1
|
Gubin D, Malishevskaya T, Weinert D, Zakharova E, Astakhov S, Cornelissen G. Circadian Disruption in Glaucoma: Causes, Consequences, and Countermeasures. FRONT BIOSCI-LANDMRK 2024; 29:410. [PMID: 39735989 DOI: 10.31083/j.fbl2912410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle. The review delves into the central circadian body clock, highlighting the importance of the retino-hypothalamic tract in conveying light information from the eyes to the SCN. It underscores the role of melanopsin in ipRGCs in absorbing light and initiating biochemical reactions that culminate in the synchronization of the SCN's firing patterns with the external environment. Furthermore, the review discusses local circadian rhythms within the eye, such as those affecting photoreceptor sensitivity, corneal thickness, and intraocular fluid outflow. It emphasizes the potential of optical coherence tomography (OCT) in studying structural losses of RGCs in glaucoma and the associated circadian rhythm disruption. Glaucomatous retinal damage is identified as a cause of circadian disruption, with mechanisms including oxidative stress, neuroinflammation, and direct damage to RGCs. The consequences of such disruption are complex, affecting systemic and local circadian rhythms, sleep patterns, mood, and metabolism. Countermeasures, with implications for glaucoma management, are proposed that focus on strategies to improve circadian health through balanced melatonin timing, daylight exposure, and potential chronotherapeutic approaches. The review calls for further research to elucidate the mechanisms linking glaucoma and circadian disruption and to develop effective interventions to address this critical aspect of the disease.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | | | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany
| | - Ekaterina Zakharova
- Yakutsk Republican Ophthalmological Clinical Hospital, 677005 Yakutsk, Russia
| | - Sergey Astakhov
- Department of Ophthalmolgy, Pavlov First State Medical University of St Petersburg, 197022 St Petersburg, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Ling Y, Wang Y, Ye J, Luan C, Bi A, Gu Y, Shi X. Changes in Intrinsically Photosensitive Retinal Ganglion Cells, Dopaminergic Amacrine Cells, and Their Connectivity in the Retinas of Lid Suture Myopia. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39230992 PMCID: PMC11379095 DOI: 10.1167/iovs.65.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Purpose This study investigates alterations in intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells (DACs) in lid suture myopia (LSM) rats. Methods LSM was induced in rats by suturing the right eyes for 4 weeks. Double immunofluorescence staining of ipRGCs and DACs in whole-mount retinas was performed to analyze changes in the density and morphology of control, LSM, and fellow eyes. Real-time quantitative PCR and Western blotting were used to detect related genes and protein expression levels. Results Significant myopia was induced in the lid-sutured eye, but the fellow eye was not different to control. Decreased ipRGC density with paradoxically increased overall melanopsin expression and enlarged dendritic beads was observed in both the LSM and fellow eyes of the LSM rat retinas. In contrast, DAC changes occurred only in the LSM eyes, with reduced DAC density and tyrosine hydroxylase (TH) expression, sparser dendritic processes, and fewer varicosities. Interestingly, contacts between ipRGCs and DACs in the inner plexiform layer (IPL) and the expression of pituitary adenylate cyclase-activating polypeptide (PACAP) and vesicular monoamine transporter protein 2 (VMAT2) mRNA were decreased in the LSM eyes. Conclusions The ipRGCs and DACs in LSM rat retinas undergo multiple alterations in density, morphology, and related molecule expressions. However, the ipRGC changes alone appear not to be required for the development of myopia, given that myopia is only induced in the lid-sutured eye, and they are unlikely alone to drive the DAC changes. Reduced contacts between ipRGCs and DACs in the LSM eyes may be the structural foundation for the impaired signaling between them. PACAP and VMAT2, strongly associated with ipRGCs and DACs, may play important roles in LSM through complex mechanisms.
Collapse
Affiliation(s)
- Ying Ling
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingjing Ye
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changlin Luan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ailing Bi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xuefeng Shi
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Adhikari P, Uprety S, Feigl B, Zele AJ. Melanopsin-mediated amplification of cone signals in the human visual cortex. Proc Biol Sci 2024; 291:20232708. [PMID: 38808443 PMCID: PMC11285915 DOI: 10.1098/rspb.2023.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood. Here, we determined how the change in daytime melanopsin activation affects the human cone pathway signals in the visual cortex. A 5-primary silent-substitution method was developed to evaluate the dependence of cone-mediated signals on melanopsin activation by spectrally tuning the lights and stabilizing the rhodopsin activation under a constant cone photometric luminance. The retinal (white noise electroretinogram) and cortical responses (visual evoked potential) were simultaneously recorded with the photoreceptor-directed lights in 10 observers. By increasing the melanopsin activation, a reverse response pattern was observed with cone signals being supressed in the retina by 27% (p = 0.03) and subsequently amplified by 16% (p = 0.01) as they reach the cortex. We infer that melanopsin activity can amplify cone signals at sites distal to retinal bipolar cells to cause a decrease in the psychophysical Weber fraction for cone vision.
Collapse
Affiliation(s)
- Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Queensland Eye Institute, Brisbane, Queensland 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
4
|
Amorim-de-Sousa A, Macedo-de-Araújo RJ, Fernandes P, González-Méijome JM, Queirós A. Enhancement of the Inner Foveal Response of Young Adults with Extended-Depth-of-Focus Contact Lens for Myopia Management. Vision (Basel) 2024; 8:19. [PMID: 38651440 PMCID: PMC11036275 DOI: 10.3390/vision8020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Myopia management contact lenses have been shown to successfully decrease the rate of eye elongation in children by changing the peripheral refractive profile of the retina. Despite the efforts of the scientific community, the retinal response mechanism to defocus is still unknown. The purpose of this study was to evaluate the local electrophysiological response of the retina with a myopia control contact lens (CL) compared to a single-vision CL of the same material. METHODS The retinal electrical activity and peripheral refraction of 16 eyes (16 subjects, 27.5 ± 5.7 years, 13 females and 3 males) with myopia between -0.75 D and -6.00 D (astigmatism < 1.00 D) were assessed with two CLs (Filcon 5B): a single-vision (SV) CL and an extended-depth-of-focus (EDOF) CL used for myopia management. The peripheral refraction was assessed with an open-field WAM-5500 auto-refractometer/keratometer in four meridians separated by 45° at 2.50 m distance. The global-flash multifocal electroretinogram (gf-mfERG) was recorded with the Reti-port/scan21 (Roland Consult) using a stimulus of 61 hexagons. The implicit time (in milliseconds) and response density (RD, in nV/deg2) of the direct (DC) and induced (IC) components were used for comparison between lenses in physiological pupil conditions. RESULTS Although the EDOF decreased both the HCVA and the LCVA (one and two lines, respectively; p < 0.003), it still allowed a good VA. The EDOF lens induced a myopic shift in most retinal areas, with a higher and statistically significant effect on the nasal retina. No differences in the implicit times of the DC and IC components were observed between SV and EDOF. Compared with the SV, the EDOF lens showed a higher RD in the IC component in the foveal region (p = 0.032). In the remaining retinal areas, the EDOF evoked lower, non-statistically significant RD in both the DC and IC components. CONCLUSIONS The EDOF myopia control CL enhanced the response of the inner layers of the fovea. This might suggest that, besides other mechanisms potentially involved, the central foveal retinal activity might be involved in the mechanism of myopia control with these lenses.
Collapse
Affiliation(s)
- Ana Amorim-de-Sousa
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
| | - Rute J. Macedo-de-Araújo
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities (CF-UM-UP), 4710-057 Braga, Portugal
| | - Paulo Fernandes
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities (CF-UM-UP), 4710-057 Braga, Portugal
| | - José M. González-Méijome
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities (CF-UM-UP), 4710-057 Braga, Portugal
| | - António Queirós
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities (CF-UM-UP), 4710-057 Braga, Portugal
| |
Collapse
|
5
|
McMahon DG, Dowling JE. Neuromodulation: Actions of Dopamine, Retinoic Acid, Nitric Oxide, and Other Substances on Retinal Horizontal Cells. Eye Brain 2023; 15:125-137. [PMID: 37928979 PMCID: PMC10625386 DOI: 10.2147/eb.s420050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 11/07/2023] Open
Abstract
Whereas excitation and inhibition of neurons are well understood, it is clear that neuromodulatory influences on neurons and their synapses play a major role in shaping neural activity in the brain. Memory and learning, emotional and other complex behaviors, as well as cognitive disorders have all been related to neuromodulatory mechanisms. A number of neuroactive substances including monoamines such as dopamine and neuropeptides have been shown to act as neuromodulators, but other substances thought to play very different roles in the body and brain act as neuromodulators, such as retinoic acid. We still understand little about how neuromodulatory substances exert their effects, and the present review focuses on how two such substances, dopamine and retinoic acid, exert their effects. The emphasis is on the underlying neuromodulatory mechanisms down to the molecular level that allow the second order bipolar cells and the output neurons of the retina, the ganglion cells, to respond to different environmental (ie lighting) conditions. The modulation described affects a simple circuit in the outer retina, involves several neuroactive substances and is surprisingly complex and not fully understood.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
6
|
Kinane C, Calligaro H, Jandot A, Coutanson C, Haddjeri N, Bennis M, Dkhissi-Benyahya O. Dopamine modulates the retinal clock through melanopsin-dependent regulation of cholinergic waves during development. BMC Biol 2023; 21:146. [PMID: 37365544 DOI: 10.1186/s12915-023-01647-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The mammalian retina contains an autonomous circadian clock that controls various aspects of retinal physiology and function, including dopamine (DA) release by amacrine cells. This neurotransmitter plays a critical role in retina development, visual signalling, and phase resetting of the retinal clock in adulthood. Interestingly, bidirectional regulation between dopaminergic cells and melanopsin-expressing retinal ganglion cells has been demonstrated in the adult and during development. Additionally, the adult melanopsin knockout mouse (Opn4 -/-) exhibits a shortening of the endogenous period of the retinal clock. However, whether DA and / or melanopsin influence the retinal clock mechanism during its maturation is still unknown. RESULTS Using wild-type Per2 Luc and melanopsin knockout (Opn4 -/-::Per2 Luc) mice at different postnatal stages, we found that the retina generates self-sustained circadian rhythms from postnatal day 5 in both genotypes and that the ability to express these rhythms emerges in the absence of external time cues. Intriguingly, only in wild-type explants, DA supplementation lengthened the endogenous period of the clock during the first week of postnatal development through both D1- and D2-like dopaminergic receptors. Furthermore, the blockade of spontaneous cholinergic retinal waves, which drive DA release in the early developmental stages, shortened the period and reduced the light-induced phase shift of the retinal clock only in wild-type retinas. CONCLUSIONS These data suggest that DA modulates the molecular core of the clock through melanopsin-dependent regulation of acetylcholine retinal waves, thus offering an unprecedented role of DA and melanopsin in the endogenous functioning and the light response of the retinal clock during development.
Collapse
Affiliation(s)
- Chaimaa Kinane
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, University Cadi Ayyad, Marrakech, Morocco
| | - Hugo Calligaro
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
- Salk Institute for Biological Studies, La Lolla, CA, USA
| | - Antonin Jandot
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
| | - Christine Coutanson
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
| | - Nasser Haddjeri
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, University Cadi Ayyad, Marrakech, Morocco
| | - Ouria Dkhissi-Benyahya
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France.
| |
Collapse
|
7
|
Amorim-de-Sousa A, Pauné J, Silva-Leite S, Fernandes P, Gozález-Méijome JM, Queirós A. Changes in Choroidal Thickness and Retinal Activity with a Myopia Control Contact Lens. J Clin Med 2023; 12:jcm12113618. [PMID: 37297813 DOI: 10.3390/jcm12113618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE The axial elongation in myopia is associated with some structural and functional retinal changes. The purpose of this study was to investigate the effect of a contact lens (CL) intended for myopia control on the choroidal thickness (ChT) and the retinal electrical response. METHODS Ten myopic eyes (10 subjects, 18-35 years of age) with spherical equivalents from -0.75 to -6.00 diopters (D) were enrolled. The ChT at different eccentricities (3 mm temporal, 1.5 mm temporal, sub-foveal ChT, 1.5 mm nasal, and 3 mm nasal), the photopic 3.0 b-wave of ffERG and the PERG were recorded and compared with two material-matched contact lenses following 30 min of wear: a single-vision CL (SV) and a radial power gradient CL with +1.50 D addition (PG). RESULTS Compared with the SV, the PG increased the ChT at all eccentricities, with statistically significant differences at 3.0 mm temporal (10.30 ± 11.51 µm, p = 0.020), in sub-foveal ChT (17.00 ± 20.01 µm, p = 0.025), and at 1.5 mm nasal (10.70 ± 14.50 µm, p = 0.044). The PG decreased significantly the SV amplitude of the ffERG photopic b-wave (11.80 (30.55) µV, p = 0.047), N35-P50 (0.90 (0.96) µV, p = 0.017), and P50-N95 (0.46 (2.50) µV, p = 0.047). The amplitude of the a-wave was negatively correlated with the ChT at 3.0T (r = -0.606, p = 0.038) and 1.5T (r = -0.748, p = 0.013), and the amplitude of the b-wave showed a negative correlation with the ChT at 1.5T (r = -0.693, p = 0.026). CONCLUSIONS The PG increased the ChT in a similar magnitude observed in previous studies. These CLs attenuated the amplitude of the retinal response, possibly due to the combined effect of the induced peripheral defocus high-order aberrations impacting the central retinal image. The decrease in the response of bipolar and ganglion cells suggests a potential retrograde feedback signaling effect from the inner to outer retinal layers observed in previous studies.
Collapse
Affiliation(s)
- Ana Amorim-de-Sousa
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
| | - Jaume Pauné
- Teknon Medical Center, 08022 Barcelona, Spain
- Faculty of Optics and Optometry Polytechnic, University of Catalonia, 08222 Terrassa, Spain
| | - Sara Silva-Leite
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
| | - Paulo Fernandes
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities, CF-UM-UP, 4710-057 Braga, Portugal
| | - José Manuel Gozález-Méijome
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities, CF-UM-UP, 4710-057 Braga, Portugal
| | - António Queirós
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities, CF-UM-UP, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Raja S, Milosavljevic N, Allen AE, Cameron MA. Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells. Front Cell Neurosci 2023; 16:1095787. [PMID: 36687522 PMCID: PMC9853061 DOI: 10.3389/fncel.2022.1095787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are photoreceptors located in the ganglion cell layer. They project to brain regions involved in predominately non-image-forming functions including entrainment of circadian rhythms, control of the pupil light reflex, and modulation of mood and behavior. In addition to possessing intrinsic photosensitivity via the photopigment melanopsin, these cells receive inputs originating in rods and cones. While most research in the last two decades has focused on the downstream influence of ipRGC signaling, recent studies have shown that ipRGCs also act retrogradely within the retina itself as intraretinal signaling neurons. In this article, we review studies examining intraretinal and, in addition, intraocular signaling pathways of ipRGCs. Through these pathways, ipRGCs regulate inner and outer retinal circuitry through both chemical and electrical synapses, modulate the outputs of ganglion cells (both ipRGCs and non-ipRGCs), and influence arrangement of the correct retinal circuitry and vasculature during development. These data suggest that ipRGC function plays a significant role in the processing of image-forming vision at its earliest stage, positioning these photoreceptors to exert a vital role in perceptual vision. This research will have important implications for lighting design to optimize the best chromatic lighting environments for humans, both in adults and potentially even during fetal and postnatal development. Further studies into these unique ipRGC signaling pathways could also lead to a better understanding of the development of ocular dysfunctions such as myopia.
Collapse
Affiliation(s)
- Sushmitha Raja
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Nina Milosavljevic
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Morven A. Cameron
- School of Medicine, Western Sydney University, Sydney, NSW, Australia,*Correspondence: Morven A. Cameron,
| |
Collapse
|
9
|
Chakraborty R, Collins MJ, Kricancic H, Davis B, Alonso-Caneiro D, Yi F, Baskaran K. The effect of intrinsically photosensitive retinal ganglion cell (ipRGC) stimulation on axial length changes to imposed optical defocus in young adults. JOURNAL OF OPTOMETRY 2023; 16:53-63. [PMID: 35589503 PMCID: PMC9811374 DOI: 10.1016/j.optom.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The intrinsically photosensitive retinal ganglion cells (ipRGCs) regulate pupil size and circadian rhythms. Stimulation of the ipRGCs using short-wavelength blue light causes a sustained pupil constriction known as the post-illumination pupil response (PIPR). Here we examined the effects of ipRGC stimulation on axial length changes to imposed optical defocus in young adults. MATERIALS AND METHODS Nearly emmetropic young participants were given either myopic (+3 D, n = 16) or hyperopic (-3 D, n = 17) defocus in their right eye for 2 h. Before and after defocus, a series of axial length measurements for up to 180 s were performed in the right eye using the IOL Master following exposure to 5 s red (625 nm, 3.74 × 1014 photons/cm2/s) and blue (470 nm, 3.29 × 1014 photons/cm2/s) stimuli. The pupil measurements were collected from the left eye to track the ipRGC activity. The 6 s and 30 s PIPR, early and late area under the curve (AUC), and time to return to baseline were calculated. RESULTS The PIPR with blue light was significantly stronger after 2 h of hyperopic defocus as indicated by a lower 6 and 30 s PIPR and a larger early and late AUC (all p<0.05). Short-wavelength ipRGC stimulation also significantly exaggerated the ocular response to hyperopic defocus, causing a significantly greater increase in axial length than that resulting from the hyperopic defocus alone (p = 0.017). Neither wavelength had any effect on axial length with myopic defocus. CONCLUSIONS These findings suggest an interaction between myopiagenic hyperopic defocus and ipRGC signaling.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Caring Futures Institute, Flinders University, Bedford Park, SA 5042, Australia; College of Nursing and Health Sciences, Optometry and Vision Science, Sturt North, Flinders University, Bedford Park, SA 5042, Australia.
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Henry Kricancic
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Brett Davis
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Fan Yi
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | | |
Collapse
|
10
|
Vlasiuk A, Asari H. Feedback from retinal ganglion cells to the inner retina. PLoS One 2021; 16:e0254611. [PMID: 34292988 PMCID: PMC8297895 DOI: 10.1371/journal.pone.0254611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are thought to be strictly postsynaptic within the retina. They carry visual signals from the eye to the brain, but do not make chemical synapses onto other retinal neurons. Nevertheless, they form gap junctions with other RGCs and amacrine cells, providing possibilities for RGC signals to feed back into the inner retina. Here we identified such feedback circuitry in the salamander and mouse retinas. First, using biologically inspired circuit models, we found mutual inhibition among RGCs of the same type. We then experimentally determined that this effect is mediated by gap junctions with amacrine cells. Finally, we found that this negative feedback lowers RGC visual response gain without affecting feature selectivity. The principal neurons of the retina therefore participate in a recurrent circuit much as those in other brain areas, not being a mere collector of retinal signals, but are actively involved in visual computations.
Collapse
Affiliation(s)
- Anastasiia Vlasiuk
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
- * E-mail:
| |
Collapse
|
11
|
Uprety S, Zele AJ, Feigl B, Cao D, Adhikari P. Optimizing methods to isolate melanopsin-directed responses. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:1051-1064. [PMID: 34263761 DOI: 10.1364/josaa.423343] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The intrinsic melanopsin photoresponse may initiate visual signals that differ in spatiotemporal characteristics from the cone-opsin- and rhodopsin-mediated signals. Applying the CIE standard observer functions in silent-substitution methods can require individual differences in photoreceptor spectral sensitivities and pre-receptoral filtering to be corrected; failure to do so can lead to the intrusion of more sensitive cone processes with putative melanopsin-directed stimuli. Here we evaluate heterochromatic flicker photometry (HFP) and photoreceptor-directed temporal white noise as techniques to limit the effect of these individual differences. Individualized luminous efficiency functions (V(λ)) were compared to the CIE standard observer functions. We show that adapting chromaticities used in silent-substitution methods can deviate by up to 54% in luminance when estimated with the individual and standard observer functions. These deviations lead to inadvertent cone intrusions in the visual functions measured with melanopsin-directed stimuli. To eliminate the intrusions, individual HFP corrections are sufficient at low frequencies (∼1Hz) but temporal white noise is also required at higher frequencies to desensitize penumbral cones. We therefore recommend the selective application of individualized observer calibration and/or temporal white noise in silent-substitution paradigms when studying melanopsin-directed photoresponses.
Collapse
|
12
|
Amorim-de-Sousa A, Schilling T, Fernandes P, Seshadri Y, Bahmani H, González-Méijome JM. Blue light blind-spot stimulation upregulates b-wave and pattern ERG activity in myopes. Sci Rep 2021; 11:9273. [PMID: 33927248 PMCID: PMC8085027 DOI: 10.1038/s41598-021-88459-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
Upregulation of retinal dopaminergic activity may be a target treatment for myopia progression. This study aimed to explore the viability of inducing changes in retinal electrical activity with short-wavelength light targeting melanopsin-expressing retinal ganglion cells (ipRGCs) passing through the optic nerve head. Fifteen healthy non-myopic or myopic young adults were recruited and underwent stimulation with blue light using a virtual reality headset device. Amplitudes and implicit times from photopic 3.0 b-wave and pattern electroretinogram (PERG) were measured at baseline and 10 and 20 min after stimulation. Relative changes were compared between non-myopes and myopes. The ERG b-wave amplitude was significantly larger 20 min after blind-spot stimulation compared to baseline (p < 0.001) and 10 min (p < 0.001) post-stimulation. PERG amplitude P50-N95 also showed a significant main effect for ‘Time after stimulation’ (p < 0.050). Implicit times showed no differences following blind-spot stimulation. PERG and b-wave changes after blind-spot stimulation were stronger in myopes than non-myopes. It is possible to induce significant changes in retinal electrical activity by stimulating ipRGCs axons at the optic nerve head with blue light. The results suggest that the changes in retinal electrical activity are located at the inner plexiform layer and are likely to involve the dopaminergic system.
Collapse
Affiliation(s)
- Ana Amorim-de-Sousa
- Clinical & Experimental Optometry Research Lab (CEORLab), Center of Physics (Optometry), School of Sciences, University of Minho, Gualtar, 4710-057, Braga, Portugal
| | | | - Paulo Fernandes
- Clinical & Experimental Optometry Research Lab (CEORLab), Center of Physics (Optometry), School of Sciences, University of Minho, Gualtar, 4710-057, Braga, Portugal
| | | | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - José Manuel González-Méijome
- Clinical & Experimental Optometry Research Lab (CEORLab), Center of Physics (Optometry), School of Sciences, University of Minho, Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
13
|
Landis EG, Park HN, Chrenek M, He L, Sidhu C, Chakraborty R, Strickland R, Iuvone PM, Pardue MT. Ambient Light Regulates Retinal Dopamine Signaling and Myopia Susceptibility. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33502461 PMCID: PMC7846952 DOI: 10.1167/iovs.62.1.28] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Exposure to high-intensity or outdoor lighting has been shown to decrease the severity of myopia in both human epidemiological studies and animal models. Currently, it is not fully understood how light interacts with visual signaling to impact myopia. Previous work performed in the mouse retina has demonstrated that functional rod photoreceptors are needed to develop experimentally-induced myopia, alluding to an essential role for rod signaling in refractive development. Methods To determine whether dim rod-dominated illuminance levels influence myopia susceptibility, we housed male C57BL/6J mice under 12:12 light/dark cycles with scotopic (1.6 × 10−3 candela/m2), mesopic (1.6 × 101 cd/m2), or photopic (4.7 × 103 cd/m2) lighting from post-natal day 23 (P23) to P38. Half the mice received monocular exposure to −10 diopter (D) lens defocus from P28–38. Molecular assays to measure expression and content of DA-related genes and protein were conducted to determine how illuminance and lens defocus alter dopamine (DA) synthesis, storage, uptake, and degradation and affect myopia susceptibility in mice. Results We found that mice exposed to either scotopic or photopic lighting developed significantly less severe myopic refractive shifts (lens treated eye minus contralateral eye; –1.62 ± 0.37D and −1.74 ± 0.44D, respectively) than mice exposed to mesopic lighting (–3.61 ± 0.50D; P < 0.005). The 3,4-dihydroxyphenylacetic acid /DA ratio, indicating DA activity, was highest under photopic light regardless of lens defocus treatment (controls: 0.09 ± 0.011 pg/mg, lens defocus: 0.08 ± 0.008 pg/mg). Conclusions Lens defocus interacted with ambient conditions to differentially alter myopia susceptibility and DA-related genes and proteins. Collectively, these results show that scotopic and photopic lighting protect against lens-induced myopia, potentially indicating that a broad range of light levels are important in refractive development.
Collapse
Affiliation(s)
- Erica G Landis
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States
| | - Han Na Park
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Li He
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Curran Sidhu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Ranjay Chakraborty
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States
| | - Ryan Strickland
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Department of Pharmacology, Emory University, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
14
|
Muralidharan AR, Lança C, Biswas S, Barathi VA, Wan Yu Shermaine L, Seang-Mei S, Milea D, Najjar RP. Light and myopia: from epidemiological studies to neurobiological mechanisms. Ther Adv Ophthalmol 2021; 13:25158414211059246. [PMID: 34988370 PMCID: PMC8721425 DOI: 10.1177/25158414211059246] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Myopia is far beyond its inconvenience and represents a true, highly prevalent, sight-threatening ocular condition, especially in Asia. Without adequate interventions, the current epidemic of myopia is projected to affect 50% of the world population by 2050, becoming the leading cause of irreversible blindness. Although blurred vision, the predominant symptom of myopia, can be improved by contact lenses, glasses or refractive surgery, corrected myopia, particularly high myopia, still carries the risk of secondary blinding complications such as glaucoma, myopic maculopathy and retinal detachment, prompting the need for prevention. Epidemiological studies have reported an association between outdoor time and myopia prevention in children. The protective effect of time spent outdoors could be due to the unique characteristics (intensity, spectral distribution, temporal pattern, etc.) of sunlight that are lacking in artificial lighting. Concomitantly, studies in animal models have highlighted the efficacy of light and its components in delaying or even stopping the development of myopia and endeavoured to elucidate possible mechanisms involved in this process. In this narrative review, we (1) summarize the current knowledge concerning light modulation of ocular growth and refractive error development based on studies in human and animal models, (2) summarize potential neurobiological mechanisms involved in the effects of light on ocular growth and emmetropization and (3) highlight a potential pathway for the translational development of noninvasive light-therapy strategies for myopia prevention in children.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Milea
- Singapore Eye Research Institute, Singapore
| | - Raymond P Najjar
- Visual Neurosciences Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
| |
Collapse
|
15
|
Abstract
Retinal ganglion cells (RGCs) serve as a crucial communication channel from the retina to the brain. In the adult, these cells receive input from defined sets of presynaptic partners and communicate with postsynaptic brain regions to convey features of the visual scene. However, in the developing visual system, RGC interactions extend beyond their synaptic partners such that they guide development before the onset of vision. In this Review, we summarize our current understanding of how interactions between RGCs and their environment influence cellular targeting, migration and circuit maturation during visual system development. We describe the roles of RGC subclasses in shaping unique developmental responses within the retina and at central targets. Finally, we highlight the utility of RNA sequencing and genetic tools in uncovering RGC type-specific roles during the development of the visual system.
Collapse
Affiliation(s)
- Shane D'Souza
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Mutti DO, Mulvihill SP, Orr DJ, Shorter PD, Hartwick ATE. The Effect of Refractive Error on Melanopsin-Driven Pupillary Responses. Invest Ophthalmol Vis Sci 2020; 61:22. [PMID: 33091116 PMCID: PMC7594593 DOI: 10.1167/iovs.61.12.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Human and animal studies suggest that light-mediated dopamine release may underlie the protective effect of time outdoors on myopia development. Melanopsin-containing retinal ganglion cells may be involved in this process by integrating ambient light exposure and regulating retinal dopamine levels. The study evaluates this potential involvement by examining whether melanopsin-driven pupillary responses are associated with adult refractive error. Methods Subjects were 45 young adults (73% female, 24.1 ± 1.8 years) with refractive errors ranging from –6.33 D to +1.70 D. The RAPDx (Konan Medical) pupillometer measured normalized pupillary responses to three forms of square-wave light pulses alternating with darkness at 0.1 Hz: alternating long wavelength (red, peak at 608 nm) and short wavelength (blue, peak at 448 nm), followed by red only and then blue only. Results Non-myopic subjects displayed greater pupillary constriction in the blue-only condition and slower redilation following blue light offset than subjects with myopia (P = 0.011). Pupillary responses were not significantly different between myopic and non-myopic subjects in the red-only condition (P = 0.15). More hyperopic/less myopic refractive error as a continuous variable was linearly related to larger increases in pupillary constriction in response to blue-only stimuli (r = 0.48, P = 0.001). Conclusions Repeated light exposures to blue test stimuli resulted in an adaptation in the pupillary response (more constriction and slower redilation), presumably due to increased melanopsin-mediated input in more hyperopic/less myopic adults. This adaptive property supports a possible role for these ganglion cells in the protective effects of time outdoors on myopia development.
Collapse
Affiliation(s)
- Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | | | - Danielle J Orr
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | - Patrick D Shorter
- Optical Radiation Bioeffects Branch, Tri-Service Research Laboratory, Fort Sam Houston, Texas, United States
| | - Andrew T E Hartwick
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| |
Collapse
|
17
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
18
|
Hellmer CB, Bohl JM, Hall LM, Koehler CC, Ichinose T. Dopaminergic Modulation of Signal Processing in a Subset of Retinal Bipolar Cells. Front Cell Neurosci 2020; 14:253. [PMID: 32922266 PMCID: PMC7456991 DOI: 10.3389/fncel.2020.00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
The retina and the olfactory bulb are the gateways to the visual and olfactory systems, respectively, similarly using neural networks to initiate sensory signal processing. Sensory receptors receive signals that are transmitted to neural networks before projecting to primary cortices. These networks filter sensory signals based on their unique features and adjust their sensitivities by gain control systems. Interestingly, dopamine modulates sensory signal transduction in both systems. In the retina, dopamine adjusts the retinal network for daylight conditions (“light adaptation”). In the olfactory system, dopamine mediates lateral inhibition between the glomeruli, resulting in odorant signal decorrelation and discrimination. While dopamine is essential for signal discrimination in the olfactory system, it is not understood whether dopamine has similar roles in visual signal processing in the retina. To elucidate dopaminergic effects on visual processing, we conducted patch-clamp recording from second-order retinal bipolar cells, which exhibit multiple types that can convey different temporal features of light. We recorded excitatory postsynaptic potentials (EPSPs) evoked by various frequencies of sinusoidal light in the absence and presence of a dopamine receptor 1 (D1R) agonist or antagonist. Application of a D1R agonist, SKF-38393, shifted the peak temporal responses toward higher frequencies in a subset of bipolar cells. In contrast, a D1R antagonist, SCH-23390, reversed the effects of SKF on these types of bipolar cells. To examine the mechanism of dopaminergic modulation, we recorded voltage-gated currents, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and low-voltage activated (LVA) Ca2+ channels. SKF modulated HCN and LVA currents, suggesting that these channels are the target of D1R signaling to modulate visual signaling in these bipolar cells. Taken together, we found that dopamine modulates the temporal tuning of a subset of retinal bipolar cells. Consequently, we determined that dopamine plays a role in visual signal processing, which is similar to its role in signal decorrelation in the olfactory bulb.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christina C Koehler
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
19
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
20
|
Sondereker KB, Stabio ME, Renna JM. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 2020; 528:2044-2067. [PMID: 32003463 DOI: 10.1002/cne.24873] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin ganglion cells have defied convention since their discovery almost 20 years ago. In the years following, many types of these intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged. In the mouse retina, there are currently six known types (M1-M6) of melanopsin ganglion cells, each with unique morphology, mosaics, connections, physiology, projections, and functions. While melanopsin-expressing cells are usually associated with behaviors like circadian photoentrainment and the pupillary light reflex, the characterization of multiple types has demonstrated a reach that may extend far beyond non-image-forming vision. In fact, studies have shown that individual types of melanopsin ganglion cells have the potential to impact image-forming functions like contrast sensitivity and color opponency. Thus, the goal of this review is to summarize the morphological and functional aspects of the six known types of melanopsin ganglion cells in the mouse retina and to highlight their respective roles in non-image-forming and image-forming vision. Although many melanopsin ganglion cell types do project to image-forming brain targets, it is important to note that this is only the first step in determining their influence on image-forming vision. Even so, the visual system has canonically been divided into these two functional realms and melanopsin ganglion cells have begun to challenge the boundary between them, providing an overlap of visual information that is complementary rather than redundant. Further studies on these ganglion cell photoreceptors will no doubt continue to illustrate an ever-expanding role for melanopsin ganglion cells in image-forming vision.
Collapse
Affiliation(s)
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
21
|
Liu LL, Alessio EJ, Spix NJ, Zhang DQ. Expression of GluA2-containing calcium-impermeable AMPA receptors on dopaminergic amacrine cells in the mouse retina. Mol Vis 2019; 25:780-790. [PMID: 31819340 PMCID: PMC6882663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/17/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose The neuromodulator dopamine plays an important role in light adaptation for the visual system. Light can stimulate dopamine release from dopaminergic amacrine cells (DACs) by activating three classes of photosensitive retinal cells: rods, cones, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). However, the synaptic mechanisms by which these photoreceptors excite DACs remain poorly understood. Our previous work demonstrated that α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors contribute to light regulation of DAC activity. AMPA receptors are classified into Ca2+-permeable and Ca2+-impermeable subtypes. We sought to identify which subtype of AMPA receptors is involved in light regulation of DAC activity. Methods AMPA receptor-mediated light responses and miniature excitatory postsynaptic currents were recorded from genetically labeled DACs in mouse retinas with the whole-cell voltage-clamp mode. Immunostaining with antibodies against tyrosine hydroxylase, GluA2 (GluR2), and PSD-95 was performed in vertical retinal slices. Results The biophysical and pharmacological data showed that only Ca2+-impermeable AMPA receptors contribute to DAC light responses driven by ipRGCs or cones (via depolarizing bipolar cells). We further found that the same subtype of AMPA receptors mediates miniature excitatory postsynaptic currents of DACs. These findings are supported by the immunohistochemical results demonstrating that DACs express the PSD-95 with GluA2, a subunit that is essential for determining the impermeability of AMPA receptors to calcium. Conclusions The results indicated that GluA2-containing Ca2+-impermeable AMPA receptors contribute to signal transmission from photosensitive retinal cells to DACs.
Collapse
Affiliation(s)
- Lei-Lei Liu
- Eye Research Institute, Oakland University, Rochester, MI
| | | | - Nathan J Spix
- Eye Research Institute, Oakland University, Rochester, MI
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI
| |
Collapse
|
22
|
Adhikari P, Feigl B, Zele AJ. The flicker Pupil Light Response (fPLR). Transl Vis Sci Technol 2019; 8:29. [PMID: 31637109 PMCID: PMC6798322 DOI: 10.1167/tvst.8.5.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/07/2019] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The photoreceptor classes driving the flicker pupil light response (fPLR) to monochromatic sinusoidal temporal modulation are largely unknown. Here, we determine the photoreceptor inputs to the fPLR. METHODS The 0.5-Hz fPLR was measured in healthy observers using a Maxwellian view (41° diameter) pupillometer at five narrowband wavelengths (short: 409 nm; intermediate: 462, 507, 530 nm; and long: 592 nm) over ∼10 log units of irradiance spanning scotopic to photopic levels (5.6 to 15.6 log quanta·cm-2·s-1; -6.9 to 3.6 log cd·m-2). The relative photoreceptor contributions to the fPLR were then derived from these amplitude-irradiance functions using a criterion fPLR. RESULTS The fPLR amplitude is small (≤ 3.9 ± 3.1%; mean ± SEM) below 8.0 log quanta·cm-2·s-1 then increases with retinal irradiance in accordance with a Hill function that asymptotes between 13.0 to 15.0 log quanta·cm-2·s-1 (wavelength dependent). The Hill slope is steepest for the intermediate wavelengths. Further increases in irradiance (>15.0 log quanta·cm-2·s-1) produce a distinct suppression of the fPLR for the intermediate wavelengths. The fPLR phase delay shows a linear decrease with increasing irradiance. The spectral sensitivity of the fPLR is dominated by inner retinal melanopsin ganglion cell and outer retinal rod photoreceptor inputs to the afferent pupil control pathway; the relative melanopsin : rhodopsin weighting decreases with the transition from photopic to scotopic lighting. CONCLUSIONS The fPLR can be used as a marker of melanopsin and rod interactions during the flicker stimulation and to quantify their contributions to the post-illumination pupil response (PIPR). TRANSLATIONAL RELEVANCE These irradiance and wavelength responses will be useful in standardizing the measurements of the fPLR using chromatic pupillometry.
Collapse
Affiliation(s)
- Prakash Adhikari
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
- Queensland Eye Institute, Brisbane, Australia
| | - Andrew J. Zele
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
23
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
24
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
25
|
Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight. J Pharmacol Sci 2019; 140:86-93. [PMID: 31109761 DOI: 10.1016/j.jphs.2019.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Neuromodulators such as dopamine, enable context-dependent plasticity of neural circuit function throughout the central nervous system. For example, in the retina, dopamine tunes visual processing for daylight and nightlight conditions. Specifically, high levels of dopamine release in the retina tune vision for daylight (photopic) conditions, while low levels tune it for nightlight (scotopic) conditions. This review covers the cellular and circuit-level mechanisms within the retina that are altered by dopamine. These mechanisms include changes in gap junction coupling and ionic conductances, both of which are altered by the activation of diverse types of dopamine receptors across diverse types of retinal neurons. We contextualize the modulatory actions of dopamine in terms of alterations and optimizations to visual processing under photopic and scotopic conditions, with particular attention to how they differentially impact distinct cell types. Finally, we discuss how transgenic mice and disease models have shaped our understanding of dopaminergic signaling and its role in visual processing. Cumulatively, this review illustrates some of the diverse and potent mechanisms through which neuromodulation can shape brain function.
Collapse
Affiliation(s)
- Suva Roy
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
26
|
Calligaro H, Coutanson C, Najjar RP, Mazzaro N, Cooper HM, Haddjeri N, Felder-Schmittbuhl MP, Dkhissi-Benyahya O. Rods contribute to the light-induced phase shift of the retinal clock in mammals. PLoS Biol 2019; 17:e2006211. [PMID: 30822304 PMCID: PMC6415865 DOI: 10.1371/journal.pbio.2006211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 03/13/2019] [Accepted: 02/13/2019] [Indexed: 01/11/2023] Open
Abstract
While rods, cones, and intrinsically photosensitive melanopsin-containing ganglion cells (ipRGCs) all drive light entrainment of the master circadian pacemaker of the suprachiasmatic nucleus, recent studies have proposed that entrainment of the mouse retinal clock is exclusively mediated by a UV-sensitive photopigment, neuropsin (OPN5). Here, we report that the retinal circadian clock can be phase shifted by short duration and relatively low-irradiance monochromatic light in the visible part of the spectrum, up to 520 nm. Phase shifts exhibit a classical photon dose-response curve. Comparing the response of mouse models that specifically lack middle-wavelength (MW) cones, melanopsin, and/or rods, we found that only the absence of rods prevented light-induced phase shifts of the retinal clock, whereas light-induced phase shifts of locomotor activity are normal. In a “rod-only” mouse model, phase shifting response of the retinal clock to light is conserved. At shorter UV wavelengths, our results also reveal additional recruitment of short-wavelength (SW) cones and/or OPN5. These findings suggest a primary role of rod photoreceptors in the light response of the retinal clock in mammals. The mammalian retina contains a circadian clock that plays a crucial role in adapting retinal physiology and visual function to light/dark changes. In addition, the retina coordinates rhythmic behavior and physiology by providing visual input to the master hypothalamic clock in the suprachiasmatic nucleus through a network of retinal photoreceptor cells involving rods, cones, and intrinsically photosensitive melanopsin-containing ganglion cells (ipRGCs). In contrast, recent studies argue that none of these photoreceptors are involved in light responses of the retinal clock and propose that photoresponses are exclusively mediated by the UV-sensitive photopigment neuropsin (OPN5). Our study demonstrates that rods are required to phase shift the retinal clock, while melanopsin and middle-wavelength (MW) cones influence the intrinsic period of the clock.
Collapse
Affiliation(s)
- Hugo Calligaro
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Christine Coutanson
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Raymond P. Najjar
- Visual Neurosciences Research Group, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Program, Duke-NUS Medical School, Singapore
| | - Nadia Mazzaro
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Howard M. Cooper
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | | | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
- * E-mail:
| |
Collapse
|
27
|
Katsuura T, Lee S. A review of the studies on nonvisual lighting effects in the field of physiological anthropology. J Physiol Anthropol 2019; 38:2. [PMID: 30670097 PMCID: PMC6343353 DOI: 10.1186/s40101-018-0190-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Here, we review the history and the trends in the research on the nonvisual effect of light in the field of physiological anthropology. Research on the nonvisual effect of light in the field of physiological anthropology was pioneered by Sato and colleagues in the early 1990s. These authors found that the color temperature of light affected physiological functions in humans. The groundbreaking event with regard to the study of nonvisual effects of light was the discovery of the intrinsically photosensitive retinal ganglion cells in the mammalian retina in the early 2000s. The interest of the physiological anthropology scientific community in the nonvisual effects of light has been increasing since then. A total of 61 papers on nonvisual effects of light were published in the Journal of Physiological Anthropology (including its predecessor journals) until October 2018, 14 papers (1.4/year) in the decade from 1992 to 2001, 45 papers (2.8/year) in the 16 years between 2002 and 2017, and two papers in 2018 (January-October). The number of papers on this topic has been increasing in recent years. We categorized all papers according to light conditions, such as color temperature of light, light intensity, and monochromatic light. Among the 61 papers, 11 papers were related to color temperature, 20 papers were related to light intensity, 18 papers were related to monochromatic light, and 12 papers were classified as others. We provide an overview of these papers and mention future research prospects.
Collapse
Affiliation(s)
- Tetsuo Katsuura
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Soomin Lee
- Center for Environment, Health and Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
28
|
Munteanu T, Noronha KJ, Leung AC, Pan S, Lucas JA, Schmidt TM. Light-dependent pathways for dopaminergic amacrine cell development and function. eLife 2018; 7:39866. [PMID: 30403373 PMCID: PMC6221543 DOI: 10.7554/elife.39866] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
Retinal dopamine is a critical modulator of high acuity, light-adapted vision and photoreceptor coupling in the retina. Dopaminergic amacrine cells (DACs) serve as the sole source of retinal dopamine, and dopamine release in the retina follows a circadian rhythm and is modulated by light exposure. However, the retinal circuits through which light influences the development and function of DACs are still unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as a prime target for influencing retinal dopamine levels because they costratify with DACs in the inner plexiform layer and signal to them in a retrograde manner. Surprisingly, using genetic mouse models lacking specific phototransduction pathways, we find that while light influences the total number of DACs and retinal dopamine levels, this effect does not require ipRGCs. Instead, we find that the rod pathway is a critical modulator of both DAC number and retinal dopamine levels.
Collapse
Affiliation(s)
- Teona Munteanu
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Katelyn J Noronha
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Amanda C Leung
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Simon Pan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jasmine A Lucas
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
29
|
Palumaa T, Gilhooley MJ, Jagannath A, Hankins MW, Hughes S, Peirson SN. Melanopsin: photoreceptors, physiology and potential. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Wong JCY, Smyllie NJ, Banks GT, Pothecary CA, Barnard AR, Maywood ES, Jagannath A, Hughes S, van der Horst GTJ, MacLaren RE, Hankins MW, Hastings MH, Nolan PM, Foster RG, Peirson SN. Differential roles for cryptochromes in the mammalian retinal clock. FASEB J 2018; 32:4302-4314. [PMID: 29561690 PMCID: PMC6071063 DOI: 10.1096/fj.201701165rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryptochromes 1 and 2 (CRY1/2) are key components of the negative limb of the mammalian circadian clock. Like many peripheral tissues, Cry1 and -2 are expressed in the retina, where they are thought to play a role in regulating rhythmic physiology. However, studies differ in consensus as to their localization and function, and CRY1 immunostaining has not been convincingly demonstrated in the retina. Here we describe the expression and function of CRY1 and -2 in the mouse retina in both sexes. Unexpectedly, we show that CRY1 is expressed throughout all retinal layers, whereas CRY2 is restricted to the photoreceptor layer. Retinal period 2::luciferase recordings from CRY1-deficient mice show reduced clock robustness and stability, while those from CRY2-deficient mice show normal, albeit long-period, rhythms. In functional studies, we then investigated well-defined rhythms in retinal physiology. Rhythms in the photopic electroretinogram, contrast sensitivity, and pupillary light response were all severely attenuated or abolished in CRY1-deficient mice. In contrast, these physiological rhythms are largely unaffected in mice lacking CRY2, and only photopic electroretinogram rhythms are affected. Together, our data suggest that CRY1 is an essential component of the mammalian retinal clock, whereas CRY2 has a more limited role.—Wong, J. C. Y., Smyllie, N. J., Banks, G. T., Pothecary, C. A., Barnard, A. R., Maywood, E. S., Jagannath, A., Hughes, S., van der Horst, G. T. J., MacLaren, R. E., Hankins, M. W., Hastings, M. H., Nolan, P. M., Foster, R. G., Peirson, S. N. Differential roles for cryptochromes in the mammalian retinal clock.
Collapse
Affiliation(s)
- Jovi C Y Wong
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola J Smyllie
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Gareth T Banks
- Medical Research Council (MRC) Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Carina A Pothecary
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Elizabeth S Maywood
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | | | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Michael H Hastings
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Patrick M Nolan
- Medical Research Council (MRC) Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Pérez-Fernández V, Harman DG, Morley JW, Cameron MA. Optimized Method to Quantify Dopamine Turnover in the Mammalian Retina. Anal Chem 2017; 89:12276-12283. [PMID: 29057649 DOI: 10.1021/acs.analchem.7b03216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measurement of dopamine (DA) release in the retina allows the interrogation of the complex neural circuits within this tissue. A number of previous methods have been used to quantify this neuromodulator, the most common of which is HPLC with electrochemical detection (HPLC-ECD). However, this technique can produce significant concentration uncertainties. In this present study, we report a sensitive and accurate UHPLC-MS/MS method for the quantification of DA and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in mouse retina. Internal standards DA-d4 and DOPAC-d5 result in standard curve linearity for DA from 0.05-100 ng/mL (LOD = 6 pg/mL) and DOPAC from 0.5-100 ng/mL (LOD = 162 pg/mL). A systematic study of tissue extraction conditions reveals that the use of formic acid (1%), in place of the more commonly used perchloric acid, combined with 0.5 mM ascorbic acid prevents significant oxidation of the analytes. When the method is applied to mouse retinae a significant increase in the DOPAC/DA ratio is observed following in vivo light stimulation. We additionally examined the effect of anesthesia on DA and DOPAC levels in the retina in vivo and find that basal dark-adapted concentrations are not affected. Light caused a similar increase in DOPAC/DA ratio but interindividual variation was significantly reduced. Together, we systematically describe the ideal conditions to accurately and reliably measure DA turnover in the mammalian retina.
Collapse
Affiliation(s)
| | - David G Harman
- School of Medicine, Western Sydney University , Sydney, Australia
| | - John W Morley
- School of Medicine, Western Sydney University , Sydney, Australia
| | - Morven A Cameron
- School of Medicine, Western Sydney University , Sydney, Australia
| |
Collapse
|
32
|
Liu LL, Spix NJ, Zhang DQ. NMDA Receptors Contribute to Retrograde Synaptic Transmission from Ganglion Cell Photoreceptors to Dopaminergic Amacrine Cells. Front Cell Neurosci 2017; 11:279. [PMID: 28959188 PMCID: PMC5603656 DOI: 10.3389/fncel.2017.00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
Recently, a line of evidence has demonstrated that the vertebrate retina possesses a novel retrograde signaling pathway. In this pathway, phototransduction is initiated by the photopigment melanopsin, which is expressed in a small population of retinal ganglion cells. These ganglion cell photoreceptors then signal to dopaminergic amacrine cells (DACs) through glutamatergic synapses, influencing visual light adaptation. We have previously demonstrated that in Mg2+-containing solution, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors mediate this glutamatergic transmission. Here, we demonstrate that removing extracellular Mg2+ enhances melanopsin-based DAC light responses at membrane potentials more negative than −40 mV. Melanopsin-based responses in Mg2+-free solution were profoundly suppressed by the selective N-methyl-D-aspartate (NMDA) receptor antagonist D-AP5. In addition, application of NMDA to the retina produced excitatory inward currents in DACs. These data strongly suggest that DACs express functional NMDA receptors. We further found that in the presence of Mg2+, D-AP5 reduced the peak amplitude of melanopsin-based DAC responses by ~70% when the cells were held at their resting membrane potential (−50 mV), indicating that NMDA receptors are likely to contribute to retrograde signal transmission to DACs under physiological conditions. Moreover, our data show that melanopsin-based NMDA-receptor-mediated responses in DACs are suppressed by antagonists specific to either the NR2A or NR2B receptor subtype. Immunohistochemical results show that NR2A and NR2B subunits are expressed on DAC somata and processes. These results suggest that DACs express functional NMDA receptors containing both NR2A and NR2B subunits. Collectively, our data reveal that, along with AMPA receptors, NR2A- and NR2B-containing NMDA receptors mediate retrograde signal transmission from ganglion cell photoreceptors to DACs.
Collapse
Affiliation(s)
- Lei-Lei Liu
- Eye Research Institute, Oakland UniversityRochester, MI, United States
| | - Nathan J Spix
- Eye Research Institute, Oakland UniversityRochester, MI, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland UniversityRochester, MI, United States
| |
Collapse
|
33
|
Qiao SN, Zhou W, Liu LL, Zhang DQ, Zhong YM. Orexin-A Suppresses Signal Transmission to Dopaminergic Amacrine Cells From Outer and Inner Retinal Photoreceptors. Invest Ophthalmol Vis Sci 2017; 58:4712-4721. [PMID: 28910447 PMCID: PMC5598320 DOI: 10.1167/iovs.17-21835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The neuropeptides orexin-A and orexin-B are widely expressed in the vertebrate retina; however, their role in visual function is unclear. This study investigates whether and how orexins modulate signal transmission to dopaminergic amacrine cells (DACs) from both outer retinal photoreceptors (rods and cones) and inner retinal photoreceptors (melanopsin-expressing intrinsically photosensitive retinal ganglion cells [ipRGCs]). Methods A whole-cell voltage-clamp technique was used to record light-induced responses from genetically labeled DACs in flat-mount mouse retinas. Rod and cone signaling to DACs was confirmed pharmacologically (in wild-type retinas), whereas retrograde melanopsin signaling to DACs was isolated either pharmacologically (in wild-type retinas) or by genetic deletion of rod and cone function (in transgenic mice). Results Orexin-A attenuated rod/cone-mediated light responses in the majority of DACs and inhibited all DACs that exhibited melanopsin-based light responses, suggesting that exogenous orexin suppresses signal transmission from rods, cones, and ipRGCs to DACs. In addition, orexin receptor 1 antagonist SB334867 and orexin receptor 2 antagonist TCS OX229 enhanced melanopsin-based DAC responses, indicating that endogenous orexins inhibit signal transmission from ipRGCs to DACs. We further found that orexin-A inhibits melanopsin-based DAC responses via orexin receptors on DACs, whereas orexin-A may modulate signal transmission from rods and cones to DACs through activation of orexin receptors on DACs and their upstream neurons. Conclusions Our results suggest that orexins could influence visual function via the dopaminergic system in the mammalian retina.
Collapse
Affiliation(s)
- Sheng-Nan Qiao
- Institutes of Brain Science, Fudan University, Shanghai, China.,Eye Research Institute, Oakland University, Rochester, Michigan, United States
| | - Wei Zhou
- Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei-Lei Liu
- Eye Research Institute, Oakland University, Rochester, Michigan, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, Michigan, United States
| | - Yong-Mei Zhong
- Institutes of Brain Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Zhao X, Wong KY, Zhang DQ. Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina. Sci Rep 2017; 7:7920. [PMID: 28801634 PMCID: PMC5554153 DOI: 10.1038/s41598-017-08172-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
In the vertebrate retina, dopamine is synthesized and released by a specialized type of amacrine cell, the dopaminergic amacrine cell (DAC). DAC activity is stimulated by rods, cones, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells upon illumination. However, the relative contributions of these three photoreceptor systems to the DAC light-induced response are unknown. Here we found that rods excite dark-adapted DACs across a wide range of stimulation intensities, primarily through connexin-36-dependent rod pathways. Similar rod-driven responses were observed in both ventral and dorsal DACs. We further found that in the dorsal retina, M-cones and melanopsin contribute to dark-adapted DAC responses with a similar threshold intensity. In the ventral retina, however, the threshold intensity for M-cone-driven responses was two log units greater than that observed in dorsal DACs, and melanopsin-driven responses were almost undetectable. We also examined the DAC response to prolonged adapting light and found such responses to be mediated by rods under dim lighting conditions, rods/M-cones/melanopsin under intermediate lighting conditions, and cones and melanopsin under bright lighting conditions. Our results elucidate the relative contributions of the three photoreceptor systems to DACs under different lighting conditions, furthering our understanding of the role these cells play in the visual system.
Collapse
Affiliation(s)
- Xiwu Zhao
- Eye Research Institute, Oakland University, Rochester, MI, United States.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI, United States.
| |
Collapse
|
35
|
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina. J Neurosci 2017; 36:7184-97. [PMID: 27383593 DOI: 10.1523/jneurosci.3500-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/26/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na(+) channels; (2) this transmission is partly dependent on N-type Ca(2+) channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and physiological evidence that axon collaterals of ipRGCs constitute a centrifugal pathway to DACs, conveying melanopsin-based signals from the innermost retina to the outer retina. We further demonstrate that retrograde signals likely influence visual processing because elimination of axon collateral-bearing ipRGCs impairs light adaptation by limiting dopamine-dependent facilitation of the cone pathway. Our findings strongly support the hypothesis that retrograde melanopsin-based signaling influences visual function locally within the retina, a notion that refutes the dogma that RGCs only provide physiological signals to the brain.
Collapse
|
36
|
Milosavljevic N, Allen AE, Cehajic-Kapetanovic J, Lucas RJ. Chemogenetic Activation of ipRGCs Drives Changes in Dark-Adapted (Scotopic) Electroretinogram. Invest Ophthalmol Vis Sci 2017; 57:6305-6312. [PMID: 27893096 PMCID: PMC5119489 DOI: 10.1167/iovs.16-20448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose The purpose of this study was to investigate the impact of activating melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) on dark-adapted (scotopic) electroretinograms (ERG). Methods We used mice (Opn4Cre/+) expressing cre recombinase in melanopsin-expressing cells for a targeted gene delivery of a chemogenetic Gq-coupled receptor, hM3Dq, to ipRGCs. Intraperitoneal injection of clozapine N-oxide (CNO) at 5 mg/kg was used for acute activation of hM3Dq and thus excitation of ipRGCs in darkness. Dark-adapted flash ERGs were recorded across a 9-fold range of irradiances from hM3Dq Opn4Cre/+ and control Opn4Cre/+ mice before and after intraperitoneal injection of CNO. A- and b-wave amplitudes and implicit times and oscillatory potentials (OPs) were analyzed. Paired-flash stimuli were used to isolate cone-driven responses. Results Clozapine N-oxide application suppressed a- and b-wave amplitudes of the dark-adapted ERG across the flash intensity range in hM3Dq Opn4Cre/+ mice compared to control mice. Examination of the normalized irradiance-response functions revealed a shift in b-wave but not a-wave sensitivity. No changes in a- and b-wave implicit times were detected. Total OP amplitudes were also reduced in hM3Dq Opn4Cre/+ mice compared to controls following CNO administration. The paired-flash method revealed reduction in both the first (rods and cones) and second (cones only) flash response. Conclusions Acute and selective activation of ipRGCs modulates the amplitude of both a- and b-waves of the scotopic ERG, indicating that the influence of this ganglion cell class on the retinal physiology extends to the photoreceptors as well as their downstream pathways.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Annette E Allen
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, the University of Manchester, Manchester, United Kingdom
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Chew KS, Renna JM, McNeill DS, Fernandez DC, Keenan WT, Thomsen MB, Ecker JL, Loevinsohn GS, VanDunk C, Vicarel DC, Tufford A, Weng S, Gray PA, Cayouette M, Herzog ED, Zhao H, Berson DM, Hattar S. A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. eLife 2017; 6:e22861. [PMID: 28617242 PMCID: PMC5513697 DOI: 10.7554/elife.22861] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
The visual system consists of two major subsystems, image-forming circuits that drive conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment. While historically considered non-overlapping, recent evidence has uncovered crosstalk between these subsystems. Here, we investigated shared developmental mechanisms. We revealed an unprecedented role for light in the maturation of the circadian clock and discovered that intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation of the circadian clock and light-independent refinement of retinogeniculate projections.
Collapse
Affiliation(s)
- Kylie S Chew
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Jordan M Renna
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - David S McNeill
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Diego C Fernandez
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer L Ecker
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Cassandra VanDunk
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Daniel C Vicarel
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - Adele Tufford
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
| | - Shijun Weng
- Department of Neuroscience, Brown University, Providence, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Indigo Agriculture, Charlestown, United States
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
- Faculty of Medicine, Université De Montréal, Montreal, Canada
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, United States
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
38
|
Goodings L, He J, Wood AJ, Harris WA, Currie PD, Jusuf PR. In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. J Comp Neurol 2017; 525:1962-1979. [PMID: 28177524 DOI: 10.1002/cne.24185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The Nuclear receptor subfamily 4 group A member 2 (Nr4a2) is crucial for the formation or maintenance of dopaminergic neurons in the central nervous system including the retina, where dopaminergic amacrine cells contribute to visual function. Little is known about which cells express Nr4a2 at which developmental stage. Furthermore, whether Nr4a2 functions in combination with other genes is poorly understood. Thus, we generated a novel transgenic to visualize Nr4a2 expression in vivo during zebrafish retinogenesis. A 4.1 kb fragment of the nr4a2a promoter was used to drive green fluorescent protein expression in this Tg(nr4a2a:eGFP) line. In situ hybridization showed that transgene expression follows endogenous RNA expression at a cellular level. Temporal expression and lineages were quantified using in vivo time-lapse imaging in embryos. Nr4a2 expressing retinal subtypes were characterized immunohistochemically. Nr4a2a:eGFP labeled multiple neuron subtypes including 24.5% of all amacrine interneurons. Nr4a2a:eGFP labels all tyrosine hydroxylase labeled dopaminergic amacrine cells, and other nondopaminergic GABAergic amacrine populations. Nr4a2a:eGFP is confined to a specific progenitor lineage identified by sequential expression of the bhlh transcription factor Atonal7 (Atoh7) and Pancreas transcription factor 1a (Ptf1a), and labels postmitotic postmigratory amacrine cells. Thus, developmental Nr4a2a expression indicates a role during late differentiation of specific amacrine interneurons. Tg(nr4a2a:eGFP) is an early marker of distinct neurons including dopaminergic amacrine cells. It can be utilized to assess consequences of gene manipulations and understand whether Nr4a2 only carries out its role in the presence of specific coexpressed genes. This will allow Nr4a2 use to be refined for regenerative approaches.
Collapse
Affiliation(s)
- Liana Goodings
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Patricia R Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol 2017; 525:1934-1961. [PMID: 28160289 DOI: 10.1002/cne.24181] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Steffen Heegaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis 2016; 22:959-69. [PMID: 27559292 PMCID: PMC4974849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/03/2016] [Indexed: 10/28/2022] Open
Abstract
PURPOSE Diabetic retinopathy is one of the most common consequences of diabetes that affects millions of working-age adults worldwide and leads to progressive degeneration of the retina, visual loss, and blindness. Diabetes is associated with circadian disruption of the central and peripheral circadian clocks, but the mechanisms responsible for such alterations are unknown. Using a streptozotocin (STZ)-induced model of diabetes, we investigated whether diabetes alters 1) the circadian regulation of clock genes in the retina and in the central clocks, 2) the light response of clock genes in the retina, and/or 3) light-driven retinal dopamine (DA), a major output marker of the retinal clock. METHODS To quantify circadian expression of clock and clock-controlled genes, retinas and suprachiasmatic nucleus (SCN) from the same animals were collected every 4 h in circadian conditions, 12 weeks post-diabetes. Induction of Per1, Per2, and c-fos mRNAs was quantified in the retina after the administration of a pulse of monochromatic light (480 nm, 1.17×10(14) photons/cm(2)/s, 15 min) at circadian time 16. Gene expression was assessed with real-time reverse transcription PCR (RT-PCR). Pooled retinas from the control and STZ-diabetic mice were collected 2 h after light ON and light OFF (Zeitgeber time (ZT)2 and ZT14), and DA and its metabolite were analyzed with high-performance liquid chromatography (HPLC). RESULTS We found variable effects of diabetes on the expression of clock genes in the retina and only slight differences in phase and/or amplitude in the SCN. c-fos and Per1 induction by a 480 nm light pulse was abolished in diabetic animals at 12 weeks post-induction of diabetes in comparison with the control mice, suggesting a deficit in light-induced neuronal activation of the retinal clock. Finally, we quantified a 56% reduction in the total number of tyrosine hydroxylase (TH) immunopositive cells, associated with a decrease in DA levels during the subjective day (ZT2). CONCLUSIONS These findings demonstrate that diabetes affects the molecular machinery and the light response of the retinal clock and alters the light-driven retinal DA level.
Collapse
Affiliation(s)
- Hasna Lahouaoui
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France,Laboratory of Pharmacology, Neurobiology and Behavior, University Cadi Ayyad, Marrakech, Morocco
| | - Christine Coutanson
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Howard M. Cooper
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, University Cadi Ayyad, Marrakech, Morocco
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| |
Collapse
|
41
|
Abstract
Circadian rhythms are self-sustained, approximately 24-h rhythms of physiology and behavior. These rhythms are entrained to an exactly 24-h period by the daily light-dark cycle. Remarkably, mice lacking all rod and cone photoreceptors still demonstrate photic entrainment, an effect mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells utilize melanopsin (OPN4) as their photopigment. Distinct from the ciliary rod and cone opsins, melanopsin appears to function as a stable photopigment utilizing sequential photon absorption for its photocycle; this photocycle, in turn, confers properties on ipRGCs such as sustained signaling and resistance from photic bleaching critical for an irradiance detection system. The retina itself also functions as a circadian pacemaker that can be autonomously entrained to light-dark cycles. Recent experiments have demonstrated that another novel opsin, neuropsin (OPN5), is required for this entrainment, which appears to be mediated by a separate population of ipRGCs. Surprisingly, the circadian clock of the mammalian cornea is also light entrainable and is also neuropsin-dependent for this effect. The retina thus utilizes a surprisingly broad array of opsins for mediation of different light-detection tasks.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109.,Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195.,Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195;
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109
| |
Collapse
|
42
|
Ait-Hmyed Hakkari O, Acar N, Savier E, Spinnhirny P, Bennis M, Felder-Schmittbuhl MP, Mendoza J, Hicks D. Rev-Erbα modulates retinal visual processing and behavioral responses to light. FASEB J 2016; 30:3690-3701. [PMID: 27440795 DOI: 10.1096/fj.201600414r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023]
Abstract
The circadian clock is thought to adjust retinal sensitivity to ambient light levels, yet the involvement of specific clock genes is poorly understood. We explored the potential role of the nuclear receptor subfamily 1, group D, member 1 (REV-ERBα; or NR1D1) in this respect. In light-evoked behavioral tests, compared with wild-type littermates, Rev-Erbα-/- mice showed enhanced negative masking at low light levels (0.1 lx). Rev-Erbα-/- mouse retinas displayed significantly higher numbers of intrinsically photosensitive retinal ganglion cells (ipRGCs; 62% more compared with wild-type) and more intense melanopsin immunostaining of individual ipRGCs. In agreement with a pivotal role for melanopsin, negative masking at low light intensities was abolished in Rev-Erbα-/- Opn4-/- (melanopsin gene) double-null mice. Rev-Erbα-/- mice showed shortened latencies of both a and b electroretinogram waves, modified scotopic and photopic b-wave and scotopic threshold responses, and increased pupillary constriction, all of which suggested increased light sensitivity. However, wild-type and Rev-Erbα-/- mice displayed no detectable differences by in vivo fundus imaging, retinal histology, or expression of cell type-specific markers for major retinal cell populations. We conclude that REV-ERBα plays a major role in retinal information processing, and we speculate that REV-ERBα and melanopsin set sensitivity levels of the rod-mediated ipRGC pathway to coordinate activity with ambient light.-Ait-Hmyed Hakkari, O., Acar, N., Savier, E., Spinnhirny, P., Bennis, M., Felder-Schmittbuhl, M.-P., Mendoza, J., Hicks, D. Rev-Erbα modulates retinal visual processing and behavioral responses to light.
Collapse
Affiliation(s)
- Ouafa Ait-Hmyed Hakkari
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Université Cadi Ayad, Département de Biologie, Laboratoire de Pharmacologie, Neurobiologie et Comportement, Marrakech, Morocco
| | - Niyazi Acar
- Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 6265, Centre des Sciences du Goût et de l'Alimentation, Dijon, France.,Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 324, Centre des Sciences du Goût et de l'Alimentation, Dijon, France.,Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Elise Savier
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Perrine Spinnhirny
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Mohammed Bennis
- Université Cadi Ayad, Département de Biologie, Laboratoire de Pharmacologie, Neurobiologie et Comportement, Marrakech, Morocco
| | - Marie-Paule Felder-Schmittbuhl
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Jorge Mendoza
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - David Hicks
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France;
| |
Collapse
|
43
|
Arroyo DA, Kirkby LA, Feller MB. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 2016; 36:6892-905. [PMID: 27358448 PMCID: PMC4926237 DOI: 10.1523/jneurosci.0572-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown. Here, we investigate the neural circuit that underlies the ipRGC-driven light response in developing mice. We use a combination of calcium imaging, tracer coupling, and electrophysiology experiments to show that ipRGCs form extensive gap junction networks that strongly contribute to the overall light response of the developing retina. Interestingly, we found that gap junction coupling was modulated by spontaneous retinal waves, such that acute blockade of waves dramatically increased the extent of coupling and hence increased the number of light-responsive neurons. Moreover, using an optical sensor, we found that this wave-dependent modulation of coupling is driven by dopamine that is phasically released by retinal waves. Our results demonstrate that ipRGCs form gap junction microcircuits during development that are modulated by retinal waves; these circuits determine the extent of the light response and thus potentially impact the processing of early visual information and light-dependent developmental functions. SIGNIFICANCE STATEMENT Light-dependent functions in early development are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Here we show that ipRGCs form an extensive gap junction network with other retinal neurons, including other ipRGCs, which shapes the retina's overall light response. Blocking cholinergic retinal waves, which are the primary source of neural activity before maturation of photoreceptors, increased the extent of ipRGC gap junction networks, thus increasing the number of light-responsive cells. We determined that this modulation of ipRGC gap junction networks occurs via dopamine released by waves. These results demonstrate that retinal waves mediate dopaminergic modulation of gap junction networks to regulate pre-vision light responses.
Collapse
Affiliation(s)
| | | | - Marla B Feller
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
44
|
Abstract
Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.
Collapse
Affiliation(s)
- Joseph C Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
45
|
Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG. Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye (Lond) 2016; 30:247-54. [PMID: 26768919 DOI: 10.1038/eye.2015.264] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of both the anatomy and function of the melanopsin system. It has become clear that rather than acting as a simple irradiance detector the melanopsin system is in fact far more complicated. The range of behavioural systems known to be influenced by melanopsin activity is increasing with time, and it is now clear that melanopsin contributes not only to multiple non-image forming systems but also has a role in visual pathways. How melanopsin is capable of driving so many different behaviours is unclear, but recent evidence suggests that the answer may lie in the diversity of melanopsin light responses and the functional specialisation of photosensitive retinal ganglion cell (pRGC) subtypes. In this review, we shall overview the current understanding of the melanopsin system, and evaluate the evidence for the hypothesis that individual pRGC subtypes not only perform specific roles, but are functionally specialised to do so. We conclude that while, currently, the available data somewhat support this hypothesis, we currently lack the necessary detail to fully understand how the functional diversity of pRGC subtypes correlates with different behavioural responses, and ultimately why such complexity is required within the melanopsin system. What we are lacking is a cohesive understanding of how light responses differ between the pRGC subtypes (based not only on anatomical classification but also based on their site of innervation); how these diverse light responses are generated, and most importantly how these responses relate to the physiological functions they underpin.
Collapse
Affiliation(s)
- S Hughes
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A Jagannath
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J Rodgers
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - M W Hankins
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - S N Peirson
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R G Foster
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
46
|
Vuong HE, Hardi CN, Barnes S, Brecha NC. Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina. J Neurosci 2015; 35:15955-70. [PMID: 26631476 PMCID: PMC4666919 DOI: 10.1523/jneurosci.3382-15.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst(2A) and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH-RFP mice and M1 ipRGCs in OPN4-EGFP mice. SRIF increases K(+) currents, decreases Ca(2+) currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst(2A) agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4'-piperidine]-1'-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N(2)-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-L-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain.
Collapse
Affiliation(s)
- Helen E Vuong
- Departments of Neurobiology and Molecular, Cellular, and Integrative Physiology, Stein Eye Institute, and
| | | | - Steven Barnes
- Departments of Neurobiology and Departments of Physiology and Biophysics and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada, and Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Nicholas C Brecha
- Departments of Neurobiology and Molecular, Cellular, and Integrative Physiology, Stein Eye Institute, and CURE: Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California 90095, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
| |
Collapse
|
47
|
Vuong HE, Pérez de Sevilla Müller L, Hardi CN, McMahon DG, Brecha NC. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 2015; 307:319-37. [PMID: 26335381 PMCID: PMC4603663 DOI: 10.1016/j.neuroscience.2015.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing.
Collapse
Affiliation(s)
- H E Vuong
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - L Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - C N Hardi
- Department of Psychology, College of Letters and Science, UCLA, Los Angeles, CA 90095, United States
| | - D G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - N C Brecha
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, United States.
| |
Collapse
|
48
|
Pickard GE, So KF, Pu M. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? Neurosci Biobehav Rev 2015; 57:118-31. [PMID: 26363667 PMCID: PMC4646079 DOI: 10.1016/j.neubiorev.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/30/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, United States; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, United States; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Department of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Ophthalmology, The University of Hong Kong, Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Mingliang Pu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China; Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China.
| |
Collapse
|
49
|
Renna JM, Chellappa DK, Ross CL, Stabio ME, Berson DM. Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal development. Dev Neurobiol 2015; 75:935-46. [PMID: 25534911 DOI: 10.1002/dneu.22260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 01/10/2023]
Abstract
Melanopsin ganglion cells express the photopigment melanopsin and are the first functional photoreceptors to develop in the mammalian retina. They have been shown to play a variety of important roles in visual development and behavior in the early postnatal period (Johnson et al., 2010; Kirkby and Feller, 2013; Rao et al., 2013; Renna et al., 2011). Here, we probed the maturation of the dendritic arbors of melanopsin ganglion cells during this developmental period in mice. We found that some melanopsin ganglion cells (mainly the M1-subtype) transiently extend their dendrites not only into the inner plexiform layer (where they receive synaptic inputs from bipolar and amacrine cells) but also into the outer plexiform layer, where in mature retina, rod and cone photoreceptors are thought to contact only bipolar and horizontal cells. Thus, some immature melanopsin ganglion cells are biplexiform. This feature is much less common although still present in the mature retina. It reaches peak incidence 8-12 days after birth, before the eyes open and bipolar cells are sufficiently mature to link rods and cones to ganglion cells. At this age, some outer dendrites of melanopsin ganglion cells lie in close apposition to the axon terminals of cone photoreceptors and express a postsynaptic marker of glutamatergic transmission, postsynaptic density-95 protein (PSD-95). These findings raise the possibility of direct, monosynaptic connections between cones and melanopsin ganglion cells in the early postnatal retina. We provide a detailed description of the developmental profile of these processes and consider their possible functional and evolutionary significance.
Collapse
Affiliation(s)
- Jordan M Renna
- Department of Biology, University of Akron, 185 E. Mill St., Akron, Ohio, 44325-3908
| | - Deepa K Chellappa
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, Rhode Island, 02912
| | - Christopher L Ross
- Department of Biology, University of Akron, 185 E. Mill St., Akron, Ohio, 44325-3908
| | - Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E. 17th Ave, RC1 South 12120, Aurora, Colorado, 80045
| | - David M Berson
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, Rhode Island, 02912
| |
Collapse
|
50
|
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 2014; 15:23448-500. [PMID: 25526564 PMCID: PMC4284776 DOI: 10.3390/ijms151223448] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Collapse
Affiliation(s)
| | | | | | - Russel Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Maria Angeles Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Juan Antonio Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|