1
|
Bolland W, Marechal I, Petiot C, Porrot F, Guivel-Benhassine F, Brelot A, Casartelli N, Schwartz O, Buchrieser J. SARS-CoV-2 entry and fusion are independent of ACE2 localization to lipid rafts. J Virol 2025; 99:e0182324. [PMID: 39570043 PMCID: PMC11784143 DOI: 10.1128/jvi.01823-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Membrane fusion occurs at the early stages of SARS-CoV-2 replication, during entry of the virus, and later during the formation of multinucleated cells called syncytia. Fusion is mediated by the binding of the viral Spike protein to its receptor ACE2. Lipid rafts are dynamic nanodomains enriched in cholesterol and sphingolipids. Rafts can act as platforms for entry of different viruses by localizing virus receptors, and attachment factors to the same membrane domains. Here, we first demonstrate that cholesterol depletion by methyl-beta-cyclodextrin inhibits Spike-mediated fusion and entry. To further study the role of ACE2 lipid raft localization in SARS-CoV-2 fusion and entry, we designed a GPI-anchored ACE2 construct. Both ACE2 and ACE2-GPI proteins were similarly expressed at the plasma membrane. Through membrane flotation assays, we show that in different cell lines, ACE2-GPI localizes predominantly to raft domains of the plasma membrane while ACE2 is non-raft associated. We then compare the ability of ACE2 and ACE2-GPI to permit SARS-CoV-2 entry, replication, and syncytia formation of different viral variants. We find little difference in the two proteins. Our results demonstrate that SARS-CoV-2 entry and fusion are cholesterol-dependent and raft-independent processes.IMPORTANCERafts are often exploited by viruses and used as platforms to enhance their entry into the cell or spread from cell to cell. The membrane localization of ACE2 and the role of lipid rafts in SARS-CoV-2 entry and cell-to-cell spread are poorly understood. The function of lipid rafts in viral fusion is often studied through their disruption by cholesterol-depleting agents. However, this process may have off-target impacts on viral fusion independently of lipid-raft disruption. Therefore, we created an ACE2 construct that localizes to lipid rafts using a GPI anchor. Conversely, wild-type ACE2 was non-raft associated. We find that the localization of ACE2 to lipid rafts does not modify the fusion dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- William Bolland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Université Paris Cité, Paris, France
| | - Inès Marechal
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Chloé Petiot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Anne Brelot
- Dynamic of Host-Pathogen Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Paris, France
| | - Nicoletta Casartelli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| |
Collapse
|
2
|
Moradbeigi P, Hosseini S, Salehi M, Mogheiseh A. Methyl β-Cyclodextrin-sperm-mediated gene editing (MBCD-SMGE): a simple and efficient method for targeted mutant mouse production. Biol Proced Online 2024; 26:3. [PMID: 38279106 PMCID: PMC10811837 DOI: 10.1186/s12575-024-00230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Generating targeted mutant mice is a crucial technology in biomedical research. This study focuses on optimizing the CRISPR/Cas9 system uptake into sperm cells using the methyl β-cyclodextrin-sperm-mediated gene transfer (MBCD-SMGT) technique to generate targeted mutant blastocysts and mice efficiently. Additionally, the present study elucidates the roles of cholesterol and reactive oxygen species (ROS) in the exogenous DNA uptake by sperm. RESULTS In this study, B6D2F1 mouse sperm were incubated in the c-TYH medium with different concentrations of MBCD (0, 0.75, 1, and 2 mM) in the presence of 20 ng/µl pCAG-eCas9-GFP-U6-gRNA (pgRNA-Cas9) for 30 min. Functional parameters, extracellular ROS, and the copy numbers of internalized plasmid per sperm cell were evaluated. Subsequently, in vitro fertilization (IVF) was performed and fertilization rate, early embryonic development, and transfection rate were assessed. Finally, our study investigated the potential of the MBCD-SMGT technique in combination with the CRISPR-Cas9 system, referred to as MBCD-SMGE (MBCD-sperm-mediated gene editing), for generating targeted mutant blastocysts and mice. Results indicated that cholesterol removal from the sperm membrane using MBCD resulted in a premature acrosomal reaction, an increase in extracellular ROS levels, and a dose-dependent influence on the copy numbers of the internalized plasmids per sperm cell. Moreover, the MBCD-SMGT technique led to a larger population of transfected motile sperm and a higher production rate of GFP-positive blastocysts. Additionally, the current study validated the targeted indel in blastocyst and mouse derived from MBCD-SMGE technique. CONCLUSION Overall, this study highlights the significant potential of the MBCD-SMGE technique for generating targeted mutant mice. It holds enormous promise for modeling human diseases and improving desirable traits in animals.
Collapse
Affiliation(s)
- Parisa Moradbeigi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P. O. Box: 7144169155, Shiraz, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 193954717, Tehran, Iran
- Hasti Noavaran Gene Royan Co, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 193954717, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P. O. Box: 7144169155, Shiraz, Iran
| |
Collapse
|
3
|
Lica JJ, Heldt M, Wieczór M, Chodnicki P, Ptaszyńska N, Maciejewska N, Łęgowska A, Brankiewicz W, Gucwa K, Stupak A, Pradhan B, Gitlin-Domagalska A, Dębowski D, Milewski S, Bieniaszewska M, Grabe GJ, Hellmann A, Rolka K. Dual-Activity Fluoroquinolone-Transportan 10 Conjugates Offer Alternative Leukemia Therapy during Hematopoietic Cell Transplantation. Mol Pharmacol 2023; 105:39-53. [PMID: 37977824 DOI: 10.1124/molpharm.123.000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/01/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Hematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10). Here, we demonstrate that the resultant compounds display promising biologic activities in preclinical studies. These novel conjugates not only exhibit potent antimicrobial effects but are also selective against leukemia cells. The cytotoxic mechanism involves rapid disruption of cell membrane asymmetry leading to membrane damage. Importantly, these conjugates penetrated mammalian cells, accumulating within the nuclear membrane without significant effect on cellular architecture or mitochondrial function. Molecular simulations elucidated the aggregation tendencies of TP10 conjugates within lipid bilayers, resulting in membrane disruption and permeabilization. Moreover, mass spectrometry analysis confirmed efficient reduction of disulfide bonds within TP10 conjugates, facilitating release and activation of the fluoroquinolone derivatives. Intriguingly, these compounds inhibited human topoisomerases, setting them apart from traditional fluoroquinolones. Remarkably, TP10 conjugates generated lower intracellular levels of reactive oxygen species compared with CIP and LVX. The combination of antibacterial and antileukemic properties, coupled with selective cytostatic effects and minimal toxicity toward healthy cells, positions TP10 derivatives as promising candidates for innovative therapeutic approaches in the context of antileukemic HCT. This study highlights their potential in search of more effective leukemia treatments. SIGNIFICANCE STATEMENT: Fluoroquinolones are commonly used antibiotics, while transportan 10 (TP10) is a cell-penetrating peptide (CPP) with anticancer properties. In HCT, microbial infections are the primary cause of illness and death. Combining TP10 with fluoroquinolones enhanced their effects on different cell types. The dual pharmacological action of these conjugates offers a promising proof-of-concept solution for leukemic patients undergoing HCT. Strategically designed therapeutics, incorporating CPPs with antibacterial properties, have the potential to reduce microbial infections in the treatment of malignancies.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Mateusz Heldt
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Milosz Wieczór
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Pawel Chodnicki
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Natalia Ptaszyńska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Natalia Maciejewska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Anna Łęgowska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Wioletta Brankiewicz
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Katarzyna Gucwa
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Anna Stupak
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Bhaskar Pradhan
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Agata Gitlin-Domagalska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Dawid Dębowski
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Sławomir Milewski
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Maria Bieniaszewska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Grzegorz Jan Grabe
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Andrzej Hellmann
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Krzysztof Rolka
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| |
Collapse
|
4
|
Zheng X, Zhang C, Cao H, Zhou X, Liu Z, Wang J. Zinc Cations Uniquely Stabilize Cell Membrane for Cell Cryopreservation. NANO LETTERS 2023; 23:9920-9927. [PMID: 37847595 DOI: 10.1021/acs.nanolett.3c02866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
We report, for the first time, merely using a small amount of (0.039% w/w) Zn(II) instead of very high concentration (25%-50% w/w) of conventional cryoprotective agents (CPAs), i.e., glycerol, during the cryopreservation of red blood cells (RBCs) can lead to a comparable post-thaw recovery rate of ∼95% while avoiding the tedious gradient washout process for the removal of CPA afterward. The result is remarkable, since Zn(II) does not have the ice-controlling ability reported to be critical for CPA. It benefits from its moderate interaction with lipid molecules, facilitating the formation of small and dynamic lipid clusters. Consequently, the membrane fluidity is maintained, and the cells are resilient to osmotic and mechanical stresses during cryopreservation. This study first reports the ion-specific effect on stabilizing the cell membrane; meanwhile, reversibly tuning the structure of biological samples against injuries during the cooling and rewarming provides a new strategy for cryopreservation.
Collapse
Affiliation(s)
- Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanbiao Zhang
- College of Physics and Electronic Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Huimei Cao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Zhang Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianjun Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
5
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
6
|
Bukkuri A, Gatenby RA, Brown JS. GLUT1 production in cancer cells: a tragedy of the commons. NPJ Syst Biol Appl 2022; 8:22. [PMID: 35768428 PMCID: PMC9243083 DOI: 10.1038/s41540-022-00229-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
The tragedy of the commons occurs when competition among individual members of a group leads to overexploitation of a shared resource to the detriment of the overall population. We hypothesize that cancer cells may engage in a tragedy of the commons when competing for a shared resource such as glucose. To formalize this notion, we create a game theoretic model of glucose uptake based on a cell’s investment in transporters relative to that of its neighboring cells. We show that production of transporters per cell increases as the number of competing cells in a microenvironment increases and nutrient uptake per cell decreases. Furthermore, the greater the resource availability, the more intense the tragedy of the commons at the ESS. Based on our simulations, cancer cells produce 2.2–2.7 times more glucose transporters than would produce optimal fitness for all group members. A tragedy of the commons affords novel therapeutic strategies. By simulating GLUT1 inhibitor and glucose deprivation treatments, we demonstrate a synergistic combination with standard-of-care therapies, while also displaying the existence of a trade-off between competition among cancer cells and depression of their gain function. Assuming cancer cell transporter production is heritable, we then show the potential for a sucker’s gambit therapy by exploiting this trade-off. By strategically changing environmental conditions, we can take advantage of cellular competition and gain function depression.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Robert A Gatenby
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
7
|
Muscarinic Receptors and BK Channels Are Affected by Lipid Raft Disruption of Salivary Gland Cells. Int J Mol Sci 2021; 22:ijms22094780. [PMID: 33946369 PMCID: PMC8125525 DOI: 10.3390/ijms22094780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/31/2023] Open
Abstract
Activity-dependent fluid secretion is the most important physiological function of salivary glands and is regulated via muscarinic receptor signaling. Lipid rafts are important for G-protein coupled receptor (GPCR) signaling and ion channels in plasma membranes. However, it is not well understood whether lipid raft disruption affects all membrane events or only specific functions in muscarinic receptor-mediated water secretion in salivary gland cells. We investigated the effects of lipid raft disruption on the major membrane events of muscarinic transcellular water movement in human salivary gland (HSG) cells. We found that incubation with methyl-β-cyclodextrin (MβCD), which depletes lipid rafts, inhibited muscarinic receptor-mediated Ca2+ signaling in HSG cells and isolated mouse submandibular acinar cells. However, MβCD did not inhibit a Ca2+ increase induced by thapsigargin, which activates store-operated Ca2+ entry (SOCE). Interestingly, MβCD increased the activity of the large-conductance Ca2+-activated K+ channel (BK channel). Finally, we found that MβCD did not directly affect the translocation of aquaporin-5 (AQP5) into the plasma membrane. Our results suggest that lipid rafts maintain muscarinic Ca2+ signaling at the receptor level without directly affecting the activation of SOCE induced by intracellular Ca2+ pool depletion or the translocation of AQP5 into the plasma membrane.
Collapse
|
8
|
Stieger B, Steiger J, Locher KP. Membrane lipids and transporter function. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166079. [PMID: 33476785 DOI: 10.1016/j.bbadis.2021.166079] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Transport proteins are essential for cells in allowing the exchange of substances between cells and their environment across the lipid bilayer forming a tight barrier. Membrane lipids modulate the function of transmembrane proteins such as transporters in two ways: Lipids are tightly and specifically bound to transport proteins and in addition they modulate from the bulk of the lipid bilayer the function of transport proteins. This overview summarizes currently available information at the ultrastructural level on lipids tightly bound to transport proteins and the impact of altered bulk membrane lipid composition. Human diseases leading to altered lipid homeostasis will lead to altered membrane lipid composition, which in turn affect the function of transporter proteins.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Julia Steiger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kaspar P Locher
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Umehara T, Tsujita N, Goto M, Tonai S, Nakanishi T, Yamashita Y, Shimada M. Methyl-beta cyclodextrin and creatine work synergistically under hypoxic conditions to improve the fertilization ability of boar ejaculated sperm. Anim Sci J 2021; 91:e13493. [PMID: 33314533 DOI: 10.1111/asj.13493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
Although successful fertilization is completed by only 150 sperm in the pig oviduct, more than 50,000 sperms are required to achieve a fertilization rate of more than 70% by pig in vitro fertilization (IVF). In this study, to improve the efficiency of pig IVF, the effects of hypoxic conditions and treatment with creatine and methyl-beta cyclodextrin (MβCD) on the glycolytic pathway were investigated. Under low O2 conditions, zig-zag motility was strongly induced within 30 min; however, the induction disappeared at 60 min. Although caffeine suppressed zig-zag motility under low O2 conditions, creatine induced and sustained zig-zag motility until 120 min. Additionally, pretreatment with MβCD for 15 min greatly enhanced zig-zag motility via ATP production in sperm incubated with creatine under low O2 conditions. Sperm pretreated with MβCD were used for IVF in medium containing creatine under low O2 conditions. A fertilization rate of approximately 70% was achieved with only 1.0 x 104 sperms/mL, and there were few polyspermic embryos. Therefore, our novel method was beneficial for efficient production of pig embryos in vitro. Moreover, the zig-zag motility may be a novel movement which boar capacitated sperm exhibit in the culture medium.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Natsumi Tsujita
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masaaki Goto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
10
|
Zhang L, Gui T, Console L, Scalise M, Indiveri C, Hausler S, Kullak-Ublick GA, Gai Z, Visentin M. Cholesterol stimulates the cellular uptake of L-carnitine by the carnitine/organic cation transporter novel 2 (OCTN2). J Biol Chem 2020; 296:100204. [PMID: 33334877 PMCID: PMC7948396 DOI: 10.1074/jbc.ra120.015175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The carnitine/organic cation transporter novel 2 (OCTN2) is responsible for the cellular uptake of carnitine in most tissues. Being a transmembrane protein OCTN2 must interact with the surrounding lipid microenvironment to function. Among the main lipid species that constitute eukaryotic cells, cholesterol has highly dynamic levels under a number of physiopathological conditions. This work describes how plasma membrane cholesterol modulates OCTN2 transport of L-carnitine in human embryonic kidney 293 cells overexpressing OCTN2 (OCTN2-HEK293) and in proteoliposomes harboring human OCTN2. We manipulated the cholesterol content of intact cells, assessed by thin layer chromatography, through short exposures to empty and/or cholesterol-saturated methyl-β-cyclodextrin (mβcd), whereas free cholesterol was used to enrich reconstituted proteoliposomes. We measured OCTN2 transport using [3H]L-carnitine, and expression levels and localization by surface biotinylation and Western blotting. A 20-min preincubation with mβcd reduced the cellular cholesterol content and inhibited L-carnitine influx by 50% in comparison with controls. Analogously, the insertion of cholesterol in OCTN2-proteoliposomes stimulated L-carnitine uptake in a dose-dependent manner. Carnitine uptake in cells incubated with empty mβcd and cholesterol-saturated mβcd to preserve the cholesterol content was comparable with controls, suggesting that the mβcd effect on OCTN2 was cholesterol dependent. Cholesterol stimulated L-carnitine influx in cells by markedly increasing the affinity for L-carnitine and in proteoliposomes by significantly enhancing the affinity for Na+ and, in turn, the L-carnitine maximal transport capacity. Because of the antilipogenic and antioxidant features of L-carnitine, the stimulatory effect of cholesterol on L-carnitine uptake might represent a novel protective effect against lipid-induced toxicity and oxidative stress.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- College of Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Stephanie Hausler
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Zhibo Gai
- College of Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
12
|
Moessinger C, Nilsson I, Muhl L, Zeitelhofer M, Heller Sahlgren B, Skogsberg J, Eriksson U. VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content. EMBO Rep 2020; 21:e49343. [PMID: 32449307 PMCID: PMC7332976 DOI: 10.15252/embr.201949343] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Regulation of endothelial nutrient transport is poorly understood. Vascular endothelial growth factor B (VEGF‐B) signaling in endothelial cells promotes uptake and transcytosis of fatty acids from the bloodstream to the underlying tissue, advancing pathological lipid accumulation and lipotoxicity in diabetic complications. Here, we demonstrate that VEGF‐B limits endothelial glucose transport independent of fatty acid uptake. Specifically, VEGF‐B signaling impairs recycling of low‐density lipoprotein receptor (LDLR) to the plasma membrane, leading to reduced cholesterol uptake and membrane cholesterol loading. Reduced cholesterol levels in the membrane leads to a decrease in glucose transporter 1 (GLUT1)‐dependent endothelial glucose uptake. Inhibiting VEGF‐B in vivo reconstitutes membrane cholesterol levels and restores glucose uptake, which is of particular relevance for conditions involving insulin resistance and diabetic complications. In summary, our study reveals a mechanism whereby VEGF‐B regulates endothelial nutrient uptake and highlights the impact of membrane cholesterol for regulation of endothelial glucose transport.
Collapse
Affiliation(s)
- Christine Moessinger
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Nilsson
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lars Muhl
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Josefin Skogsberg
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ulf Eriksson
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Hörmann S, Gai Z, Kullak-Ublick GA, Visentin M. Plasma Membrane Cholesterol Regulates the Allosteric Binding of 1-Methyl-4-Phenylpyridinium to Organic Cation Transporter 2 (SLC22A2). J Pharmacol Exp Ther 2020; 372:46-53. [PMID: 31624079 DOI: 10.1124/jpet.119.260877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/11/2019] [Indexed: 03/08/2025] Open
Abstract
The human organic cation transporter 2 (OCT2) mediates the first step of tubular secretion of most positively charged substances. We describe the role of plasma membrane cholesterol in OCT2 activity. Human embryonic kidney 293 cells overexpressing OCT2 (OCT2-HEK293) and wild-type HEK293 cells (WT-HEK293) were employed. Cellular cholesterol content, assessed by thin layer chromatography, was manipulated using empty methyl-β-cyclodextrin (mβcd) and cholesterol-presaturated mβcd (RAMEB). The effect of mβcd on OCT2 protein stability and oligomerization state was evaluated by immunofluorescence and Western blotting. Transport activity of OCT2 was measured using [3H]1-methyl-4-phenylpyridinium (MPP+). A 20-minute incubation with mβcd reduced the total cellular cholesterol content by 40% to 60% as compared with that in untreated cells, without altering the content of the other main lipid species. In this condition, OCT2-mediated uptake of MPP+ was reduced by ∼50%. When cells were coincubated with empty mβcd and RAMEB, the cholesterol content and OCT2-mediated uptake of MPP+ were comparable to those in untreated cells, suggesting that the mβcd effect on OCT2 activity was cholesterol dependent. In untreated cells, the MPP+ influx kinetics was allosteric, whereas in cells treated with mβcd, one binding site was observed. Our findings suggest that changes in cellular cholesterol content can dramatically alter OCT2-mediated transport, potentially resulting in abnormal tubular secretion and unexpected drug toxicity and drug-drug interactions. SIGNIFICANCE STATEMENT: Plasma membrane cholesterol is important for the allosteric properties of OCT2. From a pharmacologic standpoint, the variability in cholesterol content stemming from certain pathophysiologic conditions such as aging and acute kidney injury should be taken into account as additional source of interpatient pharmacokinetic/pharmacodynamic variability and unexpected toxicity profile of OCT2 substrates, which can escape preclinical and clinical development.
Collapse
Affiliation(s)
- Severin Hörmann
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland (S.H., Z.G., G.A.K.-U., M.V.); Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China (Z.G.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland (S.H., Z.G., G.A.K.-U., M.V.); Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China (Z.G.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland (S.H., Z.G., G.A.K.-U., M.V.); Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China (Z.G.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland (S.H., Z.G., G.A.K.-U., M.V.); Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China (Z.G.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| |
Collapse
|
14
|
Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging. Proc Natl Acad Sci U S A 2018; 115:7033-7038. [PMID: 29915035 DOI: 10.1073/pnas.1803859115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The glucose transporter GLUT1, a plasma membrane protein that mediates glucose homeostasis in mammalian cells, is responsible for constitutive uptake of glucose into many tissues and organs. Many studies have focused on its vital physiological functions and close relationship with diseases. However, the molecular mechanisms of its activation and transport are not clear, and its detailed distribution pattern on cell membranes also remains unknown. To address these, we first investigated the distribution and assembly of GLUT1 at a nanometer resolution by super-resolution imaging. On HeLa cell membranes, the transporter formed clusters with an average diameter of ∼250 nm, the majority of which were regulated by lipid rafts, as well as being restricted in size by both the cytoskeleton and glycosylation. More importantly, we found that the activation of GLUT1 by azide or MβCD did not increase its membrane expression but induced the decrease of the large clusters. The results suggested that sporadic distribution of GLUT1 may facilitate the transport of glucose, implying a potential association between the distribution and activation. Collectively, our work characterized the clustering distribution of GLUT1 and linked its spatial structural organization to the functions, which would provide insights into the activation mechanism of the transporter.
Collapse
|
15
|
Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials. Antimicrob Agents Chemother 2018; 62:AAC.00087-18. [PMID: 29555632 DOI: 10.1128/aac.00087-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022] Open
Abstract
For an increasing number of antimalarial agents identified in high-throughput phenotypic screens, there is evidence that they target PfATP4, a putative Na+ efflux transporter on the plasma membrane of the human malaria parasite Plasmodium falciparum For several such "PfATP4-associated" compounds, it has been noted that their addition to parasitized erythrocytes results in cell swelling. Here we show that six structurally diverse PfATP4-associated compounds, including the clinical candidate KAE609 (cipargamin), induce swelling of both isolated blood-stage parasites and intact parasitized erythrocytes. The swelling of isolated parasites is dependent on the presence of Na+ in the external environment and may be attributed to the osmotic consequences of Na+ uptake. The swelling of the parasitized erythrocyte results in an increase in its osmotic fragility. Countering cell swelling by increasing the osmolarity of the extracellular medium reduces the antiplasmodial efficacy of PfATP4-associated compounds, consistent with cell swelling playing a role in the antimalarial activity of this class of compounds.
Collapse
|
16
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
17
|
Ng XW, Teh C, Korzh V, Wohland T. The Secreted Signaling Protein Wnt3 Is Associated with Membrane Domains In Vivo: A SPIM-FCS Study. Biophys J 2017; 111:418-429. [PMID: 27463143 DOI: 10.1016/j.bpj.2016.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
Abstract
Wnt3 is a morphogen that activates the Wnt signaling pathway and regulates a multitude of biological processes ranging from cell proliferation and cell fate specification to differentiation over embryonic induction to neural patterning. Recent studies have shown that the palmitoylation of Wnt3 by Porcupine, a membrane-bound O-acyltransferase, plays a significant role in the intracellular membrane trafficking of Wnt3 and subsequently, its secretion in live zebrafish embryos, where chemical inhibition of Porcupine reduced the membrane-bound and secreted fractions of Wnt3 and eventually led to defective brain development. However, the membrane distribution of Wnt3 in cells remains not fully understood. Here, we determine the membrane organization of functionally active Wnt3-EGFP in cerebellar cells of live transgenic zebrafish embryos and the role of palmitoylation in its organization using single plane illumination microscopy-fluorescence correlation spectroscopy (SPIM-FCS), a multiplexed modality of FCS, which generates maps of molecular dynamics, concentration, and interaction of biomolecules. The FCS diffusion law was applied to SPIM-FCS data to study the subresolution membrane organization of Wnt3. We find that at the plasma membrane in vivo, Wnt3 is associated with cholesterol-dependent domains. This association reduces with increasing concentrations of Porcupine inhibitor (C59), confirming the importance of palmitoylation of Wnt3 for its association with cholesterol-dependent domains. Reduction of membrane cholesterol also results in a decrease of Wnt3 association with cholesterol-dependent domains in live zebrafish. This demonstrates for the first time, to our knowledge, in live vertebrate embryos that Wnt3 is associated with cholesterol-dependent domains.
Collapse
Affiliation(s)
- Xue Wen Ng
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Yamaguchi R, Perkins G. Deconstructing Signaling Pathways in Cancer for Optimizing Cancer Combination Therapies. Int J Mol Sci 2017. [PMCID: PMC5486080 DOI: 10.3390/ijms18061258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A single cancer cell left behind after surgery and/or chemotherapy could cause a recurrence of cancer. It is our belief that the failure of chemotherapies is the failure to induce apoptosis in all cancer cells. Given the extraordinary heterogeneity of cancer, it is very difficult to eliminate all cancer cells with a single agent targeting a particular gene product. Furthermore, combinations of any two or three agents exhibiting some proven efficacy on a particular cancer type have not fared better, often compounding adverse effects without evidence of expected synergistic effects. Thus, it is imperative that a way be found to select candidates that when combined, will (1) synergize, making the combination therapy greater than the sum of its parts, and (2) target all the cancer cells in a patient. In this article, we discuss our experience and relation to current evidence in the cancer treatment literature in which, by deconstructing signaling networks, we have identified a lynchpin that connects the growth signals present in cancer with mitochondria-dependent apoptotic pathways. By targeting this lynchpin, we have added a key component to a combination therapy that sensitizes cancer cells for apoptosis.
Collapse
Affiliation(s)
- Ryuji Yamaguchi
- Department of Anesthesia, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2685
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
19
|
Villa GR, Hulce JJ, Zanca C, Bi J, Ikegami S, Cahill GL, Gu Y, Lum KM, Masui K, Yang H, Rong X, Hong C, Turner KM, Liu F, Hon GC, Jenkins D, Martini M, Armando AM, Quehenberger O, Cloughesy TF, Furnari FB, Cavenee WK, Tontonoz P, Gahman TC, Shiau AK, Cravatt BF, Mischel PS. An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell 2016; 30:683-693. [PMID: 27746144 PMCID: PMC5479636 DOI: 10.1016/j.ccell.2016.09.008] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/19/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
Abstract
Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers, potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach, particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival, rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623, a clinically viable, highly brain-penetrant LXRα-partial/LXRβ-full agonist selectively kills GBM cells in an LXRβ- and cholesterol-dependent fashion, causing tumor regression and prolonged survival in mouse models. Thus, a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.
Collapse
Affiliation(s)
- Genaro R Villa
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Medical Scientist Training Program, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan J Hulce
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Junfeng Bi
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Shiro Ikegami
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabrielle L Cahill
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuchao Gu
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Kenneth M Lum
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Huijun Yang
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Feng Liu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Gary C Hon
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - David Jenkins
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Martini
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron M Armando
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92093, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Chaudhari A, Håversen L, Mobini R, Andersson L, Ståhlman M, Lu E, Rutberg M, Fogelstrand P, Ekroos K, Mardinoglu A, Levin M, Perkins R, Borén J. ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1643-1651. [DOI: 10.1016/j.bbalip.2016.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/02/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022]
|
21
|
Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum. PLoS Pathog 2016; 12:e1005647. [PMID: 27227970 PMCID: PMC4881962 DOI: 10.1371/journal.ppat.1005647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2), glycosylphosphotidylinositol (GPI)-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.
Collapse
|
22
|
Yokoo M, Kubota Y, Motoyama K, Higashi T, Taniyoshi M, Tokumaru H, Nishiyama R, Tabe Y, Mochinaga S, Sato A, Sueoka-Aragane N, Sueoka E, Arima H, Irie T, Kimura S. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent. PLoS One 2015; 10:e0141946. [PMID: 26535909 PMCID: PMC4633159 DOI: 10.1371/journal.pone.0141946] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML), acute lymphoblastic leukemia and chronic myeloid leukemia (CML). HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors), and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin
- Animals
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/toxicity
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cholesterol/analysis
- Cholesterol/metabolism
- Colorimetry
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- G2 Phase Cell Cycle Checkpoints/drug effects
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myeloid, Acute/drug therapy
- Lung/pathology
- M Phase Cell Cycle Checkpoints/drug effects
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Signal Transduction/drug effects
- Transplantation, Heterologous
- beta-Cyclodextrins/therapeutic use
- beta-Cyclodextrins/toxicity
Collapse
Affiliation(s)
- Masako Yokoo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Department of Transfusion Medicine, Saga University Hospital, Saga, Japan
- * E-mail:
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Taniyoshi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Tokumaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rena Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Akemi Sato
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Eisaburo Sueoka
- Department of Transfusion Medicine, Saga University Hospital, Saga, Japan
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
23
|
Llanos P, Contreras-Ferrat A, Georgiev T, Osorio-Fuentealba C, Espinosa A, Hidalgo J, Hidalgo C, Jaimovich E. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab 2015; 308:E294-305. [PMID: 25491723 DOI: 10.1152/ajpendo.00189.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.
Collapse
Affiliation(s)
- Paola Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile;
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Tihomir Georgiev
- Medical Biophysics, Institute of Physiology und Pathophysiology, Ruprecht Karls Universität, Heidelberg, Germany
| | | | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Park IW, Fan Y, Luo X, Ryou MG, Liu J, Green L, He JJ. HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication. PLoS One 2014; 9:e99545. [PMID: 24911518 PMCID: PMC4050050 DOI: 10.1371/journal.pone.0099545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 05/16/2014] [Indexed: 12/15/2022] Open
Abstract
HIV-1 infection enhances HCV replication and as a consequence accelerates HCV-mediated hepatocellular carcinoma (HCC). However, the precise molecular mechanism by which this takes place is currently unknown. Our data showed that infectious HIV-1 failed to replicate in human hepatocytic cell lines. No discernible virus replication was observed, even when the cell lines transfected with HIV-1 proviral DNA were co-cultured with Jurkat T cells, indicating that the problem of liver deterioration in the co-infected patient is not due to the replication of HIV-1 in the hepatocytes of the HCV infected host. Instead, HIV-1 Nef protein was transferred from nef-expressing T cells to hepatocytic cells through conduits, wherein up to 16% (average 10%) of the cells harbored the transferred Nef, when the hepatocytic cells were co-cultured with nef-expressing Jurkat cells for 24 h. Further, Nef altered the size and numbers of lipid droplets (LD), and consistently up-regulated HCV replication by 1.5∼2.5 fold in the target subgenomic replicon cells, which is remarkable in relation to the initially indolent viral replication. Nef also dramatically augmented reactive oxygen species (ROS) production and enhanced ethanol-mediated up-regulation of HCV replication so as to accelerate HCC. Taken together, these data indicate that HIV-1 Nef is a critical element in accelerating progression of liver pathogenesis via enhancing HCV replication and coordinating modulation of key intra- and extra-cellular molecules for liver decay.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Yan Fan
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaoyu Luo
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Myoung-Gwi Ryou
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jinfeng Liu
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Linden Green
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Johnny J. He
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
25
|
Kornspan JD, Rottem S, Nir-Paz R. Cardiolipin synthetase is involved in antagonistic interaction (reverse CAMP phenomenon) of Mycoplasma species with Staphylococcus aureus beta-hemolysis. J Clin Microbiol 2014; 52:1622-8. [PMID: 24599982 PMCID: PMC3993627 DOI: 10.1128/jcm.00037-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyorhinis has been implicated in a variety of swine diseases. However, little is known about the hemolytic capabilities of Mycoplasma species in general or M. hyorhinis in particular. In this study, we show that M. hyorhinis possesses beta-hemolytic activity which may be involved in the invasion process. M. hyorhinis also possesses antagonistic cooperativity (reverse CAMP phenomenon) with Staphylococcus aureus beta-hemolysis, resulting in the protection of erythrocytes from the beta-hemolytic activity of S. aureus (reverse CAMP). The reversed CAMP phenomenon has been attributed to phospholipase D (PLD) activity. In silico analysis of the M. hyorhinis genome revealed the absence of the pld gene but the presence of the cls gene encoding cardiolipin synthetase, which contains two PLD active domains. The transformation of Mycoplasma gallisepticum that has neither the cls gene nor the reverse CAMP phenomenon with the cls gene from M. hyorhinis resulted in the reverse CAMP phenomenon, suggesting for the first time that reverse CAMP can be induced by cardiolipin synthetase.
Collapse
Affiliation(s)
- Jonathan D. Kornspan
- Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Shlomo Rottem
- Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
26
|
Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857504. [PMID: 24738074 PMCID: PMC3967716 DOI: 10.1155/2014/857504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/02/2022]
Abstract
Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets.
Collapse
|
27
|
Vieceli Dalla Sega F, Zambonin L, Fiorentini D, Rizzo B, Caliceti C, Landi L, Hrelia S, Prata C. Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:806-14. [PMID: 24440277 DOI: 10.1016/j.bbamcr.2014.01.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 12/30/2022]
Abstract
In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.
Collapse
Affiliation(s)
| | - Laura Zambonin
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Diana Fiorentini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Benedetta Rizzo
- Department for Life Quality Studies, University of Bologna, Italy
| | - Cristiana Caliceti
- Department of Cardiology and Laboratory for Technologies of Advanced Therapies (LTTA Center), University Hospital of Ferrara and Maria Cecilia Hospital, GVM Care&Research, E.S: Health Science Foundation, Cotignola, Italy
| | | | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
28
|
Steviol glycosides modulate glucose transport in different cell types. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:348169. [PMID: 24327825 PMCID: PMC3845854 DOI: 10.1155/2013/348169] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.
Collapse
|
29
|
Krügel U, Kühn C. Post-translational regulation of sucrose transporters by direct protein-protein interactions. FRONTIERS IN PLANT SCIENCE 2013; 4:237. [PMID: 23847641 PMCID: PMC3698446 DOI: 10.3389/fpls.2013.00237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/16/2013] [Indexed: 05/07/2023]
Abstract
Sucrose transporters are essential membrane proteins for the allocation of carbon resources in higher plants and protein-protein interactions play a crucial role in the post-translational regulation of sucrose transporters affecting affinity, transport capacity, oligomerization, localization, and trafficking. Systematic screening for protein interactors using sucrose transporters as bait proteins helped identifying several proteins binding to sucrose transporters from apple, Arabidopsis, potato, or tomato using the split ubiquitin system. This mini-review summarizes known sucrose transporter-interacting proteins and their potential function in plants. Not all of the identified interaction partners are postulated to be located at the plasma membrane, but some are predicted to be endoplasmic reticulum-residing proteins such as a protein disulfide isomerase and members of the cytochrome b5 family. Many of the SUT1-interacting proteins are secretory proteins or involved in metabolism. Identification of actin and actin-related proteins as SUT1-interacting proteins confirmed the observation that movement of SUT1-containing intracellular vesicles can be blocked by inhibition of actin polymerization using specific inhibitors. Manipulation of expression of these interacting proteins represents one possible way to modify resource allocation by post-translational regulation of sucrose transporters.
Collapse
Affiliation(s)
- Undine Krügel
- Institute of Plant Biology, University of Zürich, Zürich Switzerland
| | | |
Collapse
|