1
|
Hochart C, Rouzé H, Rivière B, Ruscheweyh HJ, Hédouin L, Pochon X, Steneck RS, Poulain J, Belser C, Nugues MM, Galand PE. High diversity of crustose coralline algae microbiomes across species and islands, and implications for coral recruits. ENVIRONMENTAL MICROBIOME 2024; 19:112. [PMID: 39710769 DOI: 10.1186/s40793-024-00640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Crustose Coralline Algae (CCA) play a crucial role in coral reef ecosystems, contributing significantly to reef formation and serving as substrates for coral recruitment. The microbiome associated with CCAs may promote coral recruitment, yet these microbial communities remain largely understudied. This study investigates the microbial communities associated with a large number of different CCA species across six different islands of French Polynesia, and assess their potential influence on the microbiome of coral recruits. RESULTS Our findings reveal that CCA harbor a large diversity of bacteria that had not been reported until now. The composition of these microbial communities was influenced by geographic location, and was also closely linked to the host species, identified at a fine taxonomic unit using the 16S rRNA gene of the CCA chloroplast. We demonstrate the usefulness of these ecologically meaningful units that we call CCA chlorotypes. Additionally, we observed a correlation between host phylogeny and microbiome composition (phylosymbiosis) in two CCA species. Contrary to expectations, the CCA microbiome did not act as a microbial reservoir for coral recruits. However, the microbial community of coral recruits varied according to the substrate on which they grew. CONCLUSIONS The study significantly expands the number of characterized CCA microbiomes, and provides new insight into the extensive diversity of these microbial communities. We show distinct microbiomes between and within CCA species, characterized by specific chloroplast 16S rRNA gene sequences. We term these distinct groups "chlorotypes", and demonstrate their utility to differentiate CCA. We also show that only few bacterial taxa were shared between CCA and coral recruits growing in contact with them. Nevertheless, we observed that the microbial community of coral recruits varied depending on the substrate they grew on. We conclude that CCA and their associated bacteria influence the microbiome composition of the coral recruits.
Collapse
Affiliation(s)
- Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France
| | - Héloïse Rouzé
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
- Marine Laboratory, University of Guam, Mangilao, 96923, Guam
| | - Béatrice Rivière
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
| | - Laetitia Hédouin
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
| | - Xavier Pochon
- Molecular Surveillance, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Robert S Steneck
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Maggy M Nugues
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France.
| |
Collapse
|
2
|
Zhang Y, Zhang Y, Tang X, Guo X, Yang Q, Sun H, Wang H, Ling J, Dong J. A transcriptome-wide analysis provides novel insights into how Metabacillus indicus promotes coral larvae metamorphosis and settlement. BMC Genomics 2024; 25:840. [PMID: 39242500 PMCID: PMC11380378 DOI: 10.1186/s12864-024-10742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Coral reefs experience frequent and severe disturbances that can overwhelm their natural resilience. In such cases, ecological restoration is essential for coral reef recovery. Sexual reproduction has been reported to present the simplest and most cost-effective means for coral reef restoration. However, larval settlement and post-settlement survival represent bottlenecks for coral recruitment in sexual reproduction. While bacteria play a significant role in triggering coral metamorphosis and settlement in many coral species, the underlying molecular mechanisms remain largely unknown. In this study, we employed a transcriptome-level analysis to elucidate the intricate interactions between bacteria and coral larvae that are crucial for the settlement process. RESULTS High Metabacillus indicus strain cB07 inoculation densities resulted in the successful induction of metamorphosis and settlement of coral Pocillopora damicoris larvae. Compared with controls, inoculated coral larvae exhibited a pronounced increase in the abundance of strain cB07 during metamorphosis and settlement, followed by a significant decrease in total lipid contents during the settled stage. The differentially expressed genes (DEGs) during metamorphosis were significantly enriched in amino acid, protein, fatty acid, and glucose related metabolic pathways. In settled coral larvae induced by strain cB07, there was a significant enrichment of DEGs with essential roles in the establishment of a symbiotic relationship between coral larvae and their symbiotic partners. The photosynthetic efficiency of strain cB07 induced primary polyp holobionts was improved compared to those of the negative controls. In addition, coral primary polyps induced by strain cB07 showed significant improvements in energy storage and survival. CONCLUSIONS Our findings revealed that strain cB07 can promote coral larval settlement and enhance post-settlement survival and fitness. Manipulating coral sexual reproduction with strain cB07 can overcome the current recruitment bottleneck. This innovative approach holds promise for future coral reef restoration efforts.
Collapse
Affiliation(s)
- Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangrui Guo
- Ocean School, Yantai University, Yantai, 264005, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Hao Sun
- Ocean School, Yantai University, Yantai, 264005, China
| | - Hanzhang Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China.
| |
Collapse
|
3
|
Cooney C, Sommer B, Marzinelli EM, Figueira WF. The role of microbial biofilms in range shifts of marine habitat-forming organisms. Trends Microbiol 2024; 32:190-199. [PMID: 37633773 DOI: 10.1016/j.tim.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
Marine species, such as corals and kelp, are responding to climate change by altering their distributions. Microbial biofilms underpin key processes that affect the establishment, maintenance, and function of these dominant habitat-formers. Climate-mediated changes to microbial biofilms can therefore strongly influence species' range shifts. Here, we review emerging research on the interactions between benthic biofilms and habitat-formers and identify two key areas of interaction where climate change can impact this dynamic: (i) via direct effects on biofilm composition, and (ii) via impacts on the complex feedback loops which exist between the biofilm microbes and habitat-forming organisms. We propose that these key interactions will be fundamental in driving the speed and extent of tropicalisation of coastal ecosystems under climate change.
Collapse
Affiliation(s)
- Christopher Cooney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Will F Figueira
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Alker AT, Farrell MV, Demko AM, Purdy TN, Adak S, Moore BS, Sneed JM, Paul VJ, Shikuma NJ. Linking bacterial tetrabromopyrrole biosynthesis to coral metamorphosis. ISME COMMUNICATIONS 2023; 3:98. [PMID: 37726481 PMCID: PMC10509201 DOI: 10.1038/s43705-023-00309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis with and without attachment in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2. Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides. We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for coral restoration.
Collapse
Affiliation(s)
- Amanda T Alker
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Morgan V Farrell
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | | | - Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Nicholas J Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
5
|
Alker AT, Farrell MV, Demko AM, Purdy TN, Adak S, Moore BS, Sneed JM, Paul VJ, Shikuma NJ. Linking bacterial tetrabromopyrrole biosynthesis to coral metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539906. [PMID: 37214991 PMCID: PMC10197590 DOI: 10.1101/2023.05.08.539906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2 . Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides . We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for restoring degraded coral reefs.
Collapse
|
6
|
Ishii Y, Hatta M, Deguchi R, Kawata M, Maruyama S. Gene expression alterations from reversible to irreversible stages during coral metamorphosis. ZOOLOGICAL LETTERS 2022; 8:4. [PMID: 35078542 PMCID: PMC8787945 DOI: 10.1186/s40851-022-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
For corals, metamorphosis from planktonic larvae to sedentary polyps is an important life event, as it determines the environment in which they live for a lifetime. Although previous studies on the reef-building coral Acropora have clarified a critical time point during metamorphosis when cells are committed to their fates, as defined by an inability to revert back to their previous states as swimming larvae (here referred to as the "point of no return"), the molecular mechanisms of this commitment to a fate remain unclear. To address this issue, we analyzed the transcriptomic changes before and after the point of no return by inducing metamorphosis of Acropora tenuis with Hym-248, a metamorphosis-inducing neuropeptide. Gene Ontology and pathway enrichment analysis of the 5893 differentially expressed genes revealed that G protein-coupled receptors (GPCRs) were enriched, including GABA receptor and Frizzled gene subfamilies, which showed characteristic temporal expression patterns. The GPCRs were then classified by comparison with those of Homo sapiens, Nematostella vectensis and Platynereis dumerilii. Classification of the differentially expressed genes into modules based on expression patterns showed that some modules with large fluctuations after the point of no return were biased toward functions such as protein metabolism and transport. This result suggests that in precommitted larvae, different types of GPCR genes function to ensure a proper environment, whereas in committed larvae, intracellular protein transport and proteolysis may cause a loss of the reversibility of metamorphosis as a result of cell differentiation.
Collapse
Affiliation(s)
- Yuu Ishii
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
| | - Masakado Kawata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Shinichiro Maruyama
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| |
Collapse
|
7
|
Alderdice R, Pernice M, Cárdenas A, Hughes DJ, Harrison PL, Boulotte N, Chartrand K, Kühl M, Suggett DJ, Voolstra CR. Hypoxia as a physiological cue and pathological stress for coral larvae. Mol Ecol 2021; 31:571-587. [PMID: 34716959 DOI: 10.1111/mec.16259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Ocean deoxygenation events are intensifying worldwide and can rapidly drive adult corals into a state of metabolic crisis and bleaching-induced mortality, but whether coral larvae are subject to similar stress remains untested. We experimentally exposed apo-symbiotic coral larvae of Acropora selago to deoxygenation stress with subsequent reoxygenation aligned to their night-day light cycle, and followed their gene expression using RNA-Seq. After 12 h of deoxygenation stress (~2 mg O2 /L), coral planulae demonstrated a low expression of HIF-targeted hypoxia response genes concomitant with a significantly high expression of PHD2 (a promoter of HIFα proteasomal degradation), similar to corresponding adult corals. Despite exhibiting a consistent swimming phenotype compared to control samples, the differential gene expression observed in planulae exposed to deoxygenation-reoxygenation suggests a disruption of pathways involved in developmental regulation, mitochondrial activity, lipid metabolism, and O2 -sensitive epigenetic regulators. Importantly, we found that treated larvae exhibited a disruption in the expression of conserved HIF-targeted developmental regulators, for example, Homeobox (HOX) genes, corroborating how changes in external oxygen levels can affect animal development. We discuss how the observed deoxygenation responses may be indicative of a possible acclimation response or alternatively may imply negative latent impacts for coral larval fitness.
Collapse
Affiliation(s)
- Rachel Alderdice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David J Hughes
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Nadine Boulotte
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Katie Chartrand
- Centre of Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Qld, Australia
| | - Michael Kühl
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.,Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - David J Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
8
|
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The Influence of Bacteria on Animal Metamorphosis. Annu Rev Microbiol 2021; 74:137-158. [PMID: 32905754 DOI: 10.1146/annurev-micro-011320-012753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Amanda T Alker
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nathalie Delherbe
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Kyle E Malter
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nicholas J Shikuma
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| |
Collapse
|
9
|
Baird AH, Guest JR, Edwards AJ, Bauman AG, Bouwmeester J, Mera H, Abrego D, Alvarez-Noriega M, Babcock RC, Barbosa MB, Bonito V, Burt J, Cabaitan PC, Chang CF, Chavanich S, Chen CA, Chen CJ, Chen WJ, Chung FC, Connolly SR, Cumbo VR, Dornelas M, Doropoulos C, Eyal G, Eyal-Shaham L, Fadli N, Figueiredo J, Flot JF, Gan SH, Gomez E, Graham EM, Grinblat M, Gutiérrez-Isaza N, Harii S, Harrison PL, Hatta M, Ho NAJ, Hoarau G, Hoogenboom M, Howells EJ, Iguchi A, Isomura N, Jamodiong EA, Jandang S, Keyse J, Kitanobo S, Kongjandtre N, Kuo CY, Ligson C, Lin CH, Low J, Loya Y, Maboloc EA, Madin JS, Mezaki T, Min C, Morita M, Moya A, Neo SH, Nitschke MR, Nojima S, Nozawa Y, Piromvaragorn S, Plathong S, Puill-Stephan E, Quigley K, Ramirez-Portilla C, Ricardo G, Sakai K, Sampayo E, Shlesinger T, Sikim L, Simpson C, Sims CA, Sinniger F, Spiji DA, Tabalanza T, Tan CH, Terraneo TI, Torda G, True J, Tun K, Vicentuan K, Viyakarn V, Waheed Z, Ward S, Willis B, Woods RM, Woolsey ES, Yamamoto HH, Yusuf S. An Indo-Pacific coral spawning database. Sci Data 2021; 8:35. [PMID: 33514754 PMCID: PMC7846567 DOI: 10.1038/s41597-020-00793-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023] Open
Abstract
The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology.
Collapse
Affiliation(s)
- Andrew H. Baird
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - James R. Guest
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Alasdair J. Edwards
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Andrew G. Bauman
- grid.4280.e0000 0001 2180 6431Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Jessica Bouwmeester
- grid.410445.00000 0001 2188 0957Smithsonian Conservation Biology Institute, Smithsonian Institution, Hawai’i Institute of Marine Biology, 46-007 Lilipuna Rd, Kaneohe, Hawaii 96744 USA
| | - Hanaka Mera
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - David Abrego
- grid.1031.30000000121532610National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, New South Wales 2450 Australia
| | - Mariana Alvarez-Noriega
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Russel C. Babcock
- grid.1016.60000 0001 2173 2719Oceans and Atmosphere, CSIRO, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland 4072 Australia
| | - Miguel B. Barbosa
- grid.11914.3c0000 0001 0721 1626School of Biology, University of St Andrews, Sir Harold Mitchell Building, St Andrews, KY16 9TH United Kingdom
| | - Victor Bonito
- Reef Explorer Fiji, Coral Coast Conservation Center, Votua Village, Korolevu, Nadroga Fiji
| | - John Burt
- grid.440573.1Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Patrick C. Cabaitan
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Ching-Fong Chang
- grid.260664.00000 0001 0313 3026Aquaculture, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Suchana Chavanich
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Chaolun A. Chen
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Chieh-Jhen Chen
- grid.260664.00000 0001 0313 3026Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Wei-Jen Chen
- grid.260664.00000 0001 0313 3026Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Fung-Chen Chung
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Sean R. Connolly
- grid.438006.90000 0001 2296 9689Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Vivian R. Cumbo
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Macquarie Park, New South Wales 2109 Australia
| | - Maria Dornelas
- grid.11914.3c0000 0001 0721 1626Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH United Kingdom
| | - Christopher Doropoulos
- grid.1016.60000 0001 2173 2719Oceans and Atmosphere, CSIRO, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland 4072 Australia
| | - Gal Eyal
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Lee Eyal-Shaham
- grid.22098.310000 0004 1937 0503The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002 Israel
| | - Nur Fadli
- grid.440768.90000 0004 1759 6066Faculty of Marine Science and Fisheries, Syiah Kuala University, Banda Aceh, Aceh Indonesia
| | - Joana Figueiredo
- grid.261241.20000 0001 2168 8324Halmos College of Natural Sciences and Oceanography, Department of Marine and Environmental Science, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, Florida 33004 USA
| | - Jean-François Flot
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, B-1050 Belgium
| | - Sze-Hoon Gan
- grid.265727.30000 0001 0417 0814Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400 Malaysia
| | - Elizabeth Gomez
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Erin M. Graham
- grid.1011.10000 0004 0474 1797eResearch Centre, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Mila Grinblat
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia ,grid.1011.10000 0004 0474 1797Molecular & Cell biology, College of Public Health, Medical & Vet Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Nataly Gutiérrez-Isaza
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Saki Harii
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Peter L. Harrison
- grid.1031.30000000121532610Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia
| | - Masayuki Hatta
- grid.412314.10000 0001 2192 178XDepartment of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Nina Ann Jin Ho
- grid.503008.eChina-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang Selangor, Darul Ehsan, 43900 Malaysia
| | - Gaetan Hoarau
- 12 Rue Caumont, Saint-Pierre Reunion Island, 97410 France
| | - Mia Hoogenboom
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Emily J. Howells
- grid.1007.60000 0004 0486 528XCentre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522 Australia
| | - Akira Iguchi
- grid.466781.a0000 0001 2222 3430Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567 Japan
| | - Naoko Isomura
- grid.471922.b0000 0004 4672 6261Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa, 905-2192 Japan
| | - Emmeline A. Jamodiong
- grid.267625.20000 0001 0685 5104Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 902-0213 Japan
| | - Suppakarn Jandang
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Jude Keyse
- Glenala State High School, Durack, Queensland 4077 Australia
| | - Seiya Kitanobo
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Narinratana Kongjandtre
- grid.411825.b0000 0000 9482 780XAquatic Science, Faculty of Science, Burapha University, 169 LongHaad Bangsaen Rd, Saensook, Mueang Chonburi 20131 Thailand
| | - Chao-Yang Kuo
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Charlon Ligson
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Che-Hung Lin
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Jeffrey Low
- Coastal and Marine Branch, National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore, Singapore
| | - Yossi Loya
- grid.12136.370000 0004 1937 0546School of Zoology, Tel-Aviv University, Ramat Aviv, 6997801 Israel
| | - Elizaldy A. Maboloc
- grid.24515.370000 0004 1937 1450Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Joshua S. Madin
- grid.410445.00000 0001 2188 0957Hawai’i Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Rd, Kaneohe, Hawaii 96744 USA
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki Town, Hata Kochi, 788-0333 Japan
| | - Choo Min
- grid.4280.e0000 0001 2180 6431Reef Ecology Lab, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Masaya Morita
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Aurelie Moya
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Su-Hwei Neo
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Matthew R. Nitschke
- grid.267827.e0000 0001 2292 3111School of Biological Sciences, Victoria University of Wellington, Wellington, 2820 New Zealand
| | | | - Yoko Nozawa
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | | | - Sakanan Plathong
- grid.7130.50000 0004 0470 1162Department of Biology, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd, Hat Yai, 90110 Thailand
| | | | - Kate Quigley
- grid.1046.30000 0001 0328 1619Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia
| | - Catalina Ramirez-Portilla
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, B-1050 Belgium
| | - Gerard Ricardo
- grid.1046.30000 0001 0328 1619Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia
| | - Kazuhiko Sakai
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Eugenia Sampayo
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Tom Shlesinger
- grid.255966.b0000 0001 2229 7296Institute for Global Ecology, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901-6988 USA
| | - Leony Sikim
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Chris Simpson
- 25 Mettam Street, Trigg, Western Australia 6029 Australia
| | - Carrie A. Sims
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Frederic Sinniger
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Davies A. Spiji
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Tracy Tabalanza
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Chung-Hong Tan
- grid.412255.50000 0000 9284 9319Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030 Malaysia
| | - Tullia I. Terraneo
- grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Gergely Torda
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - James True
- grid.419784.70000 0001 0816 7508Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd, Ladkrabang, Bangkok 10520 Thailand
| | - Karenne Tun
- Coastal and Marine Branch, National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore, Singapore
| | - Kareen Vicentuan
- grid.4280.e0000 0001 2180 6431Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227 Singapore, Singapore
| | - Voranop Viyakarn
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Zarinah Waheed
- grid.265727.30000 0001 0417 0814Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400 Malaysia
| | - Selina Ward
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Bette Willis
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia ,grid.1011.10000 0004 0474 1797College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Rachael M. Woods
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Macquarie Park, New South Wales 2109 Australia
| | | | - Hiromi H. Yamamoto
- grid.505718.eOkinawa Churashima Research Center, Okinawa Churashima Foundation, 888 Ishikawa, Motobu, Okinawa, 905-0206 Japan
| | - Syafyudin Yusuf
- grid.412001.60000 0000 8544 230XFaculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
10
|
An unusual microbiome characterises a spatially-aggressive crustose alga rapidly overgrowing shallow Caribbean reefs. Sci Rep 2020; 10:20949. [PMID: 33257715 PMCID: PMC7705730 DOI: 10.1038/s41598-020-76204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/17/2020] [Indexed: 02/01/2023] Open
Abstract
Several species of crustose coralline algae (CCA) and their associated microbial biofilms play important roles in determining the settlement location of scleractinian corals on tropical reefs. In recent decades, peyssonnelid algal crusts (PAC) have become spatial dominants across large areas of shallow Caribbean reefs, where they appear to deter the recruitment of scleractinians. Our genetic investigations of PAC in St. John, US Virgin Islands, amplifying the large-subunit ribosomal RNA and psbA protein D1 marker genes, revealed them to be identical to Ramicrusta textilis previously reported overgrowing corals in Jamaica. Specimens of PAC sampled from the Honduras were likewise identical, confirming that this crustose alga inhabits the easternmost and westernmost regions of the Caribbean. We also analysed 16S rDNA tag amplicon libraries of the biofilms associated with PAC and sympatric CCA, which is favoured for coral settlement. Our results show that the microbial communities on PAC (vs. CCA) are characterized by significantly lower numbers of the epibiotic bacterial genus Pseudoalteromonas, which facilitates the recruitment and settlement of marine invertebrates. From these data, we infer that PAC are therefore unlikely to be attractive as settlement sites for coral larvae. Given the significant ecological change anticipated on these reefs due to increasing cover of PAC, there is an urgent need to further investigate competitive interactions between PAC and scleractinian corals, and elucidate the role of PAC and their associated microbiomes in accentuating phase shifts from coral to algae on tropical reefs.
Collapse
|
11
|
Dobretsov S, Rittschof D. Love at First Taste: Induction of Larval Settlement by Marine Microbes. Int J Mol Sci 2020; 21:ijms21030731. [PMID: 31979128 PMCID: PMC7036896 DOI: 10.3390/ijms21030731] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Marine biofilms are composed of many species of bacteria, unicellular algae, and protozoa. Biofilms can induce, inhibit, or have no effect on settlement of larvae and spores of algae. In this review, we focus on induction of larval settlement by marine bacteria and unicellular eukaryotes and review publications from 2010 to September 2019. This review provides insights from meta-analysis on what is known about the effect of marine biofilms on larval settlement. Of great interest is the impact of different components of marine biofilms, such as bacteria and diatoms, extracellular polymeric substances, quorum sensing signals, unique inductive compounds, exoenzymes, and structural protein degradation products on larval settlement and metamorphosis. Molecular aspects of larval settlement and impact of climate change are reviewed and, finally, potential areas of future investigations are provided.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 P.O. Box 50, Muscat 123, Oman
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman
- Correspondence:
| | - Daniel Rittschof
- Marine Science and Conservation, Marine Laboratory, Nicholas School, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA;
| |
Collapse
|
12
|
Hartmann AC, Marhaver KL, Klueter A, Lovci MT, Closek CJ, Diaz E, Chamberland VF, Archer FI, Deheyn DD, Vermeij MJA, Medina M. Acquisition of obligate mutualist symbionts during the larval stage is not beneficial for a coral host. Mol Ecol 2019; 28:141-155. [PMID: 30506836 DOI: 10.1111/mec.14967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 09/13/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Theory suggests that the direct transmission of beneficial endosymbionts (mutualists) from parents to offspring (vertical transmission) in animal hosts is advantageous and evolutionarily stable, yet many host species instead acquire their symbionts from the environment (horizontal acquisition). An outstanding question in marine biology is why some scleractinian corals do not provision their eggs and larvae with the endosymbiotic dinoflagellates that are necessary for a juvenile's ultimate survival. We tested whether the acquisition of photosynthetic endosymbionts (family Symbiodiniaceae) during the planktonic larval stage was advantageous, as is widely assumed, in the ecologically important and threatened Caribbean reef-building coral Orbicella faveolata. Following larval acquisition, similar changes occurred in host energetic lipid use and gene expression regardless of whether their symbionts were photosynthesizing, suggesting the symbionts did not provide the energetic benefit characteristic of the mutualism in adults. Larvae that acquired photosymbionts isolated from conspecific adults on their natal reef exhibited a reduction in swimming, which may interfere with their ability to find suitable settlement substrate, and also a decrease in survival. Larvae exposed to two cultured algal species did not exhibit differences in survival, but decreased their swimming activity in response to one species. We conclude that acquiring photosymbionts during the larval stage confers no advantages and can in fact be disadvantageous to this coral host. The timing of symbiont acquisition appears to be a critical component of a host's life history strategy and overall reproductive fitness, and this timing itself appears to be under selective pressure.
Collapse
Affiliation(s)
- Aaron C Hartmann
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| | | | | | - Michael T Lovci
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - Collin J Closek
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Erika Diaz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Valérie F Chamberland
- CARMABI Foundation, Willemstad, Curaçao.,Aquatic Microbiology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,SECORE International, Hilliard, Ohio
| | | | - Dimitri D Deheyn
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| | - Mark J A Vermeij
- CARMABI Foundation, Willemstad, Curaçao.,Aquatic Microbiology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
13
|
Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea. Sci Rep 2019; 9:2291. [PMID: 30783133 PMCID: PMC6381176 DOI: 10.1038/s41598-019-38794-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/07/2019] [Indexed: 11/08/2022] Open
Abstract
Settlement of pelagic coral larvae is commonly induced by chemical cues that originate from biofilms and coralline algae. These natural settlement cues initiate signal pathways leading to attachment and metamorphosis of the coral larva. In order to investigate the settlement process and its natural inducers, it is necessary to gain a better understanding of these signal pathways. At present, the pathways and neurotransmitters involved in this signal transduction are still widely unknown. In this study, we exposed larvae of the brooding coral Leptastrea purpurea to five neuroactive compounds known to be present in cnidarians, and K+ Ions. All compounds were applied at different dilutions and settlement behavior of the larvae was documented over 48 h. Dopamine, glutamic acid and epinephrine significantly induced settlement in the coral larvae. The highest observed metamorphosis response was 54% in 10-5 M dopamine. Serotonin, L-DOPA and K+ ions did not have an influence on settlement behavior in our experiments. Exposing larvae to settlement-inducing neurotransmitters and thus bypassing the initial induction could be utilized in coral aquaculture. The active neurotransmitters should be used to further study the settlement process in L. purpurea in greater detail. Their role and relevance should also be assessed for other coral species as they may represent or reveal a universal inducer for coral settlement.
Collapse
|
14
|
Franco AG, Cadavid LF, Arévalo-Ferro C. Biofilms and Extracts from Bacteria Producing " Quorum Sensing" Signaling Molecules Promote Chemotaxis and Settlement Behaviors in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa) Larvae. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n1.73642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many sessile marine invertebrates have life cycles involving the development of larvae that settle on specific substrates to initiate metamorphosis to juvenile forms. Although is recognized that bacterial biofilms play a role in this process, the responsible chemical cues are beginning to be investigated. Here, we tested the role of substrate-specific bacteria biofilms and their Quorum Sensing Signaling Molecule (QSSM) extracts on chemotaxis and settlement of larvae from Hydractinia symbiolongicarpus, a hydroid that grows on gastropod shells occupied by hermit crabs. We isolated and taxonomically identified by 16S rDNA sequencing, 14 bacterial strains from shells having H. symbiolongicarpus. Three isolates, Shigella flexneri, Microbacterium liquefaciens, and Kocuria erythromyxa, were identified to produce QSSMs using biosensors detecting N-acyl-L-homoserine lactones. Multispecies biofilms and QSSM extracts from these bacteria showed a positive chemotactic effect on H. symbiolongicarpus larvae, a phenomenon not observed with mutant strains of E. coli and Chromobacterium violaceum that are unable to produce QSSMs. These biofilms and QSSMs extracts induced high rates of larval attachment, although only 1 % of the attached larvae metamorphosed to primary polyps, in contrast to 99 % of larvae incubated with CsCl, an artificial inductor of attachment and metamorphosis. These observations suggest that bacterial QSSMs participate in H. symbiolongicarpus substrate selection by inducing larval chemotaxis and attachment. Furthermore, they support the notion that settlement in cnidarians is decoupled into two processes, attachment to the substrate and metamorphosis to a primary polyp, where QSSMs likely participate in the former but not in the latter.
Collapse
|
15
|
Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Sci Rep 2018; 8:17557. [PMID: 30510183 PMCID: PMC6277392 DOI: 10.1038/s41598-018-35206-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/30/2018] [Indexed: 01/19/2023] Open
Abstract
Settlement of invertebrates is a key process affecting the structure of marine communities and underpins the ability of benthic ecosystems to recover from disturbance. While it is known that specific crustose coralline algae (CCA) are important for settlement of some coral species, the role of algal chemical compounds versus surface microbial biofilms has long been ambiguous. Using a model system - a CCA of a genus that has been shown to induce high levels of settlement of Acropora corals (Titanoderma cf. tessellatum) and an abundant coral species (Acropora millepora)- we show that chemical effects of CCA are stronger than those from CCA surface microbial biofilms as drivers of coral settlement. Biofilms contributed to some extent to larval settlement via synergistic effects, where microbial cues were dependent on the CCA primary metabolism (production of dissolved organic carbon). We propose that optimal coral settlement is caused by complex biochemical communications among CCA, their epiphytic microbial community and coral larvae.
Collapse
|
16
|
Strader ME, Aglyamova GV, Matz MV. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. BMC Genomics 2018; 19:17. [PMID: 29301490 PMCID: PMC5755313 DOI: 10.1186/s12864-017-4392-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular mechanisms underlying coral larval competence, the ability of larvae to respond to settlement cues, determine their dispersal potential and are potential targets of natural selection. Here, we profiled competence, fluorescence and genome-wide gene expression in embryos and larvae of the reef-building coral Acropora millepora daily throughout 12 days post-fertilization. RESULTS Gene expression associated with competence was positively correlated with transcriptomic response to the natural settlement cue, confirming that mature coral larvae are "primed" for settlement. Rise of competence through development was accompanied by up-regulation of sensory and signal transduction genes such as ion channels, genes involved in neuropeptide signaling, and G-protein coupled receptor (GPCRs). A drug screen targeting components of GPCR signaling pathways confirmed a role in larval settlement behavior and metamorphosis. CONCLUSIONS These results gives insight into the molecular complexity underlying these transitions and reveals receptors and pathways that, if altered by changing environments, could affect dispersal capabilities of reef-building corals. In addition, this dataset provides a toolkit for asking broad questions about sensory capacity in multicellular animals and the evolution of development.
Collapse
Affiliation(s)
- Marie E Strader
- Department of Integrative Biology, The University of Texas at Austin, 1 University Station C0990, Austin, TX, 78712, USA.
| | - Galina V Aglyamova
- Department of Integrative Biology, The University of Texas at Austin, 1 University Station C0990, Austin, TX, 78712, USA
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, 1 University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Eicosanoid Diversity of Stony Corals. Mar Drugs 2018; 16:md16010010. [PMID: 29301345 PMCID: PMC5793058 DOI: 10.3390/md16010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
Oxylipins are well-established lipid mediators in plants and animals. In mammals, arachidonic acid (AA)-derived eicosanoids control inflammation, fever, blood coagulation, pain perception and labor, and, accordingly, are used as drugs, while lipoxygenases (LOX), as well as cyclooxygenases (COX) serve as therapeutic targets for drug development. In soft corals, eicosanoids are synthesized on demand from AA by LOX, COX, and catalase-related allene oxide synthase-lipoxygenase (cAOS-LOX) and hydroperoxide lyase-lipoxygenase (cHPL-LOX) fusion proteins. Reef-building stony corals are used as model organisms for the stress-related genomic studies of corals. Yet, the eicosanoid synthesis capability and AA-derived lipid mediator profiles of stony corals have not been determined. In the current study, the genomic and transcriptomic data about stony coral LOXs, AOS-LOXs, and COXs were analyzed and the eicosanoid profiles and AA metabolites of three stony corals, Acropora millepora, A. cervicornis, and Galaxea fascicularis, were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) coupled with MS-MS and a radiometric detector. Our results confirm that the active LOX and AOS-LOX pathways are present in Acropora sp., which correspond to the genomic/sequence data reported earlier. In addition, LOX, AOS-LOX, and COX products were detected in the closely related species G. fascicularis. In conclusion, the functional 8R-LOX and/or AOS-LOX pathways are abundant among corals, while COXs are restricted to certain soft and stony coral lineages.
Collapse
|
18
|
Courtial L, Picco V, Pagès G, Ferrier-Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res 2017; 6:577. [PMID: 28690832 PMCID: PMC5482343 DOI: 10.12688/f1000research.11365.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated protein kinase (ERK) signalling pathway controls key cellular processes, such as cell cycle regulation, cell fate determination and the response to external stressors. Although ERK functions are well studied in a variety of living organisms ranging from yeast to mammals, its functions in corals are still poorly known. The present work aims to give practical tools to study the expression level of ERK protein and the activity of the ERK signalling pathway in corals. The antibody characterisation experiment was performed five times and identical results were obtained. The present study validated the immune-reactivity of commercially available antibodies directed against ERK and its phosphorylated/activated forms on protein extracts of the reef-building coral
Stylophora pistillata.
Collapse
Affiliation(s)
- Lucile Courtial
- Marine Department, Centre Scientifique de Monaco, Monaco, MC-98000, Monaco.,Sorbonne Universités, Pierre and Marie Curie University, Paris, 75252, France.,Laboratoire d'Excellence, UMR ENTROPIE, Nouméa, 98848, New Caledonia
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, Monaco, MC-98000, Monaco
| | - Gilles Pagès
- Biomedical Department, Centre Scientifique de Monaco, Monaco, MC-98000, Monaco.,Institute for Research on Cancer and Aging of Nice (IRCAN), University Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Centre Antoine Lacassagne, Nice, 06189, France
| | | |
Collapse
|
19
|
The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci Rep 2017; 7:45713. [PMID: 28374828 PMCID: PMC5379690 DOI: 10.1038/srep45713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Coral reefs are of major ecological and socio-economic interest. They are threatened by global warming and natural pressures such as solar ultraviolet radiation. While great efforts have been made to understand the physiological response of corals to these stresses, the signalling pathways involved in the immediate cellular response exhibited by corals remain largely unknown. Here, we demonstrate that c-Jun N-terminal kinase (JNK) activation is involved in the early response of corals to thermal and UV stress. Furthermore, we found that JNK activity is required to repress stress-induced reactive oxygen species (ROS) accumulation in both the coral Stylophora pistillata and human skin cells. We also show that inhibiting JNK activation under stress conditions leads to ROS accumulation, subsequent coral bleaching and cell death. Taken together, our results suggest that an ancestral response, involving the JNK pathway, is remarkably conserved from corals to human, protecting cells from the adverse environmental effects.
Collapse
|
20
|
Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci U S A 2016; 113:10097-102. [PMID: 27551098 DOI: 10.1073/pnas.1603142113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.
Collapse
|
21
|
van de Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, van Oppen MJH. The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol 2015; 24:3390-404. [PMID: 26095670 DOI: 10.1111/mec.13257] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
Abstract
Increasing physical damage on coral reefs from predation, storms and anthropogenic disturbances highlights the need to understand the impact of injury on the coral immune system. In this study, we examined the regulation of the coral immune response over 10 days following physical trauma artificially inflicted on in situ colonies of the coral Acropora aspera, simultaneously with bacterial colonization of the lesions. Corals responded to injury by increasing the expression of immune system-related genes involved in the Toll-like and NOD-like receptor signalling pathways and the lectin-complement system in three phases (<2, 4 and 10 days post-injury). Phenoloxidase activity was also significantly upregulated in two phases (<3 and 10 days post-injury), as were levels of non-fluorescent chromoprotein. In addition, green fluorescent protein expression was upregulated in response to injury from 4 days post-injury, while cyan fluorescent protein expression was reduced. No shifts in the composition of coral-associated bacterial communities were evident following injury based on 16S rRNA gene amplicon pyrosequencing. Bacteria-specific fluorescence in situ hybridization also showed no evidence of bacterial colonization of the wound or regenerating tissues. Coral tissues showed near-complete regeneration of lesions within 10 days. This study demonstrates that corals exhibit immune responses that support rapid recovery following physical injury, maintain coral microbial homeostasis and prevent bacterial infestation that may compromise coral fitness.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia.,AIMS@JCU, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| | - Tracy D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia
| | - William Leggat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - David G Bourne
- AIMS@JCU, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| | - Bette L Willis
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| | - Madeleine J H van Oppen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.,AIMS@JCU, James Cook University, Townsville, Qld 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia
| |
Collapse
|
22
|
Sharp KH, Sneed JM, Ritchie KB, Mcdaniel L, Paul VJ. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain. THE BIOLOGICAL BULLETIN 2015; 228:98-107. [PMID: 25920713 DOI: 10.1086/bblv228n2p98] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces.
Collapse
Affiliation(s)
- K H Sharp
- Eckerd College, 4200 54th Avenue South, St. Petersburg, Florida 33711;
| | - J M Sneed
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949
| | - K B Ritchie
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, Florida 34236; and
| | - L Mcdaniel
- University of South Florida College of Marine Science, 140 7th Avenue S., St. Petersburg, Florida 33701
| | - V J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949
| |
Collapse
|
23
|
Whalan S, Abdul Wahab MA, Sprungala S, Poole AJ, de Nys R. Larval settlement: the role of surface topography for sessile coral reef invertebrates. PLoS One 2015; 10:e0117675. [PMID: 25671562 PMCID: PMC4324781 DOI: 10.1371/journal.pone.0117675] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 11/16/2014] [Indexed: 01/30/2023] Open
Abstract
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.
Collapse
Affiliation(s)
- Steve Whalan
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, 2480, New South Wales, Australia
| | - Muhammad A. Abdul Wahab
- MACRO—the Centre for Macroalgal Resources and Biotechnology, James Cook University, Townsville, 4811, Queensland, Australia
- Australian Institute of Marine Science, PMB 3 Townsville, Queensland, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, 4811, Queensland, Australia
| | - Susanne Sprungala
- ARC Centre for Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, Department of Molecular Sciences, James Cook University, Townsville, 4811, Queensland, Australia
| | - Andrew J. Poole
- CSIRO Manufacturing Flagship, Pigdons Road, Waurn Ponds, 3216, Victoria, Australia
| | - Rocky de Nys
- MACRO—the Centre for Macroalgal Resources and Biotechnology, James Cook University, Townsville, 4811, Queensland, Australia
| |
Collapse
|
24
|
van de Water JAJM, Lamb JB, van Oppen MJH, Willis BL, Bourne DG. Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms. CONSERVATION PHYSIOLOGY 2015; 3:cov032. [PMID: 27293717 PMCID: PMC4778433 DOI: 10.1093/conphys/cov032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/15/2023]
Abstract
Unravelling the contributions of local anthropogenic and seasonal environmental factors in suppressing the coral immune system is important for prioritizing management actions at reefs exposed to high levels of human activities. Here, we monitor health of the model coral Acropora millepora adjacent to a high-use and an unused reef-based tourist platform, plus a nearby control site without a platform, over 7 months spanning a typical austral summer. Comparisons of temporal patterns in a range of biochemical and genetic immune parameters (Toll-like receptor signalling pathway, lectin-complement system, prophenoloxidase-activating system and green fluorescent protein-like proteins) among healthy, injured and diseased corals revealed that corals exhibit a diverse array of immune responses to environmental and anthropogenic stressors. In healthy corals at the control site, expression of genes involved in the Toll-like receptor signalling pathway (MAPK p38, MEKK1, cFos and ATF4/5) and complement system (C3 and Bf) was modulated by seasonal environmental factors in summer months. Corals at reef platform sites experienced additional stressors over the summer, as evidenced by increased expression of various immune genes, including MAPK p38 and MEKK1. Despite increased expression of immune genes, signs of white syndromes were detected in 31% of study corals near tourist platforms in the warmest summer month. Evidence that colonies developing disease showed reduced expression of genes involved in the complement pathway prior to disease onset suggests that their immune systems may have been compromised. Responses to disease and physical damage primarily involved the melanization cascade and GFP-like proteins, and appeared to be sufficient for recovery when summer heat stress subsided. Overall, seasonal and anthropogenic factors may have interacted synergistically to overwhelm the immune systems of corals near reef platforms, leading to increased disease prevalence in summer at these sites.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
- Corresponding author: College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia.
| | - Joleah B Lamb
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Madeleine J H van Oppen
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bette L Willis
- ARCCentre of Excellence for Coral Reef Studies, James Cook University,Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University,Townsville, QLD 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
| | - David G Bourne
- AIMS@JCU, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville MC,Townsville, QLD 4810, Australia
| |
Collapse
|
25
|
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31:1510-53. [DOI: 10.1039/c4np00017j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Siboni N, Abrego D, Motti CA, Tebben J, Harder T. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora. PLoS One 2014; 9:e91082. [PMID: 24632854 PMCID: PMC3954620 DOI: 10.1371/journal.pone.0091082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT-qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement.
Collapse
Affiliation(s)
- Nachshon Siboni
- Australian Institute of Marine Science, Townsville, Australia
- * E-mail:
| | - David Abrego
- Australian Institute of Marine Science, Townsville, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Australia
| | - Jan Tebben
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, Australia
| | - Tilmann Harder
- Australian Institute of Marine Science, Townsville, Australia
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, Australia
| |
Collapse
|