumatology and Immunology Center and Amsterdam Academic Medical Center, Amsterdam, The Netherlands
| | | | - Manfred Wuhrer
- Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Hans U Scherer
- Leiden University Medical Center, Leiden, The Netherlands
| | - Rene E M Toes
- Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
13
|
Edwards E, Livanos M, Krueger A, Dell A, Haslam SM, Mark Smales C, Bracewell DG. Strategies to Control Therapeutic Antibody Glycosylation during Bioprocessing: Synthesis and Separation. Biotechnol Bioeng 2022; 119:1343-1358. [PMID: 35182428 PMCID: PMC9310845 DOI: 10.1002/bit.28066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Glycosylation can be a critical quality attribute in biologic manufacturing. In particular, it has implications on the half‐life, immunogenicity, and pharmacokinetics of therapeutic monoclonal antibodies (mAbs), and must be closely monitored throughout drug development and manufacturing. To address this, advances have been made primarily in upstream processing, including mammalian cell line engineering, to yield more predictably glycosylated mAbs and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation. A more robust approach would be a conjoined upstream–downstream processing strategy. This could include implementing novel downstream technologies, such as the use of Fc γ‐based affinity ligands for the separation of mAb glycovariants. This review highlights the importance of controlling therapeutic antibody glycosylation patterns, the challenges faced in terms of glycosylation during mAb biosimilar development, current efforts both upstream and downstream to control glycosylation and their limitations, and the need for research in the downstream space to establish holistic and consistent manufacturing processes for the production of antibody therapies.
Collapse
Affiliation(s)
- Elizabeth Edwards
- Department of Biochemical Engineering, University College London, London, UK
| | - Maria Livanos
- Department of Biochemical Engineering, University College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - C Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, UK.,National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
14
|
Kissel T, van Wesemael TJ, Lundquist A, Kokkonen H, Kawakami A, Tamai M, van Schaardenburg D, Wuhrer M, Huizinga TW, Scherer HU, van der Woude D, Rantapää-Dahlqvist S, Toes REM. Genetic predisposition (HLA-SE) is associated with ACPA-IgG variable domain glycosylation in the predisease phase of RA. Ann Rheum Dis 2022; 81:141-143. [PMID: 34385139 DOI: 10.1136/annrheumdis-2021-220841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/29/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tineke J van Wesemael
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Heidi Kokkonen
- Department of Public Health and Clinical Medicine/Rheumatology, Umea University, Umea, Sweden
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mami Tamai
- Department of Immunology and Rheumatology Graduate School of Biomedical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Dirkjan van Schaardenburg
- Department of Rheumatology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
- Department of Rheumatology, Reade, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Wj Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Zhou X, Ahn DU, Xia M, Zeng Q, Li X, Cai Z. Fab Fragment of Immunoglobulin Y Modulates NF-κB and MAPK Signaling through TLR4 and αVβ3 Integrin and Inhibits the Inflammatory Effect on R264.7 Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8747-8757. [PMID: 34337939 DOI: 10.1021/acs.jafc.1c03330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-purity Fab fragment and immunoglobulin Y (IgY) were prepared to evaluate their anti-inflammatory activity in the lipopolysaccharide (LPS)-induced Raw 264.7 macrophage system. Compared with IgY, the Fab fragment possessed a greater potency in inhibiting the inflammation by nitric oxide (NO)/inducible nitric oxide synthase (iNOS) and prostaglandin-E2 (PGE2)/cyclooxygenase-2 (COX-2) pathways. The Fab fragment attenuated the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) to 38.07 ± 1.86-48.39 ± 11.33 pg/mL (63.1-71.0% inhibition), 31.59 ± 3.91-38.08 ± 4.44 pg/mL (72.4-77.1% inhibition), and 20.62 ± 0.46-21.91 ± 0.65 pg/mL (50-53% inhibition), respectively. Additionally, the Fab fragment significantly inhibited the translocation of nuclear transcription factor-κB (NF-κB) p65 and the phosphorylation of mitogen-activated protein kinase (MAPK) proteins, including ERK1/2 (41.5/33.2%), JNK1/2 (44.2/39.6%), and p38 (42.2%). The Fab fragment could be internalized into cells, and the pretreatment of RAW 264.7 macrophages with the Fab fragment reduced the mRNA expression of the Toll-like receptor (TLR4, 32.7-44.4% inhibition) and αVβ3 integrin (76.1% inhibition). In conclusion, Fab fragments regulated the TLR4 and αVβ3 integrin-mediated inflammatory processes by blocking the NF-κB and MAPKs pathways in the LPS-induced RAW 264.7 macrophage system.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| | - Minquan Xia
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zeng
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomeng Li
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Li D, Lou Y, Zhang Y, Liu S, Li J, Tao J. Sialylated immunoglobulin G: a promising diagnostic and therapeutic strategy for autoimmune diseases. Am J Cancer Res 2021; 11:5430-5446. [PMID: 33859756 PMCID: PMC8039950 DOI: 10.7150/thno.53961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Human immunoglobulin G (IgG), especially autoantibodies, has major implications for the diagnosis and management of a wide range of autoimmune diseases. However, some healthy individuals also have autoantibodies, while a portion of patients with autoimmune diseases test negative for serologic autoantibodies. Recent advances in glycomics have shown that IgG Fc N-glycosylations are more reliable diagnostic and monitoring biomarkers than total IgG autoantibodies in a wide variety of autoimmune diseases. Furthermore, these N-glycosylations of IgG Fc, particularly sialylation, have been reported to exert significant anti-inflammatory effects by upregulating inhibitory FcγRIIb on effector macrophages and reducing the affinity of IgG for either complement protein or activating Fc gamma receptors. Therefore, sialylated IgG is a potential therapeutic strategy for attenuating pathogenic autoimmunity. IgG sialylation-based therapies for autoimmune diseases generated through genetic, metabolic or chemoenzymatic modifications have made some advances in both preclinical studies and clinical trials.
Collapse
|
17
|
Abstract
Changes in immunoglobulin G (IgG) glycosylation pattern have been observed in a vast array of auto- and alloimmune, infectious, cardiometabolic, malignant, and other diseases. This chapter contains an updated catalog of over 140 studies within which IgG glycosylation analysis was performed in a disease setting. Since the composition of IgG glycans is known to modulate its effector functions, it is suggested that a changed IgG glycosylation pattern in patients might be involved in disease development and progression, representing a predisposition and/or a functional effector in disease pathology. In contrast to the glycopattern of bulk serum IgG, which likely relates to the systemic inflammatory background, the glycosylation profile of antigen-specific IgG probably plays a direct role in disease pathology in several infectious and allo- and autoimmune antibody-dependent diseases. Depending on the specifics of any given disease, IgG glycosylation read-out might therefore in the future be developed into a useful clinical biomarker or a supplementary to currently used biomarkers.
Collapse
Affiliation(s)
- Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
18
|
Markina YV, Gerasimova EV, Markin AM, Glanz VY, Wu WK, Sobenin IA, Orekhov AN. Sialylated Immunoglobulins for the Treatment of Immuno-Inflammatory Diseases. Int J Mol Sci 2020; 21:ijms21155472. [PMID: 32751832 PMCID: PMC7432344 DOI: 10.3390/ijms21155472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulins are the potent effector proteins of the humoral immune response. In the course of evolution, immunoglobulins have formed extremely diverse types of molecular structures with antigen-recognizing, antigen-binding, and effector functions embedded in a single molecule. Polysaccharide moiety of immunoglobulins plays the essential role in immunoglobulin functioning. There is growing evidence that the carbohydrate composition of immunoglobulin-linked glycans, and especially their terminal sialic acid residues, provide a key effect on the effector functions of immunoglobulins. Possibly, sialylation of Fc glycan is a common mechanism of IgG anti-inflammatory action in vivo. Thus, the post-translational modification (glycosylation) of immunoglobulins opens up significant possibilities in the diagnosis of both immunological and inflammatory disorders and in their therapies. This review is focused on the analysis of glycosylation of immunoglobulins, which can be a promising addition to improve existing strategies for the diagnosis and treatment of various immuno-inflammatory diseases.
Collapse
Affiliation(s)
- Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-905-336-67-76
| | - Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, 34A Kashirskoe Shosse, 115522 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
| | - Victor Y. Glanz
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan;
| | - Igor A. Sobenin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia; (A.M.M.); (V.Y.G.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
| |
Collapse
|
19
|
Liu X, Cao W, Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front Immunol 2020; 11:1660. [PMID: 32760407 PMCID: PMC7372093 DOI: 10.3389/fimmu.2020.01660] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. So far, the optimal treatment strategy for severe COVID-19 remains unknown. Intravenous immunoglobulin (IVIg) is a blood product pooled from healthy donors with high concentrations of immunoglobulin G (IgG) and has been used in patients with autoimmune and inflammatory diseases for more than 30 years. In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Lewis BJ, Branch DR. Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Fc Receptor-Targeting Biologics. Pharmacology 2020; 105:618-629. [DOI: 10.1159/000508239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation, swelling, and pain in the joints and involves systemic complications. Mouse models of RA have been extensively used to model the pathogenesis of RA and to develop effective therapies. Although many components of the immune system have been studied in these models, the role of crystallizable fragment (Fc) gamma receptors (FcγRs) in RA has been sorely neglected. The aim of this review was to introduce the different mouse models of RA and to describe the different drug development strategies that have been tested in these models to target FcγR function, with the focus being on drugs that have been made from the Fc of immunoglobulin G (IgG). <b><i>Summary:</i></b> Evidence suggests that FcγRs play a major role in immune complex-induced inflammation in autoimmune diseases, such as RA. However, there is limited knowledge on the importance of FcγRs in the human disease even though there has been extensive work in mouse models of RA. Numerous mouse models of RA are available, with each model depicting certain aspects of the disease. Induced models of RA have nonspecific immune activation with cartilage-directed autoimmunity, whereas spontaneous models of RA develop without immunization, which results in a more chronic form of arthritis. These models have been used to test FcγR-targeting monoclonal antibodies, intravenous immunoglobulin (IVIg), subcutaneously administered IVIg, and recombinant Fcs for their ability to interact with and modify FcγR function. Recombinant Fcs avidly bind FcγRs and exhibit enhanced therapeutic efficacy in mouse models of RA. <b><i>Key Message:</i></b> The therapeutic utility of targeting FcγRs with recombinant Fcs is great and should be explored in human clinical trials for autoimmune diseases, such as RA.
Collapse
|
21
|
Victor JR. Do different IgG repertoires play a role in B- and T-cell functional modulation during ontogeny? The "hooks without bait" theory. Immunol Cell Biol 2020; 98:540-548. [PMID: 32342552 DOI: 10.1111/imcb.12335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
The mechanisms by which immunoglobulin (Ig)G can modulate immunity have been investigated over the past few decades. In the past three years, some studies have demonstrated that IgG can play a pivotal role in mediating complex interactions that result in functional lymphocyte modulation during maturation in self or offspring primary lymphoid organs. This effect appears to be dependent on the IgG repertoire in the absence of the influence of antigens and the functionality of diverse cell populations, including B, αβT (CD4 T and CD8 T), invariant natural killer T and γδT cells, in mice and humans. Based on the literature, especially on findings resulting from the therapeutic use of purified IgG (intravenous Ig) and recent pieces of evidence obtained by my group, the "hooks without bait" theory is described here to guide the future development of therapies for specific immune regulation.
Collapse
Affiliation(s)
- Jefferson R Victor
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil
| |
Collapse
|
22
|
Fitzpatrick EA, Wang J, Strome SE. Engineering of Fc Multimers as a Protein Therapy for Autoimmune Disease. Front Immunol 2020; 11:496. [PMID: 32269572 PMCID: PMC7109252 DOI: 10.3389/fimmu.2020.00496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The success of Intravenous Immunoglobulin in treating autoimmune and inflammatory processes such as immune thrombocytopenia purpura and Kawasaki disease has led to renewed interest in developing recombinant molecules capable of recapitulating these therapeutic effects. The anti-inflammatory properties of IVIG are, in part, due to the Fc region of the IgG molecule, which interacts with activating or inhibitory Fcγ receptors (FcγRs), the neonatal Fc Receptor, non-canonical FcRs expressed by immune cells and complement proteins. In most cases, Fc interactions with these cognate receptors are dependent upon avidity—avidity which naturally occurs when polyclonal antibodies recognize unique antigens on a given target. The functional consequences of these avid interactions include antibody dependent cell-mediated cytotoxicity, antibody dependent cell phagocytosis, degranulation, direct killing, and/or complement activation—all of which are associated with long-term immunomodulatory effects. Many of these immunologic effects can be recapitulated using recombinant or non-recombinant approaches to induce Fc multimerization, affording the potential to develop a new class of therapeutics. In this review, we discuss the history of tolerance induction by immune complexes that has led to the therapeutic development of artificial Fc bearing immune aggregates and recombinant Fc multimers. The contribution of structure, aggregation and N-glycosylation to human IgG: FcγR interactions and the functional effect(s) of these interactions are reviewed. Understanding the mechanisms by which Fc multimers induce tolerance and attempts to engineer Fc multimers to target specific FcγRs and/or specific effector functions in autoimmune disorders is explored in detail.
Collapse
Affiliation(s)
- Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Jin Wang
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - S E Strome
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
23
|
Vletter EM, Koning MT, Scherer HU, Veelken H, Toes REM. A Comparison of Immunoglobulin Variable Region N-Linked Glycosylation in Healthy Donors, Autoimmune Disease and Lymphoma. Front Immunol 2020; 11:241. [PMID: 32133009 PMCID: PMC7040075 DOI: 10.3389/fimmu.2020.00241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
N-linked glycans play an important role in immunity. Although the role of N-linked glycans in the Fragment crystallizable (Fc) region of immunoglobulins has been thoroughly described, the function of N-linked glycans present in Ig-variable domains is only just being appreciated. Most of the N-linked glycans harbored by immunoglobulin variable domain are of the complex biantennary type and are found as a result of the presence of N-linked glycosylation that most often have been introduced by somatic hypermutation. Furthermore, these glycans are ubiquitously present on autoantibodies observed in some autoimmune diseases as well as certain B-cell lymphomas. For example, variable domain glycans are abundantly found by anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) as well as by the B-cell receptors of follicular lymphoma (FL). In FL, variable domain glycans are postulated to convey a selective advantage through interaction with lectins and/or microbiota, whereas the contribution of variable domain glycans on autoantibodies is not known. To aid the understanding how these seemingly comparable phenomena contribute to a variety of deranged B-responses in such different diseases this study summarizes the characteristics of ACPA and other auto-antibodies with FL and healthy donor immunoglobulins, to identify the commonalities and differences between variable domain glycans in autoimmune and malignant settings. Our finding indicate intriguing differences in variable domain glycan distribution, frequency and glycan composition in different conditions. These findings underline that variable domain glycosylation is a heterogeneous process that may lead to a number of pathogenic outcomes. Based on the current body of knowledge, we postulate three disease groups with distinct variable domain glycosylation patterns, which might correspond with distinct underlying pathogenic processes.
Collapse
Affiliation(s)
- Esther M Vletter
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruíz L, Salazar J, Hidalgo-Martínez P, Diez H. Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura. UNIVERSITAS MÉDICA 2019. [DOI: 10.11144/javeriana.umed61-1.anti] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos
Collapse
|
25
|
Lectin-Based Method for Deciphering Human Milk IgG Sialylation. Molecules 2019; 24:molecules24203797. [PMID: 31652515 PMCID: PMC6832633 DOI: 10.3390/molecules24203797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
In light of the immunoprotective function of human milk and the incontestable impact of IgG glycosylation on its immune functions, characterization of the sialylation profile of human milk IgG is needed. Lectins as a molecular probe were applied in lectin-IgG-ELISA to analyze the sialylation and galactosylation pattern of skim milk IgG of mothers who delivered at term and prematurely. Well-defined biotinylated lectins were used: Maackia amurensis II (MAA II), Sambucus nigra (SNA), Ricinus communis I (RCA I), and Griffonia simplicifolia II (GSL II) specific to α2,3-Neu5Ac, α2,6-Neu5Ac, Gal(β1,4)GlcNAc, and agalactosylated glycans, respectively. The sialylation pattern of milk IgG differs qualitatively and quantitatively from maternal plasma IgG and is related to lactation stage and perinatal risk factors. Expression of MAA-, SNA-, and GSL-reactive glycotopes on term milk IgG showed a positive correlation with milk maturation from days 1 to 55. Preterm birth was associated with an increase of MAA-reactive and a decrease of RCA-reactive IgG glycotopes. Moreover, higher SNA- and GSL-reactive and lower RCA-reactive glycoform levels of milk IgG were associated with infection of lactating mothers. Application of a specific and simple method, lectin-IgG-ELISA, reveals the sialylation pattern of milk IgG over milk maturation. However, further investigations are needed in this area.
Collapse
|
26
|
Sharma T, Gupta S. Reconstitution of IgG Subclasses following Immunoglobulin Therapy in Adult Primary Hypogammaglobulinemia. Int Arch Allergy Immunol 2019; 180:221-232. [PMID: 31509832 DOI: 10.1159/000502742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/15/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Immunoglobulin (Ig) therapy is highly effective in reducing the frequency and severity of infections. However, a subset of patients does not respond adequately. OBJECTIVE To determine in adult patients with primary hypogammaglobulinemia (a) if failure to reconstitute IgG subclass(es) is associated with inadequate clinical response, (b) whether reconstitution of IgG subclasses differs between routes of Ig administration, (c) which subclasses contribute to low total IgG, and (d) what are the most commonly impaired Streptococcus pneumoniae serotypes. METHODS A retrospective review of the records of patients with primary hypogammaglobulinemia followed up at the Immunology Clinic between 2010 and 2018 was conducted. Demographic, clinical, and laboratory data were collected. RESULTS Seventy-one patients with primary hypogammaglobulinemia were included. All subclasses were reconstituted in 85% of the patients. IgG3 and IgG4 were most commonly not reconstituted. Reconstitution occurred in 85% of the patients on intravenous Ig (IVIG), 81% of the patients on conventional subcutaneous Ig (SCIG), and 100% of the patients on enzyme-facilitated subcutaneous Ig (fSCIG). The annual infection rate was 0.87 with IVIG, 0.88 with conventional SCIG, and 0.6 with fSCIG. IgG subclasses contributing to low total IgG included IgG1 (61%), IgG2 (49%), IgG3 (23%), and IgG4 (28%). In patients with concomitant specific antibody deficiency (n = 47), the most commonly impaired antibody responses were against pneumococcal serotypes 3, 4, 6b, 12f, and 23f. CONCLUSIONS Failure to reconstitute subclasses does not correlate with an inadequate clinical response to immunoglobulin therapy in primary hypogammaglobulinemia. Full reconstitution of IgG subclasses was observed with fSCIG. A smaller panel of pneumococcal antibody responses may be used to define specific antibody deficiency.
Collapse
Affiliation(s)
- Trisha Sharma
- Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, California, USA
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, California, USA,
| |
Collapse
|
27
|
Abstract
The precise mechanisms underlying anti-inflammatory effects of intravenous immunoglobulin (IVIg) therapies remain elusive. The sialylated IgG fraction within IVIg has been shown to be therapeutically more active in mouse models. Functionally, it has been suggested that IgG undergoes conformational changes upon Fc-sialylation which sterically impede binding to conventional FcγRs, but simultaneously allow binding to human DC-SIGN (SIGN-R1 in mice) and also CD23. These latter C-type lectins have been proposed responsible for the immunomodulatory effects in mouse models. However, there is conflicting evidence supporting direct interactions between sialylated human IgG and CD23/DC-SIGN. While cells expressing human CD23 and DC-SIGN in their native configuration bound their natural ligands IgE and ICAM-3, respectively, no IgG binding was observed, regardless of Fc-glycan sialylation in any context (with or without bisection and/or fucosylation) or presence of sialylated Fab-glycans. This was tested by both by FACS and a novel cellular Surface Plasmon Resonance imaging (cSPRi) approach allowing for monitoring low-affinity but high-avidity interactions. In summary, we find no evidence for human CD23 or DC-SIGN being bona fide receptors to human IgG, regardless of IgG Fc- or Fab-glycosylation status. However, these results do not exclude the possibility that either IgG glycosylation or C-type lectins affect IVIg therapies.
Collapse
|
28
|
Lewis BJB, Leontyev D, Neschadim A, Blacquiere M, Branch DR. GM-CSF and IL-4 are not involved in IVIG-mediated amelioration of ITP in mice: a role for IL-11 cannot be ruled out. Clin Exp Immunol 2019; 193:293-301. [PMID: 29704458 DOI: 10.1111/cei.13144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Previously, we have reported that interleukin (IL)-4, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-11, but not IL-33, are up-regulated in two strains of mice with immune thrombocytopenia (ITP) that are responsive to intravenous immunoglobulin (IVIg) treatment. Previously, IL-4 was ruled out in the mechanism of IVIg; however, other publications have suggested this cytokine as a major player in the mechanism of IVIg action. Thus, we sought to further investigate a role for IL-4 and, in addition, GM-CSF and IL-11 in the mechanism of action of IVIg using a murine model of ITP. A passive platelet antibody model was used to generate ITP in IL-4 receptor knock-out (IL-4R-/- ), IL-11 receptor knock-out (IL-11Rα-/- ) and GM-CSF knock-out (Csf2-/- ) mice. We also used a neutralizing antibody to IL-11 and recombinant human IL-11 (rhIL-11) in addition to depleting basophils in vivo to study the effect of IVIg to ameliorate ITP. Our results showed that basophils, IL-4 and GM-CSF were unimportant in both ITP induction and its amelioration by IVIg. The role of IL-11 in these processes was less clear. Even though IL-11Rα-/- mice with ITP responded to IVIg similarly to wild-type (WT) mice, treatment of ITP WT mice with rhIL-11 instead of IVIg showed an increase in platelet numbers and WT mice administered anti-IL-11 showed a significant reduction in the ability of IVIg to ameliorate the ITP. Our findings indicate that neither IL-4, basophils or GM-CSF have roles in IVIg amelioration of ITP; however, a role for IL-11 requires further study.
Collapse
Affiliation(s)
- B J B Lewis
- Department of Laboratory Medicine and Pathobiology, University of Toronto.,Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - D Leontyev
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - A Neschadim
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - M Blacquiere
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - D R Branch
- Department of Laboratory Medicine and Pathobiology, University of Toronto.,Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Lardinois OM, Deterding LJ, Hess JJ, Poulton CJ, Henderson CD, Jennette JC, Nachman PH, Falk RJ. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One 2019; 14:e0213215. [PMID: 30818380 PMCID: PMC6395067 DOI: 10.1371/journal.pone.0213215] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Anti-neutrophil cytoplasmic autoantibodies (ANCA) directed against myeloperoxidase (MPO) and proteinase 3 (PR3) are pathogenic in ANCA-associated vasculitis (AAV). The respective role of IgG Fc and Fab glycosylation in mediating ANCA pathogenicity is incompletely understood. Herein we investigate in detail the changes in Fc and Fab glycosylation in MPO-ANCA and Pr3-ANCA and examine the association of glycosylation aberrancies with disease activity. Methodology Total IgG was isolated from serum or plasma of a cohort of 30 patients with AAV (14 MPO-ANCA; 16 PR3-ANCA), and 19 healthy control subjects. Anti-MPO specific IgG was affinity-purified from plasma of an additional cohort of 18 MPO-ANCA patients undergoing plasmapheresis. We used lectin binding assays, liquid chromatography, and mass spectrometry-based methods to analyze Fc and Fab glycosylation, the degree of sialylation of Fc and Fab fragments and to determine the exact localization of N-glycans on Fc and Fab fragments. Principal findings IgG1 Fc glycosylation of total IgG was significantly reduced in patients with active AAV compared to controls. Clinical remission was associated with complete glycan normalization for PR3-ANCA patients but not for MPO-ANCA patients. Fc-glycosylation of anti-MPO specific IgG was similar to total IgG purified from plasma. A major fraction of anti-MPO specific IgG harbor extensive glycosylation within the variable domain on the Fab portion. Conclusions/Significance Significant differences exist between MPO and PR3-ANCA regarding the changes in amounts and types of glycans on Fc fragment and the association with disease activity. These differences may contribute to significant clinical difference in the disease course observed between the two diseases.
Collapse
Affiliation(s)
- Olivier M. Lardinois
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Leesa J. Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Jacob J. Hess
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline J. Poulton
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Candace D. Henderson
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Charles Jennette
- Department of Pathology and Laboratory of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick H. Nachman
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ronald J. Falk
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
30
|
The enzymatic removal of immunoglobulin variable domain glycans by different glycosidases. J Immunol Methods 2019; 467:58-62. [PMID: 30742813 DOI: 10.1016/j.jim.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/17/2023]
Abstract
About 15% of immunoglobulin G (IgG) molecules contain glycans linked to the antigen-binding fragments (Fab arms) in addition to the glycans linked to the crystallizable fragment (Fc tail) of all IgGs. Fab glycosylation appears to be an important feature of antibodies, for example by influencing antigen binding and antibody stability. The reliable generation of antibodies that either have or lack Fab glycans would be very helpful to study the role of Fab glycans in more detail. In this study, we set out to remove Fab glycans by treating polyclonal and monoclonal human IgG antibodies with two commonly used glycosidases and an improved version of one of the two (Endo F3, PNGase F, and Rapid™ PNGase F). Fc glycans can be removed using PNGase F and Rapid™ PNGase F, but not with Endo F3. For most antibody clones, Endo F3 partially cleaved off the Fab glycans. In contrast, PNGase F left the Fab glycans of most clones unaffected, but could remove glycans of some clones. Rapid™ PNGase F showed a higher glycosidase efficacy than PNGase F, and more clones could be deglycosylated using this enzyme. In summary, not all Fab glycans can be cleaved off by the tested glycosidases (under non-denaturing conditions), suggesting that Fab glycans are exposed to different degrees.
Collapse
|
31
|
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 2019; 29:491-498. [PMID: 28666326 DOI: 10.1093/intimm/dxx039] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a pooled preparation of normal IgG obtained from several thousand healthy donors. It is widely used in the immunotherapy of a large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG are complex and, as discussed in this review, experimental and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to several mutually non-exclusive mechanisms affecting soluble mediators as well as cellular components of the immune system. These mechanisms depend on Fc and/or F(ab')2 fragments. A better understanding of the effector functions of IVIG should help in identification of biomarkers of responses to IVIG in autoimmune patients.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Department of Pediatric Rheumatology, National Referral Centre of Auto-inflammatory Diseases, CHU de Bicêtre, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
32
|
Ma L, Zhang W, Hou M, Li D, Liu F, Du X, Jiang P, Wang Z, Zhang R, Cao H, Ye S, Li C. Analysis of sialic acid levels in Chinese intravenous immunoglobulins by high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 2018; 33:e4452. [PMID: 30513136 DOI: 10.1002/bmc.4452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
Intravenous immunoglobulin (IVIg) is increasingly used for the treatment of autoimmune and systemic inflammatory diseases with both licensed and off-label indications. Recent studies indicated that IVIg-mediated immunomodulation and anti-inflammation are closely associated with the IgG sialylation, especially with IgG crystallizable fragment (Fc) sialylation. The sialic acid levels of the IgG molecules and Fc fragments in 12 IVIg preparations from six Chinese manufacturers were evaluated. The Fc fragments were derived from the papain digestion of IVIg, followed by affinity and size exclusion chromatography. The sialic acid levels in Fc fragments and IVIg preparations were determined by high-performance liquid chromatography with fluorescence detection, after the sialic acid residues were released from the proteins. The results showed that the sialic acid levels in Chinese IVIg preparations ranged from 0.875 (mol/mol IgG) to 1.085 (mol/mol IgG), and the sialic acid levels in Fc fragments were from 0.321 (mol/mol Fc) to 0.361 (mol/mol Fc). Furthermore, the sialic acid levels of IVIg preparations and Fc fragments from different Chinese manufactures were significantly different. These findings will contribute to an increased understanding of Chinese IVIg preparations and the relationship between the sialic acid levels in IVIg preparations and their clinical efficacy in future clinical studies.
Collapse
Affiliation(s)
- Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wei Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Mingxia Hou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Dong Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
33
|
Kempers AC, Hafkenscheid L, Dorjée AL, Moutousidou E, van de Bovenkamp FS, Rispens T, Trouw LA, van Oosterhout M, Huizinga TW, Toes R, Scherer HU. The extensive glycosylation of the ACPA variable domain observed for ACPA-IgG is absent from ACPA-IgM. Ann Rheum Dis 2018; 77:1087-1088. [PMID: 28747327 DOI: 10.1136/annrheumdis-2017-211533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/10/2017] [Accepted: 07/01/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Ayla C Kempers
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie L Dorjée
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eleni Moutousidou
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fleur S van de Bovenkamp
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom Wj Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
van de Bovenkamp FS, Derksen NIL, van Breemen MJ, de Taeye SW, Ooijevaar-de Heer P, Sanders RW, Rispens T. Variable Domain N-Linked Glycans Acquired During Antigen-Specific Immune Responses Can Contribute to Immunoglobulin G Antibody Stability. Front Immunol 2018; 9:740. [PMID: 29706962 PMCID: PMC5906590 DOI: 10.3389/fimmu.2018.00740] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/26/2018] [Indexed: 11/23/2022] Open
Abstract
Immunoglobulin G (IgG) can contain N-linked glycans in the variable domains, the so-called Fab glycans, in addition to the Fc glycans in the CH2 domains. These Fab glycans are acquired following introduction of N-glycosylation sites during somatic hypermutation and contribute to antibody diversification. We investigated whether Fab glycans may—in addition to affecting antigen binding—contribute to antibody stability. By analyzing thermal unfolding profiles of antibodies with or without Fab glycans, we demonstrate that introduction of Fab glycans can improve antibody stability. Strikingly, removal of Fab glycans naturally acquired during antigen-specific immune responses can deteriorate antibody stability, suggesting in vivo selection of stable, glycosylated antibodies. Collectively, our data show that variable domain N-linked glycans acquired during somatic hypermutation can contribute to IgG antibody stability. These findings indicate that introducing Fab glycans may represent a mechanism to improve therapeutic/diagnostic antibody stability.
Collapse
Affiliation(s)
- Fleur S van de Bovenkamp
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Ninotska I L Derksen
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Mariëlle J van Breemen
- Academic Medical Centre, Department of Medical Microbiology, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Academic Medical Centre, Department of Medical Microbiology, University of Amsterdam, Amsterdam, Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Academic Medical Centre, Department of Medical Microbiology, University of Amsterdam, Amsterdam, Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, United States
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
35
|
Wang Q, Chung CY, Chough S, Betenbaugh MJ. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 2018; 115:1378-1393. [DOI: 10.1002/bit.26567] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Sandra Chough
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
36
|
Finke JM, Banks WA. Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer's disease immunotherapy. Hum Antibodies 2018; 25:131-146. [PMID: 28035915 DOI: 10.3233/hab-160306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review serves to highlight approaches that may improve the access of antibody drugs to regions of the brain affected by Alzheimer's Disease. While previous antibody drugs have been unsuccessful in treating Alzheimer's disease, recent work demonstrates that Alzheimer's pathology can be modified if these drugs can penetrate the brain parenchyma with greater efficacy. Research in antibody blood-brain barrier drug delivery predominantly follows one of three distinct directions: (1) enhancing influx with reduced antibody size, addition of Trojan horse modules, or blood-brain barrier disruption; (2) modulating trancytotic equilibrium and/or kinetics of the neonatal Fc Receptor; and (3) manipulation of antibody glycan carbohydrate composition. In addition to these topics, recent studies are discussed that reveal a role of glycan sialic acid in suppressing antibody efflux from the brain.
Collapse
Affiliation(s)
- John M Finke
- Division of Sciences and Mathematics, Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Geriatric Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
37
|
Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc Natl Acad Sci U S A 2018; 115:1901-1906. [PMID: 29432186 DOI: 10.1073/pnas.1711720115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N-linked glycans, a process conditional on the introduction of consensus amino acid motifs (N-glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.
Collapse
|
38
|
Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact. Biotechnol J 2017; 13. [PMID: 28862393 DOI: 10.1002/biot.201700476] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Indexed: 02/04/2023]
Abstract
Antibodies are typical examples of biopharmaceuticals which are composed of numerous, almost infinite numbers of potential molecular entities called variants or isoforms, which constitute the microheterogeneity of these molecules. These variants are generated during biosynthesis by so-called posttranslational modification, during purification or upon storage. The variants differ in biological properties such as pharmacodynamic properties, for example, Antibody Dependent Cellular Cytotoxicity, complement activation, and pharmacokinetic properties, for example, serum half-life and safety. Recent progress in analytical technologies such as various modes of liquid chromatography and mass spectrometry has helped to elucidate the structure of a lot of these variants and their biological properties. In this review the most important modifications (glycosylation, terminal modifications, amino acid side chain modifications, glycation, disulfide bond variants and aggregation) are reviewed and an attempt is made to give an overview on the biological properties, for which the reports are often contradictory. Even though there is a deep understanding of cellular and molecular mechanism of antibody modification and their consequences, the clinical proof of the effects observed in vitro and in vivo is still not fully rendered. For some modifications such as core-fucosylation of the N-glycan and aggregation the effects are clear and should be monitored, but with others such as C-terminal lysine clipping the reports are contradictory. As a consequence it seems too early to tell if any modification can be safely ignored.
Collapse
Affiliation(s)
- Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | | | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Nico Lingg
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
39
|
Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol 2017; 13:621-630. [DOI: 10.1038/nrrheum.2017.146] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Corbí AL, Sánchez-Ramón S, Domínguez-Soto A. The potential of intravenous immunoglobulins for cancer therapy: a road that is worth taking? Immunotherapy 2017; 8:601-12. [PMID: 27140412 DOI: 10.2217/imt.16.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Much has been learned recently about the role of immunoglobulins as effector molecules of the adaptive immunity and as active elements in the maintenance of immune homeostasis. The increasing number of pathologies where intravenous immunoglobulins (IVIg) display a beneficial action illustrates their therapeutic relevance. Considering recent findings on the ability of IVIg to modulate macrophage polarization, herein we review evidences on the antitumoral activity of IVIg. Fragmentary and nonconclusive, available evidences are just suggestive of the potential of IVIg in antitumoral therapy, but encourage for the generation of additional evidences through well-designed clinical trials, and for additional studies to address the molecular effects of IVIg as a means to avoid the extrapolation of data gathered from animal models.
Collapse
Affiliation(s)
- Angel L Corbí
- Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. 28040 Madrid, SPAIN
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology & IdISSC, Hospital Clínico San Carlos, Prof Martín Lagos, S/N, 28040 Madrid, Spain; and, Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| | | |
Collapse
|
41
|
Abstract
BACKGROUND Drug delivery to the brain is a major roadblock to treatment of Alzheimer's disease. Recent results of the PRIME study indicate that increasing brain penetration of antibody drugs improves Alzheimer's treatment outcomes. New approaches are needed to better accomplish this goal. Based on prior evidence, the hypothesis that glycan modification alters antibody blood-brain barrier permeability was tested here. METHODS The blood-brain barrier permeability coefficient Pe of different glycosylated states of anti-amyloid IgG was measured using in vitro models of brain microvascular endothelial cells. Monoclonal antibodies 4G8, with sialic acid, and 6E10, lacking sialic acid, were studied. The amount of sialic acid was determined using quantitative and semi-quantitative surface plasmon resonance methods. RESULTS Influx of IgG was not saturable and was largely insensitive to IgG species and glycosylation state. By contrast, efflux of 4G8 efflux was significantly lower than both albumin controls and 6E10. Removal of α2,6-linked sialic acid group present on 12% of 4G8 completely restored efflux to that of 6E10 but increasing the α2,6-sialylated fraction to 15% resulted in no change. Removal of the Fc glycan from 4G8 partially restored efflux. Alternate sialic acid groups with α2,3 and α2,8 linkages, nor on the Fc glycan, were not detected at significant levels on either 4G8 or 6E10. CONCLUSIONS These results support a model in which surface-sialylated 4G8 inhibits its own efflux and that of asialylated 4G8. GENERAL SIGNIFICANCE Glycan modification has the potential to increase antibody drug penetration into the brain through efflux inhibition.
Collapse
|
42
|
Schneider C, Wicki S, Graeter S, Timcheva TM, Keller CW, Quast I, Leontyev D, Djoumerska-Alexieva IK, Käsermann F, Jakob SM, Dimitrova PA, Branch DR, Cummings RD, Lünemann JD, Kaufmann T, Simon HU, von Gunten S. IVIG regulates the survival of human but not mouse neutrophils. Sci Rep 2017; 7:1296. [PMID: 28465620 PMCID: PMC5430961 DOI: 10.1038/s41598-017-01404-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) are purified IgG preparations made from the pooled plasma from thousands of healthy donors and are being tested in preclinical mouse models. Inherent challenges, however, are the pluripotency of IVIG and its xenogeneicity in animals. IVIG can alter the viability of human neutrophils via agonistic antibodies to Fas and Siglec-9. In this study, we compared the effects of IVIG on human and mouse neutrophils using different death assays. Different commercial IVIG preparations similarly induced cytokine-dependent death in human neutrophils, whereas they had no effects on the survival of either peripheral blood or bone marrow neutrophils from C57BL/6 or BALB/c mice. F(ab’)2 but not Fc fragments of IVIG induced death of human neutrophils, whereas neither of these IVIG fragments, nor agonistic monoclonal antibodies to human Fas or Siglec-9 affected the viability of mouse neutrophils. Pooled mouse IgG, which exhibited a different immunoprofile compared to IVIG, also had no effect on mouse cells. Together, these observations demonstrate that effects of IVIG on neutrophil survival are not adequately reflected in current mouse models, despite the key role of these cells in human inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
| | - Simone Wicki
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stefanie Graeter
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Isaak Quast
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Danila Leontyev
- Department of Medicine, University of Toronto and Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Iglika K Djoumerska-Alexieva
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Stephan M Jakob
- Department of Intensive Care Medicine, University Hospital Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Petya A Dimitrova
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Donald R Branch
- Department of Medicine, University of Toronto and Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
43
|
Hidden IgG Antibodies to the Tumor-Associated Thomsen-Friedenreich Antigen in Gastric Cancer Patients: Lectin Reactivity, Avidity, and Clinical Relevance. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6097647. [PMID: 28316982 PMCID: PMC5339540 DOI: 10.1155/2017/6097647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
Natural antibodies to the tumor-associated Thomsen-Friedenreich antigen (TF) are related to tumor immunosurveillance and cancer patients' survival. Hidden IgG antibodies (HAbs) to TF, their lectin reactivity, avidity, and clinical relevance were studied. HAbs were present in cancer patients and controls. A decreased level of IgG HAbs was detected in cancer. The HAbs level positively correlated with the sialospecific SNA lectin binding in purified total IgG (tIgG) in donors and cancer patients, indicating that HAbs are higher sialylated. The avidity of anti-TF IgG in tIgG samples was lower in cancer patients (P = 0.025) while no difference in the avidity of free anti-TF IgG was established. A negative correlation between the avidity of anti-TF IgG in tIgG and SNA binding in both groups was observed (P < 0.0001). The HAbs level negatively correlated with the anti-TF IgG avidity in tIgG only in donors (P = 0.003). Changes in the level of HAbs and Abs avidity showed a rather good stage- and gender-dependent diagnostic accuracy. Cancer patients with a lower anti-TF IgG avidity in tIgG showed a benefit in survival. Thus the TF-specific HAbs represent a particular subset of anti-TF IgG that differ from free serum anti-TF IgG in SNA reactivity, avidity, diagnostic potential, and relation to survival.
Collapse
|
44
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
45
|
Abstract
Taking advantage of the "World Apheresis Association/Société Française d'Hémaphérèse" meeting held in Paris in April 2016, this article reviews the current knowledge on the mechanisms of action of intravenous immunoglobulins. Immunoglobulins are a plasma-derived drug, which have been initially used as a replacement therapy for patients with antibody deficiency. Since 1980 they have also been used for their anti-inflammatory and immunomodulating efficacy in auto-immune diseases. Herein, we review the requirements for their production and composition before giving a specific attention to their mechanisms of action including substitution and immunomodulation.
Collapse
Affiliation(s)
- Benjamin Chaigne
- Université Paris Descartes, Faculté de Médecine, Service de Médecine Interne, Centre de référence pour les vascularites nécrosantes et la sclérodermie systémique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France
| | - Luc Mouthon
- Université Paris Descartes, Faculté de Médecine, Service de Médecine Interne, Centre de référence pour les vascularites nécrosantes et la sclérodermie systémique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France.
| |
Collapse
|
46
|
Späth PJ, Schneider C, von Gunten S. Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations. Arch Immunol Ther Exp (Warsz) 2016; 65:215-231. [DOI: 10.1007/s00005-016-0422-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
47
|
Le NPL, Bowden TA, Struwe WB, Crispin M. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1655-68. [PMID: 27105835 PMCID: PMC4922387 DOI: 10.1016/j.bbagen.2016.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022]
Abstract
Human serum IgG contains multiple glycoforms which exhibit a range of binding properties to effector molecules such as cellular Fc receptors. Emerging knowledge of how the Fc glycans contribute to the antibody structure and effector functions has opened new avenues for the exploitation of defined antibody glycoforms in the treatment of diseases. Here, we review the structure and activity of antibody glycoforms and highlight developments in antibody glycoengineering by both the manipulation of the cellular glycosylation machinery and by chemoenzymatic synthesis. We discuss wide ranging applications of antibody glycoengineering in the treatment of cancer, autoimmunity and inflammation. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ngoc Phuong Lan Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
48
|
van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The Emerging Importance of IgG Fab Glycosylation in Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:1435-41. [PMID: 26851295 DOI: 10.4049/jimmunol.1502136] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity.
Collapse
Affiliation(s)
- Fleur S van de Bovenkamp
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, the Netherlands; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, the Netherlands; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| | - Yoann Rombouts
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and Université Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| |
Collapse
|
49
|
Kumar S, Singh J, Kedika R, Mendoza F, Jimenez SA, Blomain ES, DiMarino AJ, Cohen S, Rattan S. Role of muscarinic-3 receptor antibody in systemic sclerosis: correlation with disease duration and effects of IVIG. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1052-60. [PMID: 27173508 PMCID: PMC4935481 DOI: 10.1152/ajpgi.00034.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2016] [Indexed: 01/31/2023]
Abstract
Gastrointestinal dysmotility in systemic sclerosis (SSc) is associated with autoantibodies against muscarinic-3 receptor (M3-R). We investigated the temporal course of the site of action of these autoantibodies at the myenteric neurons (MN) vs. the smooth muscle (SM) M3-R in relation to disease duration, and determined the role of intravenous immunoglobulin (IVIG) in reversing these changes. Immunoglobulins purified from SSc patients (SScIgG) were used to assess their differential binding to MN and SM (from rat colon) employing immunohistochemistry (IHC). Effect of SScIgG on neural and direct muscle contraction was determined by cholinergic nerve stimulation and bethanechol-induced SM contraction. Effects of IVIG and its antigen-binding fragment F(ab')2 on SScIgG binding were studied by enzyme-linked immunosorbent assay (ELISA) of rat colonic longitudinal SM myenteric plexus (LSMMP) lysate and to second extracellular loop peptide of M3-R (M3-RL2). SScIgG from all patients demonstrated significantly higher binding to MN than to SM. With progression of SSc duration, binding at MN and SM increased in a linear fashion with a correlation coefficient of 0.696 and 0.726, respectively (P < 0.05). SScIgG-mediated attenuation of neural and direct SM contraction also increased with disease duration. ELISA analysis revealed that IVIG and F(ab')2 significantly reduced SScIgG binding to LSMMP lysate and M3-RL2. Dysmotility in SSc occurs sequentially, beginning with SScIgG-induced blockage of cholinergic neurotransmission (neuropathy), which progresses to inhibition of acetylcholine action at the SM cell (myopathy). IVIG reverses this cholinergic dysfunction at the neural and myogenic receptors by anti-idiotypic neutralization of SScIgG.
Collapse
Affiliation(s)
- Sumit Kumar
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania;
| | - Jagmohan Singh
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania;
| | - Ramalinga Kedika
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania;
| | - Fabian Mendoza
- 2Division of Rheumatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania;
| | - Sergio A. Jimenez
- 3Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Erik S. Blomain
- 4Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Anthony J. DiMarino
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania;
| | - Sidney Cohen
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania;
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania;
| |
Collapse
|
50
|
Huang T, Chen X, Gu H, Zhao C, Liu X, Yan M, Deng X, Zhang Z, Gu J. Fractionation of Fab glycosylated immunoglobulin G with concanavalin A chromatography unveils new structural properties of the molecule. Oncotarget 2016; 7:31166-76. [PMID: 27145274 PMCID: PMC5058747 DOI: 10.18632/oncotarget.9085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/11/2016] [Indexed: 02/05/2023] Open
Abstract
Concanavalin A (ConA) chromatography has been extensively used to separate asymmetric Immunoglobulin G (IgG), which possesses oligosaccharide attached to one of the two F(ab')2 arms, from symmetric IgG with no glycan attached to Fab fragments. In this study, applying affinity chromatography, silver stain, Western blot and lectin stain techniques, N- linked oligosaccharide attached to Fab fragment was demonstrated to be exposed on the surface of the protein and be accessible by ConA. In contrast, N- linked oligosaccharide attached to asparagine (Asn) 297 of IgG Fc was located in the inside of the natural protein and was inaccessible by ConA. In addition to asymmetric IgG, there are also detectable level of IgG with both F(ab')2 arms glycosylated that has not been reported previously. The discoveries of new basic molecular structure of IgG would have implications in understanding the function and properties of this important immune molecule with clinical applications.
Collapse
Affiliation(s)
- Tao Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xueling Chen
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Huan Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Conghui Zhao
- Department of Oral Pathology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Pathology, Beijing University Health Science Center, Beijing, 100083, China
| | - Xingmu Liu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Meiling Yan
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiaodong Deng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zaiping Zhang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of Pathology, Beijing University Health Science Center, Beijing, 100083, China
| |
Collapse
|