1
|
Zhang Y, Plansinis M, Peak S, Weber E, Wei A, Xu Y, Ross M, Leagjeld A, Wallace DP, Zhang Y. Activation of toll-like receptor 2 promotes the expression of inflammatory mediators and cell proliferation of human polycystic kidney disease cells. Cell Signal 2025; 131:111749. [PMID: 40101851 PMCID: PMC11994280 DOI: 10.1016/j.cellsig.2025.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive enlargement of fluid-filled cysts, leading to a decline in renal function. Toll-like receptors (TLR)-2 and TLR4 are pattern recognition receptors and components of the innate immune response. We found that mRNA levels for TLR2 and TLR4, an adaptor protein MyD88, and the transcription factor NF-κB were elevated in the kidneys of ADPKD patients and PKD mice. There was decreased expression of IκBα, an inhibitory protein sequestering NF-κB in the cytosol, and increased NF-κB nuclear translocation in human ADPKD kidneys compared with normal human kidneys (NHK). Pam3CSK4, a synthetic TLR2 agonist, increased the phosphorylation of IκBα, decreased its total levels, and caused NF-κB nuclear translocation and upregulation of pro-inflammatory mediators in cultured human ADPKD cells. Pam3CSK4 also increased phosphorylated ERK, a mitogen-activated protein kinase, and phosphorylated S6, a downstream target of the mTOR pathway, and accelerated ADPKD cell proliferation. By contrast, Pam3CSK4 did not affect NF-κB or ERK in NHK cells, but rather induced cytotoxicity, suggesting that TLR2 activation's effect was specific to ADPKD cells. Treatment with a TLR4 agonist did not affect NF-κB or ERK signaling in either ADPKD or NHK cells. Inhibition of TGF-β-activated kinase-1 (TAK1) effectively suppressed Pam3CSK4-induced NF-κB and ERK activation and the proliferation of ADPKD cells. These findings suggest that activation of TLR2 increases NF-κB-mediated-inflammatory mediators and ERK-dependent cell proliferation through TAK1 in ADPKD cells. We propose that the TLR2/TAK1 axis is a potential therapeutic target to reduce inflammation and cyst growth in ADPKD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Matthew Plansinis
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Sophia Peak
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Elisabeth Weber
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Aiping Wei
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Yu Xu
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Madelyn Ross
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Abigail Leagjeld
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Darren P Wallace
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yan Zhang
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States.
| |
Collapse
|
2
|
Kanewska A, Lackner I, Friedrich A, Winkelmann M, Rojewski M, Weber B, Preßmar J, Perl M, Schrezenmeier H, Kalbitz M. Immunomodulatory and cardio-protective effects of differentially originated multipotent mesenchymal stroma cells during polymicrobial sepsis in mice. Eur J Trauma Emerg Surg 2025; 51:178. [PMID: 40253667 PMCID: PMC12009780 DOI: 10.1007/s00068-025-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE Sepsis is a life-threatening condition with cardiac complications being an independent predictor of poor outcome. Although their mechanisms have been widely investigated, therapeutic options remain limited. One promising therapeutic tool are mesenchymal stromal cells (MSCs). The aim of this study is to investigate the immunomodulatory effects of human MSCs from two different sources (bone marrow/BMMSC and adipose tissue/ASC) and to evaluate their cardioprotective potential. METHODS 60 adult male C57BL/6 mice were divided into sham, sepsis (cecal ligation puncture (CLP)) and two i.v. treatment groups CLP + human BMMSC and CLP + human ASC with 5 animals in each group. The observation periods were 8, 24 and 72 h. Left ventricular tissue was analyzed histologically, by qPCR (C3ar, C5ar1, Il-1b, Il-6, Il-10, Tlr2, Tlr4, Tnfa, and Nlrp3) and western blot. Cardiac damage markers troponin I and heart fatty acid binding protein (HFABP) were detected in serum by ELISA. RESULTS Troponin I and HFABP were significantly increased in CLP group after 8 h compared to sham. In cardiac tissue the expression of C3ar, C5ar1, Il-1b, Il-6, Il-10, Tlr2, Tlr4, Tnfa and Nlrp3 inflammasome was upregulated up to 24h after CLP compared to sham. After BMMSC treatment, C3ar as well as C5ar, Tlr2 and Il-10 mRNA expression in left ventricle was downregulated compared to CLP, whereas ASC treatment was associated with the downregulation of Il-6 and Nlrp3. CONCLUSIONS CLP-induced polymicrobial sepsis in mice was associated with cardiac damage and increased inflammation in left ventricular tissue. Therapeutic systemic application of human BMMSC and ASC ameliorated damage and inflammation in the heart.
Collapse
Affiliation(s)
- Anna Kanewska
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Ina Lackner
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Anne Friedrich
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martina Winkelmann
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Markus Rojewski
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Birte Weber
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe-University, Frankfurt Am Main, Germany
| | - Jochen Preßmar
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Mario Perl
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
- Military Medical City Hospital (MMCH), Doha, Qatar
| |
Collapse
|
3
|
Qi R, Cheng X, Chen S, Fan J. Extracellular HSP70 facilitated β-glucan induced trained immunity in macrophages to suppress sepsis via TLR2-NF-κB axis. Cytokine 2025; 187:156861. [PMID: 39823994 DOI: 10.1016/j.cyto.2025.156861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Sepsis is a common systemic infectious disease followed by extremely high incidence and mortality with no effective treatment and clinical drugs. As a key mediator involved in infection and immunity, it has been reported that sepsis patients are accompanied by increased heat shock protein 70 (HSP70). Trained immunity is a novel innate immunity approach that can be activated by β-glucan to fight against sepsis. The mechanism of HSP70 activating trained macrophages against sepsis needs further elucidation. Trained immunity and sepsis models were established by β-glucan and LPS individually both in vivo and in vitro. We demonstrated that HSP70 was significantly upregulated in septic mice serum, and HSP70 could protect mice from sepsis by activating β-glucan-trained macrophages as an ideal secondary inducer via TLR2-NF-κB pathway. Additionally, the sepsis resistant effects of HSP70 could be blocked by its antibody. In summary, more than a molecular chaperone to maintain homeostasis, HSP70 could be an important trained immunity inducer to help the body fighting against sepsis, which provided new stimuli for trained immunity and novel therapeutic solutions for sepsis.
Collapse
Affiliation(s)
- Ran Qi
- Department of Clinical Laboratory, The Second Children & Women's Healthcare of Jinan City, Jinan, Shandong, China
| | - Xin Cheng
- Department of Clinical Laboratory, Jinan City People's Hospital, Jinan, Shandong, China
| | - Shan Chen
- Department of Clinical Laboratory, The Second Children & Women's Healthcare of Jinan City, Jinan, Shandong, China
| | - Jinjun Fan
- Department of Clinical Laboratory, The Second Children & Women's Healthcare of Jinan City, Jinan, Shandong, China.
| |
Collapse
|
4
|
Li X, Zhao Y, Zhou H, Hu Y, Chen Y, Guo D. Signaling Pathways (TNF-α-NF-κB, TLR2-TLR4 as well as ROS-MDA) and Cardiac Damages during Cardiac Surgeries (Coronary Stenting, Permanent Pacemaker Implantations, Radiofrequency Ablations). Curr Top Med Chem 2025; 25:196-208. [PMID: 39350416 DOI: 10.2174/0115680266314899240919081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 04/05/2025]
Abstract
INTRODUCTION The mutual activations of multiple signaling pathways are the key factors in the development and progression of myocardial cell injuries. OBJECTIVES This research aimed to compare the different degrees of myocardial injury after coronary stenting, permanent pacemaker implantations, or cardiac radiofrequency ablation and to investigate the effects of the mutual activation of TNF-α/NF-κB, TLR2/TLR4, and ROS/MDA signaling pathways on myocardial injury in elderly patients after coronary stents or permanent pacemakers or radiofrequency ablation. METHODS We determined reactive oxygen species (ROS), malondialdehyde (MDA), toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor- α (TNF-α) and high-sensitive cardiac troponin T (hs-cTnT) as markers of myocardial injury in patients. RESULTS The levels of ROS, MDA, TLR2, TLR4, NF-κB, TNF-α, and hs-cTnT were increased in patients with permanent pacemaker implantations when compared to patients with cardiac radiofrequency ablation (P < 0.01) at 6 months and were further increased in patients with coronary stenting compared to patients with cardiac radiofrequency ablation and permanent pacemaker implantations at 6 months, respectively (P < 0.01). This research confirmed that ROS, MDA, TLR2, TLR4, NF-κB, and TNF-α predicted myocardial injury severity. CONCLUSION Oxidative stress (ROS/MDA signaling pathway) may be linked to immune response (TLR2/TLR4 signaling pathway) and pro-inflammatory response (TNF-α/NF-κB signaling pathway) in myocardial injury, and ROS/MDA signaling may play a dominant role.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| | - Yongjuan Zhao
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| | - Hualan Zhou
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| |
Collapse
|
5
|
Qian YY, Huang FF, Chen SY, Zhang WX, Wang Y, Du PF, Li G, Ding WB, Qian L, Zhan B, Chu L, Jiang DH, Yang XD, Zhou R. Therapeutic effect of recombinant Echinococcus granulosus antigen B subunit 2 protein on sepsis in a mouse model. Parasit Vectors 2024; 17:467. [PMID: 39548530 PMCID: PMC11566433 DOI: 10.1186/s13071-024-06540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis is a potentially fatal systemic inflammatory response syndrome (SIRS) that threatens millions of lives worldwide. Echinococcus granulosus antigen B (EgAgB) is a protein released by the larvae of the tapeworm. This protein has been shown to play an important role in modulating host immune response. In this study we expressed EgAgB as soluble recombinant protein in E. coli (rEgAgB) and explored its protective effect on sepsis. METHODS The sepsis model was established by cecal ligation and puncture (CLP) procedure in BALB/c mice. The therapeutic effect of rEgAgB on sepsis was performed by interperitoneally injecting 5 µg rEgAgB in mice with CLP-induced sepsis and observing the 72 h survival rate after onset of sepsis. The proinflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-6] and regulatory cytokines [IL-10, transforming growth factor beta (TGF-β)] were measured in sera, and the histopathological change was observed in livers, kidneys, and lungs of septic mice treated with rEgAgB compared with untreated mice. The effect of rEgAgB on the macrophage polarization was performed in vitro by incubating rEgAgB with peritoneal macrophages. The levels of TLR2 and MyD88 were measured in these tissues to determine the involvement of TLR-2/MyD88 in the sepsis-induced inflammatory signaling pathway. RESULTS In vivo, we observed that treatment with rEgAgB significantly increased the survival rate of mice with CLP-induced sepsis up to 72 h while all mice without treatment died within the same period. The increased survival was associated with reduced pathological damage in key organs such as liver, lung, and kidneys. It was supported by the reduced proinflammatory cytokine levels and increased regulatory cytokine expression in peripheral blood and key organ tissues. Further study identified that treatment with rEgAgB promoted macrophage polarization from classically activated macrophage (M1) to regulatory M2-like macrophage via inhibiting TLR2/MyD88 signal pathway. CONCLUSIONS The therapeutic effects of rEgAgB on mice with sepsis was observed in a mice model that was associated with reduced inflammatory responses and increased regulatory responses, possibly through inducing polarization of macrophages from proinflammatory M1 to regulatory M2 phenotype through inhibiting TLR2/MyD88 inflammatory pathway.
Collapse
Affiliation(s)
- Ya-Yun Qian
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- First People's Hospital of Changzhou, Changzhou, 213000, China
| | - Fei-Fei Huang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Si-Yu Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214028, China
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei-Xiao Zhang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Peng-Fei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Gen Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Wen-Bo Ding
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Lei Qian
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Dong-Hui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
- Department of Critical Care Medicine, First People's Hospital of Haidong, Haidong, 810600, China.
| | - Xiao-Di Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China.
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
6
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
7
|
Ahmmed R, Hossen MB, Ajadee A, Mahmud S, Ali MA, Mollah MMH, Reza MS, Islam MA, Mollah MNH. Bioinformatics analysis to disclose shared molecular mechanisms between type-2 diabetes and clear-cell renal-cell carcinoma, and therapeutic indications. Sci Rep 2024; 14:19133. [PMID: 39160196 PMCID: PMC11333728 DOI: 10.1038/s41598-024-69302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Type 2 diabetes (T2D) and Clear-cell renal cell carcinoma (ccRCC) are both complicated diseases which incidence rates gradually increasing. Population based studies show that severity of ccRCC might be associated with T2D. However, so far, no researcher yet investigated about the molecular mechanisms of their association. This study explored T2D and ccRCC causing shared key genes (sKGs) from multiple transcriptomics profiles to investigate their common pathogenetic processes and associated drug molecules. We identified 259 shared differentially expressed genes (sDEGs) that can separate both T2D and ccRCC patients from control samples. Local correlation analysis based on the expressions of sDEGs indicated significant association between T2D and ccRCC. Then ten sDEGs (CDC42, SCARB1, GOT2, CXCL8, FN1, IL1B, JUN, TLR2, TLR4, and VIM) were selected as the sKGs through the protein-protein interaction (PPI) network analysis. These sKGs were found significantly associated with different CpG sites of DNA methylation that might be the cause of ccRCC. The sKGs-set enrichment analysis with Gene Ontology (GO) terms and KEGG pathways revealed some crucial shared molecular functions, biological process, cellular components and KEGG pathways that might be associated with development of both T2D and ccRCC. The regulatory network analysis of sKGs identified six post-transcriptional regulators (hsa-mir-93-5p, hsa-mir-203a-3p, hsa-mir-204-5p, hsa-mir-335-5p, hsa-mir-26b-5p, and hsa-mir-1-3p) and five transcriptional regulators (YY1, FOXL1, FOXC1, NR2F1 and GATA2) of sKGs. Finally, sKGs-guided top-ranked three repurposable drug molecules (Digoxin, Imatinib, and Dovitinib) were recommended as the common treatment for both T2D and ccRCC by molecular docking and ADME/T analysis. Therefore, the results of this study may be useful for diagnosis and therapies of ccRCC patients who are also suffering from T2D.
Collapse
Affiliation(s)
- Reaz Ahmmed
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Alvira Ajadee
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sabkat Mahmud
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ahad Ali
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Manir Hossain Mollah
- Department of Physical Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Division of Biomedical Informatics and Genomics, School of Medicine, Tulane University, 1440 Canal St., RM 1621C, New Orleans, LA, 70112, USA
| | - Mohammad Amirul Islam
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
8
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
9
|
Wang S, Jiang D, Huang F, Qian Y, Qi M, Li H, Wang X, Wang Z, Wang K, Wang Y, Du P, Zhan B, Zhou R, Chu L, Yang X. Therapeutic effect of Echinococcus granulosus cyst fluid on bacterial sepsis in mice. Parasit Vectors 2023; 16:450. [PMID: 38066526 PMCID: PMC10709918 DOI: 10.1186/s13071-023-06021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-β) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Shuying Wang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Donghui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feifei Huang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yayun Qian
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Meitao Qi
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Zhi Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Kaigui Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Pengfei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
10
|
Li R, Ren T, Zeng J, Xu H. ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response. Inflammation 2023; 46:688-699. [PMID: 36418761 DOI: 10.1007/s10753-022-01765-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
We investigated the effects and underlying mechanisms of activated leukocyte adhesion molecule (ALCAM) on acute lung injury (ALI) by using lipopolysaccharide (LPS)-induced ALI animal model and LPS-induced inflammation in vitro. In LPS-stimulated mice, ALCAM deficiency relieved lung injury, which manifested as reduced pathological changes in the lung tissue, reduced pulmonary edema, and reduced vascular permeability. Furthermore, we demonstrated that ALCAM deficiency reduced the infiltration of inflammatory cells, including neutrophil, eosinophil, and macrophages; the release of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX2; and reduced the protein level of TLR4/NF-κB pathway (TLR4, MyD88, p-IkBɑ, and p-NF-κB p65). We also demonstrated that ALCAM deficiency reduced the expression of oxidative stress-related proteins (Nrf-2, HO-1, and NQO-1) and endoplasmic reticulum stress-related proteins (CHOP, GRP78, ATF-6, and p-eIF2ɑ). In addition, in LPS-induced inflammation in vitro, ALCAM overexpression promoted inflammatory response, oxidative stress, and ER stress. We established that ALCAM deficiency can suppress the ALI process by reducing inflammatory response, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Tao Ren
- Three Departments of Cardiology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jianqiong Zeng
- Cardiovascular Surgery CCU, Foshan First People's Hospital, Foshan, 528000, Guangdong, People's Republic of China
| | - Hang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
11
|
Wang X, Li D, Qin YY, Gong J, Zou L, Chao W, Gong Y. Toll-like receptor 2 deficiency relieves splenic immunosuppression during sepsis. Immunobiology 2023; 228:152374. [PMID: 36907043 DOI: 10.1016/j.imbio.2023.152374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023]
Abstract
Immunosuppression is associated with long-term mortality during sepsis. However, the underlying mechanism of immunosuppression remains poorly understood. Toll-like receptor 2 (TLR2) contributes to sepsis pathogenesis. We sought to determine the role of TLR2 in immunosuppression in the spleen during polymicrobial sepsis. Using an experimental model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we measured the expression of inflammatory cytokines and chemokines in spleen 6 and 24 h after CLP to evaluate the immune response, and compared the expression of inflammatory cytokines and chemokines, apoptosis, and intracellular ATP production in spleen of wild-type (WT) and TLR2-deficient (TLR2-/-) mice 24 h after CLP. We found that pro-inflammatory cytokines and chemokines, such as TNF-α and IL-1β peaked 6 h after CLP, while IL-10, an anti-inflammatory cytokine, peaked 24 h after CLP in the spleen. At this later time point, TLR2-/- mice presented decreased levels of IL-10 and decreased caspase 3 activation but no significant difference in intracellular ATP production in spleen compared to WT mice. Our data imply that TLR2 has a pronounced effect on sepsis-induced immunosuppression in spleen.
Collapse
Affiliation(s)
- Xiaoli Wang
- Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dan Li
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuan-Yi Qin
- Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaji Gong
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Zou
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Wei Chao
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yu Gong
- Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Sun S, Chen R, Dou X, Dai M, Long J, Wu Y, Lin Y. Immunoregulatory mechanism of acute kidney injury in sepsis: A Narrative Review. Biomed Pharmacother 2023; 159:114202. [PMID: 36621143 DOI: 10.1016/j.biopha.2022.114202] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis acute kidney injury (SAKI) is a common complication of sepsis, accounting for 26-50 % of all acute kidney injury (AKI). AKI is an independent risk factor for increased mortality risk in patients with sepsis. The excessive inflammatory cascade reaction in SAKI is one of the main causes of kidney damage. Both the innate immune system and the adaptive immune system are involved in the inflammation process of SAKI. Under the action of endotoxin, neutrophils, monocytes, macrophages, T cells and other complex immune network reactions occur, and a large number of endogenous inflammatory mediators are released, resulting in the amplification and loss of control of the inflammatory response. The study of immune cells in SAKI will help improve the understanding of the immune mechanisms of SAKI, and will lay a foundation for the development of new diagnostic and therapeutic targets. This article reviews the role of known immune mechanisms in the occurrence and development of SAKI, with a view to finding new targets for SAKI treatment.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Vallés PG, Gil Lorenzo AF, Garcia RD, Cacciamani V, Benardon ME, Costantino VV. Toll-like Receptor 4 in Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24021415. [PMID: 36674930 PMCID: PMC9864062 DOI: 10.3390/ijms24021415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) is a common and devastating pathologic condition, associated with considerable high morbidity and mortality. Although significant breakthroughs have been made in recent years, to this day no effective pharmacological therapies for its treatment exist. AKI is known to be connected with intrarenal and systemic inflammation. The innate immune system plays an important role as the first defense response mechanism to tissue injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response, plays a pivotal role in the pathogenesis of acute kidney injury. Pathogen-associated molecular patterns (PAMPS), which are the conserved microbial motifs, are sensed by these receptors. Endogenous molecules generated during tissue injury, and labeled as damage-associated molecular pattern molecules (DAMPs), also activate pattern recognition receptors, thereby offering an understanding of sterile types of inflammation. Excessive, uncontrolled and/or sustained activation of TLR4, may lead to a chronic inflammatory state. In this review we describe the role of TLR4, its endogenous ligands and activation in the inflammatory response to ischemic/reperfusion-induced AKI and sepsis-associated AKI. The potential regeneration signaling patterns of TLR4 in acute kidney injury, are also discussed.
Collapse
Affiliation(s)
- Patricia G. Vallés
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Correspondence:
| | - Andrea Fernanda Gil Lorenzo
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Rodrigo D. Garcia
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Cacciamani
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
| | - María Eugenia Benardon
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Victoria Costantino
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Área de Biología Celular, Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| |
Collapse
|
14
|
Chen M, Su W, Chen F, Lai T, Liu Y, Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front Genet 2022; 13:1056405. [PMID: 36406124 PMCID: PMC9671214 DOI: 10.3389/fgene.2022.1056405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangling Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianlun Lai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Vázquez-Carballo C, Herencia C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Morgado-Pascual JL, Opazo-Rios L, González-Guerrero C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Role of Toll-like receptor 4 in intravascular hemolysis-mediated injury. J Pathol 2022; 258:236-249. [PMID: 35903022 DOI: 10.1002/path.5995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/07/2023]
Abstract
Massive intravascular hemolysis is a common characteristic of several pathologies. It is associated with the release of large quantities of heme into the circulation, promoting injury in vulnerable organs, mainly kidney, liver, and spleen. Heme activates Toll-like receptor 4 (TLR4), a key regulator of the inflammatory response; however, the role of TLR4 in hemolysis and whether inhibition of this receptor may protect from heme-mediated injury are unknown. We induced intravascular hemolysis by injection of phenylhydrazine in wildtype and Tlr4-knockout mice. In this model, we analyzed physiological parameters, histological damage, inflammation and cell death in kidney, liver, and spleen. We also evaluated whether heme-mediated-inflammatory effects were prevented by TLR4 inhibition with the compound TAK-242, both in vivo and in vitro. Induction of massive hemolysis elicited acute kidney injury characterized by loss of renal function, morphological alterations of the tubular epithelium, cell death, and inflammation. These pathological effects were significantly ameliorated in the TLR4-deficient mice and in wildtype mice treated with TAK-242. In vitro studies showed that TAK-242 pretreatment reduced heme-mediated inflammation by inhibiting the TLR4/NF-κB (nuclear factor kappa B) axis. However, analysis in liver and spleen indicated that TLR4 deficiency did not protect against the toxic accumulation of heme in these organs. In conclusion, TLR4 is a key molecule involved in the renal inflammatory response triggered by massive intravascular hemolysis. TLR4 inhibition may be a potential therapeutic approach to prevent renal damage in patients suffering from hemolysis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Herencia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Sandra Rayego-Mateos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Lucas Opazo-Rios
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Health Science Faculty, Universidad de Las Américas, Concepción-Talcahuano, Chile
| | - Cristian González-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain
| | | | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
16
|
Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 2022; 12:3767-3780. [PMID: 36073750 DOI: 10.1002/cphy.c210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.
Collapse
Affiliation(s)
- Luis A Juncos
- Division of Nephrology, Central Arkansas Veterans' Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick M Wieruszewski
- Division of Hospital Pharmacy, Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther 2022; 237:108240. [PMID: 35803367 DOI: 10.1016/j.pharmthera.2022.108240] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
The kidney has a remarkable ability of repair after acute kidney injury (AKI). However, when injury is severe or persistent, the repair is incomplete or maladaptive and may lead to chronic kidney disease (CKD). Maladaptive kidney repair involves multiple cell types and multifactorial processes, of which inflammation is a key component. In the process of inflammation, there is a bidirectional interplay between kidney parenchymal cells and the immune system. The extensive and complex crosstalk between renal tubular epithelial cells and interstitial cells, including immune cells, fibroblasts, and endothelial cells, governs the repair and recovery of the injured kidney. Further research in this field is imperative for the discovery of biomarkers and promising therapeutic targets for kidney repair. In this review, we summarize the latest progress in the immune response and inflammation during maladaptive kidney repair, analyzing the interaction between immune cells and intrinsic kidney cells, pointing out the potentialities of inflammation-related pathways as therapeutic targets, and discussing the challenges and future research prospects in this field.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
18
|
Kynurenine Pathway-An Underestimated Factor Modulating Innate Immunity in Sepsis-Induced Acute Kidney Injury? Cells 2022; 11:cells11162604. [PMID: 36010680 PMCID: PMC9406744 DOI: 10.3390/cells11162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it accounts for about half of the cases of acute kidney injury (AKI). Although sepsis is the most frequent cause of AKI in critically ill patients, its pathophysiological mechanisms are not well understood. Sepsis has the ability to modulate the function of cells belonging to the innate immune system. Increased activity of indoleamine 2,3-dioxygenase 1 (IDO1) and production of kynurenines are the major metabolic pathways utilized by innate immunity cells to maintain immunological tolerance. The activation of the kynurenine pathway (KP) plays a dual role in sepsis—in the early stage, the induction of IDO1 elicits strong proinflammatory effects that may lead to tissue damage and septic shock. Afterwards, depletion of tryptophan and production of kynurenines contribute to the development of immunosuppression that may cause the inability to overpower opportunistic infections. The presented review provides available data on the various interdependencies between elements of innate immunity and sepsis-induced AKI (SAKI) with particular emphasis on the immunomodulatory significance of KP in the above processes. We believe that KP activation may be one of the crucial, though underestimated, components of a deregulated host response to infection during SAKI.
Collapse
|
19
|
Ahmad B, Choi S. Unraveling the Tomaralimab Epitope on the Toll-like Receptor 2 via Molecular Dynamics and Deep Learning. ACS OMEGA 2022; 7:28226-28237. [PMID: 35990491 PMCID: PMC9386714 DOI: 10.1021/acsomega.2c02559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Tomaralimab (OPN-305) is the first humanized immunoglobulin G4 monoclonal antibody against TLR2 and is designed to prevent inflammation that is driven by inappropriate or excessive activation of innate immune pathways. Here, we constructed a homology model of Tomaralimab and its complex with TLR2 at different mapped epitopes and unraveled their behavior at the atomistic level. Furthermore, we predicted a novel epitope (leucine-rich region 9-12) near the lipopeptide-binding site that can be targeted and studied for the utility of therapeutic antibodies. A geometric deep learning algorithm was used to envisage Tomaralimab binding affinity changes upon mutation. There was a significant difference in binding affinity for Tomaralimab following epitope-mutated alanine substitutions of Val266, Pro294, Arg295, Asn319, Pro326, and His372. Using deep learning-based ΔΔG prediction, we computationally contrasted human TLR2-TLR2, TLR2-TLR1, and TLR2-TLR6 dimerization. These results reveal the mechanism that underlies Tomaralimab binding to TLR2 and should help to design structure-based mimics or bispecific antibodies that can be used to inhibit both lipopeptide-binding and TLR2 dimerization.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
- S&K
Therapeutics, Ajou University
Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
- S&K
Therapeutics, Ajou University
Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
20
|
Li H, Qiu D, Yuan Y, Wang X, Wu F, Yang H, Wang S, Ma M, Qian Y, Zhan B, Yang X. Trichinella spiralis cystatin alleviates polymicrobial sepsis through activating regulatory macrophages. Int Immunopharmacol 2022; 109:108907. [PMID: 35691271 DOI: 10.1016/j.intimp.2022.108907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sepsis is a life-threateningorgandysfunction caused by the cytokine storm induced by the severe bacterial infection. Excessive inflammatory responses are responsible for the lethal organ damage during the early stage of sepsis. Helminth infection and helminth-derived proteins have been identified to have the ability to immunomodulate the host immune system by reducing inflammation against inflammatory diseases. Trichinella spiralis cystatin (Ts-Cys) is a cysteine protease inhibitor with strong immunomodulatory functions on host immune system. Our previous studies have shown that excretory-secretory proteins of T. spiralis reduced sepsis-induced inflammation and Ts-Cys was able to inhibit macrophages to produce inflammatory cytokines. Whether Ts-Cys has a therapeutic effect on polymicrobial sepsis and related immunological mechanism are not yet known. METHODS Sepsis was induced in BALB/c mice using cecal ligation and puncture (CLP), followed by intraperitoneal injection of 15 µg recombinant Ts-Cys (rTs-Cys). The therapeutic effect of rTs-Cys on sepsis was evaluated by observing the 72-hour survival rates of CLP-induced septic mice and the acute injury of lung and kidney through measuring the wet/dry weight ratio of lung, the levels of blood urea nitrogen (BUN) and creatinine (Cr) in sera and the tissue section pathology. The potential underlying mechanism was investigated using mouse bone marrow-derived macrophages (BMDMs) by observing the effect of rTs-Cys on LPS-stimulated macrophage polarization. The expression of genes associated with macrophage polarization in BMDMs and tissues of septic mice was measured by Western Blotting and qPCR. RESULTS In this study, we demonstrated the treatment with rTs-Cys alleviated CLP-induced sepsis in mice with significantly reduced pathological injury in vital organs of lung and kidney and reduced mortality of septic mice. The further study identified that treatment with rTs-Cys promoted macrophage polarization from classically activated macrophage (M1) to alternatively activated macrophage (M2) phenotype via inhibiting TLR2/MyD88 signal pathway and increasing expression of mannose receptor (MR), inhibited pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and increased regulatory anti-inflammatory cytokines (IL-10 and TGF-β) in sera and tissues (lung and kidney) of mice with polymicrobial sepsis. CONCLUSIONS Our results demonstrated that rTs-Cys had a therapeutic effect on sepsis through activating regulatory macrophages possibly via suppressing TLR2/MyD88 signal pathway. We also identified that rTs-Cys-induced M2 macrophage differentiation was associated with increased expression of MR on the surface of macrophages. Our results underscored the importance of MR in regulating macrophages during the treatment with rTs-Cys, providing another immunological mechanism in which helminths and their derived proteins modulate the host immune system. The findings in this study suggest that rTs-Cys is a potential therapeutic agent for the prevention and treatment of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Huihui Li
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Dapeng Qiu
- Department of Orthopedics, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huijuan Yang
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Mengxi Ma
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Yayun Qian
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodi Yang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
21
|
Electroacupuncture at Zusanli Alleviates Sepsis by Regulating the TLR4-MyD88-NF-Kappa B Pathway and Diversity of Intestinal Flora. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6706622. [PMID: 35722155 PMCID: PMC9205730 DOI: 10.1155/2022/6706622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Background Electroacupuncture (EA) at the Zusanli acupoint (ST36) has shown therapeutic potential for sepsis due to its ability to limit inflammation and to regulate gastrointestinal tract symptoms. However, the mechanisms contributing to the effects of EA at ST36 on sepsis and connections with the intestinal flora remain unclear. This study was designed to explore the effects of EA at ST36 on Toll-like receptor 4 signaling and the intestinal flora. Methods ICR mice were randomly divided into 4 groups: control group, model group, EA group, and sham EA group. EA at ST36 was performed at 2.5 mA and 2 to 100 Hz, and the 30 min of dense wave was achieved over 5 days. A sepsis model was built by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/mL). The levels of expression of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and IL-10 were detected by enzyme-linked immunosorbent assays, and lactate dehydrogenase (LDH) levels in serum were measured by biochemical tests. Expression levels of Bax, Bcl2, cleaved caspase-3, Toll-like receptor (TLR4), nuclear factor-kappa B (NF-κB), and myeloid differentiation factor 88 (MyD88) were assessed by the Western blotting. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was used to evaluate apoptosis. The intestinal microecology was assessed via 16S rRNA gene sequencing. Results EA at ST36 reduced the expression of IL-1β, IL-6, and TNF-α and increased the expression of IL-10 to inhibit the inflammatory response. EA at ST36 also inhibited apoptosis, as measured by TUNEL staining, and decreased the Bax/Bcl2 ratio and levels of caspase-3 and cleaved caspase-3, as well as LDH release. Our results suggest that alleviation of sepsis may correlate with the downregulation of levels of TLR4, NF-κB, and MyD88. Importantly, EA at ST36 improved the diversity of the intestinal flora and increased the abundance of Firmicutes and Actinobacteria. Conclusion. EA at ST36 prevented sepsis from worsening by inhibiting inflammation and apoptosis, which correlated with the regulation of the TLR4/NF-κB/MyD88 signaling axis and modulation of the intestinal flora.
Collapse
|
22
|
Jia P, Xu SJ, Wang X, Wu X, Ren T, Zou Z, Zeng Q, Shen B, Ding X. Chemokine CCL2 from proximal tubular epithelial cells contributes to sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F107-F119. [PMID: 35658715 DOI: 10.1152/ajprenal.00037.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Damage-associated molecular patterns secreted from activated kidney cells initiate inflammatory response, a critical step in the development of sepsis-induced acute kidney injury (AKI). However, the underlying mechanism remains to be clarified. Here, we established a mouse model of sepsis-induced AKI through intraperitoneal injection of lipopolysaccharide (LPS), and demonstrated that LPS induced dramatical upregulation of C-C motif chemokine ligand 2 (CCL2) at both the mRNA and the protein levels in kidney, which was mainly expressed by tubular epithelial cells (TECs), especially by proximal TECs. Proximal tubule-specific ablation of CCL2 reduced LPS-induced macrophage infiltration, proinflammatory cytokine expression, and attenuated AKI. In vitro, using transwell migration assay, we found that deficiency of CCL2 in TECs decreased macrophage migration ability. However, myeloid-specific depletion of CCL2 could not protect the kidneys from the aforementioned effects. Mechanistically, LPS activated toll like receptor (TLR) 2 signaling in TECs, which induced activation of its downstream effector nuclear factor (NF)-κB. Blockade of TLR2 signaling or inhibition of NF-κB activation in TECs significantly suppressed LPS-induced CCL2 expression. Furthermore, ChIP analyses confirmed a direct binding of NF-κB p65 in the CCL2 promoter regein, and LPS increased the binding of NF-κB p65 to CCL2 promoter, suggesting that TLR2/NF-κB p65 regulates CCL2 expression in TECs. Together, these results demonstrate that endogenous CCL2 released from PTECs, not from myeloid cells was responsible for sepsis-induced kidney inflammation and AKI. Specificly targeting tubular TLR2/NF-κB/CCL2 signaling may be a potential therapeutic strategy for prevention or attenuation of septic AKI.
Collapse
Affiliation(s)
- Ping Jia
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su-Juan Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoli Wu
- Traditional Chinese Medicine Pharmacology Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Ren
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouping Zou
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zeng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Kidney and Dialysis Institute of Shanghai, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
23
|
Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23:ijms23105354. [PMID: 35628164 PMCID: PMC9140893 DOI: 10.3390/ijms23105354] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.
Collapse
|
24
|
Zhang C, Zeng L, Cai G, Zhu Y, Xiong Y, Zhan H, Yang Z. miR-340-5p Alleviates Oxidative Stress Injury by Targeting MyD88 in Sepsis-Induced Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2939279. [PMID: 35571255 PMCID: PMC9095363 DOI: 10.1155/2022/2939279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is a sort of severe disease in the intensive care unit. This research focuses on exploring the influence of miR-340-5p on SIC and its specific mechanism. METHODS Mice were administered with lipopolysaccharide (LPS) to construct a SIC animal model. Mice were intramyocardially injected with Adenoassociated Virus- (AAV-) 9 containing the miR-340-5p precursor to make the miR-340-5p overexpression in the myocardium. The expression level of myocardial miR-340-5p was evaluated by qRT-PCR. The cardiac function was measured by echocardiography, the myocardial morphology was observed by hematoxylin-eosin (HE) staining, and the oxidative stress level was detected by 4-hydroxynonenal (4-HNE) immunohistochemical staining and malondialdehyde (MDA) assay in mice. The cells were pretreated with miR-340-5p mimic, mimic-NC, miR-340-5p inhibitor, inhibitor-NC, MyD88 siRNA, or si-NC and then administered with LPS or PBS. The cell viability was measured with the CCK-8 assay. The level of intracellular oxidative stress was evaluated using reactive oxygen species (ROS), MDA, and glutathione (GSH) detection. The MyD88 level was assessed via Western blotting analysis. The interaction of miR-340-5p with the MyD88 mRNA was confirmed via dual-luciferase reporter assay and RNA pull-down assay. RESULTS The miR-340-5p overexpression partially alleviated the increase of the MyD88 level, impairment of cardiac function, and oxidative stress injury in the SIC animal model. In the SIC cell model, miR-340-5p mimic pretreatment partially relieved oxidative stress injury, while the miR-340-5p inhibitor had the opposite effect. Besides, the miR-340-5p mimic and inhibitor could reduce and further increase the MyD88 level in the SIC cell model, respectively. Dual-luciferase reporter and RNA pull-down experiments confirmed the interaction between the MyD88 mRNA and miR-340-5p. Finally, it was found that MyD88 siRNA pretreatment also partially alleviates the oxidative stress injury in the SIC cell model. CONCLUSION In sum, our study demonstrated that miR-340-5p can improve myocardial oxidative stress injury by targeting MyD88 in SIC.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Lijin Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Guoyi Cai
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Yuanting Zhu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Yan Xiong
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong Zhan
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| |
Collapse
|
25
|
Li Z, Ludwig N, Thomas K, Mersmann S, Lehmann M, Vestweber D, Pittet JF, Gomez H, Kellum JA, Rossaint J, Zarbock A. The Pathogenesis of Ischemia-Reperfusion Induced Acute Kidney Injury Depends on Renal Neutrophil Recruitment Whereas Sepsis-Induced AKI Does Not. Front Immunol 2022; 13:843782. [PMID: 35529856 PMCID: PMC9069608 DOI: 10.3389/fimmu.2022.843782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) may be induced by different causes, including renal ischemia-reperfusion injury and sepsis, which represent the most common reasons for AKI in hospitalized patients. AKI is defined by reduced urine production and/or increased plasma creatinine. However, this definition does not address the molecular mechanisms of different AKI entities, and uncertainties remain regarding distinct pathophysiological events causing kidney injury in the first place. In particular, sepsis-induced AKI is considered not to be associated with leukocyte infiltration into the kidney, but a direct investigation of this process is missing to this date. In this study, we used two murine AKI models induced by either renal ischemia-reperfusion injury (IRI) or cecal ligation and puncture (CLP) to investigate the contribution of neutrophils to tissue injury and kidney function. By using VEC-Y731F mice, in which neutrophil recruitment is impaired, we analyzed the specific contribution of neutrophil recruitment to the pathogenesis of IRI- and CLP-induced AKI. We observed that the degree of renal injury evaluated by plasma creatinine, urinary biomarkers and histological analyses, following IRI-induction was dependent on neutrophil migration into the kidney, whereas the pathogenesis of CLP-induced AKI was independent of neutrophil recruitment. Furthermore, plasma transfer experiments suggest that the pathogenesis of CLP-induced AKI relies on circulating inflammatory mediators. These results extend our knowledge of the AKI pathogenesis and may help in the development of prophylactic and therapeutic treatments for AKI patients.
Collapse
Affiliation(s)
- Zhenhan Li
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Martin Lehmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hernando Gomez
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John A. Kellum
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Alexander Zarbock,
| |
Collapse
|
26
|
Lajqi T, Köstlin-Gille N, Hillmer S, Braun M, Kranig SA, Dietz S, Krause C, Rühle J, Frommhold D, Pöschl J, Gille C, Hudalla H. Gut Microbiota-Derived Small Extracellular Vesicles Endorse Memory-like Inflammatory Responses in Murine Neutrophils. Biomedicines 2022; 10:442. [PMID: 35203650 PMCID: PMC8962420 DOI: 10.3390/biomedicines10020442] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are classically characterized as merely reactive innate effector cells. However, the microbiome is known to shape the education and maturation process of neutrophils, improving their function and immune-plasticity. Recent reports demonstrate that murine neutrophils possess the ability to exert adaptive responses after exposure to bacterial components such as LPS (Gram-negative bacteria) or LTA (Gram-positive bacteria). We now ask whether small extracellular vesicles (EVs) from the gut may directly mediate adaptive responses in neutrophils in vitro. Murine bone marrow-derived neutrophils were primed in vitro by small EVs of high purity collected from colon stool samples, followed by a second hit with LPS. We found that low-dose priming with gut microbiota-derived small EVs enhanced pro-inflammatory sensitivity as indicated by elevated levels of TNF-α, IL-6, ROS and MCP-1 and increased migratory and phagocytic activity. In contrast, high-dose priming resulted in a tolerant phenotype, marked by increased IL-10 and decreased transmigration and phagocytosis. Alterations in TLR2/MyD88 as well as TLR4/MyD88 signaling were correlated with the induction of adaptive cues in neutrophils in vitro. Taken together, our study shows that small EVs from stools can drive adaptive responses in neutrophils in vitro and may represent a missing link in the gut-immune axis.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - Stefan Hillmer
- Electron Microscopy Core Facility (EMCF), University of Heidelberg, D-69120 Heidelberg, Germany;
| | - Maylis Braun
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - Christian Krause
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany;
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| |
Collapse
|
27
|
Hu X, Zhou W, Wu S, Wang R, Luan Z, Geng X, Xu N, Zhang Z, Ruan Z, Wang Z, Li F, Yu C, Ren H. Tacrolimus alleviates LPS-induced AKI by inhibiting TLR4/MyD88/NF-κB signalling in mice. J Cell Mol Med 2022; 26:507-514. [PMID: 34889045 PMCID: PMC8743665 DOI: 10.1111/jcmm.17108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (SA-AKI) is a model of clinical serious care syndrome, with high morbidity and mortality. Tacrolimus (TAC), a novel immunosuppressant that inhibits inflammatory response, plays a pivotal role in kidney diseases. In this study, LPS treated mice and cultured podocytes were used as the models of SA-AKI in vivo and in vitro, respectively. Medium- and high-dose TAC administration significantly attenuated renal function and renal pathological manifestations at 12, 24 and 48 h after LPS treatment in mice. Moreover, the Toll-like receptor 4 (TLR4)/myeloid differential protein-88 (MyD88)/nuclear factor-kappa (NF-κB) signalling pathway was also dramatically inhibited by medium- and high-dose TAC administration at 12, 24 and 48 h of LPS treatment mice. In addition, TAC reversed LPS-induced podocyte cytoskeletal injury and podocyte migratory capability. Our findings indicate that TAC has protective effects against LPS-induced AKI by inhibiting TLR4/MyD88/NF-κB signalling pathway and podocyte dysfunction, providing another potential therapeutic effects for the LPS-induced SA-AKI.
Collapse
Affiliation(s)
- Xueqing Hu
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Wenqian Zhou
- Department of NephrologyTongji HospitalSchool of Medicine, Tongji UniversityShanghaiChina
| | - Shun Wu
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Rui Wang
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhiyong Luan
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Xin Geng
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Na Xu
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhaoyong Zhang
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhenmin Ruan
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zenghui Wang
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Furong Li
- Department of NephrologyXinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chen Yu
- Department of NephrologyTongji HospitalSchool of Medicine, Tongji UniversityShanghaiChina
| | - Hongqi Ren
- Department of Nephrologythe Affiliated Huaihai Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
28
|
Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK, Ma WT. Pathogenesis and Treatment of Cytokine Storm Induced by Infectious Diseases. Int J Mol Sci 2021; 22:13009. [PMID: 34884813 PMCID: PMC8658039 DOI: 10.3390/ijms222313009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - De-Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| | - Wen-Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| |
Collapse
|
29
|
Zhou Y, Qing M, Xu M. Circ-BNIP3L knockdown alleviates LPS-induced renal tubular epithelial cell injury during sepsis-associated acute kidney injury by miR-370-3p/MYD88 axis. J Bioenerg Biomembr 2021; 53:665-677. [PMID: 34731384 DOI: 10.1007/s10863-021-09925-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication of the critically ill patient with high morbidity and mortality. Thus, the goal of this study was to investigate the role of circular RNA BCL2 Interacting Protein 3 Like (circ-BNIP3L) in the pathophysiological mechanism of SA-AKI. The SA-AKI cell model was established by using lipopolysaccharide (LPS)-induced HK-2 cells in vitro. Cell survival was analyzed using cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2'-deoxyuridine) assay, flow cytometry and Western blot, respectively. Levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected using ELISA analysis. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were examined using commercial kits. Levels of genes and proteins were detected by qRT-PCR and Western blot. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target relationship between miR-370-3p and circ-BNIP3L or MYD88 (myeloid differentiation primary response 88). Circ-BNIP3L was highly expressed in SA-AKI patients and LPS-induced HK-2 cells. Silencing of circ-BNIP3L attenuated LPS-induced growth inhibition, inflammation, and oxidative stress in HK-2 cells. Mechanistically, circ-BNIP3L competitively bound to miR-370-3p to up-regulate the expression of its target MYD88. Moreover, miR-370-3p inhibition reversed the beneficial effects of circ-BNIP3L knockdown on LPS-stimulated HK-2 cells. Meanwhile, miR-370-3p overexpression abolished LPS-induced injury in HK-2 cells, which was counteracted by MYD88 up-regulation. Circ-BNIP3L knockdown alleviated LPS-induced renal tubular epithelial cell injury by miR-370-3p/MYD88 axis, opening up a completely new avenue for the treatment of sepsis-associated AKI.
Collapse
Affiliation(s)
- Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, 410000, Changsha City, Hunan Province, China
| | - Meiying Qing
- Department of Urinary Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Min Xu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, 410000, Changsha City, Hunan Province, China.
| |
Collapse
|
30
|
Zhang Q, Wang L, Wu M, Liu X, Zhu Y, Zhu J, Xing C. Humanized anti‑TLR4 monoclonal antibody ameliorates lipopolysaccharide‑related acute kidney injury by inhibiting TLR4/NF‑κB signaling. Mol Med Rep 2021; 24:608. [PMID: 34184086 PMCID: PMC8240183 DOI: 10.3892/mmr.2021.12245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
A humanized anti‑Toll‑like receptor 4 (TLR4) monoclonal antibody (mAb) was previously produced using phage antibody library technology, and it was found that the mAb could effectively ameliorate lipopolysaccharide (LPS)‑induced damage in macrophages. The present study investigated the protective effects exerted by the humanized anti‑TLR4 mAb against LPS‑induced acute kidney injury (AKI), as well as the underlying mechanisms. Female C57BL/6 mice were randomly divided into four groups (n=8 per group): i) Control; ii) LPS; iii) LPS + humanized anti‑TLR4 mAb (1 µg/g); and iv) LPS + humanized anti‑TLR4 mAb (10 µg/g). Serum creatinine, blood urea nitrogen, IL‑6, TNFα and IL‑1β levels were then examined, followed by renal pathology assessment, immunohistochemical staining, reverse transcription‑quantitative PCR and western blotting to assess apoptosis/survival/inflammation‑related molecules and kidney injury molecule (KIM)‑1. The humanized anti‑TLR4 mAb successfully ameliorated LPS‑induced AKI and renal pathological damage. The humanized anti‑TLR4 mAb also dose‑dependently suppressed LPS‑induced elevations in serum IL‑6, TNFα and IL‑1β, and decreased the renal expression levels of myeloid differentiation primary response 88 (MyD88), IKKα/β, IκB, p65 and KIM‑1. Compared with the LPS group, renal Bax and KIM‑1 expression levels were significantly downregulated, and Bcl‑2 expression was notably upregulated by the humanized anti‑TLR4 mAb. Moreover, the humanized anti‑TLR4 mAb also significantly decreased the protein expression levels of MyD88, phosphorylated (p)‑IKKα/β, p‑IκB and p‑p65 in the renal tissues compared with the LPS group. Therefore, the present study indicated that the anti‑inflammatory effects of the humanized anti‑TLR4 mAb against LPS‑related AKI in mice were mediated via inhibition of the TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Nephrology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Liang Wang
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Mian Wu
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Xiaobin Liu
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Yushan Zhu
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210000, P.R. China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
31
|
Albino AH, Zambom FFF, Foresto-Neto O, Oliveira KC, Ávila VF, Arias SCA, Seguro AC, Malheiros DMAC, Camara NOS, Fujihara CK, Zatz R. Renal Inflammation and Innate Immune Activation Underlie the Transition From Gentamicin-Induced Acute Kidney Injury to Renal Fibrosis. Front Physiol 2021; 12:606392. [PMID: 34305624 PMCID: PMC8293269 DOI: 10.3389/fphys.2021.606392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Subjects recovering from acute kidney injury (AKI) are at risk of developing chronic kidney disease (CKD). The mechanisms underlying this transition are unclear and may involve sustained activation of renal innate immunity, with resulting renal inflammation and fibrosis. We investigated whether the NF-κB system and/or the NLRP3 inflammasome pathway remain activated after the resolution of AKI induced by gentamicin (GT) treatment, thus favoring the development of CKD. Male Munich-Wistar rats received daily subcutaneous injections of GT, 80 mg/kg, for 9 days. Control rats received vehicle only (NC). Rats were studied at 1, 30, and 180 days after GT treatment was ceased. On Day 1, glomerular ischemia (ISCH), tubular necrosis, albuminuria, creatinine retention, and tubular dysfunction were noted, in association with prominent renal infiltration by macrophages and myofibroblasts, along with increased renal abundance of TLR4, IL-6, and IL1β. Regression of functional and structural changes occurred on Day 30. However, the renal content of IL-1β was still elevated at this time, while the local renin-angiotensin system remained activated, and interstitial fibrosis became evident. On Day 180, recurring albuminuria and mild glomerulosclerosis were seen, along with ISCH and unabated interstitial fibrosis, whereas macrophage infiltration was still evident. GT-induced AKI activates innate immunity and promotes renal inflammation. Persistence of these abnormalities provides a plausible explanation for the transition of AKI to CKD observed in a growing number of patients.
Collapse
Affiliation(s)
- Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Orestes Foresto-Neto
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Karin Carneiro Oliveira
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira Ávila
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Costa Alarcon Arias
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio Carlos Seguro
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Durán-Laforet V, Peña-Martínez C, García-Culebras A, Alzamora L, Moro MA, Lizasoain I. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol Ther 2021; 228:107933. [PMID: 34174279 DOI: 10.1016/j.pharmthera.2021.107933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a very common disease being the leading cause of death and disability worldwide. The immune response subsequent to an ischemic stroke is a crucial factor in its physiopathology and outcome. This response is not limited to the injury site. In fact, the immune response to the ischemic process mobilizes mainly circulating cells which upon activation will be recruited to the injury site. When a stroke occurs, molecules that are usually retained inside the cell bodies are released into the extracellular space by uncontrolled cell death. These molecules can bind to the Toll-like receptor 4 (TLR4) in circulating immune cells which are then activated, eliciting, although not exclusively, the inflammatory response to the stroke. In this review, we present an up-to-date summary of the role of the different peripheral immune cells in stroke as well as the role of TLR4 in the function of each cell type in ischemia. Also, we summarize the different antagonists developed against TLR4 and their potential as a pharmacological tool for stroke treatment.
Collapse
Affiliation(s)
- V Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - C Peña-Martínez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - A García-Culebras
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - L Alzamora
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - M A Moro
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
33
|
Nash WT, Okusa MD. Chess Not Checkers: Complexities Within the Myeloid Response to the Acute Kidney Injury Syndrome. Front Med (Lausanne) 2021; 8:676688. [PMID: 34124107 PMCID: PMC8187556 DOI: 10.3389/fmed.2021.676688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Immune dysregulation in acute kidney injury (AKI) is an area of intense interest which promises to enhance our understanding of the disease and how to manage it. Macrophages are a heterogeneous and dynamic population of immune cells that carry out multiple functions in tissue, ranging from maintenance to inflammation. As key sentinels of their environment and the major immune population in the uninjured kidney, macrophages are poised to play an important role in the establishment and pathogenesis of AKI. These cells have a profound capacity to orchestrate downstream immune responses and likely participate in skewing the kidney environment toward either pathogenic inflammation or injury resolution. A clear understanding of macrophage and myeloid cell dynamics in the development of AKI will provide valuable insight into disease pathogenesis and options for intervention. This review considers evidence in the literature that speaks to the role and regulation of macrophages and myeloid cells in AKI. We also highlight barriers or knowledge gaps that need to be addressed as the field advances.
Collapse
Affiliation(s)
- William T Nash
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
34
|
Abstract
Septic shock with multiple organ failure is a devastating situation in clinical settings. Through the past decades, much progress has been made in the management of sepsis and its underlying pathogenesis, but a highly effective therapeutic has not been developed. Recently, macromolecules such as histones have been targeted in the treatment of sepsis. Histones primarily function as chromosomal organizers to pack DNA and regulate its transcription through epigenetic mechanisms. However, a growing body of research has shown that histone family members can also exert cellular toxicity once they relocate from the nucleus into the extracellular space. Heparin, a commonly used anti-coagulant, has been shown to possess life-saving capabilities for septic patients, but the potential interplay between heparin and extracellular histones has not been investigated. In this review, we summarize the pathogenic roles of extracellular histones and the therapeutic roles of heparin in the development and management of sepsis and septic shock.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Intensive Care, Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xin Li
- Department of Intensive Care, Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
35
|
Hu W, van Steijn L, Li C, Verbeek FJ, Cao L, Merks RMH, Spaink HP. A Novel Function of TLR2 and MyD88 in the Regulation of Leukocyte Cell Migration Behavior During Wounding in Zebrafish Larvae. Front Cell Dev Biol 2021; 9:624571. [PMID: 33659250 PMCID: PMC7917198 DOI: 10.3389/fcell.2021.624571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptor (TLR) signaling via myeloid differentiation factor 88 protein (MyD88) has been indicated to be involved in the response to wounding. It remains unknown whether the putative role of MyD88 in wounding responses is due to a control of leukocyte cell migration. The aim of this study was to explore in vivo whether TLR2 and MyD88 are involved in modulating neutrophil and macrophage cell migration behavior upon zebrafish larval tail wounding. Live cell imaging of tail-wounded larvae was performed in tlr2 and myd88 mutants and their corresponding wild type siblings. In order to visualize cell migration following tissue damage, we constructed double transgenic lines with fluorescent markers for macrophages and neutrophils in all mutant and sibling zebrafish lines. Three days post fertilization (dpf), tail-wounded larvae were studied using confocal laser scanning microscopy (CLSM) to quantify the number of recruited cells at the wounding area. We found that in both tlr2-/- and myd88-/- groups the recruited neutrophil and macrophage numbers are decreased compared to their wild type sibling controls. Through analyses of neutrophil and macrophage migration patterns, we demonstrated that both tlr2 and myd88 control the migration direction of distant neutrophils upon wounding. Furthermore, in both the tlr2 and the myd88 mutants, macrophages migrated more slowly toward the wound edge. Taken together, our findings show that tlr2 and myd88 are involved in responses to tail wounding by regulating the behavior and speed of leukocyte migration in vivo.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Chen Li
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Fons J Verbeek
- Institute of Biology, Leiden University, Leiden, Netherlands.,Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Lu Cao
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, Netherlands.,Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
36
|
Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Murty US, Naidu VGM, Sahu BD. Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sci 2021; 271:119155. [PMID: 33548286 DOI: 10.1016/j.lfs.2021.119155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is a progressive renal complication which significantly affects the patient's life with huge economic burden. Untreated acute kidney injury eventually progresses to a chronic form and end-stage renal disease. Although significant breakthroughs have been made in recent years, there are still no effective pharmacological therapies for the treatment of acute kidney injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response plays a pivotal role in the pathogenesis of acute kidney injury. The expression of TLR4 has been seen in resident renal cells, including podocytes, mesangial cells, tubular epithelial cells and endothelial cells. Activation of TLR4 signaling regulates the transcription of numerous pro-inflammatory cytokines and chemokines, resulting in renal inflammation. Therefore, targeting TLR4 and its downstream effectors could serve as an effective therapeutic intervention to prevent renal inflammation and subsequent kidney damage. For the first time, this review summarizes the literature on acute kidney injury from the perspective of TLR4 from year 2010 to 2020. In the current review, the role of TLR4 signaling pathway in AKI with preclinical evidence is discussed. Furthermore, we have highlighted several compounds of natural and synthetic origin, which have the potential to avert the renal TLR4 signaling in preclinical AKI models and have shown protection against AKI. This scientific review provides new ideas for targeting TLR4 in the treatment of AKI and provides strategies for the drug development against AKI.
Collapse
Affiliation(s)
- Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Pakpi Doye
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India.
| |
Collapse
|
37
|
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Opazo-Ríos L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Toll-Like Receptors in Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22020816. [PMID: 33467524 PMCID: PMC7830297 DOI: 10.3390/ijms22020816] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is an important health problem, affecting 13.3 million individuals/year. It is associated with increased mortality, mainly in low- and middle-income countries, where renal replacement therapy is limited. Moreover, survivors show adverse long-term outcomes, including increased risk of developing recurrent AKI bouts, cardiovascular events, and chronic kidney disease. However, there are no specific treatments to decrease the adverse consequences of AKI. Epidemiological and preclinical studies show the pathological role of inflammation in AKI, not only at the acute phase but also in the progression to chronic kidney disease. Toll-like receptors (TLRs) are key regulators of the inflammatory response and have been associated to many cellular processes activated during AKI. For that reason, a number of anti-inflammatory agents targeting TLRs have been analyzed in preclinical studies to decrease renal damage during AKI. In this review, we updated recent knowledge about the role of TLRs, mainly TLR4, in the initiation and development of AKI as well as novel compounds targeting these molecules to diminish kidney injury associated to this pathological condition.
Collapse
Affiliation(s)
- Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Sandra Rayego-Mateos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Carmen Herencia-Bellido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - María Luisa Gaspar
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| |
Collapse
|
38
|
Sato M, Takeuchi S, Moriya R, Kito T, Soga S, Aoyama K, Suzuki J. Novel TLR2xTLR4 Bispecific Antibody Inhibits Bacterial Sepsis. Monoclon Antib Immunodiagn Immunother 2020; 40:6-10. [PMID: 33347385 DOI: 10.1089/mab.2020.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Toll-like receptors (TLRs) sense microbial infection through recognition of pathogen-associated molecular patterns. For example, TLR4 responds to the lipopolysaccharide of gram-negative bacteria, whereas TLR2 recognizes a broad range of microbial ligands. Both receptors are, therefore, compelling targets for treating sepsis. Here, we developed a TLR2xTLR4 tetravalent bispecific antibody designated ICU-1, which inhibits both receptors. The inhibitory activity of ICU-1 was comparable to that of the parental antibodies in neutralization assays using a human monocyte cell line. Moreover, ICU-1 completely blocked stimulation of human peripheral blood mononuclear cells by clinically relevant bacterial species. These findings provide convincing evidence that ICU-1 offers a novel approach for treating bacterial sepsis.
Collapse
Affiliation(s)
- Masahito Sato
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Satoshi Takeuchi
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Ryuichi Moriya
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Takuya Kito
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Shinji Soga
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Koji Aoyama
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Jotaro Suzuki
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Ren Q, Cheng L, Yi J, Ma L, Pan J, Gou SJ, Fu P. Toll-like Receptors as Potential Therapeutic Targets in Kidney Diseases. Curr Med Chem 2020; 27:5829-5854. [PMID: 31161985 DOI: 10.2174/0929867325666190603110907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Toll-like Receptors (TLRs) are members of pattern recognition receptors and serve a pivotal role in host immunity. TLRs response to pathogen-associated molecular patterns encoded by pathogens or damage-associated molecular patterns released by dying cells, initiating an inflammatory cascade, where both beneficial and detrimental effects can be exerted. Accumulated evidence has revealed that TLRs are closely associated with various kidney diseases but their roles are still not well understood. This review updated evidence on the roles of TLRs in the pathogenesis of kidney diseases including urinary tract infection, glomerulonephritis, acute kidney injury, transplant allograft dysfunction and chronic kidney diseases.
Collapse
Affiliation(s)
- Qian Ren
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lu Cheng
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Yi
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Pan
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shen-Ju Gou
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Kim JY, Leem J, Park KK. Antioxidative, Antiapoptotic, and Anti-Inflammatory Effects of Apamin in a Murine Model of Lipopolysaccharide-Induced Acute Kidney Injury. Molecules 2020; 25:5717. [PMID: 33287398 PMCID: PMC7731169 DOI: 10.3390/molecules25235717] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic, and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3 activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway, and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| |
Collapse
|
41
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
42
|
Lin R, Zhang Y, Pradhan K, Li L. TICAM2-related pathway mediates neutrophil exhaustion. Sci Rep 2020; 10:14397. [PMID: 32873853 PMCID: PMC7463027 DOI: 10.1038/s41598-020-71379-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Pathogenic inflammation and immune suppression are the cardinal features that underlie the pathogenesis of severe systemic inflammatory syndrome and sepsis. Neutrophil exhaustion may play a key role during the establishment of pathogenic inflammation and immune suppression through elevated expression of inflammatory adhesion molecules such as ICAM1 and CD11b as well as immune-suppressors such as PD-L1. However, the mechanism of neutrophil exhaustion is not well understood. We demonstrated that murine primary neutrophils cultured in vitro with the prolonged lipopolysaccharides (LPS) stimulation can effectively develop an exhaustive phenotype resembling human septic neutrophils with elevated expression of ICAM1, CD11b, PD-L1 as well as enhanced swarming and aggregation. Mechanistically, we observed that TICAM2 is involved in the generation of neutrophil exhaustion, as TICAM2 deficient neutrophils have the decreased expression of ICAM1, CD11b, PD-L1, and the reduced aggregation following the prolonged LPS challenge as compared to wild type (WT) neutrophils. LPS drives neutrophil exhaustion through TICAM2 mediated activation of Src family kinases (SFK) and STAT1, as the application of SFK inhibitor Dasatinib blocks neutrophil exhaustion triggered by the prolonged LPS challenge. Functionally, TICAM2 deficient mice were protected from developing severe systemic inflammation and multi-organ injury following the chemical-induced mucosal damage. Together, our data defined a key role of TICAM2 in facilitating neutrophil exhaustion and that targeting TICAM2 may be a potential approach to treating the severe systemic inflammation.
Collapse
Affiliation(s)
- RuiCi Lin
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Liwu Li
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
43
|
The soluble tumor necrosis factor receptor 1 as a potential early diagnostic and prognostic markers in intensive care unit patients with severe infections. Cent Eur J Immunol 2020; 45:160-169. [PMID: 33456326 PMCID: PMC7792439 DOI: 10.5114/ceji.2020.97903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Substantial causes of high mortality (30-50%) of people with severe infections treated in intensive care units (ICUs) are still inadequately known in terms of mechanisms and insufficient diagnostic tools for immune responses in sepsis. Material and methods The aim of this study was to establish a practical value of determining the concentration of chosen proteins (by ELISA) in peripheral blood as potential in early diagnostics of severe infections, paying special attention to their prognostic values. Results In 163 patients treated in ICUs, changes were assessed in the concentration of chosen proteins relating to the TLR4 receptor signalling pathway, including its effectors of pro- and anti-inflammatory cytokines (IL-1Ra, TNF-α, sTNFR1, IL-6, IL-10, sTLR4, MyD88, TNFAIP3/A20, HSP70, and HMGB1). In the analysis of changes in the process of immune response in severely ill patients with and without infections, a significantly higher concentration of sTNFR1 was observed in patients with infections than those who deceased. In the ROC curves tests, it was noted that an assessment of the concentration of sTNFR1 proteins (AUC = 0.686 and cut-off point = 24.841 pg/ml) was a particularly efficient tool, with prognostic significance in patients with infections. Conclusions In other patients treated in an ICU, the efficiency of determining IL-6 (AUC = 0.736) was confirmed and at the same time, the effectiveness of this cytokine in predicting death in cases with infections was excluded. The results of the present study are encouraging, suggesting the benefits of undertaking multi-center clinical trials, which consider monitoring sTNFR1 in different groups of patients with infections treated in intensive care units.
Collapse
|
44
|
Negative Regulation of Tec Kinase Alleviates LPS-Induced Acute Kidney Injury in Mice via theTLR4/NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3152043. [PMID: 32685466 PMCID: PMC7322586 DOI: 10.1155/2020/3152043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Tec kinase is an important mediator in inflammatory immune response that enhances the activity of neutrophils and macrophages. However, information on its function in lipopolysaccharide- (LPS-) induced acute kidney injury (AKI) is limited. This study is aimed at determining whether Tec kinase was a regulator in AKI. An AKI model in mice was successfully established using intraperitoneal LPS. Results showed that the serum levels of creatinine (Cr), blood urea nitrogen (BUN), and cystatin-C (Cys-C) increased after intraperitoneal LPS injection. Renal tissue sustained significantly severe injury as measured by pathological scores. Pretreatment with LFM-A13 improved the function of the kidney in mice and decreased the renal injury score. Enzyme-linked immunosorbent assay showed that LFM-A13 significantly reduced the release of IL-1β and TNF-α in mice exposed to LPS. LFM-A13 can evidently abrogate the expression of Tec protein, MyD88, TLR4, NF-κB p65, and Tec's phosphorylated protein as determined by Western blot. Immunohistochemistry analysis revealed that LFM-A13 markedly downregulated the expression of Tec kinase in renal tubular epithelial cells. In vitro, Tec kinase protein was expressed highly in NRK-52E cells after LPS exposure. Tec-siRNA also decreased IL-1β and TNF-α production and obviously abolished phospho-p65 and phospho-IκBα expression in NRK-52E cell stimulated by LPS; however, Tec-siRNA increased the IκBα level. Altogether, these data suggested that Tec kinase can be a modulating protein in AKI through TLR4/NF-κB activation.
Collapse
|
45
|
Watts BA, Tamayo E, Sherwood ER, Good DW. Monophosphoryl lipid A pretreatment suppresses sepsis- and LPS-induced proinflammatory cytokine production in the medullary thick ascending limb. Am J Physiol Renal Physiol 2020; 319:F8-F18. [PMID: 32421349 DOI: 10.1152/ajprenal.00178.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sepsis is the leading cause of acute kidney injury in critically ill patients. Tumor necrosis factor-α (TNF-α) has been implicated in the pathogenesis of septic kidney injury; however, the sites and mechanisms of renal TNF-α production during sepsis remain to be defined. In the present study, we showed that TNF-α expression is increased in medullary thick ascending limbs (MTALs) of mice with sepsis induced by cecal ligation and puncture. Treatment with lipopolysaccharide (LPS) for 3 h in vitro also increased MTAL TNF-α production. Sepsis and LPS increased MTAL TNF-α expression through activation of the myeloid differentiation factor 88 (MyD88)-IL-1 receptor-associated kinase 1-ERK signaling pathway. Pretreatment with monophosphoryl lipid A (MPLA), a nontoxic immunomodulator that protects against bacterial infection, eliminated the sepsis- and LPS-induced increases in MTAL TNF-α production. The suppressive effect of MPLA on TNF-α was mediated through activation of a phosphatidylinositol 3-kinase-dependent pathway that inhibits MyD88-dependent ERK activation. This likely involves MPLA-phosphatidylinositol 3-kinase-mediated induction of Tollip, which negatively regulates the MyD88-ERK pathway by inhibiting activation of IL-1 receptor-associated kinase 1. These regulatory mechanisms are similar to those previously shown to mediate the effect of MPLA to prevent sepsis-induced inhibition of MTAL [Formula: see text] absorption. These results identify the MTAL as a site of local TNF-α production in the kidney during sepsis and identify molecular mechanisms that can be targeted to attenuate renal TNF-α expression. The ability of MPLA pretreatment to suppress MyD88-dependent ERK signaling in the MTAL during sepsis has the dual beneficial effects of protecting tubule transport functions and attenuating harmful proinflammatory responses.
Collapse
Affiliation(s)
- Bruns A Watts
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Esther Tamayo
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David W Good
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
46
|
CXCL14 Overexpression Attenuates Sepsis-Associated Acute Kidney Injury by Inhibiting Proinflammatory Cytokine Production. Mediators Inflamm 2020; 2020:2431705. [PMID: 32317861 PMCID: PMC7150711 DOI: 10.1155/2020/2431705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
CXCL14 is a relatively novel chemokine with a wide spectrum of biological activities. The present study was designed to investigate whether CXCL14 overexpression attenuates sepsis-associated acute kidney injury (AKI) in mice. Sepsis model has been established by cecal ligation and puncture (CLP). CLP induced AKI in mice as assessed by increased renal neutrophil gelatinase-associated lipocalin (NGAL) expression and serum creatinine levels. We found that renal CXCL14 expression in the kidney was significantly decreased at 12 hours after CLP. Correlation analysis demonstrated a negative association between renal CXCL14 expression and AKI markers including serum creatinine and renal NGAL. Moreover, CXCL14 overexpression reduced cytokine (TNF-α, IL-6, and IL-1β) production and NGAL expression in the kidney and decreased serum creatinine levels. In vivo and in vitro experiments found that CXCL14 overexpression inhibited M1 macrophage polarization but increased M2 polarization. Together, these results suggest that CXCL14 overexpression attenuates sepsis-associated AKI probably through the downregulation of macrophages-derived cytokine production. However, further studies are required to elucidate the underlying mechanism.
Collapse
|
47
|
Liverani E, Tursi SA, Cornwell WD, Mondrinos MJ, Sun S, Buttaro BA, Wolfson MR, Rogers TJ, Tükel Ç, Kilpatrick LE. Protein kinase C-delta inhibition is organ-protective, enhances pathogen clearance, and improves survival in sepsis. FASEB J 2019; 34:2497-2510. [PMID: 31908004 DOI: 10.1096/fj.201900897r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 11/11/2022]
Abstract
Sepsis is a leading cause of morbidity and mortality in intensive care units. Previously, we identified Protein Kinase C-delta (PKCδ) as an important regulator of the inflammatory response in sepsis. An important issue in development of anti-inflammatory therapeutics is the risk of immunosuppression and inability to effectively clear pathogens. In this study, we investigated whether PKCδ inhibition prevented organ dysfunction and improved survival without compromising pathogen clearance. Sprague Dawley rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Post-surgery, PBS or a PKCδ inhibitor (200µg/kg) was administered intra-tracheally (IT). At 24 hours post-CLP, there was evidence of lung and kidney dysfunction. PKCδ inhibition decreased leukocyte influx in these organs, decreased endothelial permeability, improved gas exchange, and reduced blood urea nitrogen/creatinine ratios indicating organ protection. PKCδ inhibition significantly decreased bacterial levels in the peritoneal cavity, spleen and blood but did not exhibit direct bactericidal properties. Peritoneal chemokine levels, neutrophil numbers, or macrophage phenotypes were not altered by PKCδ inhibition. Peritoneal macrophages isolated from PKCδ inhibitor-treated septic rats demonstrated increased bacterial phagocytosis. Importantly, PKCδ inhibition increased survival. Thus, PKCδ inhibition improved survival and improved survival was associated with increased phagocytic activity, enhanced pathogen clearance, and decreased organ injury.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sarah A Tursi
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - William D Cornwell
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Mark J Mondrinos
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Shuang Sun
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bettina A Buttaro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marla R Wolfson
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Thomas J Rogers
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Laurie E Kilpatrick
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
48
|
Sun S, Wang J, Wang J, Wang F, Yao S, Xia H. Maresin 1 Mitigates Sepsis-Associated Acute Kidney Injury in Mice via Inhibition of the NF-κB/STAT3/MAPK Pathways. Front Pharmacol 2019; 10:1323. [PMID: 31787899 PMCID: PMC6855000 DOI: 10.3389/fphar.2019.01323] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common and serious complications of sepsis in which the inflammatory cascade plays a crucial role. There is now increasing evidence that lipid mediators derived from the omega-3 fatty acid docosahexaenoic acid (DHA) have potent anti-inflammatory effects that promote the timely regression of acute inflammation. In this study, we investigated the protective effects and molecular mechanism of a novel DHA-derived lipid mediator Maresin 1 (MaR1) on AKI in septic mice. The cecal ligation and puncture (CLP) was used to establish a sepsis mice model. As a result, we found that MaR1 significantly increased the 7-day survival rate of septic mice and the anti-inflammatory factor IL-10 while reducing bacterial load and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β). In addition, MaR1 dose dependently reduced renal injury scores and serum creatinine and urea nitrogen levels in septic mice while inhibiting renal neutrophil infiltration and myeloperoxidase (MPO) activity. In terms of signaling pathway, we found that MaR1 inhibits the expression of phosphorylated p65, Stat3, JNK, ERK, and p38 and significantly reduces nuclear translocation of p65. In conclusion, our results indicate that MaR1 is able to reduce neutrophil infiltration and inhibit nuclear factor-kappa B/signal transducer and activator of transcriptor 3/mitogen-activated protein kinase (NF-κB/STAT3/MAPK) activity and regulate inflammatory cytokine level to inhibit inflammatory response and thereby weaken sepsis-associated AKI in mice.
Collapse
Affiliation(s)
- ShuJun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JiaMei Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - JingXu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - FuQuan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShangLong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - HaiFa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Törnblom S, Nisula S, Vaara ST, Poukkanen M, Andersson S, Pettilä V, Pesonen E. Neutrophil activation in septic acute kidney injury: A post hoc analysis of the FINNAKI study. Acta Anaesthesiol Scand 2019; 63:1390-1397. [PMID: 31325317 DOI: 10.1111/aas.13451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inflammation, reflected by high plasma interleukin-6 concentration, is associated with acute kidney injury (AKI) in septic patients. Neutrophil activation has pathophysiological significance in experimental septic AKI. We hypothesized that neutrophil activation is associated with AKI in critically ill sepsis patients. METHODS We measured plasma (n = 182) and urine (n = 118) activin A (a rapidly released cytosolic neutrophil protein), interleukin-8 (a chemotactic factor for neutrophils), myeloperoxidase (a neutrophil biomarker released in tissues), and interleukin-6 on intensive care unit admission (plasma and urine) and 24 hours later (plasma) in sepsis patients manifesting their first organ dysfunction between 24 hours preceding admission and the second calendar day in intensive care unit. AKI was defined by the Kidney Disease: Improving Global Outcomes criteria. RESULTS Plasma admission interleukin-8 (240 [60-971] vs 50 [19-164] pg/mL, P < .001) and activin A (845 [554-1895] vs 469 [285-862] pg/mL, P < .001) were but myeloperoxidase (169 [111-300] vs 144 [88-215] ng/mL, P = .059) was not higher among patients with AKI compared with those without. Urine admission interleukin-8 (50.4 [19.8-145.3] vs 9.5 [2.7-28.7] ng/mL, P < .001) and myeloperoxidase (7.7 [1.5-12.6] vs 1.9 [0.4-6.9] ng/mL, P < .001) were but activin A (9.7 [1.4-42.6] vs 4.0 [0.0-33.0] ng/mL, P = .064) was not higher in AKI than non-AKI patients. Urine myeloperoxidase correlated with urine interleukin-8 (R = .627, P < .001) but not with plasma myeloperoxidase (R = .131, P = .158). CONCLUSION Interleukin-8 in plasma and urine was associated with septic AKI. Elevated plasma activin A indicates intravascular neutrophil activation in septic AKI. Concomitant plasma and urine myeloperoxidase measurements suggest neutrophil accumulation into injured kidneys.
Collapse
Affiliation(s)
- Sanna Törnblom
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Sara Nisula
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Suvi T. Vaara
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Meri Poukkanen
- Department of Anaesthesia and Intensive Care Medicine Lapland Central Hospital Rovaniemi Finland
| | - Sture Andersson
- Department of Paediatrics Children’s Hospital, University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Ville Pettilä
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Eero Pesonen
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Anaesthesiology University of Helsinki and Helsinki University Hospital Helsinki Finland
| |
Collapse
|
50
|
Peng Y, Liu L, Wang Y, Yao J, Jin F, Tao T, Yuan H, Shi L, Lu S. Treatment with toll-like receptor 2 inhibitor ortho-vanillin alleviates lipopolysaccharide-induced acute kidney injury in mice. Exp Ther Med 2019; 18:4829-4837. [PMID: 31798708 PMCID: PMC6880436 DOI: 10.3892/etm.2019.8157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Reducing inflammation is a promising approach for the prevention and treatment of septic acute kidney injury (AKI), since AKI is characterized by excessive inflammation in the kidney. Previous studies have demonstrated that toll-like receptor 2 (TLR2) is overstimulated, which promotes inflammation by activating the NF-κB signaling pathway, in a lipopolysaccharide (LPS)-induced model of AKI mice. For the present study, it was hypothesized that TLR2 inhibition could reduce inflammation and consequently prevent septic AKI. Therefore, the potential renal protective effects of ortho-vanillin (OV), an inhibitor of TLR2, were investigated in the present study in vitro and in vivo. In vitro treatment with OV on LPS-stimulated mouse podocyte cell line MPC5 did not affect TLR2 expression but interrupted the interaction between TLR2 and its downstream adaptor MyD88, resulting in the reduction of inflammatory cytokines IL-6 and TNF-α expression. In vivo OV treatment in an LPS-challenged mouse model effectively alleviated LPS-induced kidney injury as indicated by histology analysis and the significantly reduced blood urea nitrogen and serum creatinine levels. Additionally, inflammatory cytokines TNF-α, IL-6 and IL-1β expression were also significantly reduced in mice with OV treatment. Signaling pathway analysis further demonstrated that OV treatment did not affect the expression of TLR2 and p65 but suppressed p65 phosphorylation. Taken together, data from the present study demonstrated that OV was effective in protecting renal function against LPS-induced AKI through the inhibition of TLR2/NF-κB signaling and subsequent inflammatory cytokine production. These findings indicated that OV or targeting TLR2 signaling in general, represents a novel therapeutic approach for use in the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Emergency, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China.,Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Long Liu
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Yongfang Wang
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jianyin Yao
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Fang Jin
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Tao Tao
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Hua Yuan
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Lei Shi
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Shiqi Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| |
Collapse
|