1
|
Xie L, Li Y, Sun W, Pu M, Zhou J, He Y, Peng Y, Zheng C, Jiang C, Xu X, Xie X. OsPIL15-Induced Delay in Rice Heading Date via Direct Binding to the OsLF Promoter is Dependent on Functional Phytochrome B. PLANT, CELL & ENVIRONMENT 2025; 48:3326-3336. [PMID: 39737650 DOI: 10.1111/pce.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Heading date of rice (Oryza sativa) is a key factor determining rice production and regional adaptability. We analysed the molecular mechanism of OsPIL15, encoding phytochrome-interacting factor-like protein, in delaying rice heading date. Overexpression of OsPIL15 delayed rice heading date by upregulating Hd1 and inhibiting Hd3a and RFT1 expression. OsLF, encoding one rice heading repressor, was found to be the putative candidate regulated by OsPIL15 through a chromatin immunoprecipitation sequencing assay and a transcriptome sequencing assay. OsPIL15 could directly bind to the OsLF promoter and activated its expression. Knocking-out OsLF in OsPIL15-overexpressing lines resulted in flowering 2-3 days earlier, partially rescuing the delayed phenotype. This indicates that overexpression of OsPIL15 overexpression delays heading date partially through OsLF. Protein-protein interaction assay of OsPIL15 or OsPIL15-∆APB (OsPIL15 lacking the active phytochrome B [phyB]-binding [APB] motif) with PHYB showed that the APB motif was required for the interaction between OsPIL15 and PHYB. Furthermore, overexpression of either OsPIL15-∆APB in the wild type or OsPIL15 in the phyB mutant did not delay rice heading date under natural long-day conditions, suggesting that phyB influences OsPIL15-mediated delay in rice heading date.
Collapse
Affiliation(s)
- Lixia Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yaping Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Sun
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Menglin Pu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jinjun Zhou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanan He
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongbin Peng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongke Zheng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Conghui Jiang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Xu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianzhi Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Yang Z, Li Y, Liu J, Wu S, Wang X, Guan M, Li Y, Zhu H, Liu G, Wang S, Zhang G. Allelic Variation of Hd17 for Rice Heading Date is Caused by Natural Selection. RICE (NEW YORK, N.Y.) 2025; 18:21. [PMID: 40126692 PMCID: PMC11933555 DOI: 10.1186/s12284-025-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
Heading date is an important agronomic trait of rice, which directly determines adaptability and yield. Selection for natural variated alleles for heading date genes is an important manifestation of rice domestication that allows rice to spread to more broad geographic areas. In this study, three alleles of the Hd17 gene for heading date were identified by sequence analysis of 14 single-segment substitution lines, 6 wild rice species, and 2524 accessions of O. sativa. The Hd17-1 allele is an ancestral type with a middle heading date. The Hd17-2 allele was caused by the functional nucleotide polymorphism (FNP) of C to T at position 1016 of the gene and exhibits delay heading. The Hd17-3 allele was caused by the FNP of C to T in 1673 point of the gene and shows earlier heading. The Hd17-1 allele is mainly distributed in tropical regions, carrying by 5 wild rice species, O. glaberrima, and two O. sativa (Aus/Boro and tropical japonica types). The Hd17-2 allele is mainly distributed in subtropical regions, carrying by O. meridionalis, O. rufipogon, and two O. sativa (indica subspecies and Basmati/Sandri types). The Hd17-3 allele is mainly distributed in temperate regions, carrying only by temperate japonica of O. sativa. Hd17-2 and Hd17-3 had been evolved from Hd17-1, independently. Three different rice growing regions formed three alleles of Hd17, showing that the allelic variation of Hd17 is the result of natural selection. We also found that Hd17 controls heading date by up-regulating Ghd7 and down-regulating Ehd1 under long day conditions. Our findings will help to understand the evolution and the regulation of Hd17 in rice.
Collapse
Affiliation(s)
- Zifeng Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen, 518000, China
| | - Jin Liu
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen, 518000, China
| | - Shuiqing Wu
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen, 518000, China
| | - Xuelin Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen, 518000, China
| | - Min Guan
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen, 518000, China
| | - Yanyun Li
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen, 518000, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Luo M, Zhu S, Dang H, Wen Q, Niu R, Long J, Wang Z, Tong Y, Ning Y, Yuan M, Xu G. Genetically-encoded targeted protein degradation technology to remove endogenous condensation-prone proteins and improve crop performance. Nat Commun 2025; 16:1159. [PMID: 39880812 PMCID: PMC11779824 DOI: 10.1038/s41467-025-56570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation. For example, a transgenic E3TCD1 fusion with Teosinte branched 1 (TB1) degrades the native TB1 protein, resulting in increased tiller numbers in rice. Additionally, conditional degradation of the negative defense regulator Early Flowering 3 via a pathogen-responsive ProTBF1-uORFsTBF1 cassette enhances rice blast resistance without affecting flowering time in the absence of pathogen. Unlike prevailing targeted protein degradation strategies, the TCD system does not rely on small molecules, antibodies, or genetic knock-in fusion tags, demonstrating its promise as a transgene-based approach for optimizing crop performance.
Collapse
Affiliation(s)
- Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Hua Dang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Qing Wen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Jiawei Long
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Yongjia Tong
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
- RNA Institute, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Lee SJ, Kim Y, Kang K, Yoon H, Kang J, Cho SH, Paek NC. Rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE interacts with OsCRY2 and promotes flowering by upregulating Early heading date 1. PLANT, CELL & ENVIRONMENT 2024; 47:4498-4515. [PMID: 39012205 DOI: 10.1111/pce.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Flowering time is a crucial adaptive response to seasonal variation in plants and is regulated by environmental cues such as photoperiod and temperature. In this study, we demonstrated the regulatory function of rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE (OsCIBL1) in flowering time. Overexpression of OsCIB1L promoted flowering, whereas the oscib1l knockout mutation did not alter flowering time independent of photoperiodic conditions. Cryptochromes (CRYs) are blue light photoreceptors that enable plants to sense photoperiodic changes. OsCIBL1 interacted with OsCRY2, a member of the rice CRY family (OsCRY1a, OsCRY1b, and OsCRY2), and bound to the Early heading date 1 (Ehd1) promoter, activating the rice-specific Ehd1-Heading date 3a/RICE FLOWERING LOCUS T 1 pathway for flowering induction. Dual-luciferase reporter assays showed that the OsCIBL1-OsCRY2 complex required blue light to induce Ehd1 transcription. Natural alleles resulting from nonsynonymous single nucleotide polymorphisms in OsCIB1L and OsCRY2 may contribute to the adaptive expansion of rice cultivation areas. These results expand our understanding of the molecular mechanisms controlling rice flowering and highlight the importance of blue light-responsive genes in the geographic distribution of rice.
Collapse
Affiliation(s)
- Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yunjeong Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyeryung Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinku Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Fourquet L, Barber T, Campos-Mantello C, Howell P, Orman-Ligeza B, Percival-Alwyn L, Rose GA, Sheehan H, Wright TIC, Longin F, Würschum T, Novoselovic D, Greenland AJ, Mackay IJ, Cockram J, Bentley AR. An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:277. [PMID: 39576319 PMCID: PMC11584503 DOI: 10.1007/s00122-024-04787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.) using an eight-founder multi-parent advanced generation intercross (MAGIC) population. Flowering time data was collected from field trials across six growing seasons in the United Kingdom, followed by genetic analysis using a combination of linear modelling, simple interval mapping and composite interval mapping, using either single markers or founder haplotype probabilities. We detected 57 quantitative trait loci (QTL) across three growth stages linked to flowering time, of which 17 QTL were identified only when the major photoperiod response locus Ppd-D1 was included as a covariate. Of the 57 loci, ten were identified using all genetic mapping approaches and classified as 'major' QTL, including homoeologous loci on chromosomes 1B and 1D, and 4A and 4B. Additional Earliness per se flowering time QTL were identified, along with growth stage- and year-specific effects. Furthermore, six of the main-effect QTL were found to interact epistatically with Ppd-D1. Finally, we exploited residual heterozygosity in the MAGIC recombinant inbred lines to Mendelize the Earliness per se QTL QFt.niab-5A.03, which was confirmed to modulate flowering time by at least four days. This work provides detailed understanding of the genetic control of phenological variation within varieties relevant to the north-western European wheat genepool, aiding informed manipulation of flowering time in wheat breeding.
Collapse
Affiliation(s)
| | - Tobias Barber
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Phil Howell
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Gemma A Rose
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Friedrich Longin
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | | | | | - Ian J Mackay
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | | |
Collapse
|
6
|
Sun Q, Yu Z, Wang X, Chen H, Lu J, Zhao C, Jiang L, Li F, Xu Q, Ma D. EARLY FLOWERING3-1 represses Grain number, plant height, and heading date7 to promote ABC1 REPRESSOR1 and regulate nitrogen uptake in rice. PLANT PHYSIOLOGY 2024; 196:1857-1868. [PMID: 39133898 DOI: 10.1093/plphys/kiae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/17/2024] [Indexed: 11/05/2024]
Abstract
The extensive use of nitrogen fertilizer boosts rice (Oryza sativa) production but also harms ecosystems. Therefore, enhancing crop nitrogen use efficiency is crucial. Here, we performed map-based cloning and identified the EARLY FLOWERING3 (ELF3) like protein-encoding gene OsELF3-1, which confers enhanced nitrogen uptake in rice. OsELF3-1 forms a ternary complex (OsEC) with OsELF4s and OsLUX, the putative orthologs of ELF4 and LUX ARRHYTHMO (LUX) in Arabidopsis (Arabidopsis thaliana), respectively. OsEC directly binds to the promoter of Grain number, plant height, and heading date7 (Ghd7) and represses its expression. Ghd7 encodes a transcription factor that has major effects on multiple agronomic traits. Ghd7 is also a transcriptional repressor and directly suppresses the expression of ABC1 REPRESSOR1 (ARE1), a negative regulator of nitrogen use efficiency. Therefore, targeting the OsEC-Ghd7-ARE1 module offers an approach to enhance nitrogen uptake, presenting promising avenues for sustainable agriculture.
Collapse
Affiliation(s)
- Qi Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwen Yu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoche Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Hao Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiahao Lu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Chenfei Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Linlin Jiang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Dianrong Ma
- Agronomy College, Liaodong University, Dandong, 118003, China
| |
Collapse
|
7
|
Tsednee M. Linking timing to nitrogen use efficiency: Rice OsEC-Ghd7-ARE1 module works on it. PLANT PHYSIOLOGY 2024; 196:1720-1721. [PMID: 39268889 PMCID: PMC11531836 DOI: 10.1093/plphys/kiae488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Munkhtsetseg Tsednee
- Plant Physiology, American Society of Plant Biologists
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
8
|
Wang J, Li H, Li R, Chen L, Tian X, Qiao Z. Metabolomic and transcriptomic basis of photoperiodic response regulation in broomcorn millet (Panicum miliaceum L.). Sci Rep 2024; 14:21720. [PMID: 39289492 PMCID: PMC11408615 DOI: 10.1038/s41598-024-72568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
To elucidate the mechanisms underlying photoperiodic responses, we investigated the genomic and metabolomic responses of two broomcorn millet (Panicum miliaceum L.) genotypes. For this purpose, light-insensitive (D32) and light-sensitive (M51) genotypes were exposed to a 16 h photoperiod (long-day (LD) conditions) and an 8 h photoperiod (short-day (SD) conditions), and various transcriptomic and metabolomic changes were investigated. A total of 1664, 2564, 13,017, and 15548 DEGs were identified in the SD-D, LD-D, LD-M, and SD-M groups, respectively. Furthermore, 112 common DEGs were identified as well. Interestingly, most DEGs in the different groups were associated with photosynthesis and phenylpropanoid and carotenoid biosynthesis. In addition, 822 metabolites were identified under different treatments. The main metabolites, including L-malic and fumaric acids, were identified in the negative mode, whereas brucine and loperamide were identified in the positive mode. KEGG analysis revealed that the metabolites in the different groups were enriched in the same metabolic pathway of the TCA cycle. Furthermore, in negative mode, the metabolites of M51 were mainly D-glucose, whereas those of D32 were mainly L-malic and fumaric acids. One photoperiod candidate gene (C2845_PM11G01290), annotated as ATP6B, significantly increased the levels of L-malic and fumaric acids. In conclusion, our study provides a theoretical basis for understanding the molecular mechanisms of photoperiodic response regulation and can be used as a reference for marker development and resource identification in Panicum miliaceum L..
Collapse
Affiliation(s)
- Junjie Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China
| | - Hangyu Li
- College of Agriculture of Shanxi, Agricultural University, Taigu, China
| | - Rui Li
- College of Agriculture of Shanxi, Agricultural University, Taigu, China
| | - Ling Chen
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China
| | - Xiang Tian
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China.
| |
Collapse
|
9
|
Wen X, Zhong Z, Xu P, Yang Q, Wang Y, Liu L, Wu Z, Wu Y, Zhang Y, Liu Q, Zhou Z, Peng Z, He Y, Cheng S, Cao L, Zhan X, Wu W. OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:162. [PMID: 38884792 DOI: 10.1007/s00122-024-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
KEY MESSAGE OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.
Collapse
Affiliation(s)
- Xiaoxia Wen
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhengzheng Zhong
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peng Xu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qinqin Yang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yinping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Ling Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaozhong Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yewen Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yingxin Zhang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qunen Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhengping Zhou
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zequn Peng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shihua Cheng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liyong Cao
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaodeng Zhan
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Weixun Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
10
|
Wu X, Chen S, Lin F, Muhammad F, Xu H, Wu L. Comparative and functional analysis unveils the contribution of photoperiod to DNA methylation, sRNA accumulation, and gene expression variations in short-day and long-day grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1955-1971. [PMID: 38491864 DOI: 10.1111/tpj.16721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Photoperiod employs complicated networks to regulate various developmental processes in plants, including flowering transition. However, the specific mechanisms by which photoperiod affects epigenetic modifications and gene expression variations in plants remain elusive. In this study, we conducted a comprehensive analysis of DNA methylation, small RNA (sRNA) accumulation, and gene expressions under different daylengths in facultative long-day (LD) grass Brachypodium distachyon and short-day (SD) grass rice. Our results showed that while overall DNA methylation levels were minimally affected by different photoperiods, CHH methylation levels were repressed under their favorable light conditions, particularly in rice. We identified numerous differentially methylated regions (DMRs) that were influenced by photoperiod in both plant species. Apart from differential sRNA clusters, we observed alterations in the expression of key components of the RNA-directed DNA methylation pathway, DNA methyltransferases, and demethylases, which may contribute to the identified photoperiod-influenced CHH DMRs. Furthermore, we identified many differentially expressed genes in response to different daylengths, some of which were associated with the DMRs. Notably, we discovered a photoperiod-responsive gene MYB11 in the transcriptome of B. distachyon, and further demonstrated its role as a flowering inhibitor by repressing FT1 transcription. Together, our comparative and functional analysis sheds light on the effects of daylength on DNA methylation, sRNA accumulation, and gene expression variations in LD and SD plants, thereby facilitating better designing breeding programs aimed at developing high-yield crops that can adapt to local growing seasons.
Collapse
Affiliation(s)
- Xia Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Siyi Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Feng Lin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| | - Fahad Muhammad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haiming Xu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
11
|
Yuan L, Avello P, Zhu Z, Lock SCL, McCarthy K, Redmond EJ, Davis AM, Song Y, Ezer D, Pitchford JW, Quint M, Xie Q, Xu X, Davis SJ, Ronald J. Complex epistatic interactions between ELF3, PRR9, and PRR7 regulate the circadian clock and plant physiology. Genetics 2024; 226:iyad217. [PMID: 38142447 PMCID: PMC10917503 DOI: 10.1093/genetics/iyad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Circadian clocks are endogenous timekeeping mechanisms that coordinate internal physiological responses with the external environment. EARLY FLOWERING3 (ELF3), PSEUDO RESPONSE REGULATOR (PRR9), and PRR7 are essential components of the plant circadian clock and facilitate entrainment of the clock to internal and external stimuli. Previous studies have highlighted a critical role for ELF3 in repressing the expression of PRR9 and PRR7. However, the functional significance of activity in regulating circadian clock dynamics and plant development is unknown. To explore this regulatory dynamic further, we first employed mathematical modeling to simulate the effect of the prr9/prr7 mutation on the elf3 circadian phenotype. These simulations suggested that simultaneous mutations in prr9/prr7 could rescue the elf3 circadian arrhythmia. Following these simulations, we generated all Arabidopsis elf3/prr9/prr7 mutant combinations and investigated their circadian and developmental phenotypes. Although these assays could not replicate the results from the mathematical modeling, our results have revealed a complex epistatic relationship between ELF3 and PRR9/7 in regulating different aspects of plant development. ELF3 was essential for hypocotyl development under ambient and warm temperatures, while PRR9 was critical for root thermomorphogenesis. Finally, mutations in prr9 and prr7 rescued the photoperiod-insensitive flowering phenotype of the elf3 mutant. Together, our results highlight the importance of investigating the genetic relationship among plant circadian genes.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Paula Avello
- Department of Mathematics, University of York, York, YO10 5DD, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Sarah C L Lock
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Kayla McCarthy
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Amanda M Davis
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jonathan W Pitchford
- Department of Mathematics, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Seth J Davis
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
12
|
Borba AR, Reyna-Llorens I, Dickinson PJ, Steed G, Gouveia P, Górska AM, Gomes C, Kromdijk J, Webb AAR, Saibo NJM, Hibberd JM. Compartmentation of photosynthesis gene expression in C4 maize depends on time of day. PLANT PHYSIOLOGY 2023; 193:2306-2320. [PMID: 37555432 PMCID: PMC10663113 DOI: 10.1093/plphys/kiad447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Compared with the ancestral C3 state, C4 photosynthesis occurs at higher rates with improved water and nitrogen use efficiencies. In both C3 and C4 plants, rates of photosynthesis increase with light intensity and are maximal around midday. We determined that in the absence of light or temperature fluctuations, photosynthesis in maize (Zea mays) peaks in the middle of the subjective photoperiod. To investigate the molecular processes associated with these temporal changes, we performed RNA sequencing of maize mesophyll and bundle sheath strands over a 24-h time course. Preferential expression of C4 cycle genes in these cell types was strongest between 6 and 10 h after dawn when rates of photosynthesis were highest. For the bundle sheath, DNA motif enrichment and gene coexpression analyses suggested members of the DNA binding with one finger (DOF) and MADS (MINICHROMOSOME MAINTENANCE FACTOR 1/AGAMOUS/DEFICIENS/Serum Response Factor)-domain transcription factor families mediate diurnal fluctuations in C4 gene expression, while trans-activation assays in planta confirmed their ability to activate promoter fragments from bundle sheath expressed genes. The work thus identifies transcriptional regulators and peaks in cell-specific C4 gene expression coincident with maximum rates of photosynthesis in the maize leaf at midday.
Collapse
Affiliation(s)
- Ana Rita Borba
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Alicja M Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Celia Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
13
|
Zhang Y, Chen G, Deng L, Gao B, Yang J, Ding C, Zhang Q, Ouyang W, Guo M, Wang W, Liu B, Zhang Q, Sung WK, Yan J, Li G, Li X. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice. Nucleic Acids Res 2023; 51:9001-9018. [PMID: 37572350 PMCID: PMC10516653 DOI: 10.1093/nar/gkad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
Photoperiods integrate with the circadian clock to coordinate gene expression rhythms and thus ensure plant fitness to the environment. Genome-wide characterization and comparison of rhythmic genes under different light conditions revealed delayed phase under constant darkness (DD) and reduced amplitude under constant light (LL) in rice. Interestingly, ChIP-seq and RNA-seq profiling of rhythmic genes exhibit synchronous circadian oscillation in H3K9ac modifications at their loci and long non-coding RNAs (lncRNAs) expression at proximal loci. To investigate how gene expression rhythm is regulated in rice, we profiled the open chromatin regions and transcription factor (TF) footprints by time-series ATAC-seq. Although open chromatin regions did not show circadian change, a significant number of TFs were identified to rhythmically associate with chromatin and drive gene expression in a time-dependent manner. Further transcriptional regulatory networks mapping uncovered significant correlation between core clock genes and transcription factors involved in light/temperature signaling. In situ Hi-C of ZT8-specific expressed genes displayed highly connected chromatin association at the same time, whereas this ZT8 chromatin connection network dissociates at ZT20, suggesting the circadian control of gene expression by dynamic spatial chromatin conformation. These findings together implicate the existence of a synchronization mechanism between circadian H3K9ac modifications, chromatin association of TF and gene expression, and provides insights into circadian dynamics of spatial chromatin conformation that associate with gene expression rhythms.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenxia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Beibei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wing-Kin Sung
- Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
14
|
Dalle Carbonare L, Basile A, Rindi L, Bulleri F, Hamedeh H, Iacopino S, Shukla V, Weits DA, Lombardi L, Sbrana A, Benedetti-Cecchi L, Giuntoli B, Licausi F, Maggi E. Dim artificial light at night alters gene expression rhythms and growth in a key seagrass species (Posidonia oceanica). Sci Rep 2023; 13:10620. [PMID: 37391536 PMCID: PMC10313690 DOI: 10.1038/s41598-023-37261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Artificial light at night (ALAN) is a globally spreading anthropogenic stressor, affecting more than 20% of coastal habitats. The alteration of the natural light/darkness cycle is expected to impact the physiology of organisms by acting on the complex circuits termed as circadian rhythms. Our understanding of the impact of ALAN on marine organisms is lagging behind that of terrestrial ones, and effects on marine primary producers are almost unexplored. Here, we investigated the molecular and physiological response of the Mediterranean seagrass, Posidonia oceanica (L.) Delile, as model to evaluate the effect of ALAN on seagrass populations established in shallow waters, by taking advantage of a decreasing gradient of dim nocturnal light intensity (from < 0.01 to 4 lx) along the NW Mediterranean coastline. We first monitored the fluctuations of putative circadian-clock genes over a period of 24 h along the ALAN gradient. We then investigated whether key physiological processes, known to be synchronized with day length by the circadian rhythm, were also affected by ALAN. ALAN influenced the light signalling at dusk/night in P. oceanica, including that of shorter blue wavelengths, through the ELF3-LUX1-ZTL regulatory network, and suggested that the daily perturbation of internal clock orthologs in seagrass might have caused the recruitment of PoSEND33 and PoPSBS genes to mitigate the repercussions of a nocturnal stress on photosynthesis during the day. A long-lasting impairment of gene fluctuations in sites characterised by ALAN could explain the reduced growth of the seagrass leaves when these were transferred into controlled conditions and without lighting during the night. Our results highlight the potential contribution of ALAN to the global loss of seagrass meadows, posing questions about key interactions with a variety of other human-related stressors in urban areas, in order to develop more efficient strategies to globally preserve these coastal foundation species.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy.
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - A Basile
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - L Rindi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - F Bulleri
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - H Hamedeh
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - S Iacopino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - V Shukla
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - D A Weits
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - L Lombardi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - A Sbrana
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - L Benedetti-Cecchi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - B Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - F Licausi
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - E Maggi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy.
| |
Collapse
|
15
|
Xu H, Wang X, Wei J, Zuo Y, Wang L. The Regulatory Networks of the Circadian Clock Involved in Plant Adaptation and Crop Yield. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091897. [PMID: 37176955 PMCID: PMC10181312 DOI: 10.3390/plants12091897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Global climatic change increasingly threatens plant adaptation and crop yields. By synchronizing internal biological processes, including photosynthesis, metabolism, and responses to biotic and abiotic stress, with external environmental cures, such as light and temperature, the circadian clock benefits plant adaptation and crop yield. In this review, we focus on the multiple levels of interaction between the plant circadian clock and environmental factors, and we summarize recent progresses on how the circadian clock affects yield. In addition, we propose potential strategies for better utilizing the current knowledge of circadian biology in crop production in the future.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wei
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Alvarez MA, Li C, Lin H, Joe A, Padilla M, Woods DP, Dubcovsky J. EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet 2023; 19:e1010655. [PMID: 37163495 PMCID: PMC10171656 DOI: 10.1371/journal.pgen.1010655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/04/2023] [Indexed: 05/12/2023] Open
Abstract
The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.
Collapse
Affiliation(s)
- Maria Alejandra Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Joe
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mariana Padilla
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
17
|
Woods DP, Li W, Sibout R, Shao M, Laudencia-Chingcuanco D, Vogel JP, Dubcovsky J, Amasino RM. PHYTOCHROME C regulation of photoperiodic flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon. PLoS Genet 2023; 19:e1010706. [PMID: 37163541 PMCID: PMC10171608 DOI: 10.1371/journal.pgen.1010706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/17/2023] [Indexed: 05/12/2023] Open
Abstract
Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.
Collapse
Affiliation(s)
- Daniel P. Woods
- Dept. Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Versailles Cedex, France
- UR1268 BIA, INRAE, Nantes, France
| | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, California, United States of America
| | - Debbie Laudencia-Chingcuanco
- USDA-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- DOE Joint Genome Institute, Berkeley, California, United States of America
| | - Jorge Dubcovsky
- Dept. Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Richard M. Amasino
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Qiu L, Zhou P, Wang H, Zhang C, Du C, Tian S, Wu Q, Wei L, Wang X, Zhou Y, Huang R, Huang X, Ouyang X. Photoperiod Genes Contribute to Daylength-Sensing and Breeding in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:899. [PMID: 36840246 PMCID: PMC9959395 DOI: 10.3390/plants12040899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Rice (Oryza sativa L.), one of the most important food crops worldwide, is a facultative short-day (SD) plant in which flowering is modulated by seasonal and temperature cues. The photoperiodic molecular network is the core network for regulating flowering in rice, and is composed of photoreceptors, a circadian clock, a photoperiodic flowering core module, and florigen genes. The Hd1-DTH8-Ghd7-PRR37 module, a photoperiodic flowering core module, improves the latitude adaptation through mediating the multiple daylength-sensing processes in rice. However, how the other photoperiod-related genes regulate daylength-sensing and latitude adaptation remains largely unknown. Here, we determined that mutations in the photoreceptor and circadian clock genes can generate different daylength-sensing processes. Furthermore, we measured the yield-related traits in various mutants, including the main panicle length, grains per panicle, seed-setting rate, hundred-grain weight, and yield per panicle. Our results showed that the prr37, elf3-1 and ehd1 mutants can change the daylength-sensing processes and exhibit longer main panicle lengths and more grains per panicle. Hence, the PRR37, ELF3-1 and Ehd1 locus has excellent potential for latitude adaptation and production improvement in rice breeding. In summary, this study systematically explored how vital elements of the photoperiod network regulate daylength sensing and yield traits, providing critical information for their breeding applications.
Collapse
Affiliation(s)
- Leilei Qiu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Zhou
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Hao Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang 110101, China
| | - Chengxing Du
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujun Tian
- Liaoning Rice Research Institute, Shenyang 110101, China
| | - Qinqin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Litian Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yiming Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
19
|
Wittern L, Steed G, Taylor LJ, Ramirez DC, Pingarron-Cardenas G, Gardner K, Greenland A, Hannah MA, Webb AAR. Wheat EARLY FLOWERING 3 affects heading date without disrupting circadian oscillations. PLANT PHYSIOLOGY 2023; 191:1383-1403. [PMID: 36454669 PMCID: PMC9922389 DOI: 10.1093/plphys/kiac544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
Plant breeders have indirectly selected for variation at circadian-associated loci in many of the world's major crops, when breeding to increase yield and improve crop performance. Using an eight-parent Multiparent Advanced Generation Inter-Cross (MAGIC) population, we investigated how variation in circadian clock-associated genes contributes to the regulation of heading date in UK and European winter wheat (Triticum aestivum) varieties. We identified homoeologues of EARLY FLOWERING 3 (ELF3) as candidates for the Earliness per se (Eps) D1 and B1 loci under field conditions. We then confirmed a single-nucleotide polymorphism within the coding region of TaELF3-B1 as a candidate polymorphism underlying the Eps-B1 locus. We found that a reported deletion at the Eps-D1 locus encompassing TaELF3-D1 is, instead, an allele that lies within an introgression region containing an inversion relative to the Chinese Spring D genome. Using Triticum turgidum cv. Kronos carrying loss-of-function alleles of TtELF3, we showed that ELF3 regulates heading, with loss of a single ELF3 homoeologue sufficient to alter heading date. These studies demonstrated that ELF3 forms part of the circadian oscillator; however, the loss of all homoeologues was required to affect circadian rhythms. Similarly, loss of functional LUX ARRHYTHMO (LUX) in T. aestivum, an orthologue of a protein partner of Arabidopsis (Arabidopsis thaliana) ELF3, severely disrupted circadian rhythms. ELF3 and LUX transcripts are not co-expressed at dusk, suggesting that the structure of the wheat circadian oscillator might differ from that of Arabidopsis. Our demonstration that alterations to ELF3 homoeologues can affect heading date separately from effects on the circadian oscillator suggests a role for ELF3 in cereal photoperiodic responses that could be selected for without pleiotropic deleterious alterations to circadian rhythms.
Collapse
Affiliation(s)
- Lukas Wittern
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Laura J Taylor
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | - Keith Gardner
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Andy Greenland
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Matthew A Hannah
- BASF, BBCC – Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
20
|
Zhao Y, Zhao B, Xie Y, Jia H, Li Y, Xu M, Wu G, Ma X, Li Q, Hou M, Li C, Xia Z, He G, Xu H, Bai Z, Kong D, Zheng Z, Liu Q, Liu Y, Zhong J, Tian F, Wang B, Wang H. The evening complex promotes maize flowering and adaptation to temperate regions. THE PLANT CELL 2023; 35:369-389. [PMID: 36173348 PMCID: PMC9806612 DOI: 10.1093/plcell/koac296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/16/2022] [Indexed: 05/30/2023]
Abstract
Maize (Zea mays) originated in southern Mexico and has spread over a wide latitudinal range. Maize expansion from tropical to temperate regions has necessitated a reduction of its photoperiod sensitivity. In this study, we cloned a quantitative trait locus (QTL) regulating flowering time in maize and show that the maize ortholog of Arabidopsis thaliana EARLY FLOWERING3, ZmELF3.1, is the causal locus. We demonstrate that ZmELF3.1 and ZmELF3.2 proteins can physically interact with ZmELF4.1/4.2 and ZmLUX1/2, to form evening complex(es; ECs) in the maize circadian clock. Loss-of-function mutants for ZmELF3.1/3.2 and ZmLUX1/2 exhibited delayed flowering under long-day and short-day conditions. We show that EC directly represses the expression of several flowering suppressor genes, such as the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) genes ZmCCT9 and ZmCCT10, ZmCONSTANS-LIKE 3, and the PSEUDORESPONSE REGULATOR (PRR) genes ZmPRR37a and ZmPRR73, thus alleviating their inhibition, allowing florigen gene expression and promoting flowering. Further, we identify two closely linked retrotransposons located in the ZmELF3.1 promoter that regulate the expression levels of ZmELF3.1 and may have been positively selected during postdomestication spread of maize from tropical to temperate regions during the pre-Columbian era. These findings provide insights into circadian clock-mediated regulation of photoperiodic flowering in maize and new targets of genetic improvement for breeding.
Collapse
Affiliation(s)
- Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Hong Jia
- Department of Plant Genetics and Breeding, State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, China Agricultural University, Beijing, 100193, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Quanquan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanchao Xia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang He
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hua Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijing Bai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dexin Kong
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhigang Zheng
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Liu
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yuting Liu
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jinshun Zhong
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Feng Tian
- Department of Plant Genetics and Breeding, State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, China Agricultural University, Beijing, 100193, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Haiyang Wang
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
21
|
Sun C, He C, Zhong C, Liu S, Liu H, Luo X, Li J, Zhang Y, Guo Y, Yang B, Wang P, Deng X. Bifunctional regulators of photoperiodic flowering in short day plant rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1044790. [PMID: 36340409 PMCID: PMC9630834 DOI: 10.3389/fpls.2022.1044790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photoperiod is acknowledged as a crucial environmental factor for plant flowering. According to different responses to photoperiod, plants were divided into short-day plants (SDPs), long-day plants (LDPs), and day-neutral plants (DNPs). The day length measurement system of SDPs is different from LDPs. Many SDPs, such as rice, have a critical threshold for day length (CDL) and can even detect changes of 15 minutes for flowering decisions. Over the last 20 years, molecular mechanisms of flowering time in SDP rice and LDP Arabidopsis have gradually clarified, which offers a chance to elucidate the differences in day length measurement between the two types of plants. In Arabidopsis, CO is a pivotal hub in integrating numerous internal and external signals for inducing photoperiodic flowering. By contrast, Hd1 in rice, the homolog of CO, promotes and prevents flowering under SD and LD, respectively. Subsequently, numerous dual function regulators, such as phytochromes, Ghd7, DHT8, OsPRR37, OsGI, OsLHY, and OsELF3, were gradually identified. This review assesses the relationship among these regulators and a proposed regulatory framework for the reversible mechanism, which will deepen our understanding of the CDL regulation mechanism and the negative response to photoperiod between SDPs and LDPs.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changcai He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongying Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuting Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Lee SJ, Kang K, Lim JH, Paek NC. Natural alleles of CIRCADIAN CLOCK ASSOCIATED1 contribute to rice cultivation by fine-tuning flowering time. PLANT PHYSIOLOGY 2022; 190:640-656. [PMID: 35723564 PMCID: PMC9434239 DOI: 10.1093/plphys/kiac296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 05/11/2023]
Abstract
The timing of flowering is a crucial factor for successful grain production at a wide range of latitudes. Domestication of rice (Oryza sativa) included selection for natural alleles of flowering-time genes that allow rice plants to adapt to broad geographic areas. Here, we describe the role of natural alleles of CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1) in cultivated rice based on analysis of single-nucleotide polymorphisms deposited in the International Rice Genebank Collection Information System database. Rice varieties harboring japonica-type OsCCA1 alleles (OsCCA1a haplotype) flowered earlier than those harboring indica-type OsCCA1 alleles (OsCCA1d haplotype). In the japonica cultivar "Dongjin", a T-DNA insertion in OsCCA1a resulted in late flowering under long-day and short-day conditions, indicating that OsCCA1 is a floral inducer. Reverse transcription quantitative PCR analysis showed that the loss of OsCCA1a function induces the expression of the floral repressors PSEUDO-RESPONSE REGULATOR 37 (OsPRR37) and Days to Heading 8 (DTH8), followed by repression of the Early heading date 1 (Ehd1)-Heading date 3a (Hd3a)-RICE FLOWERING LOCUS T 1 (RFT1) pathway. Binding affinity assays indicated that OsCCA1 binds to the promoter regions of OsPRR37 and DTH8. Naturally occurring OsCCA1 alleles are evolutionarily conserved in cultivated rice (O. sativa). Oryza rufipogon-I (Or-I) and Or-III type accessions, representing the ancestors of O. sativa indica and japonica, harbored indica- and japonica-type OsCCA1 alleles, respectively. Taken together, our results demonstrate that OsCCA1 is a likely domestication locus that has contributed to the geographic adaptation and expansion of cultivated rice.
Collapse
Affiliation(s)
- Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jung-Hyun Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
23
|
The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7. J Adv Res 2022:S2090-1232(22)00169-2. [DOI: 10.1016/j.jare.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
|
24
|
Fei J, Jiang Q, Guo M, Lu J, Wang P, Liu S, Qu J, Ma Y, Guan S. Fine Mapping and Functional Research of Key Genes for Photoperiod Sensitivity in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:890780. [PMID: 35903233 PMCID: PMC9315444 DOI: 10.3389/fpls.2022.890780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Maize is native to the tropics and is very sensitive to photoperiod. Planting in temperate regions with increased hours of daylight always leads to late flowering, sterility, leggy plants, and increased numbers of maize leaves. This phenomenon severely affects the utilization of tropical maize germplasm resources. The sensitivity to photoperiod is mainly reflected in differences in plant height (PH), ear height (EH), total leaf number (LN), leaf number under ear (LE), silking stage (SS), and anthesis stage (AT) in the same variety under different photoperiod conditions. These differences are more pronounced for varieties that are more sensitive to photoperiod. In the current study, a high-density genetic map was constructed from a recombinant inbred line (RIL) population containing 209 lines to map the quantitative trait loci (QTL) for photoperiod sensitivity of PH, EH, LN, LE, SS, and AT. A total of 39 QTL were identified, including three consistent major QTL. We identified candidate genes in the consensus major QTL region by combined analysis of transcriptome data, and after enrichment by GO and KEGG, we identified a total of four genes (Zm00001d006212, Zm00001d017241, Zm00001d047761, and Zm00001d047632) enriched in the plant circadian rhythm pathway (KEGG:04712). We analyzed the expression levels of these four genes, and the analysis results showed that there were significant differences in response under different photoperiod conditions for three of them (Zm00001d047761, Zm00001d006212 and Zm00001d017241). The results of functional verification showed that the expression patterns of genes rhythmically oscillated, which can affect the length of the hypocotyl and the development of the shoot apical meristem. We also found that the phenotypes of the positive plants were significantly different from the control plants when they overexpressed the objective gene or when it was knocked out, and the expression period, phase, and amplitude of the target gene also shifted. The objective gene changed its own rhythmic oscillation period, phase, and amplitude with the change in the photoperiod, thereby regulating the photoperiod sensitivity of maize. These results deepen our understanding of the genetic structure of photoperiod sensitivity and lay a foundation for further exploration of the regulatory mechanism of photoperiod sensitivity.
Collapse
Affiliation(s)
- Jianbo Fei
- College of Bioscience, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Qingping Jiang
- College of Bioscience, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Guo
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Bioscience, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Piwu Wang
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Bioscience, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Bioscience, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modern Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
25
|
The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci U S A 2022; 119:e2122582119. [PMID: 35733265 DOI: 10.1073/pnas.2122582119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plants use photoperiodism to activate flowering in response to a particular daylength. In rice, flowering is accelerated in short-day conditions, and even a brief exposure to light during the dark period (night-break) is sufficient to delay flowering. Although many of the genes involved in controlling flowering in rice have been uncovered, how the long- and short-day flowering pathways are integrated, and the mechanism of photoperiod perception is not understood. While many of the signaling components controlling photoperiod-activated flowering are conserved between Arabidopsis and rice, flowering in these two systems is activated by opposite photoperiods. Here we establish that photoperiodism in rice is controlled by the evening complex (EC). We show that mutants in the EC genes LUX ARRYTHMO (LUX) and EARLY FLOWERING3 (ELF3) paralogs abolish rice flowering. We also show that the EC directly binds and suppresses the expression of flowering repressors, including PRR37 and Ghd7. We further demonstrate that light acts via phyB to cause a rapid and sustained posttranslational modification of ELF3-1. Our results suggest a mechanism by which the EC is able to control both long- and short-day flowering pathways.
Collapse
|
26
|
Cai Z, Zhang Y, Tang W, Chen X, Lin C, Liu Y, Ye Y, Wu W, Duan Y. LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:853042. [PMID: 35401642 PMCID: PMC8993510 DOI: 10.3389/fpls.2022.853042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The evening complex (EC) plays a critical role in photoperiod flowering in Arabidopsis. Nevertheless, the underlying functions of individual components and coordinate regulation mechanism of EC genes in rice flowering remain to be elucidated. Here, we characterized the critical role of LUX ARRHYTHMO (LUX) in photoperiod perception and coordinating vegetative growth and flowering in rice. Non-functional alleles of OsLUX extremely extended vegetative phase, leading to photoperiod-insensitive late flowering and great increase of grain yield. OsLUX displayed an obvious diurnal rhythm expression with the peak at dusk and promoted rice flowering via coordinating the expression of genes associated with the circadian clock and the output integrators of photoperiodic flowering. OsLUX combined with OsELF4a and OsELF3a or OsELF3b to form two ECs, of which the OsLUX-OsELF3a-OsELF4a was likely the dominant promoter for photoperiodic flowering. In addition, OsELF4a was also essential for promoting rice flowering. Unlike OsLUX, loss OsELF4a displayed a marginal influence under short-day (SD) condition, but markedly delayed flowering time under long-day (LD) condition. These results suggest that rice EC genes share the function of promoting flowering. This is agreement with the orthologs of SD plant, but opposite to the counterparts of LD species. Taken together, rice EC genes display similar but not identical function in photoperiodic flowering, probably through regulating gene expression cooperative and independent. These findings facilitate our understanding of photoperiodic flowering in plants, especially the SD crops.
Collapse
Affiliation(s)
- Zhengzheng Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yudan Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuequn Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenchen Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanfang Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanlin Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Bouché F, Woods DP, Linden J, Li W, Mayer KS, Amasino RM, Périlleux C. EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 12:769194. [PMID: 35069625 PMCID: PMC8770904 DOI: 10.3389/fpls.2021.769194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.
Collapse
Affiliation(s)
- Frédéric Bouché
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Daniel P. Woods
- Plant Sciences Department, University of California, Davis, Davis, CA, United States
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Julie Linden
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| | - Kevin S. Mayer
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Richard M. Amasino
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
28
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
30
|
Dantas LLB, Dourado MM, de Lima NO, Cavaçana N, Nishiyama MY, Souza GM, Carneiro MS, Caldana C, Hotta CT. Field microenvironments regulate crop diel transcript and metabolite rhythms. THE NEW PHYTOLOGIST 2021; 232:1738-1749. [PMID: 34312886 DOI: 10.1111/nph.17650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Most research in plant chronobiology has been done in laboratory conditions. However, laboratories usually fail to mimic natural conditions and their slight fluctuations, highlighting or obfuscating rhythmicity. High-density crops, such as sugarcane (Saccharum hybrid), generate field microenvironments with specific light and temperature regimes resulting from mutual shading. We measured the metabolic and transcriptional rhythms in the leaves of 4-month-old (4 mo) and 9 mo field-grown sugarcane. Most of the assayed rhythms in 9 mo sugarcane peaked >1 h later than in 4 mo sugarcane, including rhythms of the circadian clock gene, LATE ELONGATED HYPOCOTYL (LHY). We hypothesized that older sugarcane perceives dawn later than younger sugarcane as a consequence of self-shading. As a test, we measured LHY rhythms in plants on the east and the west sides of a field. We also tested if a wooden wall built between lines of sugarcane plants changed their rhythms. The LHY peak was delayed in the plants in the west of the field or beyond the wall; both shaded at dawn. We conclude that plants in the same field may have different phases resulting from field microenvironments, impacting important agronomical traits, such as flowering time, stalk weight and number.
Collapse
Affiliation(s)
- Luíza Lane Barros Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Maíra Marins Dourado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Natalia Oliveira de Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Natale Cavaçana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxicologia Aplicada, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, São Carlos, SP, 13600-970, Brazil
| | - Camila Caldana
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
31
|
Wang X, He Y, Wei H, Wang L. A clock regulatory module is required for salt tolerance and control of heading date in rice. PLANT, CELL & ENVIRONMENT 2021; 44:3283-3301. [PMID: 34402093 DOI: 10.1111/pce.14167] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 05/23/2023]
Abstract
The circadian clock plays multiple roles in plant stress responses and developmental transition phases. Nevertheless, the underlying molecular mechanisms and individual clock components that coordinately regulate important agronomic traits of rice such as salt tolerance and heading date remain to be elucidated. Here, we identify a rice ternary repressive protein complex composed of OsELF4a, OsELF3-1 and OsLUX, which was designated as OsEC1 in analogy to a similar complex in Arabidopsis. OsELF4a physically interacts with OsELF3-1 and OsELF3-2 in nucleus, whilst OsELF3-1 rather than OsELF3-2 strongly interacts with OsLUX, a Myb-domain containing transcriptional factor. Phenotypic analyses show a role for this complex in heading and salt tolerance. The loss-of-function mutants of OsEC1 exhibit lower survival rate under salt stress and late heading date. Transcriptomic profiling together with biochemical assays identified the GIGANTEA homologue OsGI as a direct transcriptional target of OsEC1. Notably, the osgi-101 mutant, generated by CRISPR/Cas9, is salt tolerant and exhibits early heading date in long day conditions. Together, our findings characterized a transcriptional module in rice composed by the OsEC1 repressing OsGI, which links the circadian clock with salt tolerance and control of heading date.
Collapse
Affiliation(s)
- Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Hao P, Wu A, Chen P, Wang H, Ma L, Wei H, Yu S. GhLUX1 and GhELF3 Are Two Components of the Circadian Clock That Regulate Flowering Time of Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:691489. [PMID: 34434203 PMCID: PMC8380988 DOI: 10.3389/fpls.2021.691489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 05/30/2023]
Abstract
Photoperiod is an important external factor that regulates flowering time, the core mechanism of which lies in the circadian clock-controlled expression of FLOWERING LOCUS T (FT) and its upstream regulators. However, the roles of the circadian clock in regulating cotton flowering time are largely unknown. In this study, we cloned two circadian clock genes in cotton, GhLUX1 and GhELF3. The physicochemical and structural properties of their putative proteins could satisfy the prerequisites for the interaction between them, which was proved by yeast two-hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) assays. Phylogenetic analysis of LUXs and ELF3s indicated that the origin of LUXs was earlier than that of ELF3s, but ELF3s were more divergent and might perform more diverse functions. GhLUX1, GhELF3, GhCOL1, and GhFT exhibited rhythmic expression and were differentially expressed in the early flowering and late-flowering cotton varieties under different photoperiod conditions. Both overexpression of GhLUX1 and overexpression of GhELF3 in Arabidopsis delayed flowering probably by changing the oscillation phases and amplitudes of the key genes in the photoperiodic flowering pathway. Both silencing of GhLUX1 and silencing of GhELF3 in cotton increased the expression of GhCOL1 and GhFT and resulted in early flowering. In summary, the circadian clock genes were involved in regulating cotton flowering time and could be the candidate targets for breeding early maturing cotton varieties.
Collapse
Affiliation(s)
- Pengbo Hao
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
33
|
Ye J, Wang X, Wang W, Yu H, Ai G, Li C, Sun P, Wang X, Li H, Ouyang B, Zhang J, Zhang Y, Han H, Giovannoni JJ, Fei Z, Ye Z. Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. PLANT PHYSIOLOGY 2021; 186:2078-2092. [PMID: 34618111 PMCID: PMC8331143 DOI: 10.1093/plphys/kiab230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/03/2021] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is a highly valuable fruit crop, and yield is one of the most important agronomic traits. However, the genetic architecture underlying tomato yield-related traits has not been fully addressed. Based on ∼4.4 million single nucleotide polymorphisms obtained from 605 diverse accessions, we performed a comprehensive genome-wide association study for 27 agronomic traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many previously reported and additional genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection during tomato domestication and improvement. Furthermore, a candidate gene, Sl-ACTIVATED MALATE TRANSPORTER15, that encodes an aluminum-activated malate transporter was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation, thereby affecting photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Wenqian Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianyu Wang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|
34
|
Sun C, Zhang K, Zhou Y, Xiang L, He C, Zhong C, Li K, Wang Q, Yang C, Wang Q, Chen C, Chen D, Wang Y, Liu C, Yang B, Wu H, Chen X, Li W, Wang J, Xu P, Wang P, Fang J, Chu C, Deng X. Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1644-1657. [PMID: 33740293 PMCID: PMC8384598 DOI: 10.1111/pbi.13580] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 05/11/2023]
Abstract
Circadian clock, an endogenous time-setting mechanism, allows plants to adapt to unstable photoperiod conditions and induces flowering with proper timing. In Arabidopsis, the central clock oscillator was formed by a series of interlocked transcriptional feedback loops, but little is known in rice so far. By MutMap technique, we identified the candidate gene OsLHY from a later flowering mutant lem1 and further confirmed it through genetic complementation, RNA interference knockdown, and CRISPR/Cas9-knockout. Global transcriptome profiling and expression analyses revealed that OsLHY might be a vital circadian rhythm component. Interestingly, oslhy flowered later under ≥12 h day length but headed earlier under ≤11 h day length. qRT-PCR results exhibited that OsLHY might function through OsGI-Hd1 pathway. Subsequent one-hybrid assays in yeast, DNA affinity purification qPCR, and electrophoretic mobility shift assays confirmed OsLHY could directly bind to the CBS element in OsGI promoter. Moreover, the critical day length (CDL) for function reversal of OsLHY in oslhy (11-12 h) was prolonged in the double mutant oslhy osgi (about 13.5 h), indicating that the CDL set by OsLHY was OsGI dependent. Additionally, the dual function of OsLHY entirely relied on Hd1, as the double mutant oslhy hd1 showed the same heading date with hd1 under about 11.5, 13.5, and 14 h day lengths. Together, OsLHY could fine-tune the CDL by directly regulating OsGI, and Hd1 acts as the final effector of CDL downstream of OsLHY. Our study illustrates a new regulatory mechanism between the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Kuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yi Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lin Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chao Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Ke Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiuxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chuanpeng Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Congping Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chuanqiang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Hualin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
| | - Chengcai Chu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| |
Collapse
|
35
|
Yue Y, Jiang Z, Sapey E, Wu T, Sun S, Cao M, Han T, Li T, Nian H, Jiang B. Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars. BMC Genomics 2021; 22:529. [PMID: 34246232 PMCID: PMC8272290 DOI: 10.1186/s12864-021-07869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ze Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Enoch Sapey
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tingting Wu
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shi Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Mengxue Cao
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Tianfu Han
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China.
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
36
|
Cao S, Luo X, Xu D, Tian X, Song J, Xia X, Chu C, He Z. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. THE NEW PHYTOLOGIST 2021; 230:1731-1745. [PMID: 33586137 DOI: 10.1111/nph.17276] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/20/2021] [Indexed: 05/23/2023]
Abstract
Timely flowering is essential for optimum crop reproduction and yield. To determine the best flowering-time genes (FTGs) relevant to local adaptation and breeding, it is essential to compare the interspecific genetic architecture of flowering in response to light and temperature, the two most important environmental cues in crop breeding. However, the conservation and variations of FTGs across species lack systematic dissection. This review summarizes current knowledge on the genetic architectures underlying light and temperature-mediated flowering initiation in Arabidopsis, rice, and temperate cereals. Extensive comparative analyses show that most FTGs are conserved, whereas functional variations in FTGs may be species specific and confer local adaptation in different species. To explore evolutionary dynamics underpinning the conservation and variations in FTGs, domestication and selection of some key FTGs are further dissected. Based on our analyses of genetic control of flowering time, a number of key issues are highlighted. Strategies for modulation of flowering behavior in crop breeding are also discussed. The resultant resources provide a wealth of reference information to uncover molecular mechanisms of flowering in plants and achieve genetic improvement in crops.
Collapse
Affiliation(s)
- Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center China Office, c/o Chinese Academy Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
37
|
Coordinative regulation of plants growth and development by light and circadian clock. ABIOTECH 2021; 2:176-189. [PMID: 36304756 PMCID: PMC9590570 DOI: 10.1007/s42994-021-00041-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
The circadian clock, known as an endogenous timekeeping system, can integrate various cues to regulate plant physiological functions for adapting to the changing environment and thus ensure optimal plant growth. The synchronization of internal clock with external environmental information needs a process termed entrainment, and light is one of the predominant entraining signals for the plant circadian clock. Photoreceptors can detect and transmit light information to the clock core oscillator through transcriptional or post-transcriptional interactions with core-clock components to sustain circadian rhythms and regulate a myriad of downstream responses, including photomorphogenesis and photoperiodic flowering which are key links in the process of growth and development. Here we summarize the current understanding of the molecular network of the circadian clock and how light information is integrated into the circadian system, especially focus on how the circadian clock and light signals coordinately regulate the common downstream outputs. We discuss the functions of the clock and light signals in regulating photoperiodic flowering among various crop species.
Collapse
|
38
|
Steed G, Ramirez DC, Hannah MA, Webb AAR. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 2021; 372:372/6541/eabc9141. [PMID: 33926926 DOI: 10.1126/science.abc9141] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human health is dependent on a plentiful and nutritious supply of food, primarily derived from crop plants. Rhythmic supply of light as a result of the day and night cycle led to the evolution of circadian clocks that modulate most plant physiology, photosynthesis, metabolism, and development. To regulate crop traits and adaptation, breeders have indirectly selected for variation at circadian genes. The pervasive impact of the circadian system on crops suggests that future food production might be improved by modifying circadian rhythms, engineering the timing of transgene expression, and applying agricultural treatments at the most effective time of day. We describe the applied research required to take advantage of circadian biology in agriculture to increase production and reduce inputs.
Collapse
Affiliation(s)
- Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Matthew A Hannah
- BASF, BBCC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
39
|
Qiu L, Wu Q, Wang X, Han J, Zhuang G, Wang H, Shang Z, Tian W, Chen Z, Lin Z, He H, Hu J, Lv Q, Ren J, Xu J, Li C, Wang X, Li Y, Li S, Huang R, Chen X, Zhang C, Lu M, Liang C, Qin P, Huang X, Li S, Ouyang X. Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. NATURE FOOD 2021; 2:348-362. [PMID: 37117734 DOI: 10.1038/s43016-021-00280-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/20/2021] [Indexed: 04/30/2023]
Abstract
Global climate change necessitates crop varieties with good environmental adaptability. As a proxy for climate adaptation, crop breeders could select for adaptability to different latitudes, but the lengthy procedures for that slow development. Here, we combined molecular technologies with a streamlined in-house screening method to facilitate rapid selection for latitude adaptation. We established the daylength-sensing-based environment adaptation simulator (DEAS) to assess rice latitude adaptation status via the transcriptional dynamics of florigen genes at different latitudes. The DEAS predicted the florigen expression profiles in rice varieties with high accuracy. Furthermore, the DEAS showed potential for application in different crops. Incorporating the DEAS into conventional breeding programmes would help to develop cultivars for climate adaptation.
Collapse
Affiliation(s)
- Leilei Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinqin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gui Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiyun Shang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zechuan Lin
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jie Hu
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Juansheng Ren
- Crop Research Institute of Sichuan Academy of Agricultural Science, Chengdu, China
| | - Jun Xu
- Deyang Agricultural Science and Education Management Station, Deyang, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yang Li
- Photobiological Industry Institute, Sanan Sino-Science Photobiotech, Xiamen, China
| | - Shaohua Li
- Photobiological Industry Institute, Sanan Sino-Science Photobiotech, Xiamen, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang, China
| | - Ming Lu
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
40
|
Wu Q, Luo Y, Wu X, Bai X, Ye X, Liu C, Wan Y, Xiang D, Li Q, Zou L, Zhao G. Identification of the specific long-noncoding RNAs involved in night-break mediated flowering retardation in Chenopodium quinoa. BMC Genomics 2021; 22:284. [PMID: 33874907 PMCID: PMC8056640 DOI: 10.1186/s12864-021-07605-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Night-break (NB) has been proven to repress flowering of short-day plants (SDPs). Long-noncoding RNAs (lncRNAs) play key roles in plant flowering. However, investigation of the relationship between lncRNAs and NB responses is still limited, especially in Chenopodium quinoa, an important short-day coarse cereal. Results In this study, we performed strand-specific RNA-seq of leaf samples collected from quinoa seedlings treated by SD and NB. A total of 4914 high-confidence lncRNAs were identified, out of which 91 lncRNAs showed specific responses to SD and NB. Based on the expression profiles, we identified 17 positive- and 7 negative-flowering lncRNAs. Co-expression network analysis indicated that 1653 mRNAs were the common targets of both types of flowering lncRNAs. By mapping these targets to the known flowering pathways in model plants, we found some pivotal flowering homologs, including 2 florigen encoding genes (FT (FLOWERING LOCUS T) and TSF (TWIN SISTER of FT) homologs), 3 circadian clock related genes (EARLY FLOWERING 3 (ELF3), LATE ELONGATED HYPOCOTYL (LHY) and ELONGATED HYPOCOTYL 5 (HY5) homologs), 2 photoreceptor genes (PHYTOCHROME A (PHYA) and CRYPTOCHROME1 (CRY1) homologs), 1 B-BOX type CONSTANS (CO) homolog and 1 RELATED TO ABI3/VP1 (RAV1) homolog, were specifically affected by NB and competed by the positive and negative-flowering lncRNAs. We speculated that these potential flowering lncRNAs may mediate quinoa NB responses by modifying the expression of the floral homologous genes. Conclusions Together, the findings in this study will deepen our understanding of the roles of lncRNAs in NB responses, and provide valuable information for functional characterization in future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07605-2.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| |
Collapse
|
41
|
McClung CR. Circadian Clock Components Offer Targets for Crop Domestication and Improvement. Genes (Basel) 2021; 12:genes12030374. [PMID: 33800720 PMCID: PMC7999361 DOI: 10.3390/genes12030374] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
During plant domestication and improvement, farmers select for alleles present in wild species that improve performance in new selective environments associated with cultivation and use. The selected alleles become enriched and other alleles depleted in elite cultivars. One important aspect of crop improvement is expansion of the geographic area suitable for cultivation; this frequently includes growth at higher or lower latitudes, requiring the plant to adapt to novel photoperiodic environments. Many crops exhibit photoperiodic control of flowering and altered photoperiodic sensitivity is commonly required for optimal performance at novel latitudes. Alleles of a number of circadian clock genes have been selected for their effects on photoperiodic flowering in multiple crops. The circadian clock coordinates many additional aspects of plant growth, metabolism and physiology, including responses to abiotic and biotic stresses. Many of these clock-regulated processes contribute to plant performance. Examples of selection for altered clock function in tomato demonstrate that with domestication, the phasing of the clock is delayed with respect to the light–dark cycle and the period is lengthened; this modified clock is associated with increased chlorophyll content in long days. These and other data suggest the circadian clock is an attractive target during breeding for crop improvement.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
42
|
Fang X, Han Y, Liu M, Jiang J, Li X, Lian Q, Xie X, Huang Y, Ma Q, Nian H, Qi J, Yang C, Wang Y. Modulation of evening complex activity enables north-to-south adaptation of soybean. SCIENCE CHINA. LIFE SCIENCES 2021; 64:179-195. [PMID: 33230598 DOI: 10.1007/s11427-020-1832-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
Soybean, a typical short-day crop, is sensitive to photoperiod, which is a major limiting factor defining its north-to-south cultivation range. The long-juvenile (LJ) trait is controlled primarily by the J locus which has been used for decades by soybean breeders to delay flowering and improve grain yield in tropical regions. The J gene encodes an ortholog of the Arabidopsis Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). To identify modifiers of J, we conducted a forward genetic screen and isolated a mutant (eoj57) that in combination with j has longer flowering delay compared with j single mutant plants. Map-based cloning and genome re-sequencing identified eoj57 (designated as GmLUX2) as an ortholog of the Arabidopsis EC component LUX ARRHYTHMO (LUX). To validate that GmLUX2 is a modifier of J, we used trans-complementation and identified a natural variant allele with a similar phenotype. We also show that GmLUX2 physically interacts with GmELF3a/b and binds DNA, whereas the mutant and natural variant are attenuated in both activities. Transcriptome analysis shows that the GmLUX2-GmELF3a complex co-regulates the expression of several circadian clock-associated genes and directly represses E1 expression. These results provide mechanistic insight into how GmLUX2-GmELF3 controls flowering time via synergistic regulation of gene expression. These novel insights expand our understanding of the regulation of the EC complex, and facilitate the development of soybean varieties adapted for growth at lower latitudes.
Collapse
Affiliation(s)
- Xiaolong Fang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yapeng Han
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang Li
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xianrong Xie
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yian Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qibin Ma
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Nian
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
43
|
Wang H, Jiao X, Kong X, Liu Y, Chen X, Fang R, Yan Y. The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of Ghd7 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:447-459. [PMID: 33617099 DOI: 10.1111/tpj.14936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/08/2020] [Indexed: 06/12/2023]
Abstract
The plant steroid hormones brassinosteroids (BRs) play crucial roles in plant growth and development. The BR signal transduction pathway from perception to the key transcription factors has been well understood in Arabidopsis thaliana and in rice (Oryza sativa); however, the mechanisms conferring BR-mediated growth and flowering remain largely unknown, especially in rice. In this study, we show that HDA703 is a histone H4K8 and H4K12 deacetylase in rice. Hda703 mutants display a typical BR loss-of-function phenotype and reduced sensitivity to brassinolide, the most active BR. Rice plants overexpressing HDA703 exhibit some BR gain-of-function phenotypes dependent on BR biosynthesis and signaling. We also show that HDA703 is a direct target of BRASSINAZOLE-RESISTANT1 (OsBZR1), a primary regulator of rice BR signaling, and HDA703 interacts with OsBZR1 in rice. We further show that GRAIN NUMBER, PLANT HEIGHT, and HEADING DATE 7 (Ghd7), a central regulator of growth, development, and the stress response, is a direct target of OsBZR1. HDA703 directly targets Ghd7 and represses its expression through histone H4 deacetylation. HDA703-overexpressing rice plants phenocopy Ghd7-silencing rice plants in both growth and heading date. Together, our study suggests that HDA703, a histone H4 deacetylase, interacts with OsBZR1 to regulate rice BR signaling, growth, and heading date through epigenetic regulation of Ghd7.
Collapse
Affiliation(s)
- Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
44
|
Wei H, Wang X, Xu H, Wang L. Molecular basis of heading date control in rice. ABIOTECH 2020; 1:219-232. [PMID: 36304129 PMCID: PMC9590479 DOI: 10.1007/s42994-020-00019-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Flowering time is of great significance for crop reproduction, yield, and regional adaptability, which is intricately regulated by various environmental cues and endogenous signals. Genetic approaches in Arabidopsis have revealed the elaborate underlying mechanisms of sensing the dynamic change of photoperiod via a coincidence between light signaling and circadian clock, the cellular time keeping system, to precisely control photoperiodic flowering time, and many other signaling pathways including internal hormones and external temperature cues. Extensive studies in rice (Oryza sativa.), one of the short-day plants (SDP), have uncovered the multiple major genetic components in regulating heading date, and revealed the underlying mechanisms for regulating heading date. Here we summarize the current progresses on the molecular basis for rice heading date control, especially focusing on the integration mechanism between photoperiod and circadian clock, and epigenetic regulation and heading procedures in response to abiotic stresses.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hang Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
45
|
Li MW, Lam HM. The Modification of Circadian Clock Components in Soybean During Domestication and Improvement. Front Genet 2020; 11:571188. [PMID: 33193673 PMCID: PMC7554537 DOI: 10.3389/fgene.2020.571188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Agricultural production is greatly dependent on daylength, which is determined by latitude. Living organisms align their physiology to daylength through the circadian clock, which is made up of input sensors, core and peripheral clock components, and output. The light/dark cycle is the major input signal, moderated by temperature fluctuations and metabolic changes. The core clock in plants functions mainly through a number of transcription feedback loops. It is known that the circadian clock is not essential for survival. However, alterations in the clock components can lead to substantial changes in physiology. Thus, these clock components have become the de facto targets of artificial selection for crop improvement during domestication. Soybean was domesticated around 5,000 years ago. Although the circadian clock itself is not of particular interest to soybean breeders, specific alleles of the circadian clock components that affect agronomic traits, such as plant architecture, sensitivity to light/dark cycle, flowering time, maturation time, and yield, are. Consequently, compared to their wild relatives, cultivated soybeans have been bred to be more adaptive and productive at different latitudes and habitats for acreage expansion, even though the selection processes were made without any prior knowledge of the circadian clock. Now with the advances in comparative genomics, known modifications in the circadian clock component genes in cultivated soybean have been found, supporting the hypothesis that modifications of the clock are important for crop improvement. In this review, we will summarize the known modifications in soybean circadian clock components as a result of domestication and improvement. In addition to the well-studied effects on developmental timing, we will also discuss the potential of circadian clock modifications for improving other aspects of soybean productivity.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
46
|
Wang G, Wang C, Lu G, Wang W, Mao G, Habben JE, Song C, Wang J, Chen J, Gao Y, Liu J, Greene TW. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations. PLANT MOLECULAR BIOLOGY 2020; 104:137-150. [PMID: 32623622 DOI: 10.1007/s11103-020-01031-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
OsGhd7 gene was discovered by screening our rice activation tagging population. CRISPR-Cas9 created knockouts of OsGhd7 conferred early flowering and early maturity in rice varieties across multiple geographical locations in China. Our research shows that OsGhd7 is a good target for breeding early maturity rice varieties, and an excellent example of the advantages of applying the CRISPR-Cas9 technology for trait improvement. Flowering time (heading date) is an important trait for crop cultivation and yield. In this study, we discovered a late flowering gene OsGhd7 by screening our rice activation tagging population, and demonstrated that overexpression of OsGhd7 delayed flowering time in rice, and the delay in flowering time depended on the transgene expression level. OsGhd7 is a functional allele of the Ghd7 gene family; knockouts of OsGhd7 generated by CRISPR-Cas9 significantly accelerated flowering time and the earliness of the flowering time depended on field location. The homozygous OsGhd7 knockout lines showed approximately 8, 10, and 20 days earlier flowering than controls at three different locations in China (Changsha City, Sanya City, and Beijing City, respectively) that varied from 18.25° N to 39.90° N. Furthermore, knockouts of OsGhd7 also showed an early flowering phenotype in different rice varieties, indicating OsGhd7 can be used as a common target gene for using the CRISPR technology to modulate rice flowering time. The importance of OsGhd7 and CRISPR technology for breeding early maturity rice varieties are discussed.
Collapse
Affiliation(s)
- Guokui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Changgui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guihua Lu
- Corteva™ Agriscience, Johnston, IA, USA.
| | - Wei Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guanfan Mao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | | | - Chao Song
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jian Chen
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China.
| | | |
Collapse
|
47
|
Lai X, Bendix C, Yan L, Zhang Y, Schnable JC, Harmon FG. Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. BMC Genomics 2020; 21:428. [PMID: 32586356 PMCID: PMC7315539 DOI: 10.1186/s12864-020-06824-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022] Open
Abstract
Background The circadian clock drives endogenous 24-h rhythms that allow organisms to adapt and prepare for predictable and repeated changes in their environment throughout the day-night (diurnal) cycle. Many components of the circadian clock in Arabidopsis thaliana have been functionally characterized, but comparatively little is known about circadian clocks in grass species including major crops like maize and sorghum. Results Comparative research based on protein homology and diurnal gene expression patterns suggests the function of some predicted clock components in grasses is conserved with their Arabidopsis counterparts, while others have diverged in function. Our analysis of diurnal gene expression in three panicoid grasses sorghum, maize, and foxtail millet revealed conserved and divergent evolution of expression for core circadian clock genes and for the overall transcriptome. We find that several classes of core circadian clock genes in these grasses differ in copy number compared to Arabidopsis, but mostly exhibit conservation of both protein sequence and diurnal expression pattern with the notable exception of maize paralogous genes. We predict conserved cis-regulatory motifs shared between maize, sorghum, and foxtail millet through identification of diurnal co-expression clusters for a subset of 27,196 orthologous syntenic genes. In this analysis, a Cochran–Mantel–Haenszel based method to control for background variation identified significant enrichment for both expected and novel 6–8 nucleotide motifs in the promoter regions of genes with shared diurnal regulation predicted to function in common physiological activities. Conclusions This study illustrates the divergence and conservation of circadian clocks and diurnal regulatory networks across syntenic orthologous genes in panacoid grass species. Further, conserved local regulatory sequences contribute to the architecture of these diurnal regulatory networks that produce conserved patterns of diurnal gene expression.
Collapse
Affiliation(s)
- Xianjun Lai
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.,College of Agricultural Sciences, Xichang University, Liangshan, Xichang, 615000, China
| | - Claire Bendix
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| | - Lang Yan
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.,College of Agricultural Sciences, Xichang University, Liangshan, Xichang, 615000, China
| | - Yang Zhang
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.
| | - Frank G Harmon
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA. .,Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA.
| |
Collapse
|
48
|
Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nat Commun 2020; 11:2819. [PMID: 32499482 PMCID: PMC7272468 DOI: 10.1038/s41467-020-16573-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
Increased grain yield will be critical to meet the growing demand for food, and could be achieved by delaying crop senescence. Here, via quantitative trait locus (QTL) mapping, we uncover the genetic basis underlying distinct life cycles and senescence patterns of two rice subspecies, indica and japonica. Promoter variations in the Stay-Green (OsSGR) gene encoding the chlorophyll-degrading Mg++-dechelatase were found to trigger higher and earlier induction of OsSGR in indica, which accelerated senescence of indica rice cultivars. The indica-type promoter is present in a progenitor subspecies O. nivara and thus was acquired early during the evolution of rapid cycling trait in rice subspecies. Japonica OsSGR alleles introgressed into indica-type cultivars in Korean rice fields lead to delayed senescence, with increased grain yield and enhanced photosynthetic competence. Taken together, these data establish that naturally occurring OsSGR promoter and related lifespan variations can be exploited in breeding programs to augment rice yield.
Collapse
|
49
|
Lu X, Zhou Y, Fan F, Peng J, Zhang J. Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:737-760. [PMID: 31243851 DOI: 10.1111/jipb.12852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Rice (Oryza sativa L.) is a major staple food crop for over half of the world's population. As a crop species originated from the subtropics, rice production is hampered by chilling stress. The genetic mechanisms of rice responses to chilling stress have attracted much attention, focusing on chilling-related gene mining and functional analyses. Plants have evolved sophisticated regulatory systems to respond to chilling stress in coordination with light signaling pathway and internal circadian clock. However, in rice, information about light-signaling pathways and circadian clock regulation and their roles in chilling tolerance remains elusive. Further investigation into the regulatory network of chilling tolerance in rice is needed, as knowledge of the interaction between temperature, light, and circadian clock dynamics is limited. Here, based on phenotypic analysis of transgenic and mutant rice lines, we delineate the relevant genes with important regulatory roles in chilling tolerance. In addition, we discuss the potential coordination mechanism among temperature, light, and circadian clock in regulating chilling response and tolerance of rice, and provide perspectives for the ongoing chilling signaling network research in rice.
Collapse
Affiliation(s)
- Xuedan Lu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Fan Fan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - JunHua Peng
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| | - Jian Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| |
Collapse
|
50
|
The G123 rice mutant, carrying a mutation in SE13, presents alterations in the expression patterns of photosynthetic and major flowering regulatory genes. PLoS One 2020; 15:e0233120. [PMID: 32421736 PMCID: PMC7233571 DOI: 10.1371/journal.pone.0233120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Day length is a determinant of flowering time in rice. Phytochromes participate in flowering regulation by measuring the number of daylight hours to which the plant is exposed. Here we describe G123, a rice mutant generated by irradiation, which displays insensitivity to the photoperiod and early flowering under both long day and short day conditions. To detect the mutation responsible for the early flowering phenotype exhibited by G123, we generated an F2 population, derived from crossing with the wild-type, and used a pipeline to detect genomic structural variation, initially developed for human genomes. We detected a deletion in the G123 genome that affects the PHOTOPERIOD SENSITIVITY13 (SE13) gene, which encodes a phytochromobilin synthase, an enzyme implicated in phytochrome chromophore biosynthesis. The transcriptomic analysis, performed by RNA-seq, in the G123 plants indicated an alteration in photosynthesis and other processes related to response to light. The expression patterns of the main flowering regulatory genes, such as Ghd7, Ghd8 and PRR37, were altered in the plants grown under both long day and short day conditions. These findings indicate that phytochromes are also involved in the regulation of these genes under short day conditions, and extend the role of phytochromes in flowering regulation in rice.
Collapse
|