1
|
McMaster ES, Dimon RJ, Baker AG, Harre C, Mallee J, Maric A, Richards P, Wiseman M, Ho SYW, Rossetto M. Combining Spatial, Genetic, and Environmental Risk Data to Define and Prioritize In Situ Conservation Units. Ecol Evol 2025; 15:e71251. [PMID: 40421059 PMCID: PMC12105916 DOI: 10.1002/ece3.71251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 05/28/2025] Open
Abstract
In situ management aims to preserve species and their genetic integrity within their natural habitat. To achieve this, conservation strategies must strike a balance between safeguarding genetic diversity, mitigating environmental risks, and addressing practical management constraints. Here, we present a clear and reproducible framework that addresses these goals. We applied this framework to the Nightcap reserves in the Gondwanan Rainforests of Australia, a UNESCO World Heritage site impacted by the 2019/20 Black Summer fires. We analyzed the genetic diversity of 12 rainforest tree species, including three endangered species-Eidothea hardeniana, Uromyrtus australis, and Elaeocarpus sedentarius-and examined how fire risk, influenced by the presence of fire-dependent species such as eucalypts, impacts genetic diversity. To guide specific in situ management for the endangered species, we developed a flexible framework that uses clustering algorithms (DBSCAN and k-means) to define spatial management units while considering resource limitations (e.g., maximum perimeter or area). Our framework also incorporates a composite genetic value metric (combining Essential Biodiversity Variables heterozygosity, allelic richness, and genetic differentiation) and evaluates future fire risk based on vegetation flammability. This approach allowed us to identify priority management areas while adhering to resource constraints. We provide some reproducible examples of how the proposed framework can be applied, either partially or fully, to optimize in situ conservation efforts. Its flexibility allows for adjustments to fit different habitat types, species, and environmental threats, making it a valuable tool for enhancing conservation management across diverse conservation contexts.
Collapse
Affiliation(s)
- Eilish S. McMaster
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
- Research Centre for Ecosystem ResilienceBotanic Gardens of SydneySydneyNew South WalesAustralia
| | - Richard J. Dimon
- Research Centre for Ecosystem ResilienceBotanic Gardens of SydneySydneyNew South WalesAustralia
- Queensland Alliance of Agriculture and Food InnovationUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Andrew G. Baker
- Forest Research CentreSchool of Environment, Science and Engineering, Southern Cross UniversityLismoreNew South WalesAustralia
| | - Craig Harre
- North Coast Aerial MappingCoffs HarbourArrawarra Headland NSWAustralia
| | - Justin Mallee
- New South Wales National Parks and Wildlife ServiceAlstonville NSWAustralia
| | - Aleks Maric
- New South Wales National Parks and Wildlife ServiceKyogle NSWAustralia
| | - Peter Richards
- North Coast Aerial MappingCoffs HarbourArrawarra Headland NSWAustralia
| | - Matthew Wiseman
- New South Wales National Parks and Wildlife ServiceKyogle NSWAustralia
| | - Simon Y. W. Ho
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Maurizio Rossetto
- Research Centre for Ecosystem ResilienceBotanic Gardens of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Goli RC, Chishi KG, Mahar K, Gunturu T, Metta M, Diwakar V, Purohit P, Kumar A, Channabasappa NK, Aderao GN, Sukhija N, Kareningappa KK. Rethinking River Buffalo Domestication Through the Lens of Population Genetics Tools: Mehsana Buffalo Is a Unique Population. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:206-220. [PMID: 40233143 DOI: 10.1089/omi.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Riverine buffalo domestication likely occurred around 6300 years ago in Northwestern India. Murrah and Surti are important buffalo breeds that originated in this region and the gene flow from these buffaloes to Mehsana buffalo has long been proposed. However, the extent to which Murrah and Surti ancestry diffused across Mehsana has not been investigated thoroughly. Therefore, we investigated the global and local ancestry of Indian Mehsana buffalo using double digest restriction-site associated DNA sequencing data. Principal component analysis, global ancestry analysis, admixture dating, and three population tests revealed with statistical significance that Mehsana is a unique population. Hence, the hypothesis that Mehsana is a crossbreed between Murrah and Surti is not supported by these findings. However, we noticed that some individuals of Mehsana, 6 out 15, were admixed having 41% Murrah-specific ancestry and 11% Surti-specific ancestry. Local ancestry and post-admixture selection signatures (PASS) in admixed Mehsana individuals revealed PASS in the Mehsana genome, that is, on Bubalus bubalis autosomes (BBA), 1-23 linked from Surti and on BBA, 24 linked from Murrah. Interestingly, upon functional enrichment of these signatures, several adaptation-related genes and pathways were ascertained to Surti, while Murrah-derived regions featured genes involved in fatty acid synthesis (Acyl-CoA Synthetase Short-Chain Family Member 2 (ACSS2)) and milk production. Based on local ancestry analysis, we infer that the introgression of the Murrah genome into Mehsana happened in recent times and that of the Surti genome happened in ancient generations. The finding that Mehsana is an independent population highlights the importance of recognizing distinct genetic lineages in domesticated species. This has global implications for reevaluating the origins and uniqueness of other livestock breeds often assumed to be hybrids. Practically, these findings open up new avenues for selective breeding to preserve traits such as disease resistance, adaptability, and production efficiency. Further studies in larger samples are called for.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, India
| | - Tanuj Gunturu
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal, India
| | - Pravin Purohit
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Amit Kumar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Ganesh N Aderao
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Nidhi Sukhija
- CSB-Central Taser Research and Training Institute, Ranchi, India
| | | |
Collapse
|
3
|
Zhu X, Zheng C, Dong X, Tang Z, Wang Y, Yang R, Bu W. Native genetic structure of black bean bug Brachyplatys subaeneus: Implications for pest management. PEST MANAGEMENT SCIENCE 2025. [PMID: 40298072 DOI: 10.1002/ps.8854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND The black bean bug Brachyplatys subaeneus is a crucial legume crop pest native to Asia. It has been introduced to the Americas and rapidly in tropical and subtropical regions, where it poses a serious threat to local legume crops. However, the native population structure and invasive sources of this pest have never been studied, hindering effective monitoring and management. Here, we investigated the genetic structure of native populations based on nuclear SNP data and genetic relationship between the Panama samples and the native samples based on COI and 16S rRNA sequences. In addition, we constructed ecological niche models to predict its potential invasion areas. RESULTS We found that B. subaeneus comprised three geographic lineages (NO, PH and SO) within its native range, with strong genetic differentiation between these lineages. Genetic relationships based on mitochondrial DNA between the native and invasive samples indicated that Panama samples used in this study were derived from NO lineage. Ecological niche modelling shows a wide range of suitable habitats in the northern and central regions of South America, suggesting that B. subaeneus has the potential to expand further south from the northern regions of South America. CONCLUSION This study revealed the genetic structure of B. subaeneus in its native range, inferred the possible geographical origin of invasive populations, and indicated the potential invasion areas for the bean bug. Our findings in this study could provide new insights into the monitoring and management efforts of this invasive pest. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Dong
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zechen Tang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruijuan Yang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Chilton NB, Thampy PR, Wolbaum CR, Sterling EE, Thoroughgood JT, Berg ED, Halpin AS, Diyes CP, Yunik MEM, Díaz-Sánchez AA, Rochon K, Lysyk TJ, Dergousoff SJ. Genetic diversity and phylogeographic relationships of Dermacentor variabilis (Acari: Ixodidae) within an established population in southern Manitoba (Canada), and the prevalence of Rickettsia montanensis and Francisella-like endosymbionts. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf010. [PMID: 40245248 DOI: 10.1093/jme/tjaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 04/19/2025]
Abstract
The primary objective of this study was to determine if DNA sequences of the mitochondrial (mt) cytochrome oxidase c subunit 1 gene (cox1) and/or the mt 16S ribosomal RNA (rRNA) gene can be used to study the population genetics and phylogeography of the American dog tick, Dermacentor variabilis (Say). DNA sequences were determined for 200 adult ticks collected from an established population in a region of Manitoba (Canada) where there have been recent outbreaks of bovine anaplasmosis. Given this, a secondary objective was to test these ticks for the presence of Anaplasma marginale Theiler and 2 other bacterial pathogens, Rickettsia rickettsii Brumpt and Francisella tularensis (McCoy and Chapin 1912) Dorofe'ev 1947. However, no ticks were PCR-positive for these bacteria, whereas 15% of ticks were PCR-positive for R. montanensis Weiss and Moulder and 96% contained Francisella-like endosymbionts. Nucleotide and haplotype diversity among ticks was greater for cox1 than the 16S rRNA gene, thus cox1 is more useful for examining the genetic diversity within and among D. variabilis populations. The 33 cox1 haplotypes could be separated into 3 haplogroups, but when combined with sequence data from GenBank, 6 clades were evident, 2 of which comprised ticks from primarily Saskatchewan, Manitoba, western Ontario, South Dakota, and Wisconsin. These findings indicate that cox1 can be used to understand the phylogeography of D. variabilis, but more sequences are needed from individuals in other populations across geographical range of this tick species, particularly those on the Canadian prairies where D. variabilis is undergoing range expansion.
Collapse
Affiliation(s)
- Neil B Chilton
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Prasobh R Thampy
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole R Wolbaum
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Emily E Sterling
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Elisabeth D Berg
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexander S Halpin
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chulantha P Diyes
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E M Yunik
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Kateryn Rochon
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Timothy J Lysyk
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Shaun J Dergousoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
5
|
Li S, Chen X, Wu Y, Sun Y. Genomic Signatures of Environmental Adaptation in Castanopsis hainanensis (Fagaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:1128. [PMID: 40219196 PMCID: PMC11991105 DOI: 10.3390/plants14071128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
As an endemic Castanopsis species on Hainan Island, Castanopsis hainanensis Merr. is uniquely adapted to tropical climatic conditions and occupies a relatively narrow habitat range. Given its long generation times, limited dispersal capacity, and ecological and economic importance, understanding the genomic processes shaping this dominant tree species is critical for conservation. Its adaptation to specialized habitats and distinct geographical distribution provide valuable insights into biodiversity challenges in island ecosystems. This study employs genome-wide single-nucleotide polymorphism (SNP) markers to investigate genetic structure, population dynamics, and adaptive variation. Analyses revealed weak genetic divergence among populations, suggesting high gene flow. Demographic reconstruction indicated a historical population bottleneck, consistent with MaxEnt modeling projections of future range contraction under climate change. Selective sweep and genotype-environment association (GEA) analyses identified SNPs strongly correlated with environmental variables, particularly moisture and temperature. Using these SNPs, we quantified the risk of non-adaptedness (RONA) across climate scenarios, pinpointing regions at heightened vulnerability. Gene Ontology (GO) enrichment highlighted the key genes involved in plant growth and stress adaptation. By integrating genomic and environmental data, this study establishes a framework for deciphering adaptive mechanisms of C. hainanensis and offers actionable insights for informed conservation strategies to mitigate climate-driven biodiversity loss.
Collapse
Affiliation(s)
| | | | | | - Ye Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (X.C.); (Y.W.)
| |
Collapse
|
6
|
Lozada-Chávez AN, Lozada-Chávez I, Alfano N, Palatini U, Sogliani D, Elfekih S, Degefa T, Sharakhova MV, Badolo A, Sriwichai P, Casas-Martínez M, Carlos BC, Carballar-Lejarazú R, Lambrechts L, Souza-Neto JA, Bonizzoni M. Adaptive genomic signatures of globally invasive populations of the yellow fever mosquito Aedes aegypti. Nat Ecol Evol 2025; 9:652-671. [PMID: 40155778 PMCID: PMC11976285 DOI: 10.1038/s41559-025-02643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/14/2025] [Indexed: 04/01/2025]
Abstract
In the arboviral vector Aedes aegypti, adaptation to anthropogenic environments has led to a major evolutionary shift separating the domestic Aedes aegypti aegypti (Aaa) ecotype from the wild Aedes aegypti formosus (Aaf) ecotype. Aaa mosquitoes are distributed globally and have higher vectorial capacity than Aaf, which remained in Africa. Despite the evolutionary and epidemiological relevance of this separation, inconsistent morphological data and a complex population structure have hindered the identification of genomic signals distinguishing the two ecotypes. Here we assessed the correspondence between the geographic distribution, population structure and genome-wide selection of 511 Aaf and 123 Aaa specimens and report adaptive signals in 186 genes that we call Aaa molecular signatures. Our results indicate that Aaa molecular signatures arose from standing variation associated with extensive ancestral polymorphisms in Aaf populations and have been co-opted for self-domestication through genomic and functional redundancy and local adaptation. Overall, we show that the behavioural shift of Ae. aegypti mosquitoes to live in association with humans relied on the fine regulation of chemosensory, neuronal and metabolic functions, as seen in the domestication processes of rabbits and silkworms. Our results also provide a foundation for the investigation of new genic targets for the control of Ae. aegypti populations.
Collapse
Affiliation(s)
| | - Irma Lozada-Chávez
- Evo-devo, Bioinformatics and Neuromorphic Information Processing groups, Institute of Computer Science and Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
| | - Niccolò Alfano
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Human Technopole, Milan, Italy
| | - Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
| | - Davide Sogliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Samia Elfekih
- Australian Centre for Disease Preparedness, CSIRO Australia Bio21 Institute, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mauricio Casas-Martínez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Bianca C Carlos
- School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Research Group on Integrated Pest Management, School of Agronomy, Crop Protection Department, São Paulo State University, Botucatu, Brazil
| | - Rebeca Carballar-Lejarazú
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Jayme A Souza-Neto
- School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
7
|
Armstrong EE, Li C, Campana MG, Ferrari T, Kelley JL, Petrov DA, Solari KA, Mooney JA. A Pipeline and Recommendations for Population and Individual Diagnostic SNP Selection in Non-Model Species. Mol Ecol Resour 2025; 25:e14048. [PMID: 39611246 PMCID: PMC11887608 DOI: 10.1111/1755-0998.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
Despite substantial reductions in the cost of sequencing over the last decade, genetic panels remain relevant due to their cost-effectiveness and flexibility across a variety of sample types. In particular, single nucleotide polymorphism (SNP) panels are increasingly favoured for conservation applications. SNP panels are often used because of their adaptability, effectiveness with low-quality samples, and cost-efficiency for population monitoring and forensics. However, the selection of diagnostic SNPs for population assignment and individual identification can be challenging. The consequences of poor SNP selection are under-powered panels, inaccurate results, and monetary loss. Here, we develop a novel and user-friendly SNP selection pipeline (mPCRselect) that can be used to select SNPs for population assignment and/or individual identification. mPCRselect allows any researcher, who has sufficient SNP-level data, to design a successful and cost-effective SNP panel for a diploid species of conservation concern.
Collapse
Affiliation(s)
- Ellie E. Armstrong
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Chenyang Li
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Michael G. Campana
- Smithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Tessa Ferrari
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Joanna L. Kelley
- Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCaliforniaUSA
| | - Dmitri A. Petrov
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
- Chan Zuckerberg BioHubSan FranciscoCaliforniaUSA
- Program for Conservation Genomics, Center for Computational, Evolutionary, and Human GenomicsStanfordCaliforniaUSA
| | | | - Jazlyn A. Mooney
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Blumstein M, Webster S, Hopkins R, Basler D, Yun J, Des Marais DL. Genomics highlight an underestimation of phenology sensitivity to the urban heat island effect. Proc Natl Acad Sci U S A 2025; 122:e2408564122. [PMID: 40100635 PMCID: PMC11962471 DOI: 10.1073/pnas.2408564122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/16/2025] [Indexed: 03/20/2025] Open
Abstract
The phenological timing of leaf out in temperate forests is a critical transition point each year that alters the global climate system, which in turn, feeds back to plants, driving leaf out to occur nearly 3 d earlier per decade as temperatures rise. To improve predictions of leaf out timing, urban heat islands (UHIs) or densely developed areas that are hotter than surrounding undeveloped regions are often used to approximate warming via space-for-time substitutions (i.e., rural-to-urban temperature gradients). However, more than just environment changes along these gradients-urban regions are highly managed systems with limited-to-no within species diversity. We demonstrate here that recent observations that UHI gradients underpredict leaf out response to temperature when compared to temperature gradients through time is likely because both genetics and environment are changing across rural-to-urban gradients, whereas only environment is changing through time. We tested this hypothesis using genomic, phenological, and temperature data of northern red oak (Quercus rubra) over several years between an urban and rural site. Across our gradient, models that included just temperature predicted moderate advancement of leaf out. However, if we account for the genetic diversity of our trees in our model, leaf out phenology is predicted to advance significantly more in response to temperature. We demonstrate that this stronger relationship between phenological timing and climate is because urban trees have reduced genetic diversity as they are planted from limited stock by humans and, moreover, are most closely related to individuals at the rural site that leaf out later on average.
Collapse
Affiliation(s)
- Meghan Blumstein
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22903
- School of Architecture, University of Virginia, Charlottesville, VA22903
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sophie Webster
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- The Arnold Arboretum, Boston, MA02130
| | - David Basler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
- Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf8903, Switzerland
| | - Jie Yun
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David Lee Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
9
|
Daghino S, Murat C, De Mita S, Martino E, Perotto S. Comparative genomics reveals substantial divergence in metal sensitive and metal tolerant isolates of the ericoid mycorrhizal fungus Oidiodendron maius. MYCORRHIZA 2025; 35:24. [PMID: 40116937 PMCID: PMC11928401 DOI: 10.1007/s00572-025-01191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Some heavy metal tolerant fungal isolates capable of forming ericoid mycorrhiza can also confer increased metal tolerance to the host plant. One of these fungal isolates, Oidiodendron maius Zn, has been characterized and a few molecular mechanisms underlying its metal tolerant phenotype have been identified. Here, we investigate the genomic divergences between the available genome of O. maius Zn and the genomes of metal tolerant and sensitive isolates of O. maius, with the aim of identifying genes or intergenic regions possibly involved in the display of the tolerance. The resequenced genomes of 8 tolerant and 10 sensitive isolates were mapped on the reference, O. maius Zn, yielding 357 gene models from the reference that were either missing or too polymorphic to be identified in the genomes of the sensitive isolates. These regions included genes with functions related to defense mechanisms and with unknown functions. One third of the predicted gene models turned out to be highly polymorphic, including many enriched GO terms, i.e. DNA/RNA metabolism and modification, chromosome/chromatin organization, protein biosynthesis, metabolism and function, energy consumption/transfer and mitochondrion. Overall, our findings indicate that the tolerant phenotype in O. maius likely arises from multiple genetic adaptations rather than a singular mechanism.
Collapse
Affiliation(s)
- Stefania Daghino
- Institute for Sustainable Plant Protection, CNR, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Stéphane De Mita
- INRAE, CIRAD, PHIM, Univ Montpellier, Institut Agro, IRD, Montpellier, France
| | - Elena Martino
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France.
- Department of Life Sciences and Systems Biology, University of Torino, V. le Mattioli 25, 10125, Turin, Italy.
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Torino, V. le Mattioli 25, 10125, Turin, Italy
| |
Collapse
|
10
|
Kuesap J, Suphakhonchuwong N, Eksonthi B, Huaihongthong S. Genetic polymorphisms of Plasmodium vivax transmission-blocking vaccine candidates Pvs48/45 and Pvs47 in Thailand. Malar J 2025; 24:63. [PMID: 40016697 PMCID: PMC11866859 DOI: 10.1186/s12936-025-05305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/22/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND The genetic diversity of malaria parasites varies between regions in the world. The genetic polymorphisms of the genes Pvs48/45 and Pvs47 which encode gametocyte/gamete proteins of Plasmodium vivax, were studied because of their potential as transmission-blocking vaccine (TBV) targets. The aim of the present study was to investigate the genetic diversity of Pvs48/45 and Pvs47 in clinical isolates from endemic areas of Thailand. METHODS Plasmodium vivax samples collected from four provinces neighbouring either Myanmar or Malaysia were analysed using polymerase chain reaction and nucleotide sequencing. RESULTS: Fifteen and 18 amino acid substitutions were observed in 36 Pvs48/45 and 62 Pvs47 deduced amino acid sequences, respectively. Eleven haplotypes were identified in Pvs48/45 and 26 in Pvs47. Overall, low nucleotide diversities were observed for Pvs48/45 (π = 0.00104) and Pvs47 (π = 0.00321). Tajima's D, and Fu and Li's D* and F* values were negative for both genes, Pvs48/45 and Pvs47 while a significant difference was found in Pvs48/45 (P < 0.05). CONCLUSION The limited polymorphism of the two investigated TBV candidate antigens observed in this study is consistent with findings in worldwide isolates. The collected genetic diversity data could be helpful for developing effective TBVs in malaria-endemic areas.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Nutnicha Suphakhonchuwong
- Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
- Faculty of Medical Technology, Rangsit University, Pathumthani, Thailand
| | - Benyapa Eksonthi
- Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Saranchana Huaihongthong
- Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
11
|
Brenman-Suttner DB, Rehan SM, Zayed A. Exploring the genetics of social behaviour in C. calcarata. Sci Rep 2025; 15:5580. [PMID: 39955334 PMCID: PMC11830030 DOI: 10.1038/s41598-025-89870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Studies investigating social evolution often focus on species that are obligately eusocial, where presumably all of the adaptive genetic changes associated with sociality have already been completed. To fully understand eusociality, we must study species with facultative social behaviour. The small carpenter bee Ceratina calcarata is an ideal model for studying the genetics and molecular biology of eusocial evolution as it can exhibit both subsocial behaviour with parental care and social behaviour facilitated by the altruistic dwarf eldest daughter. Here, we sequenced the genomes of subsocial and social C. calcarata to identify mutations and genes associated with social behaviour and used these data to test several hypotheses related to the evolution of eusociality. Many single nucleotide polymorphisms that had high levels of genetic differentiation (Fst) between social and subsocial C. calcarata were in or near genes or regions important for regulating gene expression. These results are consistent with the Genetic Toolkit Hypothesis of eusocial evolution. Our findings suggest that the low behavioural complexity observed in C. calcarata may involve modulation of existing regulatory genes and gene networks to generate phenotypes associated with social behaviour.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
12
|
Ghezelayagh A, Simmons JW, Wood JE, Yamashita T, Thomas MR, Blanton RE, Orr OD, MacGuigan DJ, Kim D, Benavides E, Keck BP, Harrington RC, Near TJ. Comparative species delimitation of a biological conservation icon. Curr Biol 2025; 35:398-406.e4. [PMID: 39755118 DOI: 10.1016/j.cub.2024.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/15/2024] [Accepted: 11/20/2024] [Indexed: 01/06/2025]
Abstract
The United States Endangered Species Act (ESA) of 1973 set a precedent for biodiversity conservation across the globe.1 A key requirement of protections afforded by the ESA is the accurate delimitation of imperiled species. We present a comparative reference-based taxonomic approach to species delimitation that integrates genomic and morphological data for objectively assessing the distinctiveness of species targeted for protection by governmental agencies. We apply this protocol to the Snail Darter (Percina tanasi), a freshwater fish from the Tennessee River that was discovered in 1973 and declared an endangered species under the ESA in 1975.2 Concurrently, the Snail Darter's habitat was slated to be destroyed through the construction of the Tellico Dam by the Tennessee Valley Authority (TVA),3,4 inspiring nationwide protests advocating for the suspension of the federal project. This David versus Goliath struggle between supporters of the 3-inch fish and the TVA culminated in the first major legal conflict over protections afforded by the ESA, the US Supreme Court case Hill v. TVA, 437 U.S. 153 (1978), with a 6 to 3 ruling in favor of protecting the Snail Darter and interrupting the completion of the Tellico Dam. Here, we integrate multiple lines of evidence in a comparative framework to demonstrate that despite its legacy, the Snail Darter is not a distinct species but is a population of the Stargazing Darter (Percina uranidea) described in 1887. These results illustrate how a reference-based framework for species delimitation dramatically aids the proper direction of efforts toward protecting biodiversity.
Collapse
Affiliation(s)
- Ava Ghezelayagh
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA; Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA.
| | | | - Julia E Wood
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA
| | - Tsunemi Yamashita
- Department of Biological Sciences, Arkansas Tech University, Russellville, AR 72801, USA
| | - Matthew R Thomas
- Fisheries Division, Kentucky Department of Fish and Wildlife Resources, Frankfort, KY 40601, USA
| | - Rebecca E Blanton
- Department of Biology and Center of Excellence for Field Biology, Austin Peay State University, Clarksville, TN 37040, USA
| | - Oliver D Orr
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA
| | - Daniel J MacGuigan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Daemin Kim
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA
| | - Edgar Benavides
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06520-8106, USA; Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Benjamin P Keck
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard C Harrington
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA; Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC 29412-9110, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520-8106, USA
| |
Collapse
|
13
|
Koloi S, Ganguly I, Singh S, Dixit S. Whole genome re-sequencing reveals high altitude adaptation signatures and admixture in Ladakhi cattle. Gene 2025; 933:148957. [PMID: 39306203 DOI: 10.1016/j.gene.2024.148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Ladakhi cattle, native to the high-altitude region of Ladakh in northern India (ranging from 3,000 to 5,000 m above sea level), have evolved unique genetic adaptations to thrive in harsh environmental conditions, such as hypoxia, extreme cold, and low humidity. This study explored the genome of Ladakhi cattle to investigate genetic structure, selection signatures, and adaptive mechanisms. Whole genome sequencing reads, generated on Illumina NovaSeq 6000 platform, were aligned to the Bos taurus reference genome with BWA-MEM. SNPs were identified and filtered using GATK and bcftools, and functionally annotated with SnpEff. For population genomic analysis, PCA and admixture modeling assessed genetic structure, while Neighbor-Joining trees, LD decay, nucleotide diversity (π), and FST evaluated phylogenetic relationships and genetic variation. Selective sweeps were detected using RAiSD, and gene-set enrichment and protein-protein interaction analyses were conducted to explore functional pathways related to adaptation. The study revealed 3,759,279 unique SNPs and demonstrated that Ladakhi cattle form a distinct genetic cluster with an estimated admixture of 68 % Bos indicus and 32 % Bos taurus ancestry. Key findings include rapid linkage disequilibrium decay, low inbreeding level, and the identification of selection signatures and genes associated with hypoxia response, energy metabolism, and cold adaptation. Mean nucleotide diversity (π, 0.0037) and FST values indicated moderate genetic differentiation from other breeds. The analysis highlighted selection signatures for genes like HIF1A, ENO4, ANGPT1, EPO, NOS3, MAPK3, HMOX1, BCL2,CAMK2D, MTOR, AKT2,PIK3CB, and MAP2K1, among others, including various keratin and heat shock proteins. The interaction between genes associated with hypoxia signaling (HIF-1) and other enriched pathways such as PI3K, mTOR, NFκB, ERK, and ER stress, reveals a complex mechanism for managing hypoxic stress in Ladakhi cattle. These findings offer valuable insights for breeding programs aimed at enhancing livestock resilience in extreme environments and enhance understanding of mammalian adaptation to high-altitude conditions.
Collapse
Affiliation(s)
- Subrata Koloi
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India; Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Indrajit Ganguly
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India.
| | - Sanjeev Singh
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India
| | - Satpal Dixit
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India.
| |
Collapse
|
14
|
Kontou D, Paterson AM, Favot EJ, Grooms C, Smol JP, Tanentzap AJ. Adaptation in a keystone grazer under novel predation pressure. Proc Biol Sci 2025; 292:20241935. [PMID: 39837507 PMCID: PMC11750393 DOI: 10.1098/rspb.2024.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Understanding how species adapt to environmental change is necessary to protect biodiversity and ecosystem services. Growing evidence suggests species can adapt rapidly to novel selection pressures like predation from invasive species, but the repeatability and predictability of selection remain poorly understood in wild populations. We tested how a keystone aquatic herbivore, Daphnia pulicaria, evolved in response to predation pressure by the introduced zooplanktivore Bythotrephes longimanus. Using high-resolution 210Pb-dated sediment cores from 12 lakes in Ontario (Canada), which primarily differed in invasion status by Bythotrephes, we compared Daphnia population genetic structure over time using whole-genome sequencing of individual resting embryos. We found strong genetic differentiation between populations approximately 70 years before versus 30 years after reported Bythotrephes invasion, with no difference over this period in uninvaded lakes. Compared with uninvaded lakes, we identified, on average, 64 times more loci were putatively under selection in the invaded lakes. Differentiated loci were mainly associated with known reproductive and stress responses, and mean body size consistently increased by 14.1% over time in invaded lakes. These results suggest Daphnia populations were repeatedly acquiring heritable genetic adaptations to escape gape-limited predation. More generally, our results suggest some aspects of environmental change predictably shape genome evolution.
Collapse
Affiliation(s)
- Danai Kontou
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, UK
| | - Andrew M. Paterson
- Dorset Environmental Science Centre, Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, Dorset, OntarioP0A 1E0, Canada
| | - Elizabeth J. Favot
- Vale Living with Lakes Centre, Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury, OntarioP3E 2C6, Canada
| | - Christopher Grooms
- Paleoecological Environmental Assessment and Research Lab, Department of Biology, Queen’s University, Kingston, OntarioK7L 3N6, Canada
| | - John P. Smol
- Paleoecological Environmental Assessment and Research Lab, Department of Biology, Queen’s University, Kingston, OntarioK7L 3N6, Canada
| | - Andrew J. Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, UK
- Ecosystems and Global Change Group, School of Environment, Trent University, Peterborough, OntarioK9L 0G2, Canada
| |
Collapse
|
15
|
Henschel A, Saif-Ali R, Al-Habori M, Kamarul SA, Pagani L, Al Hageh C, Porcu E, Taleb NN, Platt D, Zalloua P. Human migration from the Levant and Arabia into Yemen since Last Glacial Maximum. Sci Rep 2024; 14:31704. [PMID: 39738224 PMCID: PMC11685628 DOI: 10.1038/s41598-024-81615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025] Open
Abstract
While a broad consensus about the first successful migration modern humans out of Africa seems established, the peopling of Arabia remains somewhat enigmatic. Identifying the ancestral populations that contributed to the gene pool of the current populations inhabiting Arabia and the impact of their contributions remains a challenging task. We investigate the genetic makeup of the current Yemeni population using 46 whole genomes and 169 genotype arrays derived from Yemeni individuals from all geographic regions across Yemen and 351 genotype arrays derived from neighboring populations providing regional context. Principal Component Analysis shows stratification between Yemen districts but also with respect to nearby populations: Yemeni, other Arabian and Bedouin samples form a continuum towards the populations of the Levant, whereas East Africa and India appear strongly differentiated. This finding is further supported by higher Principal Components, admixture and haplogroup analyses, and F-statistics. Moreover, two-reference linkage disequilibrium decay estimates are most significant for Yemeni admixture from an ancient northern influx (up to 5220BP from Palestine) and East Africa (750BP). We show that the initial gene flow into the Yemeni populations of today came from the rest of Arabia and the Levant, and a less substantial and more recent genetic impact into coastal Yemen from East Africa, particularly.
Collapse
Affiliation(s)
- Andreas Henschel
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Riyadh Saif-Ali
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Sana'a University, Sanaa, Yemen
| | - Molham Al-Habori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Sana'a University, Sanaa, Yemen
| | - Syafiq Azman Kamarul
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy
| | - Cynthia Al Hageh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Emilio Porcu
- Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates
- School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
| | - Nassim Nicolas Taleb
- Risk Engineering, School of Engineering, New York University, New York, USA
- Maroun Semaan Faculty of Engineering & Architecture, American University of Beirut, Beirut, Lebanon
| | | | - Pierre Zalloua
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
16
|
Mead A, Fitz‐Gibbon S, Knapp J, Sork VL. Comparison of Conservation Strategies for California Channel Island Oak ( Quercus tomentella) Using Climate Suitability Predicted From Genomic Data. Evol Appl 2024; 17:e70057. [PMID: 39703674 PMCID: PMC11655387 DOI: 10.1111/eva.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies. Quercus tomentella, or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico. Previous work has shown that Island Oaks on each island are genetically differentiated, but it is unclear whether assisted gene flow could enable populations to tolerate future climates. We performed whole-genome sequencing on Island Oak individuals and Q. chrysolepis, a closely related species that hybridizes with Island Oak (127 total), to characterize genetic structure and introgression across its range and assess the relationship between genomic variation and climate. We introduce and assess three potential management strategies with different trade-offs between conserving historic genetic structure and enabling populations to survive changing climates: the status quo approach; ecosystem preservation approach, which conserves the trees and their associated biodiversity; and species preservation approach, which conserves the species. We compare the impact of these approaches on predicted maladaptation to climate using Gradient Forest. We also introduce a climate suitability index to identify optimal pairs of seed sources and planting sites for approaches involving assisted gene flow. We found one island (Santa Rosa) that could benefit from the ecosystem preservation approach and also serve as a species preservation site. Overall, we find that both the ecosystem and species preservation approaches will do better than the status quo approach. If preserving Island Oak ecosystems is the goal, assisted dispersal into multiple sites could produce adapted populations. If the goal is to preserve a species, the Santa Rosa population would be suitable. This case study both illustrates viable conservation strategies for Island Oak and introduces a framework for tree conservation.
Collapse
Affiliation(s)
- Alayna Mead
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sorel Fitz‐Gibbon
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - John Knapp
- The Nature Conservancy California ChapterSan FranciscoCaliforniaUSA
| | - Victoria L. Sork
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Institute of the Environment and Sustainability, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
17
|
Dimond JL, Bouma JV, Lafarga‐De la Cruz F, Supernault KJ, White T, Witting DA. Endangered Pinto/Northern Abalone ( Haliotis kamtschatkana) are Panmictic Across Their 3700 km Range Along the Pacific Coast of North America. Evol Appl 2024; 17:e70040. [PMID: 39628629 PMCID: PMC11614463 DOI: 10.1111/eva.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Connectivity is integral to the dynamics of metapopulations through dispersal and gene flow, and understanding these processes is essential for guiding conservation efforts. Abalone, broadcast-spawning marine snails associated with shallow rocky habitats, have experienced widespread declines, and all seven North American species are threatened. We investigated the connectivity and population genomics of pinto/northern abalone (Haliotis kamtschatkana), the widest-ranging of abalone species. We employed reduced representation sequencing (RADseq) to generate single nucleotide polymorphism (SNP) data, assessing population connectivity and potential adaptive variation at 12 locations across the full range from Alaska to Mexico. Despite depleted populations, our analysis of over 6000 SNPs across nearly 300 individuals revealed that pinto abalone maintains a high genetic diversity with no evidence of a genetic bottleneck. Neutral population structure and isolation by distance were extremely weak, indicating panmixia across the species' range (global F ST = 0.0021). Phylogenetic analysis, principal components analysis, and unsupervised clustering methods all supported a single genetic population. However, slight population differentiation was noted in the Salish Sea and Inside Passage regions, with evidence for higher barriers to dispersal relative to outer coastal areas. This north-central region may also represent the species' ancestral range based on relatively low population-specific F ST values; the northern and southern extremes of the range likely represent range expansions. Outlier analysis did not identify consensus loci implicated in adaptive variation, suggesting limited adaptive differentiation. Our study sheds light on the evolutionary history and contemporary gene flow of this threatened species, providing key insights for conservation strategies, particularly in sourcing broodstock for ongoing restoration efforts.
Collapse
Affiliation(s)
- J. L. Dimond
- Shannon Point Marine CenterWestern Washington UniversityAnacortesWashingtonUSA
| | - J. V. Bouma
- Puget Sound Restoration FundBainbridge IslandWashingtonUSA
| | - F. Lafarga‐De la Cruz
- Centro de Investigaciones Científicas y de Educación Superior de EnsenadaEnsenadaBaja CaliforniaMexico
| | - K. J. Supernault
- Fisheries and Oceans Canada, Pacific Biological StationNanaimoBritish ColumbiaCanada
| | - T. White
- University of California Santa CruzSanta CruzCaliforniaUSA
| | - D. A. Witting
- NOAA National Marine Fisheries Service, Office of Habitat Conservation, Restoration CenterLong BeachCaliforniaUSA
| |
Collapse
|
18
|
Lesobre L, Ostolani A, Abi Hussein H, Giunchi D, Aourir M, Teyar Y, Baratti M. Genetic Assessment of a Captive Population of Eurasian Stone-Curlew ( Burhinus oedicnemus), Source for the Reinforcement of Wild Populations. BIOLOGY 2024; 13:982. [PMID: 39765649 PMCID: PMC11726720 DOI: 10.3390/biology13120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 01/15/2025]
Abstract
Although ex situ conservation programs are increasingly valuable support tools for in situ conservation measures, success depends on these captive individuals to be genetically representative of the recipient population. The Eurasian stone-curlew (Burhinus oedicnemus) inhabit steppes that represent some of the most degraded and exploited habitats worldwide. A captive breeding program was implemented in Morocco as a pre-emptive effort for the conservation of the North African subspecies Burhinus oedicnemus saharae. However, the genetic origins of the founders of the captive flock were unknown. We applied a multi-locus approach to characterize the genetic ancestry of the current captive breeding flock by comparing it to wild populations from both Western and Eastern Morocco. Mitochondrial DNA and microsatellite markers were employed to assess levels of genetic diversity and relatedness within each sample, as well as potential genetic differentiation between wild and captive samples through PCA and admixture analyses. We recovered similar genetic diversity estimates, low levels of relatedness, and little differentiation between captive and wild samples. These results confirmed the Moroccan origin of the founders. We provide recommendations for the optimization of the Eurasian Stone Curlew conservation breeding program but also for future conservation breeding programs to ensure the effective conservation of genetic diversity and wild populations.
Collapse
Affiliation(s)
- Loïc Lesobre
- Reneco International Wildlife Consultants LLC, Al Reem Island, Abu Dhabi P.O. Box 61741, United Arab Emirates; (A.O.); (H.A.H.)
| | - Alessia Ostolani
- Reneco International Wildlife Consultants LLC, Al Reem Island, Abu Dhabi P.O. Box 61741, United Arab Emirates; (A.O.); (H.A.H.)
| | - Hiba Abi Hussein
- Reneco International Wildlife Consultants LLC, Al Reem Island, Abu Dhabi P.O. Box 61741, United Arab Emirates; (A.O.); (H.A.H.)
| | - Dimitri Giunchi
- Department of Biology, University of Pisa, Via Volta 6, 56126 Pisa, Italy;
| | - Mohamed Aourir
- Département de Biologie, Faculté des Sciences, Université Ibn Zohr, Agadir BP 8106, Morocco; (M.A.); (Y.T.)
| | - Yassine Teyar
- Département de Biologie, Faculté des Sciences, Université Ibn Zohr, Agadir BP 8106, Morocco; (M.A.); (Y.T.)
| | - Mariella Baratti
- Research Institute on Terrestrial Ecosystems IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
19
|
Dogantzis KA, Patel H, Rose S, Conflitti IM, Dey A, Tiwari T, Chapman NC, Kadri SM, Patch HM, Muli EM, Alqarni AS, Allsopp MH, Zayed A. Accurate Detection of scutellata-Hybrids (Africanized Bees) Using a SNP-Based Diagnostic Assay. Ecol Evol 2024; 14:e70554. [PMID: 39554880 PMCID: PMC11569865 DOI: 10.1002/ece3.70554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Hybrid populations of Africanized honey bees (scutellata-hybrids), notable for their defensive behaviour, have spread rapidly throughout South and North America since their unintentional introduction. Although their migration has slowed, the large-scale trade and movement of honey bee queens and colonies raise concern over the accidental importation of scutellata-hybrids to previously unoccupied areas. Therefore, developing an accurate and robust assay to detect scutellata-hybrids is an important first step toward mitigating risk. Here, we used an extensive population genomic dataset to assess the genomic composition of Apis mellifera native populations and patterns of genetic admixture in North and South American commercial honey bees. We used this dataset to develop a SNP assay, where 80 markers, combined with machine learning classification, can accurately differentiate between scutellata-hybrids and non-scutellata-hybrid commercial colonies. The assay was validated on 1263 individuals from colonies located in Canada, the United States, Australia and Brazil. Notably, we demonstrate that using a reduced SNP set of as few as 10 loci can still provide accurate results.
Collapse
Affiliation(s)
| | | | - Stephen Rose
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Alivia Dey
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Nadine C. Chapman
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Samir M. Kadri
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal ScienceSão Paulo State University (UNESP)BotucatuSão PauloBrazil
| | - Harland M. Patch
- Department of EntomologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Elliud M. Muli
- Department of Life ScienceSouth Eastern Kenya University (SEKU)KituiKenya
| | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Michael H. Allsopp
- Plant Protection & HealthAgricultural Research CouncilStellenboschSouth Africa
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
20
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
21
|
He J, Wu J, Wan L, Xu W, Yang T. Genome-Wide Genetic Diversity and Population Structure of Charybdis feriata (Crustacea, Decapoda, and Portunidae) Along the Southeast Coast of China Inferred from Genotyping-by-Sequencing (GBS) Approach. Genes (Basel) 2024; 15:1421. [PMID: 39596621 PMCID: PMC11593378 DOI: 10.3390/genes15111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The swimming crab Charybdis feriata is an important commercial fishery species and a major economic contributor to the southeast coastal fishing communities in China. Under the scenario of resource decline and shortage in the market over recent years, it has become more urgent and necessary to explore the fine-scale population genetic characteristics of C. feriata. METHODS In this study, the genotyping-by-sequencing (GBS) method was used to estimate the genome-wide genetic variation in and population differentiation pattern of C. feriata collected from four geographical locations (Zhoushan, Quanzhou, Yangjiang, and Qinzhou) along the southeast coast of China. RESULTS A total of 18,815 high-quality single-nucleotide polymorphisms (SNPs) were identified and the results revealed the existence of high genetic diversity and low genetic divergence among the populations of C. feriata. Floating eggs and larvae transported by alongshore currents during the reproductive season might enhance the interpopulation genetic exchange. Principal component analysis (PCA) and a phylogenetic tree showed a high genetic connectivity of C. feriata across the southeast coast of China, but C. feriata distributed in the Zhoushan Archipelago might possess some genetic distinctiveness and diversification. CONCLUSIONS The results supplemented basic genetic information of C. feriata at the genome level and also provided specific knowledge that could lead to the improved spatial management of fishery resources.
Collapse
Affiliation(s)
- Jie He
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.H.); (J.W.); (L.W.); (W.X.)
| | - Jialin Wu
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.H.); (J.W.); (L.W.); (W.X.)
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Litao Wan
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.H.); (J.W.); (L.W.); (W.X.)
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wenjun Xu
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.H.); (J.W.); (L.W.); (W.X.)
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
22
|
Cherasse Y, Taira Y, Rassu AL, Barateau L, Evangelista E, Muratani M, Funato H, Yanagisawa M, Dauvilliers Y. Association between idiopathic hypersomnia and a genetic variant in the PER3 gene. J Sleep Res 2024; 33:e14146. [PMID: 38253863 DOI: 10.1111/jsr.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
We aim to identify genetic markers associated with idiopathic hypersomnia, a disabling orphan central nervous system disorder of hypersomnolence that is still poorly understood. In our study, DNA was extracted from 79 unrelated patients diagnosed with idiopathic hypersomnia with long sleep time at the National Reference Center for Narcolepsy-France according to very stringent diagnostic criteria. Whole exome sequencing on the first 30 patients with idiopathic hypersomnia (25 females and 5 males) allowed the single nucleotide variants to be compared with a control population of 574 healthy subjects from the French Exome project database. We focused on the identification of genetic variants among 182 genes related to the regulation of sleep and circadian rhythm. Candidate variants obtained by exome sequencing analysis were then validated in a second sample of 49 patients with idiopathic hypersomnia (37 females and 12 males). Our study characterised seven variants from six genes significantly associated with idiopathic hypersomnia compared with controls. A targeted sequencing analysis of these seven variants on 49 other patients with idiopathic hypersomnia confirmed the relative over-representation of the A➔C variant of rs2859390, located in a potential splicing-site of PER3 gene. Our findings support a genetic predisposition and identify pathways involved in the pathogeny of idiopathic hypersomnia. A variant of the PER3 gene may predispose to idiopathic hypersomnia with long sleep time.
Collapse
Affiliation(s)
- Yoan Cherasse
- Institute of Medicine/International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yuki Taira
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Anna Laura Rassu
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Lucie Barateau
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
- INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University Montpellier, Montpellier, France
| | - Elisa Evangelista
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
- INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University Montpellier, Montpellier, France
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
- INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University Montpellier, Montpellier, France
| |
Collapse
|
23
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
24
|
Wagner I, Smolina I, Koop MEL, Bal T, Lizano AM, Choo LQ, Hofreiter M, Gennari E, de Sabata E, Shivji MS, Noble LR, Jones CS, Hoarau G. Genome analysis reveals three distinct lineages of the cosmopolitan white shark. Curr Biol 2024; 34:3582-3590.e4. [PMID: 39047735 DOI: 10.1016/j.cub.2024.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The white shark (Carcharodon carcharias) (Linnaeus, 1758), an iconic apex predator occurring in all oceans,1,2 is classified as Vulnerable globally3-with global abundance having dropped to 63% of 1970s estimates,4-and as Critically Endangered in Europe.5 Identification of evolutionary significant units and their management are crucial for conservation,6 especially as the white shark is facing various but often region-specific anthropogenic threats.7,8,9,10,11 Assessing connectivity in a cosmopolitan marine species requires worldwide sampling and high-resolution genetic markers.12 Both are lacking for the white shark, with studies to date typified by numerous but geographically limited sampling, and analyses relying largely on relatively small numbers of nuclear microsatellites,13,14,15,16,17,18,19 which can be plagued by various genotyping artefacts and thus require cautious interpretation.20 Sequencing and computational advances are finally allowing genomes21,22,23 to be leveraged into population studies,24,25,26,27 with datasets comprising thousands of single-nucleotide polymorphisms (SNPs). Here, combining target gene capture (TGC)28 sequencing (89 individuals, 4,000 SNPs) and whole-genome re-sequencing (17 individuals, 391,000 SNPs) with worldwide sampling across most of the distributional range, we identify three genetically distinct allopatric lineages (North Atlantic, Indo-Pacific, and North Pacific). These diverged 100,000-200,000 years ago during the Penultimate Glaciation, when low sea levels, different ocean currents, and water temperatures produced significant biogeographic barriers. Our results show that without high-resolution genomic analyses of samples representative of a species' range,12 the true extent of diversity, presence of past and contemporary barriers to gene flow, subsequent speciation, and local evolutionary events will remain enigmatic.
Collapse
Affiliation(s)
- Isabel Wagner
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Martina E L Koop
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Thijs Bal
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Apollo M Lizano
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; Marine Science Institute, University of the Philippines, Diliman Quezon City 1101, Philippines
| | - Le Qin Choo
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay 6500, South Africa
| | | | - Mahmood S Shivji
- Save Our Seas Shark Foundation Research Center and Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - Leslie R Noble
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK.
| | - Catherine S Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK.
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| |
Collapse
|
25
|
Gyllenhaal EF, Brady SS, DeCicco LH, Naikatini A, Hime PM, Manthey JD, Kelly J, Moyle RG, Andersen MJ. Waves of Colonization and Gene Flow in a Great Speciator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.603796. [PMID: 39091784 PMCID: PMC11291091 DOI: 10.1101/2024.07.18.603796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Secondary contact between previously allopatric lineages offers a test of reproductive isolating mechanisms that may have accrued in isolation. Such instances of contact can produce stable hybrid zones-where reproductive isolation can further develop via reinforcement or phenotypic displacement-or result in the lineages merging. Ongoing secondary contact is most visible in continental systems, where steady input from parental taxa can occur readily. In oceanic island systems, however, secondary contact between closely related species of birds is relatively rare. When observed on sufficiently small islands, relative to population size, secondary contact likely represents a recent phenomenon. Here, we examine the dynamics of a group of birds whose apparent widespread hybridization influenced Ernst Mayr's foundational work on allopatric speciation: the whistlers of Fiji (Aves: Pachycephala). We demonstrate two clear instances of secondary contact within the Fijian archipelago, one resulting in a hybrid zone on a larger island, and the other resulting in a wholly admixed population on a smaller, adjacent island. We leveraged low genome-wide divergence in the hybrid zone to pinpoint a single genomic region associated with observed phenotypic differences. We use genomic data to present a new hypothesis that emphasizes rapid plumage evolution and post-divergence gene flow.
Collapse
Affiliation(s)
- Ethan F. Gyllenhaal
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Serina S. Brady
- Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Lucas H. DeCicco
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | | | - Paul M. Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Present Address: McDonnell Genome Institute and Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Joseph D. Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - John Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Robert G. Moyle
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
26
|
Wang X, Feng MH, Wang SB, Shi H. Melocular Evolution on Cold Temperature Adaptation of Chinese Rhesus Macaques. Curr Genomics 2024; 26:36-47. [PMID: 39911280 PMCID: PMC11793050 DOI: 10.2174/0113892029301969240708094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Currently, macaques are used as animal models for human disease in biomedical research. There are two macaques species widely used as animal models, i.e., cynomolgus macaques and rhesus macaques. These two primates distribute widely, and their natural habitats are different. Cynomolgus macaques distribute in tropical climates, while rhesus macaques mostly distribute in relatively cold environments, and cynomolgus macaques have a common frostbite problem during winter when they are transferred to cold environments. Methods In order to explore the molecular mechanisms underlying the temperature adaptation in macaques, genetic analysis and natural selection tests were performed. Based on the analysis of heat shock protein genes, DNAJC22, DNAJC28, and HSF5 showed positive selection signals. To these 3 genes, the significantly differential expression had been confirmed between cynomolgus macaques and Chinese rhesus macaques. Results Molecular evolution analysis showed that mutations of DNAJC22, DNAJC28, and HSF5 in Chinese rhesus macaques could enable them to gain the ability to rapidly regulate body temperature. The heat shock proteins provided an important function for Chinese rhesus macaques, allowing them to adapt to a wide range of temperatures and spread widely. The selection time that was estimated suggested that the cold adaptation of Chinese rhesus macaques coincided with the time that the modern human populations migrated northward from tropic regions to relatively cold regions, and the selection genes were similar. Conclusion This study elucidated the evolutionary history of cynomolgus macaques and rhesus macaques from molecular adaptation. Furthermore, it provided an evolutionary perspective to reveal the different distribution and adaptation of macaques. Cynomolgus macaques is an ideal biomedical animal model to mimic human natural frostbite.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming,Yunnan, 650500, China
| | - Ming-Hong Feng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming,Yunnan, 650500, China
| | - Shao-Bo Wang
- PET/CT Center, First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming,Yunnan, 650500, China
| |
Collapse
|
27
|
Montalvo LD, Kimball RT, Austin JD, Robinson SK. Unraveling the genomic landscape of Campylorhynchus wrens along western Ecuador's precipitation gradient: Insights into hybridization, isolation by distance, and isolation by the environment. Ecol Evol 2024; 14:e11661. [PMID: 38994212 PMCID: PMC11237350 DOI: 10.1002/ece3.11661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Environmental gradients have the potential to influence genetic differentiation among populations ultimately leading to allopatric speciation. However, environmental gradients can also facilitate hybridization between closely related taxa. We investigated a putative hybrid zone in western Ecuador, involving two polytypic wren species (Aves: Troglodytidae), Campylorhynchus zonatus and C. fasciatus. Our study addressed two primary questions: (1) Is there evidence of population structure and genetic admixture between these taxa in western Ecuador? and (2) What are the relative contributions of isolation by distance and isolation by the environment to the observed genetic differentiation along the environmental gradient in this region? We analyzed 4409 single-nucleotide polymorphisms (SNPs) from 112 blood samples sequenced using ddRadSeq and a de novo assembly. The optimum number of genetic clusters ranged from 2 to 4, aligning with geographic origins, known phylogenetics, and physical or ecological constraints. We observed notable transitions in admixture proportions along the environmental gradient in western Ecuador between C. z. brevirostris and the northern and southern genetic clusters of C. f. pallescens. Genetic differentiation between the two C. f. pallescens populations could be attributed to an unreported potential physical barrier in central western Ecuador, where the proximity of the Andes to the coastline restricts lowland habitats, limiting dispersal and gene flow, especially among dry-habitat specialists. The observed admixture in C. f. pallescens suggests that this subspecies may be a hybrid between C. z. brevirostris and C. fasciatus, with varying degrees of admixture in western Ecuador and northwestern Peru. We found evidence of isolation by distance, while isolation by the environment was less pronounced but still significant for annual mean precipitation and precipitation seasonality. This study enhances our understanding of avian population genomics in tropical regions.
Collapse
Affiliation(s)
- Luis Daniel Montalvo
- Florida Museum of Natural History University of Florida Gainesville Florida USA
- Department of Biology University of Florida Gainesville Florida USA
| | | | - James D Austin
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Scott K Robinson
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| |
Collapse
|
28
|
Muharromah AF, Carvajal TM, Regilme MAF, Watanabe K. Fine-scale adaptive divergence and population genetic structure of Aedes aegypti in Metropolitan Manila, Philippines. Parasit Vectors 2024; 17:233. [PMID: 38769579 PMCID: PMC11107013 DOI: 10.1186/s13071-024-06300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Thaddeus M Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, 1004, Manila, Philippines
| | - Maria Angenica F Regilme
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan.
| |
Collapse
|
29
|
Nambala P, Noyes H, Namulondo J, Nyangiri O, Alibu VP, Nerima B, MacLeod A, Matovu E, Musaya J, Mulindwa J, on behalf of the TrypanoGEN+ Research Group as Members of the H3Africa Consortium. Transcriptome profiles of Trypanosoma brucei rhodesiense in Malawi reveal focus specific gene expression profiles associated with pathology. PLoS Negl Trop Dis 2024; 18:e0011516. [PMID: 38701067 PMCID: PMC11095692 DOI: 10.1371/journal.pntd.0011516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sleeping sickness caused by Trypanosoma brucei rhodesiense is a fatal disease and endemic in Southern and Eastern Africa. There is an urgent need to develop novel diagnostic and control tools to achieve elimination of rhodesiense sleeping sickness which might be achieved through a better understanding of trypanosome gene expression and genetics using endemic isolates. Here, we describe transcriptome profiles and population structure of endemic T. b. rhodesiense isolates in human blood in Malawi. METHODOLOGY Blood samples of r-HAT cases from Nkhotakota and Rumphi foci were collected in PaxGene tubes for RNA extraction before initiation of r-HAT treatment. 100 million reads were obtained per sample, reads were initially mapped to the human genome reference GRCh38 using HiSat2 and then the unmapped reads were mapped against Trypanosoma brucei reference transcriptome (TriTrypDB54_TbruceiTREU927) using HiSat2. Differential gene expression analysis was done using the DeSeq2 package in R. SNP calling from reads that were mapped to the T. brucei genome was done using GATK in order to identify T.b. rhodesiense population structure. RESULTS 24 samples were collected from r-HAT cases of which 8 were from Rumphi and 16 from Nkhotakota foci. The isolates from Nkhotakota were enriched with transcripts for cell cycle arrest and stumpy form markers, whereas isolates in Rumphi focus were enriched with transcripts for folate biosynthesis and antigenic variation pathways. These parasite focus-specific transcriptome profiles are consistent with the more virulent disease observed in Rumphi and a less symptomatic disease in Nkhotakota associated with the non-dividing stumpy form. Interestingly, the Malawi T.b. rhodesiense isolates expressed genes enriched for reduced cell proliferation compared to the Uganda T.b. rhodesiense isolates. PCA analysis using SNPs called from the RNAseq data showed that T. b. rhodesiense parasites from Nkhotakota are genetically distinct from those collected in Rumphi. CONCLUSION Our results suggest that the differences in disease presentation in the two foci is mainly driven by genetic differences in the parasites in the two major endemic foci of Rumphi and Nkhotakota rather than differences in the environment or host response.
Collapse
Affiliation(s)
- Peter Nambala
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Joyce Namulondo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Oscar Nyangiri
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Vincent Pius Alibu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Barbara Nerima
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Enock Matovu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Janelisa Musaya
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Julius Mulindwa
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
30
|
Stringer EJ, Gruber B, Sarre SD, Wardle GM, Edwards SV, Dickman CR, Greenville AC, Duncan RP. Boom-bust population dynamics drive rapid genetic change. Proc Natl Acad Sci U S A 2024; 121:e2320590121. [PMID: 38621118 PMCID: PMC11067018 DOI: 10.1073/pnas.2320590121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.
Collapse
Affiliation(s)
- Emily J. Stringer
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Bernd Gruber
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Stephen D. Sarre
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Christopher R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Richard P. Duncan
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| |
Collapse
|
31
|
Garcia CB, da Silva AV, de Carvalho IAS, do Nascimento WF, Ramos SLF, Rodrigues DP, Zucchi MI, Costa FM, Alves-Pereira A, Batista CEDA, Amaral DD, Veasey EA. Low Diversity and High Genetic Structure for Platonia insignis Mart., an Endangered Fruit Tree Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1033. [PMID: 38611562 PMCID: PMC11013813 DOI: 10.3390/plants13071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
Platonia insignis is a fruit tree native to Brazil of increasing economic importance, with its pulp trading among the highest market values. This study aimed to evaluate the structure and genomic diversity of P. insignis (bacurizeiro) accessions from six locations in the Brazilian States of Roraima, Amazonas, Pará (Amazon biome), and Maranhão (Cerrado biome). A total of 2031 SNP markers were obtained using genotyping-by-sequencing (GBS), from which 625 outlier SNPs were identified. High genetic structure was observed, with most of the genetic variability (59%) concentrated among locations, mainly between biomes (Amazon and Cerrado). A positive and significant correlation (r = 0.85; p < 0.005) was detected between genetic and geographic distances, indicating isolation by distance. The highest genetic diversity was observed for the location in the Cerrado biome (HE = 0.1746; HO = 0.2078). The locations in the Amazon biome showed low genetic diversity indexes with significant levels of inbreeding. The advance of urban areas, events of burning, and expansion of agricultural activities are most probably the main factors for the genetic diversity reduction of P. insignis. Approaches to functional analysis showed that most of the outlier loci found may be related to genes involved in cellular and metabolic processes.
Collapse
Affiliation(s)
- Caroline Bertocco Garcia
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Allison Vieira da Silva
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | | | | | | | | | | | - Flaviane Malaquias Costa
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | | | | | | | - Elizabeth Ann Veasey
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
32
|
Polic D, Yıldırım Y, Merilaita S, Franzén M, Forsman A. Genetic structure, UV-vision, wing coloration and size coincide with colour polymorphism in Fabriciana adippe butterflies. Mol Ecol 2024; 33:e17272. [PMID: 38240162 DOI: 10.1111/mec.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Colour polymorphisms have long served as model systems in evolutionary studies and continue to inform about processes involved in the origin and dynamics of biodiversity. Modern sequencing tools allow for evaluating whether phenotypic differences between morphs reflect genetic differentiation rather than developmental plasticity, and for investigating whether polymorphisms represent intermediate stages of diversification towards speciation. We investigated phenotypic and genetic differentiation between two colour morphs of the butterfly Fabriciana adippe using a combination of ddRAD-sequencing and comparisons of body size, colour patterns and optical properties of bright wing spots. The silvery-spotted adippe form had larger and darker wings and reflected UV light, while the yellow cleodoxa form displayed more green scales and reflected very little UV, showcasing that they constitute distinct and alternative integrated phenotypes. Genomic analyses revealed genetic structuring according to source population, and to colour morph, suggesting that the phenotypic differentiation reflects evolutionary modifications. We report 17 outlier loci associated with colour morph, including ultraviolet-sensitive visual pigment (UVRh1), which is associated with intraspecific communication and mate choice in butterflies. Together with the demonstration that the wings of the adippe (but essentially not the cleodoxa) morph reflect UV light, that UV reflectance is higher in females than males and that morphs differ in wing size, this suggests that these colour morphs might represent genetically integrated phenotypes, possibly adapted to different microhabitats. We propose that non-random mating might contribute to the differentiation and maintenance of the polymorphism.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Sami Merilaita
- Department of Biology, University of Turku, Turku, Finland
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
33
|
Bernardi G, Azzurro E, Bariche M, Jimenez C, Kalogirou S, Kleitou P. Invasion genomics of lionfish in the Mediterranean Sea. Ecol Evol 2024; 14:e11087. [PMID: 38450316 PMCID: PMC10915480 DOI: 10.1002/ece3.11087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The rate of biological invasions is steadily increasing, with major ecological and economic impacts accounting for billions of dollars in damage as a result. One spectacular example is the western Atlantic invasion by lionfishes. In the Mediterranean Sea, invasions from the Red Sea via the Suez Canal (termed Lessepsian invasions) comprise more than 100 fish species, including a recent invasion by lionfish. In light of the devastating effects of lionfish in the Caribbean Sea, understanding the dynamics of Mediterranean lionfish invasion is crucial. The Lessepsian lionfish invasion started in 2012, and rapidly spread to the central Mediterranean. Here, we used thousands of RAD seq genomic markers to study the population dynamics of this invasion. While we did not find a reduction in genetic diversity between source (Red Sea) and invasive (Mediterranean) populations (i.e., bottleneck effects), we found evidence of population structure within the invasive range in the Mediterranean Sea. We found that loci that are potentially under selection may play an important role in invasion success (in particular, genes involved in osmoregulation and fin spine sizes). Genomic approaches proved powerful in examining the ecological and evolutionary patterns of successful invaders and may be used as tools to understand and potentially mitigate future invasions.
Collapse
Affiliation(s)
- Giacomo Bernardi
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Ernesto Azzurro
- CNR‐IRBIM, National Research CouncilInstitute of Biological Resources and Marine BiotechnologiesAnconaItaly
- Zoological Station A. DohrnNaplesItaly
| | - Michel Bariche
- Department of BiologyAmerican University of BeirutBeirutLebanon
| | - Carlos Jimenez
- Enalia Physis Environmental Research Centre (ENALIA)NicosiaCyprus
- The Cyprus InstituteEnergy Environment and Water Research CenterNicosiaCyprus
| | - Stefanos Kalogirou
- Hellenic Centre for Marine Research, Institute for Marine Biological Resources and Inland WatersHydrobiological Station of RhodesRhodesGreece
| | - Periklis Kleitou
- Marine & Environmental Research (MER) LabLimassolCyprus
- School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| |
Collapse
|
34
|
Woodruff GC, Willis JH, Phillips PC. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae020. [PMID: 38302111 PMCID: PMC10883733 DOI: 10.1093/gbe/evae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Present address: Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
35
|
Hlongwane NL, Dzomba EF, Hadebe K, van der Nest MA, Pierneef R, Muchadeyi FC. Identification of Signatures of Positive Selection That Have Shaped the Genomic Landscape of South African Pig Populations. Animals (Basel) 2024; 14:236. [PMID: 38254405 PMCID: PMC10812692 DOI: 10.3390/ani14020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
South Africa boasts a diverse range of pig populations, encompassing intensively raised commercial breeds, as well as indigenous and village pigs reared under low-input production systems. The aim of this study was to investigate how natural and artificial selection have shaped the genomic landscape of South African pig populations sampled from different genetic backgrounds and production systems. For this purpose, the integrated haplotype score (iHS), as well as cross population extended haplotype homozygosity (XP-EHH) and Lewontin and Krakauer's extension of the Fst statistic based on haplotype information (HapFLK) were utilised. Our results revealed several population-specific signatures of selection associated with the different production systems. The importance of natural selection in village populations was highlighted, as the majority of genomic regions under selection were identified in these populations. Regions under natural and artificial selection causing the distinct genetic footprints of these populations also allow for the identification of genes and pathways that may influence production and adaptation. In the context of intensively raised commercial pig breeds (Large White, Kolbroek, and Windsnyer), the identified regions included quantitative loci (QTLs) associated with economically important traits. For example, meat and carcass QTLs were prevalent in all the populations, showing the potential of village and indigenous populations' ability to be managed and improved for such traits. Results of this study therefore increase our understanding of the intricate interplay between selection pressures, genomic adaptations, and desirable traits within South African pig populations.
Collapse
Affiliation(s)
- Nompilo L. Hlongwane
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Edgar F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
| | - Magriet A. van der Nest
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Rian Pierneef
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Farai C. Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort 0110, South Africa; (K.H.); (R.P.); (F.C.M.)
| |
Collapse
|
36
|
Reyes-Moya I, Sánchez-Montes G, Babik W, Dudek K, Martínez-Solano Í. Assessing fine-scale pondscape connectivity with amphibian eyes: An integrative approach using genomic and capture-mark-recapture data. Mol Ecol 2024; 33:e17206. [PMID: 37997532 DOI: 10.1111/mec.17206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
In the face of habitat loss, preserving functional connectivity is essential to maintain genetic diversity and the demographic dynamics required for the viability of biotic communities. This requires knowledge of the dispersal behaviour of target species, which can be modelled as kernels, or probability density functions of dispersal distances at increasing geographic distances. We present an integrative approach to investigate the relationships between genetic connectivity and demographic parameters in organisms with low vagility focusing on five syntopic pond-breeding amphibians. We genotyped 1056 individuals of two anuran and three urodele species (1732-3913 SNPs per species) from populations located in a landscape comprising 64 ponds to characterize fine-scale genetic structure in a comparative framework, and combined these genetic data with information obtained in a previous 2-year capture-mark-recapture (CMR) study. Specifically, we contrasted graphs reconstructed from genomic data with connectivity graphs based on dispersal kernels and demographic information obtained from CMR data from previous studies, and assessed the effects of population size, population density, geographical distances, inverse movement probabilities and the presence of habitat patches potentially functioning as stepping stones on genetic differentiation. Our results show a significant effect of local population sizes on patterns of genetic differentiation at small spatial scales. In addition, movement records and cluster-derived kernels provide robust inferences on most likely dispersal paths that are consistent with genomic inferences on genetic connectivity. The integration of genetic and CMR data holds great potential for understanding genetic connectivity at spatial scales relevant to individual organisms, with applications for the implementation of management actions at the landscape level.
Collapse
Affiliation(s)
- Ismael Reyes-Moya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Gregorio Sánchez-Montes
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Wieslaw Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
37
|
Scucchia F, Wong K, Zaslansky P, Putnam HM, Goodbody-Gringley G, Mass T. Morphological and genetic mechanisms underlying the plasticity of the coral Porites astreoides across depths in Bermuda. J Struct Biol 2023; 215:108036. [PMID: 37832837 DOI: 10.1016/j.jsb.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The widespread decline of shallow-water coral reefs has fueled interest in assessing whether mesophotic reefs can act as refugia replenishing deteriorated shallower reefs through larval exchange. Here we explore the morphological and molecular basis facilitating survival of planulae and adults of the coral Porites astreoides (Lamarck, 1816; Hexacorallia: Poritidae) along the vertical depth gradient in Bermuda. We found differences in micro-skeletal features such as bigger calyxes and coarser surface of the skeletal spines in shallow corals. Yet, tomographic reconstructions reveal an analogous mineral distribution between shallow and mesophotic adults, pointing to similar skeleton growth dynamics. Our study reveals patterns of host genetic connectivity and minimal symbiont depth-zonation across a broader depth range than previously known for this species in Bermuda. Transcriptional variations across life stages showed different regulation of metabolism and stress response functions, unraveling molecular responses to environmental conditions at different depths. Overall, these findings increase our understanding of coral acclimatory capability across broad vertical gradients, ultimately allowing better evaluation of the refugia potential of mesophotic reefs.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel; The Interuniversity Institute of Marine Sciences, Eilat, Israel.
| | - Kevin Wong
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin, Berlin, Germany
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Gretchen Goodbody-Gringley
- Central Caribbean Marine Institute, Little Cayman, Cayman Islands; Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel.
| |
Collapse
|
38
|
Trumbo DR, Hardy BM, Crockett HJ, Muths E, Forester BR, Cheek RG, Zimmerman SJ, Corey-Rivas S, Bailey LL, Funk WC. Conservation genomics of an endangered montane amphibian reveals low population structure, low genomic diversity and selection pressure from disease. Mol Ecol 2023; 32:6777-6795. [PMID: 37864490 DOI: 10.1111/mec.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Wildlife diseases are a major global threat to biodiversity. Boreal toads (Anaxyrus [Bufo] boreas) are a state-endangered species in the southern Rocky Mountains of Colorado and New Mexico, and a species of concern in Wyoming, largely due to lethal skin infections caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We performed conservation and landscape genomic analyses using single nucleotide polymorphisms from double-digest, restriction site-associated DNA sequencing in combination with the development of the first boreal toad (and first North American toad) reference genome to investigate population structure, genomic diversity, landscape connectivity and adaptive divergence. Genomic diversity (π = 0.00034-0.00040) and effective population sizes (Ne = 8.9-38.4) were low, likely due to post-Pleistocene founder effects and Bd-related population crashes over the last three decades. Population structure was also low, likely due to formerly high connectivity among a higher density of geographically proximate populations. Boreal toad gene flow was facilitated by low precipitation, cold minimum temperatures, less tree canopy, low heat load and less urbanization. We found >8X more putatively adaptive loci related to Bd intensity than to all other environmental factors combined, and evidence for genes under selection related to immune response, heart development and regulation and skin function. These data suggest boreal toads in habitats with Bd have experienced stronger selection pressure from disease than from other, broad-scale environmental variations. These findings can be used by managers to conserve and recover the species through actions including reintroduction and supplementation of populations that have declined due to Bd.
Collapse
Affiliation(s)
- D R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - B M Hardy
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - H J Crockett
- Colorado Parks and Wildlife, Fort Collins, Colorado, USA
| | - E Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - B R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - R G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - S J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - S Corey-Rivas
- Department of Biology, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - L L Bailey
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - W C Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
39
|
Ulmo‐Diaz G, Engman A, McLarney WO, Lasso Alcalá CA, Hendrickson D, Bezault E, Feunteun E, Prats‐Léon FL, Wiener J, Maxwell R, Mohammed RS, Kwak TJ, Benchetrit J, Bougas B, Babin C, Normandeau E, Djambazian HHV, Chen S, Reiling SJ, Ragoussis J, Bernatchez L. Panmixia in the American eel extends to its tropical range of distribution: Biological implications and policymaking challenges. Evol Appl 2023; 16:1872-1888. [PMID: 38143897 PMCID: PMC10739100 DOI: 10.1111/eva.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 12/26/2023] Open
Abstract
The American eel (Anguilla rostrata) has long been regarded as a panmictic fish and has been confirmed as such in the northern part of its range. In this paper, we tested for the first time whether panmixia extends to the tropical range of the species. To do so, we first assembled a reference genome (975 Mbp, 19 chromosomes) combining long (PacBio and Nanopore and short (Illumina paired-end) reads technologies to support both this study and future research. To test for population structure, we estimated genotype likelihoods from low-coverage whole-genome sequencing of 460 American eels, collected at 21 sampling sites (in seven geographic regions) ranging from Canada to Trinidad and Tobago. We estimated genetic distance between regions, performed ADMIXTURE-like clustering analysis and multivariate analysis, and found no evidence of population structure, thus confirming that panmixia extends to the tropical range of the species. In addition, two genomic regions with putative inversions were observed, both geographically widespread and present at similar frequencies in all regions. We discuss the implications of lack of genetic population structure for the species. Our results are key for the future genomic research in the American eel and the implementation of conservation measures throughout its geographic range. Additionally, our results can be applied to fisheries management and aquaculture of the species.
Collapse
Affiliation(s)
- Gabriela Ulmo‐Diaz
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Augustin Engman
- University of Tennessee Institute of Agriculture, School of Natural ResourcesKnoxvilleTennesseeUSA
| | | | | | - Dean Hendrickson
- Department of Integrative Biology and Biodiversity CollectionsUniversity of Texas at AustinAustinTexasUSA
| | - Etienne Bezault
- UMR 8067 BOREA, Biologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU, IRD, UCN, UA)Université des AntillesPointe‐à‐PitreGuadeloupe
- Caribaea Initiative, Département de BiologieUniversité Des Antilles‐Campus de FouillolePointe‐à‐PitreGuadeloupeFrance
| | - Eric Feunteun
- UMR 7208 BOREABiologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU,IRD, UCN, UA)Station Marine de DinardRennesFrance
- EPHE‐PSLCGEL (Centre de Géoécologie Littorale)DinardFrance
| | | | - Jean Wiener
- Fondation pour la Protection de la Biodiversité Marine (FoProBiM)CaracolHaiti
| | - Robert Maxwell
- Inland Fisheries SectionLouisiana Department of Wildlife and FisheriesLouisianaUSA
| | - Ryan S. Mohammed
- The University of the West Indies (UWI)St. AugustineTrinidad and Tobago
- Present address:
Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Thomas J. Kwak
- US Geological SurveyNorth Carolina Cooperative Fish and Wildlife Research UnitDepartment of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Charles Babin
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Haig H. V. Djambazian
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Shu‐Huang Chen
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Sarah J. Reiling
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Jiannis Ragoussis
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| |
Collapse
|
40
|
Zbinden ZD, Douglas MR, Chafin TK, Douglas ME. Riverscape community genomics: A comparative analytical approach to identify common drivers of spatial structure. Mol Ecol 2023; 32:6743-6765. [PMID: 36461662 DOI: 10.1111/mec.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Genetic differentiation among local groups of individuals, that is, genetic β-diversity, is a key component of population persistence related to connectivity and isolation. However, most genetic investigations of natural populations focus on a single species, overlooking opportunities for multispecies conservation plans to benefit entire communities in an ecosystem. We present an approach to evaluate genetic β-diversity within and among many species and demonstrate how this riverscape community genomics approach can be applied to identify common drivers of genetic structure. Our study evaluated genetic β-diversity in 31 co-distributed native stream fishes sampled from 75 sites across the White River Basin (Ozarks, USA) using SNP genotyping (ddRAD). Despite variance among species in the degree of genetic divergence, general spatial patterns were identified corresponding to river network architecture. Most species (N = 24) were partitioned into discrete subpopulations (K = 2-7). We used partial redundancy analysis to compare species-specific genetic β-diversity across four models of genetic structure: Isolation by distance (IBD), isolation by barrier (IBB), isolation by stream hierarchy (IBH), and isolation by environment (IBE). A significant proportion of intraspecific genetic variation was explained by IBH (x̄ = 62%), with the remaining models generally redundant. We found evidence for consistent spatial modularity in that gene flow is higher within rather than between hierarchical units (i.e., catchments, watersheds, basins), supporting the generalization of the stream hierarchy model. We discuss our conclusions regarding conservation and management and identify the 8-digit hydrologic unit (HUC) as the most relevant spatial scale for managing genetic diversity across riverine networks.
Collapse
Affiliation(s)
- Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyler K Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
41
|
Herzog KS, Hackett JL, Hime PM, Klicka LB, Jensen K. First Insights into Population Structure and Genetic Diversity Versus Host Specificity in Trypanorhynch Tapeworms Using Multiplexed Shotgun Genotyping. Genome Biol Evol 2023; 15:evad190. [PMID: 37906040 PMCID: PMC10616631 DOI: 10.1093/gbe/evad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Theory predicts relaxed host specificity and high host vagility should contribute to reduced genetic structure in parasites while strict host specificity and low host vagility should increase genetic structure. Though these predictions are intuitive, they have never been explicitly tested in a population genomic framework. Trypanorhynch tapeworms, which parasitize sharks and rays (elasmobranchs) as definitive hosts, are the only order of elasmobranch tapeworms that exhibit considerable variability in their definitive host specificity. This allows for unique combinations of host use and geographic range, making trypanorhynchs ideal candidates for studying how these traits influence population-level structure and genetic diversity. Multiplexed shotgun genotyping (MSG) data sets were generated to characterize component population structure and infrapopulation diversity for a representative of each trypanorhynch suborder: the ray-hosted Rhinoptericola megacantha (Trypanobatoida) and the shark-hosted Callitetrarhynchus gracilis (Trypanoselachoida). Adults of R. megacantha are more host-specific and less broadly distributed than adults of C. gracilis, allowing correlation between these factors and genetic structure. Replicate tapeworm specimens were sequenced from the same host individual, from multiple conspecific hosts within and across geographic regions, and from multiple definitive host species. For R. megacantha, population structure coincided with geography rather than host species. For C. gracilis, limited population structure was found, suggesting a potential link between degree of host specificity and structure. Conspecific trypanorhynchs from the same host individual were found to be as, or more, genetically divergent from one another as from conspecifics from different host individuals. For both species, high levels of homozygosity and positive FIS values were documented.
Collapse
Affiliation(s)
- Kaylee S Herzog
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | | | - Paul M Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| | - Lukas B Klicka
- School of Arts and Sciences, Peru State College, Nebraska, USA
| | - Kirsten Jensen
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
42
|
Campos GR, Prado M, Reis Borges KL, Yassue RM, Sabadin F, da Silva AV, Morais de Alcântara Barbosa C, Bellato Sposito M, Amorim L, Fritsche-Neto R. Construction and genetic characterization of an interspecific raspberry hybrids panel aiming resistance to late leaf rust and adaptation to tropical regions. Sci Rep 2023; 13:15216. [PMID: 37709795 PMCID: PMC10502132 DOI: 10.1038/s41598-023-41728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Raspberries (Rubus spp) are temperate climate fruits with profitable high returns and have the potential for diversification of fruit growing in mid to low-latitude regions. However, there are still no cultivars adapted to climatic conditions and high pressure of diseases that occurs in tropical areas. In this context, our objective was to evaluate the genetic diversity from a 116 raspberry genotypes panel obtained from interspecific crosses in a testcross scheme with four cultivars already introduced in Brazil. The panel was genotyped via genotyping-by-sequencing. 28,373 and 27,281 SNPs were obtained, using the species R. occidentalis and R. idaeus genomes as references, respectively. A third marker dataset was constructed consisting of 41,292 non-coincident markers. Overall, there were no differences in the results when using the different marker sets for the subsequent analyses. The mean heterozygosity was 0.54. The average effective population size was 174, indicating great genetic variability. The other analyses revealed that the half-sibling families were structured in three groups. It is concluded that the studied panel has great potential for breeding and further genetic studies. Moreover, only one of the three marker matrices is sufficient for diversity studies.
Collapse
Affiliation(s)
| | - Melina Prado
- "Luiz de Queiroz" College of Agriculture, University of São Paulo, São Paulo, Brazil
| | | | | | - Felipe Sabadin
- "Luiz de Queiroz" College of Agriculture, University of São Paulo, São Paulo, Brazil
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, USA
| | | | | | | | - Lilian Amorim
- "Luiz de Queiroz" College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Roberto Fritsche-Neto
- "Luiz de Queiroz" College of Agriculture, University of São Paulo, São Paulo, Brazil
- Rice Research Station, Louisiana State University AgCenter, Baton Rouge, USA
| |
Collapse
|
43
|
Melis R, Di Crescenzo S, Cariani A, Ferrari A, Crobe V, Bellodi A, Mulas A, Carugati L, Coluccia E, Follesa MC, Cannas R. I Like This New Me: Unravelling Population Structure of Mediterranean Electric Rays and Taxonomic Uncertainties within Torpediniformes. Animals (Basel) 2023; 13:2899. [PMID: 37760300 PMCID: PMC10525375 DOI: 10.3390/ani13182899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The present study focused on the three species of electric rays known to occur in the Mediterranean Sea: Torpedo torpedo, Torpedo marmorata and Tetronarce nobiliana. Correct identification of specimens is needed to properly assess the impact of fisheries on populations and species. Unfortunately, torpedoes share high morphological similarities, boosting episodes of field misidentification. In this context, genetic data was used (1) to identify specimens caught during fishing operations, (2) to measure the diversity among and within these species, and (3) to shed light on the possible occurrence of additional hidden species in the investigated area. New and already published sequences of COI and NADH2 mitochondrial genes were analyzed, both at a small scale along the Sardinian coasts (Western Mediterranean) and at a large scale in the whole Mediterranean Sea. High levels of genetic diversity were found in Sardinian populations, being significantly different from other areas of the Eastern Mediterranean Sea due to the biotic and abiotic factors here discussed. Sardinian torpedoes can hence be indicated as priority populations/areas to be protected within the Mediterranean Sea. Moreover, sequence data confirmed that only the three species occur in the investigated area. The application of several 'species-delimitation' methods found evidence of cryptic species in the three species outside the Mediterranean Sea, as well as in other genera/families, suggesting the urgent need for future studies and a comprehensive revision of the order Torpediniformes for its effective conservation.
Collapse
Affiliation(s)
- Riccardo Melis
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| | - Simone Di Crescenzo
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (A.F.); (V.C.)
| | - Alice Ferrari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (A.F.); (V.C.)
| | - Valentina Crobe
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (A.F.); (V.C.)
| | - Andrea Bellodi
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| | - Antonello Mulas
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| | - Laura Carugati
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| | - Elisabetta Coluccia
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| | - Maria Cristina Follesa
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| | - Rita Cannas
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy; (R.M.); (S.D.C.); (A.B.); (A.M.); (L.C.); (E.C.); (M.C.F.)
| |
Collapse
|
44
|
Fabbri G, Molinaro L, Mucci N, Pagani L, Scandura M. Anthropogenic hybridization and its influence on the adaptive potential of the Sardinian wild boar (Sus scrofa meridionalis). J Appl Genet 2023; 64:521-530. [PMID: 37369962 PMCID: PMC10457222 DOI: 10.1007/s13353-023-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The wild boar (Sus scrofa meridionalis) arrived in Sardinia with the first human settlers in the early Neolithic with the potential to hybridize with the domestic pig (S. s. domesticus) throughout its evolution on the island. In this paper, we investigated the possible microevolutionary effects of such introgressive hybridization on the present wild boar population, comparing Sardinian wild specimens with several commercial pig breeds and Sardinian local pigs, along with a putatively unadmixed wild boar population from Central Italy, all genotyped with a medium density SNP chip. We first aimed at identifying hybrids in the population using different approaches, then examined genomic regions enriched for domestic alleles in the hybrid group, and finally we applied two methods to find regions under positive selection to possibly highlight instances of domestic adaptive introgression into a wild population. We found three hybrids within the Sardinian sample (3.1% out of the whole dataset). We reported 11 significant windows under positive selection with a method that looks for overly differentiated loci in the target population, compared with other two populations. We also identified 82 genomic regions with signs of selection in the domestic pig but not in the wild boar, two of which overlapped with genomic regions enriched for domestic alleles in the hybrid pool. Genes in these regions can be linked with reproductive success. Given our results, domestic introgression does not seem to be pervasive in the Sardinian wild boar. Nevertheless, we suggest monitoring the possible spread of advantageous domestic alleles in the coming years.
Collapse
Affiliation(s)
- Giulia Fabbri
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2A, 07100, Sassari, Italy.
| | - Ludovica Molinaro
- Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell'Emilia, Bologna, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131, Padua, Italy
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2A, 07100, Sassari, Italy
| |
Collapse
|
45
|
Bhardwaj A, Tandon G, Pal Y, Sharma NK, Nayan V, Soni S, Iquebal MA, Jaiswal S, Legha RA, Talluri TR, Bhattacharya TK, Kumar D, Rai A, Tripathi BN. Genome-Wide Single-Nucleotide Polymorphism-Based Genomic Diversity and Runs of Homozygosity for Selection Signatures in Equine Breeds. Genes (Basel) 2023; 14:1623. [PMID: 37628674 PMCID: PMC10454598 DOI: 10.3390/genes14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The horse, one of the most domesticated animals, has been used for several purposes, like transportation, hunting, in sport, or for agriculture-related works. Kathiawari, Marwari, Manipuri, Zanskari, Bhutia, Spiti, and Thoroughbred are the main breeds of horses, particularly due to their agroclimatic adaptation and role in any kind of strong physical activity, and these characteristics are majorly governed by genetic factors. The genetic diversity and phylogenetic relationship of these Indian equine breeds using microsatellite markers have been reported, but further studies exploring the SNP diversity and runs of homozygosity revealing the selection signature of breeds are still warranted. In our study, the identification of genes that play a vital role in muscle development is performed through SNP detection via the whole-genome sequencing approach. A total of 96 samples, categorized under seven breeds, and 620,721 SNPs were considered to ascertain the ROH patterns amongst all the seven breeds. Over 5444 ROH islands were mined, and the maximum number of ROHs was found to be present in Zanskari, while Thoroughbred was confined to the lowest number of ROHs. Gene enrichment of these ROH islands produced 6757 functional genes, with AGPAT1, CLEC4, and CFAP20 as important gene families. However, QTL annotation revealed that the maximum QTLs were associated with Wither's height trait ontology that falls under the growth trait in all seven breeds. An Equine SNP marker database (EqSNPDb) was developed to catalogue ROHs for all these equine breeds for the flexible and easy chromosome-wise retrieval of ROH along with the genotype details of all the SNPs. Such a study can reveal breed divergence in different climatic and ecological conditions.
Collapse
Affiliation(s)
- Anuradha Bhardwaj
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | - Gitanjali Tandon
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Yash Pal
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | - Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India;
| | - Sonali Soni
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Ram Avatar Legha
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
| | | | | | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (G.T.); (N.K.S.); (D.K.)
| | - B. N. Tripathi
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, India; (Y.P.)
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110001, India
| |
Collapse
|
46
|
Scucchia F, Zaslansky P, Boote C, Doheny A, Mass T, Camp EF. The role and risks of selective adaptation in extreme coral habitats. Nat Commun 2023; 14:4475. [PMID: 37507378 PMCID: PMC10382478 DOI: 10.1038/s41467-023-39651-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The alarming rate of climate change demands new management strategies to protect coral reefs. Environments such as mangrove lagoons, characterized by extreme variations in multiple abiotic factors, are viewed as potential sources of stress-tolerant corals for strategies such as assisted evolution and coral propagation. However, biological trade-offs for adaptation to such extremes are poorly known. Here, we investigate the reef-building coral Porites lutea thriving in both mangrove and reef sites and show that stress-tolerance comes with compromises in genetic and energetic mechanisms and skeletal characteristics. We observe reduced genetic diversity and gene expression variability in mangrove corals, a disadvantage under future harsher selective pressure. We find reduced density, thickness and higher porosity in coral skeletons from mangroves, symptoms of metabolic energy redirection to stress response functions. These findings demonstrate the need for caution when utilizing stress-tolerant corals in human interventions, as current survival in extremes may compromise future competitive fitness.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H, Charney school of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin, Berlin, Germany
| | - Chloë Boote
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Annabelle Doheny
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tali Mass
- Department of Marine Biology, Leon H, Charney school of Marine Sciences, University of Haifa, Haifa, Israel
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
47
|
Kanope T, Santos CGM, Marinho F, Monnerat G, Campos-Junior M, da Fonseca ACP, Zembrzuski VM, de Assis M, Pfaffl MW, Pimenta E. Replicative Study in Performance-Related Genes of Brazilian Elite Soccer Players Highlights Genetic Differences from African Ancestry and Similarities between Professional and U20 Youth Athletes. Genes (Basel) 2023; 14:1446. [PMID: 37510350 PMCID: PMC10379729 DOI: 10.3390/genes14071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Classically, genetic association studies have attempted to assess genetic polymorphisms related to human physiology and physical performance. However, the heterogeneity of some findings drives the research to replicate, validate, and confirmation as essential aspects for ensuring their applicability in sports sciences. Genetic distance matrix and molecular variance analyses may offer an alternative approach to comparing athletes' genomes with those from public databases. Thus, we performed a complete sequencing of 44 genomes from male Brazilian first-division soccer players under 20 years of age (U20_BFDSC). The performance-related SNP genotypes were obtained from players and from the "1000 Genomes" database (European, African, American, East Asian, and South Asian). Surprisingly, U20_BFDSC performance-related genotypes had significantly larger FST levels (p < 0.00001) than African populations, although studies using ancestry markers have shown an important similarity between Brazilian and African populations (12-24%). U20_BFDSC were genetically similar to professional athletes, showing the intense genetic selection pressure likely to occur before this maturation stage. Our study highlighted that performance-related genes might undergo selective pressure due to physical performance and environmental, cognitive, and sociocultural factors. This replicative study suggests that molecular variance and Wright's statistics can yield novel conclusions in exercise science.
Collapse
Affiliation(s)
- Tane Kanope
- UFMG Soccer Science Center, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte 31250810, Brazil
| | - Caleb G M Santos
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
- Teaching and Research Division, Brazilian Army Institute of Biology, Rio de Janeiro 20911270, Brazil
| | | | - Gustavo Monnerat
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Mario Campos-Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040360, Brazil
| | - Ana Carolina P da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040360, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro 21045900, Brazil
| | - Verônica M Zembrzuski
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040360, Brazil
| | - Miller de Assis
- UFMG Soccer Science Center, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte 31250810, Brazil
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Eduardo Pimenta
- UFMG Soccer Science Center, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte 31250810, Brazil
| |
Collapse
|
48
|
Combrink LL, Rosenthal WC, Boyle LJ, Rick JA, Mandeville EG, Krist AC, Walters AW, Wagner CE. Parallel shifts in trout feeding morphology suggest rapid adaptation to alpine lake environments. Evolution 2023; 77:1522-1538. [PMID: 37082829 PMCID: PMC10309971 DOI: 10.1093/evolut/qpad059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/13/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
Eco-evolutionary interactions following ecosystem change provide critical insight into the ability of organisms to adapt to shifting resource landscapes. Here we explore evidence for the rapid parallel evolution of trout feeding morphology following eco-evolutionary interactions with zooplankton in alpine lakes stocked at different points in time in the Wind River Range (Wyoming, USA). In this system, trout predation has altered the zooplankton species community and driven a decrease in average zooplankton size. In some lakes that were stocked decades ago, we find shifts in gill raker traits consistent with the hypothesis that trout have rapidly adapted to exploit available smaller-bodied zooplankton more effectively. We explore this morphological response in multiple lake populations across two species of trout (cutthroat trout, Oncorhynchus clarkii, and golden trout Oncorhynchus aguabonita) and examine the impact of resource availability on morphological variation in gill raker number among lakes. Furthermore, we present genetic data to provide evidence that historically stocked cutthroat trout populations likely derive from multiple population sources, and incorporate variation from genomic relatedness in our exploration of environmental predictors of feeding morphology. These findings describe rapid adaptation and eco-evolutionary interactions in trout and document an evolutionary response to novel, contemporary ecosystem change.
Collapse
Affiliation(s)
- Lucia L Combrink
- Department of Botany, University of Wyoming, Laramie, WY, United States
| | - William C Rosenthal
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY, United States
| | - Lindsey J Boyle
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Jessica A Rick
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY, United States
| | - Elizabeth G Mandeville
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY, United States
| | - Amy C Krist
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY, United States
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Annika W Walters
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY, United States
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
49
|
Campbell MA, Hale MC, Jalbert CS, Dunker K, Sepulveda AJ, López JA, Falke JA, Westley PAH. Genomics reveal the origins and current structure of a genetically depauperate freshwater species in its introduced Alaskan range. Evol Appl 2023; 16:1119-1134. [PMID: 37360023 PMCID: PMC10286226 DOI: 10.1111/eva.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Invasive species are a major threat to global biodiversity, yet also represent large-scale unplanned ecological and evolutionary experiments to address fundamental questions in nature. Here we analyzed both native and invasive populations of predatory northern pike (Esox lucius) to characterize landscape genetic variation, determine the most likely origins of introduced populations, and investigate a presumably postglacial population from Southeast Alaska of unclear provenance. Using a set of 4329 SNPs from 351 individual Alaskan northern pike representing the most widespread geographic sampling to date, our results confirm low levels of genetic diversity in native populations (average 𝝅 of 3.18 × 10-4) and even less in invasive populations (average 𝝅 of 2.68 × 10-4) consistent with bottleneck effects. Our analyses indicate that invasive northern pike likely came from multiple introductions from different native Alaskan populations and subsequently dispersed from original introduction sites. At the broadest scale, invasive populations appear to have been founded from two distinct regions of Alaska, indicative of two independent introduction events. Genetic admixture resulting from introductions from multiple source populations may have mitigated the negative effects associated with genetic bottlenecks in this species with naturally low levels of genetic diversity. Genomic signatures strongly suggest an excess of rare, population-specific alleles, pointing to a small number of founding individuals in both native and introduced populations consistent with a species' life history of limited dispersal and gene flow. Lastly, the results strongly suggest that a small isolated population of pike, located in Southeast Alaska, is native in origin rather than stemming from a contemporary introduction event. Although theory predicts that lack of genetic variation may limit colonization success of novel environments, we detected no evidence that a lack of standing variation limited the success of this genetically depauperate apex predator.
Collapse
Affiliation(s)
| | - Matthew C. Hale
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| | - Chase S. Jalbert
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Present address:
Division of Commercial FisheriesAlaska Department of Fish and GameAnchorageAlaskaUSA
| | - Kristine Dunker
- Division of Sport FishAlaska Department of Fish and GameAnchorageAlaskaUSA
| | - Adam J. Sepulveda
- Northern Rocky Mountain Science CenterU.S. Geological SurveyBozemanMontanaUSA
| | - J. Andrés López
- University of Alaska MuseumFairbanksAlaskaUSA
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Jeffrey A. Falke
- Alaska Cooperative Fish and Wildlife Research Unit, U.S. Geological SurveyUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Peter A. H. Westley
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksFairbanksAlaskaUSA
| |
Collapse
|
50
|
Kim HN, Lee O, Lee HJ, Kim GC, Kim HS, Derbridge JJ, Jo YS. The Origin and Invasion Pathway of Brown Rats Rattus norvegicus on Dok-Do Island Revealed by Genome-Wide Markers from 3-RADseq Approach. Animals (Basel) 2023; 13:ani13071243. [PMID: 37048499 PMCID: PMC10093337 DOI: 10.3390/ani13071243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Biological invasions are known to cause local extinctions on islands. Dok-do, a small, remote volcanic island in the East Sea of Korea in the western Pacific, has recently been invaded by rats, posing ecological problems. To infer their origin and invasion pathway, we collected rats from Dok-do and from the potential introduction source locations, Ulleung-do in the Pacific Ocean, and four east coastal ports. First, we identified that the brown rat (Rattus norvegicus) was the only rat species occurring at collecting sites based on the key morphological characteristics. To determine the population-level genetic diversity pattern, we applied the 3-RADseq approach. After a series of filtrations (minor allele frequency < 0.05, Hardy–Weinberg equilibrium p < 1 × 10−7), 4042 SNPs were retained for the final dataset from the 25,439 SNPs initially isolated. The spatial structure and genetic diversity pattern of brown rats suggested that the rat population on Dok-do was likely introduced from Ulleung-do. Our work provides practical information that will assist in the management of invasive brown rats in vulnerable island ecosystems.
Collapse
Affiliation(s)
- Han-Na Kim
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Ohsun Lee
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Hwa-Jin Lee
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Gyu-Cheol Kim
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Hyeon-Soo Kim
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | | | - Yeong-Seok Jo
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|