1
|
Fjaervoll K, Fjaervoll H, Magno M, Nøland ST, Dartt DA, Vehof J, Utheim TP. Review on the possible pathophysiological mechanisms underlying visual display terminal-associated dry eye disease. Acta Ophthalmol 2022; 100:861-877. [PMID: 35441459 DOI: 10.1111/aos.15150aos15150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Visual display terminal (VDT) use is a key risk factor for dry eye disease (DED). Visual display terminal (VDT) use reduces the blink rate and increases the number of incomplete blinks. However, the exact mechanisms causing DED development from VDT use have yet to be clearly described. PURPOSE The purpose of the study was to conduct a review on pathophysiological mechanisms promoting VDT-associated DED. METHODS A PubMed search of the literature investigating the relationship between dry eye and VDT was performed, and relevance to pathophysiology of DED was evaluated. FINDINGS Fifty-five articles met the inclusion criteria. Several pathophysiological mechanisms were examined, and multiple hypotheses were extracted from the articles. Visual display terminal (VDT) use causes DED mainly through impaired blinking patterns. Changes in parasympathetic signalling and increased exposure to blue light, which could disrupt ocular homeostasis, were proposed in some studies but lack sufficient scientific support. Together, these changes may lead to a reduced function of the tear film, lacrimal gland, goblet cells and meibomian glands, all contributing to DED development. CONCLUSION Visual display terminal (VDT) use appears to induce DED through both direct and indirect routes. Decreased blink rates and increased incomplete blinks increase the exposed ocular evaporative area and inhibit lipid distribution from meibomian glands. Although not adequately investigated, changes in parasympathetic signalling may impair lacrimal gland and goblet cell function, promoting tear film instability. More studies are needed to better target and improve the treatment and prevention of VDT-associated DED.
Collapse
Affiliation(s)
- Ketil Fjaervoll
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Haakon Fjaervoll
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Morten Magno
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sara Tellefsen Nøland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Darlene A Dartt
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Jelle Vehof
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, UK
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Quality and Health Technology, The Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Fjærvoll K, Fjærvoll H, Magno M, Nøland ST, Dartt DA, Vehof J, Utheim TP. Review on the possible pathophysiological mechanisms underlying visual display terminal-associated dry eye disease. Acta Ophthalmol 2022; 100:861-877. [PMID: 35441459 PMCID: PMC9790214 DOI: 10.1111/aos.15150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Visual display terminal (VDT) use is a key risk factor for dry eye disease (DED). Visual display terminal (VDT) use reduces the blink rate and increases the number of incomplete blinks. However, the exact mechanisms causing DED development from VDT use have yet to be clearly described. PURPOSE The purpose of the study was to conduct a review on pathophysiological mechanisms promoting VDT-associated DED. METHODS A PubMed search of the literature investigating the relationship between dry eye and VDT was performed, and relevance to pathophysiology of DED was evaluated. FINDINGS Fifty-five articles met the inclusion criteria. Several pathophysiological mechanisms were examined, and multiple hypotheses were extracted from the articles. Visual display terminal (VDT) use causes DED mainly through impaired blinking patterns. Changes in parasympathetic signalling and increased exposure to blue light, which could disrupt ocular homeostasis, were proposed in some studies but lack sufficient scientific support. Together, these changes may lead to a reduced function of the tear film, lacrimal gland, goblet cells and meibomian glands, all contributing to DED development. CONCLUSION Visual display terminal (VDT) use appears to induce DED through both direct and indirect routes. Decreased blink rates and increased incomplete blinks increase the exposed ocular evaporative area and inhibit lipid distribution from meibomian glands. Although not adequately investigated, changes in parasympathetic signalling may impair lacrimal gland and goblet cell function, promoting tear film instability. More studies are needed to better target and improve the treatment and prevention of VDT-associated DED.
Collapse
Affiliation(s)
- Ketil Fjærvoll
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway
| | - Haakon Fjærvoll
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway
| | - Morten Magno
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of Ophthalmology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | | | - Darlene A. Dartt
- Schepens Eye Research Institute of Massachusetts Eye and EarHarvard Medical SchoolBostonMassachusettsUSA
| | - Jelle Vehof
- Department of Ophthalmology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Department of Twin Research & Genetic EpidemiologyKing's College LondonSt Thomas' HospitalLondonUK,Department of Epidemiology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Tor P. Utheim
- Department of Medical BiochemistryOslo University HospitalOsloNorway,Department of Plastic and Reconstructive SurgeryOslo University HospitalOsloNorway,Department of OphthalmologyOslo University HospitalOsloNorway,Department of OphthalmologySørlandet Hospital ArendalArendalNorway,Department of Quality and Health Technology, The Faculty of Health SciencesUniversity of StavangerStavangerNorway,Department of OphthalmologyStavanger University HospitalStavangerNorway,Department of Computer ScienceOslo Metropolitan UniversityOsloNorway,Department of Clinical Medicine, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
3
|
Suzuki A, Iwaya C, Ogata K, Yoshioka H, Shim J, Tanida I, Komatsu M, Tada N, Iwata J. Impaired GATE16-mediated exocytosis in exocrine tissues causes Sjögren's syndrome-like exocrinopathy. Cell Mol Life Sci 2022; 79:307. [PMID: 35593968 PMCID: PMC11071900 DOI: 10.1007/s00018-022-04334-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth. Prior to the onset of the SjS-like phenotype in these null mice, we detected an accumulation of secretory vesicles in the acinar cells of the salivary glands and found that GATE16, an uncharacterized autophagy-related molecule activated by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), was highly expressed in these cells. Notably, GATE16 was activated by isoproterenol, an exocytosis inducer, and localized on the secretory vesicles in the acinar cells of the salivary glands. Failure to activate GATE16 was correlated with exocytosis defects in the acinar cells of the salivary glands in Atg7 and Atg3 cKO mice. Taken together, our results show that GATE16 activation regulated by the autophagic machinery is crucial for exocytosis and that defects in this pathway cause SjS.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Kenichi Ogata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Junbo Shim
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Isei Tanida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Masaaki Komatsu
- Department of Organ and Cell Physiology, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Norihiro Tada
- Division of Genome Research, Research Institute for Diseases of Old Ages, Juntendo University School of Medicine, Tokyo, 113-8431, Japan
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- Pediatric Research Center, School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Yasui T, Miyata K, Nakatsuka C, Tsukise A, Gomi H. Morphological and histochemical characterization of the secretory epithelium in the canine lacrimal gland. Eur J Histochem 2021; 65. [PMID: 34726360 PMCID: PMC8581551 DOI: 10.4081/ejh.2021.3320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In the present study, the expression of secretory components and vesicular transport proteins in the canine lacrimal gland was examined and morphometric analysis was performed. The secretory epithelium consists of two types of secretory cells with different morphological features. The secretory cells constituting acinar units (type A cells) exhibited higher levels of glycoconjugates, including β-GlcNAc, than the other cell type constituting tubular units (type T cells). Immunoblot analysis revealed that antimicrobial proteins, such as lysozyme, lactoferrin and lactoperoxidase, Rab proteins (Rab3d, Rab27a and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins (VAMP2, VAMP4, VAMP8, syntaxin-1, syntaxin-4 and syntaxin-6), were expressed at various levels. We immunohistochemically demonstrated that the expression patterns of lysozyme, lactoferrin, Rab27a, Rab27b, VAMP4, VAMP8 and syntaxin-6 differed depending on the secretory cell type. Additionally, in type T cells, VAMP4 was confined to a subpopulation of secretory granules, while VAMP8 was detected in almost all of them. The present study displayed the morphological and histochemical characteristics of the secretory epithelium in the canine lacrimal gland. These findings will help elucidate the species-specific properties of this gland.
Collapse
Affiliation(s)
- Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Kenya Miyata
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Chie Nakatsuka
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Azuma Tsukise
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| |
Collapse
|
5
|
Autoimmune Epithelitis and Chronic Inflammation in Sjögren's Syndrome-Related Dry Eye Disease. Int J Mol Sci 2021; 22:ijms222111820. [PMID: 34769250 PMCID: PMC8584177 DOI: 10.3390/ijms222111820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Autoimmune epithelitis and chronic inflammation are one of the characteristic features of the immune pathogenesis of Sjögren’s syndrome (SS)-related dry eye disease. Autoimmune epithelitis can cause the dysfunction of the excretion of tear fluid and mucin from the lacrimal glands and conjunctival epithelia and meibum from the meibomian glands. The lacrimal gland and conjunctival epithelia express major histocompatibility complex class II or human leukocyte antigen-DR and costimulatory molecules, acting as nonprofessional antigen-presenting cells for T cell and B cell activation in SS. Ocular surface epithelium dysfunction can lead to dry eye disease in SS. Considering the mechanisms underlying SS-related dry eye disease, this review highlights autoimmune epithelitis of the ocular surface, chronic inflammation, and several other molecules in the tear film, cornea, conjunctiva, lacrimal glands, and meibomian glands that represent potential targets in the treatment of SS-related dry eye disease.
Collapse
|
6
|
Phenylephrine increases tear cathepsin S secretion in healthy murine lacrimal gland acinar cells through an alternative secretory pathway. Exp Eye Res 2021; 211:108760. [PMID: 34487726 DOI: 10.1016/j.exer.2021.108760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Little is known about the relationship between stimulation of lacrimal gland (LG) tear protein secretion by parasympathetic versus sympathetic nerves, particularly whether the spectrum of tear proteins evoked through each innervation pathway varies. We have previously shown that activity and abundance of cathepsin S (CTSS), a cysteine protease, is greatly increased in tears of Sjögren's syndrome (SS) patients and in tears from the male NOD mouse of autoimmune dacryoadenitis that recapitulates SS-associated dry eye disease. Beyond the increased synthesis of CTSS detected in the diseased NOD mouse LG, increased tear CTSS secretion in NOD mouse tears was recently linked to increased exocytosis from a novel endolysosomal secretory pathway. Here, we have compared secretion and trafficking of CTSS in healthy mouse LG acinar cells stimulated with either the parasympathetic acetylcholine receptor agonist, carbachol (CCh), or the sympathetic α1-adrenergic agonist, phenylephrine (PE). In situ secretion studies show that PE significantly increases CTSS activity and protein in tears relative to CCh stimulation by 1.2-fold (***, p = 0.0009) and ∼5-fold (*, p-0.0319), respectively. A similar significant increase in CTSS activity with PE relative to CCh is observed when cultured LGAC are stimulated in vitro. CCh stimulation significantly elevates intracellular [Ca2+], an effect associated with increases in the size of Rab3D-enriched vesicles consistent with compound fusion, and subsequently decreases in their intensity of labeling consistent with their exocytosis. PE stimulation induces a lower [Ca2+] response and has minimal effects on Rab3D-enriched SV diameter or the intensity of Rab3D-enriched SV labeling. LG deficient in Rab3D exhibit a higher sensitivity to PE stimulation, and secrete more CTSS activity. Significant increases in the colocalization of endolysosomal vesicle markers (Lamp1, Lamp2, Rab7) with the subapical actin suggestive of fusion of endolysosomal vesicles at the apical membrane occur both with CCh and PE stimulation, but PE demonstrates increased colocalization. In conclusion, the α1-adrenergic agonist, PE, increases CTSS secretion into tears through a pathway independent of the exocytosis of Rab3D-enriched mature SV, possibly representing an alternative endolysosomal secretory pathway.
Collapse
|
7
|
Dai X, Tang Z, Ju Y, Ni N, Gao H, Wang J, Yin L, Liu A, Weng S, Zhang J, Zhang J, Gu P. Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia. Biochem Biophys Res Commun 2021; 549:14-20. [PMID: 33652205 DOI: 10.1016/j.bbrc.2021.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Ametropia is one of the most common ocular disorders worldwide, to which almost half of visual impairments are attributed. Growing evidence has linked the development of ametropia with ambient light, including blue light, which is ubiquitous in our surroundings and has the highest photonic energy among the visible spectrum. However, the underlying mechanism of blue light-mediated ametropia remains controversial and unclear. In the present study, our data demonstrated that exposure of the retinal pigment epithelium (RPE) to blue light elevated the levels of the vital ametropia-related factor type Ⅰ collagen (COL1) via β-catenin inhibition in scleral fibroblasts, leading to axial ametropia (hyperopic shift). Herein, our study provides evidence for the vital role of blue light-induced RPE dysfunction in the process of blue light-mediated ametropia, providing intriguing insights into ametropic aetiology and pathology by proposing a link among blue light, RPE dysfunction and ametropia.
Collapse
Affiliation(s)
- Xiaochan Dai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Luqiao Yin
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Ailin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, China.
| | - Jing Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
8
|
Talens-Estarelles C, García-Marqués JV, Cervino A, García-Lázaro S. Use of digital displays and ocular surface alterations: A review. Ocul Surf 2020; 19:252-265. [PMID: 33053438 DOI: 10.1016/j.jtos.2020.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Digital display use has been accepted to be implicated as a contributing factor for dry eye disease (DED). Abnormal blinking during computer operation, including a reduced blink rate and an incomplete eyelid closure, increased palpebral fissure as consequence of high visualization angles, and meibomian gland dysfunction associated to long-term display use, are behind the increased prevalence of dry eye signs and symptoms found in digital display users. Previous research reveals significant reductions in tear volume and stability, alterations in tear film composition, including increased osmolarity, inflammatory cytokines, oxidative stress markers and reduced mucin secretion, eyelid abnormalities and ocular surface damage, encompassing corneal and conjunctival staining and bulbar redness, as a direct consequence of digital display use. In this regard, individual differences in the way that the various digital displays are typically set up and used may account for differences in their effects on induced dryness signs and symptoms. Furthermore, factors such as the use of contact lenses or inappropriate working environments, usually accompanying the use of displays, may significantly increase the prevalence and the severity of induced dry eye. Other factors, such as old age and female gender are also relevant in the appearance of associated alterations. Finally, clinicians should adopt a treatment strategy based on a multidirectional approach, with various treatments being applied in conjunction.
Collapse
Affiliation(s)
- Cristian Talens-Estarelles
- Department of Optics & Optometry & Vision Sciences. University of Valencia. Dr. Moliner, 50 46100, Burjassot (Valencia), Spain
| | - José Vicente García-Marqués
- Department of Optics & Optometry & Vision Sciences. University of Valencia. Dr. Moliner, 50 46100, Burjassot (Valencia), Spain
| | - Alejandro Cervino
- Department of Optics & Optometry & Vision Sciences. University of Valencia. Dr. Moliner, 50 46100, Burjassot (Valencia), Spain
| | - Santiago García-Lázaro
- Department of Optics & Optometry & Vision Sciences. University of Valencia. Dr. Moliner, 50 46100, Burjassot (Valencia), Spain.
| |
Collapse
|
9
|
Abstract
The 2017 consensus report of the Asia Dry Eye Society (ADES) on the definition and diagnosis of dry eyes described dry eye disease as "Dry eye is a multifactorial disease characterized by unstable tear film causing a variety of symptoms and/or visual impairment, potentially accompanied by ocular surface damage." The report emphasized the instability of tear film and the importance of visual dysfunction in association with dry eyes, highlighting the importance of the evaluation of tear film stability. This report also discussed the concept of tear film-oriented therapy, which stemmed from the definition, and which is centered on provision of insufficient components in each tear film layer and ocular surface epithelium. The current ADES report proposes a simple classification of dry eyes based on the concept of tear film-oriented diagnosis and suggests that there are three types of dry eye: aqueous-deficient, decreased wettability, and increased evaporation. It is suggested that these three types respectively coincide with the problems of each layer: aqueous, membrane-associated mucins, and lipid/secretory mucin. Although each component cannot be quantitatively evaluated with the current technology, a practical diagnosis based on the patterns of fluorescein breakup is recommended. The Asia Dry Eye Society classification report suggests that for a practical use of the definition, diagnostic criteria and classification system should be integrated and be simple to use. The classification system proposed by ADES is a straightforward tool and simple to use, only through use of fluorescein, which is available even to non-dry eye specialists, and which is believed to contribute to an effective diagnosis and treatment of dry eyes.
Collapse
|
10
|
Jin K, Imada T, Hisamura R, Ito M, Toriumi H, Tanaka KF, Nakamura S, Tsubota K. Identification of Lacrimal Gland Postganglionic Innervation and Its Regulation of Tear Secretion. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1068-1079. [PMID: 32084368 DOI: 10.1016/j.ajpath.2020.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Tear fluid secreted from the exocrine lacrimal gland (LG) has an essential role in maintaining a homeostatic environment for a healthy ocular surface. Tear secretion is regulated by the sympathetic and parasympathetic components of the autonomic nervous system, although the contribution of each component is not fully understood. To investigate LG innervation, we identified sympathetic and parasympathetic postganglionic nerves, specifically innervating the mouse LG, by injecting a retrograde neuronal tracer into the LG. Interruption of neural stimuli to the LG by the denervation of these postganglionic nerves immediately and chronically decreased tear secretion, leading to LG atrophy along with destruction of the lobular structure. This investigation also found that parasympathetic, but not sympathetic, innervation was involved in these alterations.
Collapse
Affiliation(s)
- Kai Jin
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuji Hisamura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Saitama, Japan
| | - Haruki Toriumi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Abstract
Purpose Dry eye is a major ocular pathology worldwide. Although dry eye is a multifactorial disease, recent studies have shown that chronic immunologic processes have a pivotal role in its pathogenesis, characterized by the infiltration of immune cells in the lacrimal glands, elevated levels of tear inflammatory cytokines, and increased density of immune cells in the cornea and conjunctiva. This review describes the recent advances in understanding the relationship between dry eye and inflammation. Methods This narrative review is based on searches of recent international literature using terms related to the immune response in dry eye, and includes clinical trials, animal experiments, and expert reviews. Results Although dry eye presents clinically as tear film instability associated with corneal/conjunctival epithelial disorders, Meibomian gland dysfunction, and decreased visual function, recent laboratory and clinical studies have indicated inflammation in the lacrimal glands, Meibomian glands, conjunctiva, cornea, and aqueous tears. Furthermore, inflammation at these locations leads to conjunctival goblet cell apoptosis, corneal epithelial barrier disruption, and corneal nerve damage. These inflammatory outcomes can be exacerbated by intrinsic and extrinsic factors, such as aging, sex steroid hormone, autoimmune diseases, contact lens use, visual display terminals, and dry environment. Conclusions Recent advances in dry eye research have revealed the inflammatory process and its pathogenesis, which has been proposed as an "inflammatory vicious cycle" of dry eye. Comprehensive assessment of dry eye based on inflammation will improve the selection of treatments and help break the inflammatory cycle in clinical settings.
Collapse
Affiliation(s)
- Takefumi Yamaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| |
Collapse
|
12
|
Nakamura S. Approach to Dry Eye in Video Display Terminal Workers (Basic Science). ACTA ACUST UNITED AC 2018; 59:DES130-DES137. [DOI: 10.1167/iovs.17-23762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Shinjyuku-ku, Tokyo, Japan
| |
Collapse
|
13
|
Ju Y, Janga SR, Klinngam W, MacKay JA, Hawley D, Zoukhri D, Edman MC, Hamm-Alvarez SF. NOD and NOR mice exhibit comparable development of lacrimal gland secretory dysfunction but NOD mice have more severe autoimmune dacryoadenitis. Exp Eye Res 2018; 176:243-251. [PMID: 30201519 PMCID: PMC6215720 DOI: 10.1016/j.exer.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The male Non-Obese Diabetic (NOD) mouse is an established model of autoimmune dacryoadenitis characteristic of Sjögren's Syndrome (SS), but development of diabetes may complicate studies. The Non-Obese Diabetes Resistant (NOR) mouse is a MHC-II matched diabetes-resistant alternative, but development of autoimmune dacryoadenitis is not well-characterized. We compare features of SS in male NOD and NOR mice at 12 and 20 weeks. Stimulated tear secretion was decreased in 12 week NOD relative to BALB/c mice (p < 0.05), while by 20 weeks both NOD and NOR showed decreased stimulated tear secretion relative to BALB/c mice (p < 0.001). Tear CTSS activity was elevated in NOD and NOR relative to BALB/c mice (p < 0.05) at 12 and 20 weeks. While NOD and NOR lacrimal glands (LG) showed increased LG lymphocytic infiltration at 12 and 20 weeks relative to BALB/c mouse LG (p < 0.05), the percentage in NOD was higher relative to NOR at each age (p < 0.05). Gene expression of CTSS, MHC II and IFN-γ in LG were significantly increased in NOD but not NOR relative to BALB/c at 12 and 20 weeks. Redistribution of the secretory effector, Rab3D in acinar cells was observed at both time points in NOD and NOR, but thinning of myoepithelial cells at 12 weeks in NOD and NOR mice was restored by 20 weeks in NOR mice. NOD and NOR mice share features of SS-like autoimmune dacryoadenitis, suggesting common disease etiology. Other findings suggest more pronounced lymphocytic infiltration in NOD mouse LG including increased pro-inflammatory factors that may be unique to this model.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Dillon Hawley
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
14
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Janga SR, Shah M, Ju Y, Meng Z, Edman MC, Hamm-Alvarez SF. Longitudinal analysis of tear cathepsin S activity levels in male non-obese diabetic mice suggests its potential as an early stage biomarker of Sjögren's Syndrome. Biomarkers 2018; 24:91-102. [PMID: 30126300 DOI: 10.1080/1354750x.2018.1514656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. OBJECTIVE To evaluate longitudinal expression of tear and tissue CTSS activity relative to other disease indicators in Non-Obese Diabetic (NOD) mice. METHODS CTSS activity was measured in tears and lacrimal glands (LG) from male 1-6 month (M) NOD and 1 and 6 M BALB/c mice. Lymphocytic infiltration was quantified by histopathology, while disease-related proteins (Rab3D, CTSS, collagen 1) were quantified using q-PCR and immunofluorescence. RESULTS In NOD LG, lymphocytic infiltration was noted by 2 M and established by 3 M (p < 0.01). IFN-ɣ, TNF-α, and MHC II expression were increased by 2 M (p < 0.01). Tear CTSS activity was significantly elevated at 2 M (p < 0.001) to a maximum of 10.1-fold by 6 M (p < 0.001). CTSS activity in LG lysates was significantly elevated by 2 M (p < 0.001) to a maximum of 14-fold by 3 M (p < 0.001). CTSS and Rab3D immunofluorescence were significantly increased and decreased maximally in LG acini by 3 M and 2 M, respectively. Comparable changes were not detected between 1 and 6 M BALB/c mouse LG, although Collagen 1 was decreased by 6 M in LG of both strains. CONCLUSION Tear CTSS activity is elevated with other early disease indicators, suggesting potential as an early stage biomarker for SS.
Collapse
Affiliation(s)
- Srikanth R Janga
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Mihir Shah
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Yaping Ju
- b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| | - Zhen Meng
- b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| | - Maria C Edman
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Sarah F Hamm-Alvarez
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA.,b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| |
Collapse
|
16
|
Edman MC, Janga SR, Meng Z, Bechtold M, Chen AF, Kim C, Naman L, Sarma A, Teekappanavar N, Kim AY, Madrigal S, Singh S, Ortiz E, Christianakis S, Arkfeld DG, Mack WJ, Heur M, Stohl W, Hamm-Alvarez SF. Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjögren's Syndrome patients. Sci Rep 2018; 8:11044. [PMID: 30038391 PMCID: PMC6056496 DOI: 10.1038/s41598-018-29411-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. Here we tested whether protease inhibition and cystatin C (Cys C) levels are reduced in SS tears, which could lead to enhanced CTSS-driven degradation of tear proteins. CTSS activity against Cys C, LF and sIgA was tested in SS or healthy control tears. Tears from 156 female subjects (33, SS; 33, rheumatoid arthritis; 31, other autoimmune diseases; 35, non-autoimmune dry eye (DE); 24, healthy controls) were analyzed for CTSS activity and Cys C, LF, and sIgA levels. Cys C and LF showed enhanced degradation in SS tears supplemented with recombinant CTSS, but not supplemented healthy control tears. CTSS activity was significantly increased, while Cys C, LF and sIgA levels were significantly decreased, in SS tears compared to other groups. While tear CTSS activity remained the strongest discriminator of SS in autoimmune populations, combining LF and CTSS improved discrimination of SS beyond CTSS in DE patients. Reductions in Cys C and other endogenous proteases may enhance CTSS activity in SS tears. Tear CTSS activity is reconfirmed as a putative biomarker of SS in an independent patient cohort while combined LF and CTSS measurements may distinguish SS from DE patients.
Collapse
Affiliation(s)
- Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Srikanth R Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Mercy Bechtold
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander F Chen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chongiin Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luke Naman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arunava Sarma
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neha Teekappanavar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Y Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Madrigal
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Simranjit Singh
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Ortiz
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stratos Christianakis
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel G Arkfeld
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Heur
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Rheumatology, Department of Medicine, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, USA
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Reduced Expression of VAMP8 in Lacrimal Gland Affected by Chronic Graft-versus-Host Disease. J Ophthalmol 2017; 2017:1639012. [PMID: 29098081 PMCID: PMC5643041 DOI: 10.1155/2017/1639012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
Purpose To investigate whether the SNARE protein vesicle-associated membrane protein 8 (VAMP8) was implicated in the development of chronic ocular graft-versus-host disease (GVHD). Methods Firstly, the chronic GVHD (cGVHD) and Sjögren's syndrome (SS)-impaired lacrimal gland (LG) tissue sections from humans for diagnostic purpose were evaluated for VAMP8 expression by histopathology and immunohistochemistry. Next, serial changes of tear secretion and VAMP8 expression at both protein and mRNA level of LG in an animal cGVHD model compared with the syngeneic control. Results Decreased VAMP 8 expression in the cGVHD-affected human LG was detected in comparison with SS-affected LG. Tear secretion in the murine cGVHD model was significantly reduced compared with that in the syngeneic controls 8 weeks after BMT. Protein expression of VAMP8 in the cGVHD-affected LG in murine cGVHD was decreased in comparison with that in the controls. Gene expression of VAMP8 in the cGVHD-affected murine LG was significantly less than that in the syngeneic control 3 weeks after BMT. Conclusions Our results suggested that expression of VAMP8 in the cGVHD-affected LG was decreased and accordingly tear secretion in cGVHD was reduced. Collectively, the reduction of VAMP8 expression in the cGVHD-affected LG can be involved in the pathogenic processes of cGVHD-induced dry eye disease.
Collapse
|
18
|
Meng Z, Klinngam W, Edman MC, Hamm-Alvarez SF. Interferon-γ treatment in vitro elicits some of the changes in cathepsin S and antigen presentation characteristic of lacrimal glands and corneas from the NOD mouse model of Sjögren's Syndrome. PLoS One 2017; 12:e0184781. [PMID: 28902875 PMCID: PMC5597228 DOI: 10.1371/journal.pone.0184781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammation and impaired secretion by lacrimal and salivary glands are hallmarks of the autoimmune disease, Sjögren’s Syndrome. These changes in the lacrimal gland promote dryness and inflammation of the ocular surface, causing pain, irritation and corneal damage. The changes that initiate and sustain autoimmune inflammation in the lacrimal gland are not well-established. Here we demonstrate that interferon-γ (IFN-γ) is significantly elevated in lacrimal gland and tears of the male NOD mouse, a model of autoimmune dacryoadenitis which exhibits many ocular characteristics of Sjögren’s Syndrome, by 12 weeks of age early in lacrimal gland inflammation. Working either with primary cultured lacrimal gland acinar cells from BALB/c mice and/or rabbits, in vitro IFN-γ treatment for 48 hr decreased expression of Rab3D concurrent with increased expression of cathepsin S. Although total cellular cathepsin S activity was not commensurately increased, IFN-γ treated lacrimal gland acinar cells showed a significant increase in carbachol-stimulated secretion of cathepsin S similar to the lacrimal gland in disease. In vitro IFN-γ treatment did not increase the expression of most components of major histocompatibility complex (MHC) class II-mediated antigen presentation although antigen presentation was slightly but significantly stimulated in primary cultured lacrimal gland acinar cells. However, exposure of cultured human corneal epithelial cells to IFN-γ more robustly increased expression and activity of cathepsin S in parallel with increased expression and function of MHC class II-mediated antigen presentation. We propose that early elevations in IFN-γ contribute to specific features of ocular disease pathology in Sjögren’s Syndrome.
Collapse
Affiliation(s)
- Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Maria C. Edman
- Department of Ophthalmology, USC Roski Eye Institute and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, USC Roski Eye Institute and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Meng Z, Edman MC, Hsueh PY, Chen CY, Klinngam W, Tolmachova T, Okamoto CT, Hamm-Alvarez SF. Imbalanced Rab3D versus Rab27 increases cathepsin S secretion from lacrimal acini in a mouse model of Sjögren's Syndrome. Am J Physiol Cell Physiol 2016; 310:C942-54. [PMID: 27076615 DOI: 10.1152/ajpcell.00275.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/06/2016] [Indexed: 02/04/2023]
Abstract
The mechanism responsible for the altered spectrum of tear proteins secreted by lacrimal gland acinar cells (LGAC) in patients with Sjögren's Syndrome (SS) remains unknown. We have previously identified increased cathepsin S (CTSS) activity as a unique characteristic of tears of patients with SS. Here, we investigated the role of Rab3D, Rab27a, and Rab27b proteins in the enhanced release of CTSS from LGAC. Similar to patients with SS and to the male nonobese diabetic (NOD) mouse model of SS, CTSS activity was elevated in tears of mice lacking Rab3D. Findings of lower gene expression and altered localization of Rab3D in NOD LGAC reinforce a role for Rab3D in suppressing excess CTSS release under physiological conditions. However, CTSS activity was significantly reduced in tears of mice lacking Rab27 isoforms. The reliance of CTSS secretion on Rab27 activity was supported by in vitro findings that newly synthesized CTSS was detected in and secreted from Rab27-enriched secretory vesicles and that expression of dominant negative Rab27b reduced carbachol-stimulated secretion of CTSS in cultured LGAC. High-resolution 3D-structured illumination microscopy revealed microdomains of Rab3D and Rab27 isoforms on the same secretory vesicles but present in different proportions on different vesicles, suggesting that changes in their relative association with secretory vesicles may tailor the vesicle contents. We propose that a loss of Rab3D from secretory vesicles, leading to disproportionate Rab27-to-Rab3D activity, may contribute to the enhanced release of CTSS in tears of patients with SS.
Collapse
Affiliation(s)
- Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chiao-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | | | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California;
| |
Collapse
|
20
|
Min JH, Lee CH, Ji YW, Yeo A, Noh H, Song I, Kim EK, Lee HK. Activation of Dll4/Notch Signaling and Hypoxia-Inducible Factor-1 Alpha Facilitates Lymphangiogenesis in Lacrimal Glands in Dry Eye. PLoS One 2016; 11:e0147846. [PMID: 26828208 PMCID: PMC4734677 DOI: 10.1371/journal.pone.0147846] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE By using hypoxia-inducible factor-1 alpha conditional knockout (HIF-1α CKO) mice and a dry eye (DE) mouse model, we aimed to determine the role played by delta-like ligand 4 (Dll4)/Notch signaling and HIF-1α in the lymphangiogenesis of lacrimal glands (LGs). METHODS C57BL/6 mice were housed in a controlled-environment chamber for DE induction. During DE induction, the expression level of Dll4/Notch signaling and lymphangiogenesis in LGs was measured by quantitative RT-PCR, immunoblot, and immunofluorescence staining. Next, lymphangiogenesis was measured after Dll4/Notch signal inhibition by anti-Dll4 antibody or γ-secretase inhibitor. Using HIF-1α CKO mice, the expression of Dll4/Notch signaling and lymphangiogenesis in LGs of DE-induced HIF-1α CKO mice were assessed. Additionally, the infiltration of CD45+ cells in LGs was assessed by immunohistochemical (IHC) staining and flow cytometry for each condition. RESULTS DE significantly upregulated Dll4/Notch and lymphangiogenesis in LGs. Inhibition of Dll4/Notch significantly suppressed lymphangiogenesis in LGs. Compared to wild-type (WT) mice, DE induced HIF-1α CKO mice showed markedly low levels of Dll4/Notch and lymphangiogenesis. Inhibition of lymphangiogenesis by Dll4/Notch suppression resulted in increased CD45+ cell infiltration in LGs. Likewise, CD45+ cells infiltrated more in the LGs of HIF-1α CKO DE mice than in non-DE HIF-1α CKO mice. CONCLUSIONS Dll4/Notch signaling and HIF-1α are closely related to lymphangiogenesis in DE-induced LGs. Lymphangiogenesis stimulated by Dll4/Notch and HIF-1α may play a role in protecting LGs from DE-induced inflammation by aiding the clearance of immune cells from LGs.
Collapse
Affiliation(s)
- Ji Hwan Min
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Hee Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Woo Ji
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Corneal Dystrophy Research Institute, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Areum Yeo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyemi Noh
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Insil Song
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Eung Kweon Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Corneal Dystrophy Research Institute, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Corneal Dystrophy Research Institute, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
21
|
Xiao B, Wang Y, Reinach PS, Ren Y, Li J, Hua S, Lu H, Chen W. Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye. PLoS One 2015; 10:e0115333. [PMID: 25590134 PMCID: PMC4295848 DOI: 10.1371/journal.pone.0115333] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/21/2014] [Indexed: 01/22/2023] Open
Abstract
Dry eye disease can be a consequence of lacrimal gland insufficiency in Sjögren’s Syndrome or increased tear film evaporation despite normal lacrimal gland function. To determine if there is a correlation between severity effects in these models and underlying pathophysiological responses, we compared the time dependent changes in each of these parameters that occur during a 6 week period. Dry eye was induced in 6-week-old female C57BL/6 mice by exposing them to an Intelligently Controlled Environmental System (ICES). Sixty mice were housed in ICES for 1, 2, 4 and 6 weeks respectively. Twelve were raised in normal environment and received subcutaneous injections of scopolamine hydrobromide (SCOP) 3 times daily for 5 days. Another sixty mice were housed in a normal environment and received no treatment. Corneal fluorescein staining along with corneal MMP-9 and caspase-3 level measurements were performed in parallel with the TUNEL assay. Interleukin-17(IL-17), IL-23, IL-6, IL-1, TNF-α, IFN-γ and TGF-β2 levels were estimated by real-time PCR measurements of conjunctival and lacrimal gland samples (LGs). Immunohistochemistry of excised LGs along with flow cytometry in cervical lymph nodes evaluated immune cell infiltration. Light and transmission electron microscopy studies evaluated LGs cytoarchitectural changes. ICES induced corneal epithelial destruction and apoptosis peaked at 2 weeks and kept stable in the following 4 weeks. In the ICES group, lacrimal gland proinflammatory cytokine level increases were much lower than those in the SCOP group. In accord with the lower proinflammatory cytokine levels, in the ICES group, lacrimal gland cytosolic vesicular density and size exceeded that in the SCOP group. ICES and SCOP induced murine dry eye effects became progressively more severe over a two week period. Subsequently, the disease process stabilized for the next four weeks. ICES induced local effects in the ocular surface, but failed to elicit lacrimal gland inflammation and cytoarchitectural changes, which accounts for less dry eye severity in the ICES model than that in the SCOP model.
Collapse
Affiliation(s)
- Bing Xiao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yu Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
- Department of Biological Sciences, College of Optometry, State University of New York, New York, NY 10036, United States of America
| | - Yueping Ren
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Jinyang Li
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | | | - Huihui Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
- * E-mail:
| |
Collapse
|
22
|
Mircheff AK, Wang Y, Ding C, Warren DW, Schechter JE. Potentially pathogenic immune cells and networks in apparently healthy lacrimal glands. Ocul Surf 2015; 13:47-81. [PMID: 25557346 DOI: 10.1016/j.jtos.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 12/22/2022]
Abstract
Lacrimal glands of people over 40 years old frequently contain lymphocytic infiltrates. Relationships between histopathological presentation and physiological dysfunction are not straightforward. Data from rabbit studies have suggested that at least two immune cell networks form in healthy lacrimal glands, one responding to environmental dryness, the other to high temperatures. New findings indicate that mRNAs for several chemokines and cytokines are expressed primarily in epithelial cells; certain others are expressed in both epithelial cells and immune cells. Transcript abundances vary substantially across glands from animals that have experienced the same conditions, allowing for correlation analyses, which detect clusters that map to various cell types and to networks of coordinately functioning cells. A core network--expressing mRNAs including IL-1α, IL-6, IL-17A, and IL-10--expands adaptively with exposure to dryness, suppressing IFN-γ, but potentially causing physiological dysfunction. High temperature elicits concurrent increases of mRNAs for prolactin (PRL), CCL21, and IL-18. PRL is associated with crosstalk to IFN-γ, BAFF, and IL-4. The core network reacts to the resulting PRL-BAFF-IL-4 network, creating a profile reminiscent of Sjögren's disease. In a warmer, moderately dry setting, PRL-associated increases of IFN-γ are associated with suppression of IL-10 and augmentations of IL-1α and IL-17, creating a profile reminiscent of severe chronic inflammation.
Collapse
Affiliation(s)
- Austin K Mircheff
- Department of Physiology & Biophysics, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California; Department of Ophthalmology, Doheny Eye Institute, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Yanru Wang
- Department of Physiology & Biophysics, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chuanqing Ding
- Department of Pharmacology & Pharmaceutical Sciences, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California; Department of Cell & Neurobiology, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| | - Dwight W Warren
- Department of Cell & Neurobiology, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| | - Joel E Schechter
- Department of Cell & Neurobiology, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| |
Collapse
|
23
|
El-Fadaly AB, El-Shaarawy EAA, Rizk AA, Nasralla MM, Shuaib DMA. Age-related alterations in the lacrimal gland of adult albino rat: a light and electron microscopic study. Ann Anat 2014; 196:336-51. [PMID: 25048844 DOI: 10.1016/j.aanat.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Age related changes in the lacrimal gland are associated with alterations in the structural organization and functional response in the gland of diverse mammalian species. Dry eye syndrome is one of the most common ocular problems in the world especially in old age. It results when the lacrimal gland fails to secrete proteins and fluid in sufficient quantity or appropriate composition. AIM OF THE WORK The present study is designed to demonstrate the influence of aging on the structure of the lacrimal gland of albino rat and to provide a morphological basis to explain the pathogenesis of the dry eye syndrome with ageing. It also aims to carry out a comparative analysis of age-dependent changes in male and female rats and to address how the lacrimal gland ages in each sex. MATERIAL AND METHODS Eighty albino rats were used in this study. The animals were divided into two age groups, young adult and senile. Tear secretion was measured using a modified Schirmer test. Corneal impression cytology of the anesthetized rats was done. The glands were subjected to gross morphologic examination, microscopic examination using H&E, PAS, Masson's trichrome and Giemsa stains. Electron microscopic examination was done in addition to quantitative histomorphometric estimations included acinar density, ductal count and mast cell count. RESULTS Light microscopic examination of the lacimal glands of the senile rats revealed different pathological changes. These included acinar, ductal as well as stromal changes. Electron microscope examination of the lacrimal gland of the senile group showed a decrease in the electron dense secretory vesicles, mitochondrial swelling and lipofuscin-like inclusions were frequently seen in the cytoplasm of acinar cells in senile rats. CONCLUSION The structural changes in the lacrimal glands of senile rats were associated with reduction in tear secretion as well as alterations in corneal epithelium. Gender difference in lacrimal gland structure was recorded.
Collapse
Affiliation(s)
- Amina B El-Fadaly
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Ehab A A El-Shaarawy
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
| | - Ayman A Rizk
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Mogeda M Nasralla
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Doaa M A Shuaib
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
24
|
Inaba T, Hisatsune C, Sasaki Y, Ogawa Y, Ebisui E, Ogawa N, Matsui M, Takeuchi T, Mikoshiba K, Tsubota K. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye. PLoS One 2014; 9:e99205. [PMID: 24901844 PMCID: PMC4047094 DOI: 10.1371/journal.pone.0099205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/12/2014] [Indexed: 01/11/2023] Open
Abstract
Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R) types 2 and 3 (Itpr2−/−;Itpr3−/−double-knockout mice). We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2−/−;Itpr3−/− mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2−/−;Itpr3−/− mice. Consequently, Itpr2−/−;Itpr3−/− mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren’s syndrome (SS) in humans, were also detected in older Itpr2−/−;Itpr3−/− mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2−/−;Itpr3−/− mice could be a new dry eye mouse model with symptoms that mimic those of SS.
Collapse
Affiliation(s)
- Takaaki Inaba
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Yasumasa Sasaki
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Etsuko Ebisui
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Naoko Ogawa
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Minoru Matsui
- Department of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Tsutomu Takeuchi
- Department of Rheumatology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Calcium Oscillation Project, International Cooperative Research Project-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|