1
|
Kumari N, Adhikari A, Bhagat S, Mishra AK, Tiwari AK. Benzoxazolone-based FITC-conjugated fluorescent probe for locating in-vivo expression level of translocator protein (TSPO) during lung inflammation. Mol Divers 2025:10.1007/s11030-025-11192-9. [PMID: 40259117 DOI: 10.1007/s11030-025-11192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Translocator protein 18 kDa (TSPO) has been a salient target for probing and monitoring inflammation in the central nervous system (CNS) and peripheral systems. Leveraging our previously developed, TSPO specific, modified acetamidobenzoxazolone derivative, the present work describes the synthesis and development of an optical probe for lung inflammation imaging: 2-(3,6-dihydroxy-9H-xanthen-9-yl)-5-(3-(3-(2-(methyl(phenyl)amino)-2-oxoethyl)-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)thioureido)benzoic acid (FITC-MBP). The FITC-MBP is prepared through facile methodology by conjugating MBP to fluorophore dye FITC. Spectral properties remained equivalent to FITC dye with absorption and emission wavelength at 486 and 520 nm, respectively. Cellular uptake studies established overexpression of TSPO in lipopolysaccharide (LPS)-induced inflammation in H1299 lung cells. Reduced mean fluorescence intensity (MFI) during blocking experiments with PK11195 in flow cytometry suggests the specificity of the fluorescent probe towards TSPO. In-vivo optical imaging analysis on LPS-induced lung-inflamed balb/c mice revealed major sequestration of FITC-MBP in the lungs compared to control at 25 min post-injection that significantly decreased on pretreatment with PK11195 due to competitive binding to TSPO. On ground of these findings, we believe the novel fluorescent probe (FITC-MBP) might be utilized to visualize the overexpressed TSPO.
Collapse
Affiliation(s)
- Neelam Kumari
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Sunita Bhagat
- Organic Synthesis Research Laboratory, Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India
| | - Anjani K Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India.
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Obeid F, Kahana M, Dahle B, Monga S, Zohar Y, Weizman A, Gavish M. Novel TSPO Ligand 2-Cl-MGV-1 Can Counteract Lipopolysaccharide Induced Inflammatory Response in Murine RAW264.7 Macrophage Cell Line and Lung Models. Cells 2024; 13:1702. [PMID: 39451220 PMCID: PMC11506480 DOI: 10.3390/cells13201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
We assessed the anti-inflammatory activity of the TSPO ligand 2-Cl-MGV-1. Lipopolysaccharide (LPS) was used to induce inflammatory response in a murine RAW264.7 macrophage model (LPS: 100 ng/mL) and a mouse model (C57BL/6) of lung inflammation (LPS: 5 mg/kg). In the macrophage model, the presence of 2-Cl-MGV-1 (25 µM) caused the LPS-induced elevation in nitrite levels to decrease by 70% (p < 0.0001) and interleukin (IL)-6 by 50% (p < 0.05). In the mouse model, 2-Cl-MGV-1, administered 30 min before, or co-administered with, an LPS injection, significantly inhibited the elevation in serum IL-5 levels (both by 65%; p < 0.001 and p < 0.01, respectively). 2-Cl-MGV-1 administration to mice 30 min before LPS injection and 1 h thereafter significantly inhibited the elevation in IL-1β serum levels (both by 63%, p < 0.005). IL-6 elevation was inhibited by 73% (p < 0.005) when 2-Cl-MGV-1 was administered 30 min before LPS, by 60% (p < 0.05) when co-administered with LPS, and by 64% (p < 0.05) when administered 1 h after LPS. All cytokine assessments were conducted 6 h post LPS injection. Histological analyses showed decreased leukocyte adherence in the lung tissue of the ligand-treated mice. 2-Cl-MGV-1 administration 30 min prior to exposure to LPS inhibited inflammation-induced open field immobility. The beneficial effect of 2-Cl-MGV-1 suggests its potential as a therapeutic option for inflammatory diseases.
Collapse
Affiliation(s)
- Fadi Obeid
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel; (F.O.); (M.K.); (B.D.); (S.M.); (Y.Z.)
| | - Meygal Kahana
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel; (F.O.); (M.K.); (B.D.); (S.M.); (Y.Z.)
| | - Baraah Dahle
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel; (F.O.); (M.K.); (B.D.); (S.M.); (Y.Z.)
| | - Sheelu Monga
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel; (F.O.); (M.K.); (B.D.); (S.M.); (Y.Z.)
| | - Yaniv Zohar
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel; (F.O.); (M.K.); (B.D.); (S.M.); (Y.Z.)
- Institute of Pathology and Cytology, Rambam Health Care Campus, P.O. Box 9602, Haifa 3109601, Israel
| | - Abraham Weizman
- Laboratory of Biological and Molecular Psychiatry, Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Research Unit, Geha Mental Health Center, Petah Tikva 4910002, Israel
| | - Moshe Gavish
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel; (F.O.); (M.K.); (B.D.); (S.M.); (Y.Z.)
| |
Collapse
|
3
|
Liggieri F, Chiodaroli E, Pellegrini M, Puuvuori E, Sigfridsson J, Velikyan I, Chiumello D, Ball L, Pelosi P, Stramaglia S, Antoni G, Eriksson O, Perchiazzi G. Regional distribution of mechanical strain and macrophage-associated lung inflammation after ventilator-induced lung injury: an experimental study. Intensive Care Med Exp 2024; 12:77. [PMID: 39225817 PMCID: PMC11371987 DOI: 10.1186/s40635-024-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [68Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages. Aim of the study was to determine, in a porcine model of VILI, whether mechanical strain correlates topographically with distribution of activated macrophages detected by [68Ga]Ga-DOTA-TATE uptake. METHODS Seven anesthetized pigs underwent VILI, while three served as control. Lung CT scans were acquired at incremental tidal volumes, simultaneously recording lung mechanics. [68Ga]Ga-DOTA-TATE was administered, followed by dynamic PET scans. Custom MatLab scripts generated voxel-by-voxel gas volume and strain maps from CT slices at para-diaphragmatic (Para-D) and mid-thoracic (Mid-T) levels. Analysis of regional Voxel-associated Normal Strain (VoStrain) and [68Ga]Ga-DOTA-TATE uptake was performed and a measure of the statistical correlation between these two variables was quantified using the linear mutual information (LMI) method. RESULTS Compared to controls, the VILI group exhibited statistically significant higher VoStrain and Standardized Uptake Value Ratios (SUVR) both at Para-D and Mid-T levels. Both VoStrain and SUVR increased along the gravitational axis with an increment described by statistically different regression lines between VILI and healthy controls and reaching the peak in the dependent regions of the lung (for strain in VILI vs. control was at Para-D: 760 ± 210 vs. 449 ± 106; at Mid-T level 497 ± 373 vs. 193 ± 160; for SUVR, in VILI vs. control was at Para-D: 2.2 ± 1.3 vs. 1.3 ± 0.1; at Mid-T level 1.3 ± 1.0 vs. 0.6 ± 0.03). LMI in both Para-D and Mid-T was statistically significantly higher in VILI than in controls. CONCLUSIONS In this porcine model of VILI, we found a topographical correlation between lung strain and [68Ga]Ga-DOTA-TATE uptake at voxel level, suggesting that mechanical alteration and specific activation of inflammatory cells are strongly linked in VILI. This study represents the first voxel-by-voxel examination of this relationship in a multi-modal imaging analysis.
Collapse
Affiliation(s)
- Francesco Liggieri
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Elena Chiodaroli
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Mariangela Pellegrini
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy
| | - Lorenzo Ball
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Sebastiano Stramaglia
- Department of Physics, National Institute for Nuclear Physics, University of Bari Aldo Moro, Bari, Italy
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden.
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
4
|
Li Y, Chen L, Papadopoulos V. The mitochondrial translocator protein (TSPO, 18 kDa): A key multifunctional molecule in liver diseases. Biochimie 2024; 224:91-103. [PMID: 38065288 DOI: 10.1016/j.biochi.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 08/23/2024]
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Han J, Zhang X, Cai M, Tian F, Xu Y, Chen H, He W, Zhang J, Tian H. TSPO deficiency exacerbates acute lung injury via NLRP3 inflammasome-mediated pyroptosis. Chin Med J (Engl) 2024; 137:1592-1602. [PMID: 38644799 PMCID: PMC11230828 DOI: 10.1097/cm9.0000000000003105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in many critically ill patients. Although inflammasome activation plays an important role in the induction of acute lung injury (ALI) and ARDS, the regulatory mechanism of this process is still unclear. When cells are stimulated by inflammation, the integrity and physiological function of mitochondria play a crucial part in pyroptosis. However, the underlying mechanisms and function of mitochondrial proteins in the process of pyroptosis are largely not yet known. Here, we identified the 18-kDa translocator protein (TSPO), a mitochondrial outer membrane protein, as an important mediator regulating nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in macrophages during ALI. METHODS TSPO gene knockout (KO) and lipopolysaccharide (LPS)-induced ALI/ARDS mouse models were employed to investigate the biological role of TSPO in the pathogenesis of ARDS. Murine macrophages were used to further characterize the effect of TSPO on the NLRP3 inflammasome pathway. Activation of NLRP3 inflammasome was preformed through LPS + adenosine triphosphate (ATP) co-stimulation, followed by detection of mitochondrial membrane potential, reactive oxygen species (ROS) production, and cell death to evaluate the potential biological function of TSPO. Comparisons between two groups were performed with a two-sided unpaired t -test. RESULTS TSPO- KO mice exhibited more severe pulmonary inflammation in response to LPS-induced ALI. TSPO deficiency resulted in enhanced activation of the NLRP3 inflammasome pathway, promoting more proinflammatory cytokine production of macrophages in LPS-injured lung tissue, including interleukin (IL)-1β, IL-18, and macrophage inflammatory protein (MIP)-2. Mitochondria in TSPO -KO macrophages tended to depolarize in response to cellular stress. The increased production of mitochondrial damage-associated molecular pattern led to enhanced mitochondrial membrane depolarization and pyroptosis in TSPO -KO cells. CONCLUSION TSPO may be the key regulator of cellular pyroptosis, and it plays a vital protective role in ARDS occurrence and development.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Xue Zhang
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Menghua Cai
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Feng Tian
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Yi Xu
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Hui Chen
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wei He
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Jianmin Zhang
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
7
|
Wongso H, Kurniawan A, Setiadi Y, Kusumaningrum CE, Widyasari EM, Wibawa TH, Mahendra I, Febrian MB, Sriyani ME, Halimah I, Daruwati I, Gunawan R, Achmad A, Nugraha DH, Lesmana R, Nugraha AS. Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers. Adv Pharm Bull 2024; 14:86-104. [PMID: 38585455 PMCID: PMC10997928 DOI: 10.34172/apb.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The translocator protein 18-kDa (TSPO) is a mitochondrial membrane protein that is previously identified as the peripheral benzodiazepine receptor (PBR). Furthermore, it plays a significant role in a diverse range of biochemical processes, including steroidogenesis, mitochondrial cholesterol transport, cell survival and death, cell proliferation, and carcinogenesis. Several investigations also reported its roles in various types of cancers, including colorectal, brain, breast, prostate, and lung cancers, as well as melanoma. According to a previous study, the expression of TSPO was upregulated in cancer cells, which corresponds to an aggressive phenotype and/or poor prognosis. Consequently, the potential for crafting diagnostic and prognostic tools with a focus on TSPO holds great potential. In this context, several radioligands designed to target this protein have been identified, and some of the candidates have advanced to clinical trials. In recent years, the use of hybrid probes with radioactive and fluorescence molecules for image-guided surgery has exhibited promising results in animal and human studies. This indicates that the approach can serve as a valuable surgical navigator during cancer surgery. The current hybrid probes are built from various molecular platforms, including small molecules, nanoparticles, and antibodies. Although several TSPO-targeted imaging probes have been developed, their development for image-guided surgery of cancers is still limited. Therefore, this review aims to highlight recent findings on the involvement of TSPO in carcinogenesis, as well as provide a new perspective on the potential application of TSPO-targeted hybrid probes for image-guided surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Crhisterra E. Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isti Daruwati
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Rudi Gunawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Arifudin Achmad
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari S. Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
8
|
Lee K, Niku S, Koo SJ, Belezzuoli E, Guma M. Molecular imaging for evaluation of synovitis associated with osteoarthritis: a narrative review. Arthritis Res Ther 2024; 26:25. [PMID: 38229205 PMCID: PMC10790518 DOI: 10.1186/s13075-023-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Recent evidence highlights the role of low-grade synovial inflammation in the progression of osteoarthritis (OA). Inflamed synovium of OA joints detected by imaging modalities are associated with subsequent progression of OA. In this sense, detecting and quantifying synovitis of OA by imaging modalities may be valuable in predicting OA progressors as well as in improving our understanding of OA progression. Of the several imaging modalities, molecular imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has an advantage of visualizing the cellular or subcellular events of the tissues. Depending on the radiotracers used, molecular imaging method can potentially detect and visualize various aspects of synovial inflammation. This narrative review summarizes the recent progresses of imaging modalities in assessing inflammation and OA synovitis and focuses on novel radiotracers. Recent studies about imaging modalities including ultrasonography (US), magnetic resonance imaging (MRI), and molecular imaging that were used to detect and quantify inflammation and OA synovitis are summarized. Novel radiotracers specifically targeting the components of inflammation have been developed. These tracers may show promise in detecting inflamed synovium of OA and help in expanding our understanding of OA progression.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Soheil Niku
- Nuclear Medicine Service, Jennifer Moreno VA San Diego Healthcare System, San Diego, CA, USA
| | - Sonya J Koo
- Department of Radiology, West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Ernest Belezzuoli
- Nuclear Medicine Service, Jennifer Moreno VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Uzuegbunam BC, Rummel C, Librizzi D, Culmsee C, Hooshyar Yousefi B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int J Mol Sci 2023; 24:17419. [PMID: 38139248 PMCID: PMC10743508 DOI: 10.3390/ijms242417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.
Collapse
Affiliation(s)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Gießen, Germany;
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Carsten Culmsee
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
10
|
Chen R, Cui Y, Mak JCW. Novel treatments against airway inflammation in COPD based on drug repurposing. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:225-247. [PMID: 37524488 DOI: 10.1016/bs.apha.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and reduces quality of life that contributes to a health problem worldwide. Chronic airway inflammation is a hallmark of COPD, which occurs in response to exposure of inhaled irritants like cigarette smoke. Despite accessible to the most up-to-date medications, none of the treatments is currently available to decrease the disease progression. Therefore, it is believed that drugs which can reduce airway inflammation will provide effective disease modifying therapy for COPD. There are many broad-range anti-inflammatory drugs including those that inhibit cell signaling pathways like inhibitors of p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and phosphoinositide-3-kinase (PI3K), are now in phase III development for COPD. In this chapter, we review recent basic research data in the laboratory that may indicate novel therapeutic pathways arisen from currently used drugs such as selective monoamine oxidase (MAO)-B inhibitors and drugs targeting peripheral benzodiazepine receptors [also known as translocator protein (TSPO)] to reduce airway inflammation. Considering the impact of chronic airway inflammation on the lives of COPD patients, the potential pharmacological candidates for new anti-inflammatory targets should be further investigated. In addition, it is crucial to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target novel therapies. This review will enhance our knowledge on how cigarette smoke affects MAO-B activity and TSPO activation/inactivation with specific ligands through regulation of mitochondrial function, and will help to identify new potential treatment for COPD in future.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China; Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, P.R. China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, P.R. China
| | - Judith C W Mak
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.
| |
Collapse
|
11
|
Wetherill RR, Doot RK, Young AJ, Lee H, Schubert EK, Wiers CE, Leone FT, Mach RH, Kranzler HR, Dubroff JG. Molecular Imaging of Pulmonary Inflammation in Users of Electronic and Combustible Cigarettes: A Pilot Study. J Nucl Med 2023; 64:797-802. [PMID: 36657981 PMCID: PMC10152129 DOI: 10.2967/jnumed.122.264529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Electronic cigarette (EC) use has increased dramatically, particularly among adolescents and young adults, and, like cigarette use, can cause pulmonary inflammation and increase the risk of lung disease. Methods: This preliminary study used PET with 18F-6-(1/2)(2-fluoro-propyl)-4-methylpyridin-2-amine (18F-NOS) to quantify inducible nitric oxide synthase expression to characterize oxidative stress and inflammation in the lungs in vivo in 3 age- and sex-matched groups: 5 EC users, 5 cigarette smokers, and 5 controls who had never smoked or vaped. Results: EC users showed greater 18F-NOS nondisplaceable binding potential (BPND) than cigarette smokers (P = 0.03) and controls (P = 0.01), whereas BPND in cigarette smokers did not differ from that in controls (P > 0.1). 18F-NOS lung tissue delivery and inducible nitric oxide synthase distribution volume did not significantly differ among groups. Although there were no group differences in peripheral inflammatory biomarker concentrations, 18F-NOS BPND correlated with the proinflammatory cytokine tumor necrosis factor-α concentrations (rs = 0.87, P = 0.05) in EC users. Additionally, when EC users and cigarette smokers were pooled together, number of vaping episodes or cigarettes per day correlated with interleukin-6 levels (rs = 0.86, P = 0.006). Conclusion: This is the first PET imaging study to compare lung inflammation between EC and cigarette users in vivo. We found preliminary evidence that EC users have greater pulmonary inflammation than cigarette smokers and controls, with a positive association between pulmonary and peripheral measures of inflammation.
Collapse
Affiliation(s)
- Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin K Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank T Leone
- Comprehensive Smoking Treatment Program, Penn Lung Center, Philadelphia, Pennsylvania; and
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Keeling G, Man F. Nuclear Imaging of Inflammation. PROGRESS IN INFLAMMATION RESEARCH 2023:23-90. [DOI: 10.1007/978-3-031-23661-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Martinez-Orengo N, Tahmazian S, Lai J, Wang Z, Sinharay S, Schreiber-Stainthorp W, Basuli F, Maric D, Reid W, Shah S, Hammoud DA. Assessing organ-level immunoreactivity in a rat model of sepsis using TSPO PET imaging. Front Immunol 2022; 13:1010263. [PMID: 36439175 PMCID: PMC9685400 DOI: 10.3389/fimmu.2022.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.
Collapse
Affiliation(s)
- Neysha Martinez-Orengo
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sarine Tahmazian
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - William Reid
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Dima A. Hammoud,
| |
Collapse
|
14
|
Imaging the acute respiratory distress syndrome: past, present and future. Intensive Care Med 2022; 48:995-1008. [PMID: 35833958 PMCID: PMC9281340 DOI: 10.1007/s00134-022-06809-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.
Collapse
|
15
|
Bitker L, Dhelft F, Lancelot S, Le Bars D, Costes N, Benzerdjeb N, Orkisz M, Richard JC. Non-invasive quantification of acute macrophagic lung inflammation with [ 11C](R)-PK11195 using a three-tissue compartment kinetic model in experimental acute respiratory distress syndrome. Eur J Nucl Med Mol Imaging 2022; 49:2122-2136. [PMID: 35129652 DOI: 10.1007/s00259-022-05713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/30/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Imaging of acute lung inflammation is pivotal to evaluate innovative ventilation strategies. We aimed to develop and validate a three-tissue compartment kinetic model (3TCM) of [11C](R)-PK11195 lung uptake in experimental acute respiratory distress syndrome (ARDS) to help quantify macrophagic inflammation, while accounting for the impact of its non-specific and irreversible uptake in lung tissues. MATERIAL AND METHODS We analyzed the data of 38 positron emission tomography (PET) studies performed in 21 swine with or without experimental ARDS, receiving general anesthesia and mechanical ventilation. Model input function was a plasma, metabolite-corrected, image-derived input function measured in the main pulmonary artery. Regional lung analysis consisted in applying both the 3TCM and the two-tissue compartment model (2TCM); in each region, the best model was selected using a selection algorithm with a goodness-of-fit criterion. Regional best model binding potentials (BPND) were compared to lung macrophage presence, semi-quantified in pathology. RESULTS The 3TCM was preferred in 142 lung regions (62%, 95% confidence interval: 56 to 69%). BPND determined by the 2TCM was significantly higher than the value computed with the 3TCM (overall median with interquartile range: 0.81 [0.44-1.33] vs. 0.60 [0.34-0.94], p < 0.02). Regional macrophage score was significantly associated with the best model BPND (p = 0.03). Regional BPND was significantly increased in the hyperinflated lung compartment, compared to the normally aerated one (median with interquartile range: 0.8 [0.6-1.7] vs. 0.6 [0.3-0.8], p = 0.03). CONCLUSION To assess the intensity and spatial distribution of acute macrophagic lung inflammation in the context of experimental ARDS with mechanical ventilation, PET quantification of [11C](R)-PK11195 lung uptake was significantly improved in most lung regions using the 3TCM. This new methodology offers the opportunity to non-invasively evaluate innovative ventilatory strategies aiming at controlling acute lung inflammation.
Collapse
Affiliation(s)
- Laurent Bitker
- Service de Médecine Intensive - Réanimation, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de la Croix Rousse, 69004, Lyon, France.
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Villeurbanne, France.
- Université Lyon 1 Claude Bernard, Lyon, France.
| | - François Dhelft
- Service de Médecine Intensive - Réanimation, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de la Croix Rousse, 69004, Lyon, France
| | - Sophie Lancelot
- Université Lyon 1 Claude Bernard, Lyon, France
- CERMEP - Imagerie du Vivant, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Didier Le Bars
- Université Lyon 1 Claude Bernard, Lyon, France
- CERMEP - Imagerie du Vivant, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Nicolas Costes
- Université Lyon 1 Claude Bernard, Lyon, France
- CERMEP - Imagerie du Vivant, Lyon, France
| | - Nazim Benzerdjeb
- Centre d'Anatomie Et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Maciej Orkisz
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Villeurbanne, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive - Réanimation, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de la Croix Rousse, 69004, Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Villeurbanne, France
- Université Lyon 1 Claude Bernard, Lyon, France
| |
Collapse
|
16
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Shah S, Sinharay S, Patel R, Solomon J, Lee JH, Schreiber-Stainthorp W, Basuli F, Zhang X, Hagen KR, Reeder R, Wakim P, Huzella LM, Maric D, Johnson RF, Hammoud DA. PET imaging of TSPO expression in immune cells can assess organ-level pathophysiology in high-consequence viral infections. Proc Natl Acad Sci U S A 2022; 119:e2110846119. [PMID: 35385353 PMCID: PMC9169664 DOI: 10.1073/pnas.2110846119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/10/2022] [Indexed: 01/08/2023] Open
Abstract
Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Reema Patel
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Ji Hyun Lee
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | | | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Katie R. Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Rebecca Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, Bethesda, MD 20892
| | - Louis M. Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| |
Collapse
|
18
|
Rosenkranz MA. Waiting for Godot: Progress in the measurement of human neuroinflammation with existing tools. Brain Behav Immun 2022; 101:264-265. [PMID: 35032574 DOI: 10.1016/j.bbi.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
|
19
|
MacAskill MG, Wimberley C, Morgan TEF, Alcaide-Corral CJ, Newby DE, Lucatelli C, Sutherland A, Pimlott SL, Tavares AAS. Modelling [ 18F]LW223 PET data using simplified imaging protocols for quantification of TSPO expression in the rat heart and brain. Eur J Nucl Med Mol Imaging 2021; 49:137-145. [PMID: 34338808 PMCID: PMC8712302 DOI: 10.1007/s00259-021-05482-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To provide a comprehensive assessment of the novel 18 kDa translocator protein (TSPO) radiotracer, [18F]LW223, kinetics in the heart and brain when using a simplified imaging approach. METHODS Naive adult rats and rats with surgically induced permanent coronary artery ligation received a bolus intravenous injection of [18F]LW223 followed by 120 min PET scanning with arterial blood sampling throughout. Kinetic modelling of PET data was applied to estimated rate constants, total volume of distribution (VT) and binding potential transfer corrected (BPTC) using arterial or image-derived input function (IDIF). Quantitative bias of simplified protocols using IDIF versus arterial input function (AIF) and stability of kinetic parameters for PET imaging data of different length (40-120 min) were estimated. RESULTS PET outcome measures estimated using IDIF significantly correlated with those derived with invasive AIF, albeit with an inherent systematic bias. Truncation of the dynamic PET scan duration to less than 100 min reduced the stability of the kinetic modelling outputs. Quantification of [18F]LW223 uptake kinetics in the brain and heart required the use of different outcome measures, with BPTC more stable in the heart and VT more stable in the brain. CONCLUSION Modelling of [18F]LW223 PET showed the use of simplified IDIF is acceptable in the rat and the minimum scan duration for quantification of TSPO expression in rats using kinetic modelling with this radiotracer is 100 min. Carefully assessing kinetic outcome measures when conducting a systems level as oppose to single-organ centric analyses is crucial. This should be taken into account when assessing the emerging role of the TSPO heart-brain axis in the field of PET imaging.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Catriona Wimberley
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Timaeus E F Morgan
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Carlos J Alcaide-Corral
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | - Sally L Pimlott
- West of Scotland PET Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Adriana A S Tavares
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
20
|
Maekawa K, Tsuji AB, Yamashita A, Sugyo A, Katoh C, Tang M, Nishihira K, Shibata Y, Koshimoto C, Zhang MR, Nishii R, Yoshinaga K, Asada Y. Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 2021; 337:7-17. [PMID: 34662838 DOI: 10.1016/j.atherosclerosis.2021.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS This study aimed to investigate whether N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]acetamide (18F-FEDAC), a probe for translocator protein (TSPO), can visualize atherosclerotic lesions in rabbits and whether TSPO is localized in human coronary plaques. METHODS 18F-FEDAC-PET of a rabbit model of atherosclerosis induced by a 0.5% cholesterol diet and balloon injury of the left carotid artery (n = 7) was performed eight weeks after the injury. The autoradiography intensity of 18F-FEDAC in carotid artery tissue sections was measured, and TSPO expression was evaluated immunohistochemically. TSPO expression was examined in human coronary arteries obtained from autopsy cases (n = 16), and in human coronary plaques (n = 12) aspirated from patients with acute myocardial infarction (AMI). RESULTS 18F-FEDAC-PET visualized the atherosclerotic lesions in rabbits as high-uptake areas, and the standard uptake value was higher in injured arteries (0.574 ± 0.24) than in uninjured arteries (0.277 ± 0.13, p < 0.05) or myocardium (0.189 ± 0.07, p < 0.05). Immunostaining showed more macrophages and more TSPO expression in atherosclerotic lesions than in uninjured arteries. TSPO was localized in macrophages, and arterial autoradiography intensity was positively correlated with macrophage concentration (r = 0.64) and TSPO (r = 0.67). TSPO expression in human coronary arteries was higher in AMI cases than in non-cardiac death, or in the vulnerable plaques than in early or stable lesions, respectively. TSPO was localized in macrophages in all aspirated coronary plaques with thrombi. CONCLUSIONS 18F-FEDAC-PET can visualize atherosclerotic lesions, and TSPO-expression may be a marker of high-risk coronary plaques.
Collapse
Affiliation(s)
- Kazunari Maekawa
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan
| | - Atsushi B Tsuji
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan.
| | - Aya Sugyo
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Chietsugu Katoh
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, 060-0812, 5, 12Jo-Nishi, Kita, Kita-Ku, Sapporo City, Hokkaido, Japan
| | - Minghui Tang
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, 060-0812, 5, 12Jo-Nishi, Kita, Kita-Ku, Sapporo City, Hokkaido, Japan
| | - Kensaku Nishihira
- Department of Cardiology, Miyazaki Medical Association Hospital, 880-2102, 1173, Arita, Miyazaki City, Miyazaki, Japan
| | - Yoshisato Shibata
- Department of Cardiology, Miyazaki Medical Association Hospital, 880-2102, 1173, Arita, Miyazaki City, Miyazaki, Japan
| | - Chihiro Koshimoto
- Frontier Science Research Center, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Ryuichi Nishii
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan
| |
Collapse
|
21
|
Luo R, Wang L, Ye F, Wang YR, Fang W, Zhang MR, Wang F. [ 18F]FEDAC translocator protein positron emission tomography-computed tomography for early detection of mitochondrial dysfunction secondary to myocardial ischemia. Ann Nucl Med 2021; 35:927-936. [PMID: 34081287 PMCID: PMC8285353 DOI: 10.1007/s12149-021-01630-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aimed to evaluate the biodistribution and kinetics of [18F]FEDAC targeting the translocator protein TSPO in the myocardium, and to explore its use for the identification of mitochondrial dysfunction. We also assessed the feasibility of [18F]FEDAC for the early detection of mitochondrial dysfunction associated with myocardial ischemia (MI). METHODS The radiochemical purity and stability of [18F]FEDAC were analyzed by radio-high-performance liquid chromatography (radio-HPLC). Its biodistribution and kinetics were evaluated by dissection and dynamic imaging using micro-positron emission tomography-computed tomography (micro-PET-CT) in healthy mice. [18F]FEDAC was also applied in an MI rat model and in sham-operated controls. Mitochondrial changes were observed by immunohistochemical staining and electron microscopy. RESULTS Radioactivity levels (%ID/g) in the myocardium in normal mice, determined by [18F]FEDAC, were 8.32 ± 0.80 at 5 min and 2.40 ± 0.10 at 60 min. PET showed significantly decreased uptake by injured cardiac tissue in MI rats, with maximal normal-to-ischemic uptake ratios of 10.47 ± 3.03 (1.5 min) and 3.92 ± 1.12 (27.5 min) (P = 0.025). Immunohistochemistry confirmed that TSPO expression was decreased in MI rats. Mitochondrial ultrastructure demonstrated significant swelling and permeability. CONCLUSION [18F]FEDAC uptake is reduced in the injured myocardium, consistent with mitochondrial dysfunction. These results may provide new evidence to aid the early detection of mitochondrial dysfunction associated with myocardial ischemic injury.
Collapse
Affiliation(s)
- Rui Luo
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Lei Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fei Ye
- Deparment of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan-Rong Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Wei Fang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
22
|
PET Imaging of Translocator Protein as a Marker of Malaria-Associated Lung Inflammation. Infect Immun 2021; 89:e0002421. [PMID: 34251290 DOI: 10.1128/iai.00024-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose. Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a severe complication of malaria despite effective anti-malarial treatment. Currently, non-invasive imaging procedures such as chest X-rays are used to assess oedema in established MA-ARDS but earlier detection methods are needed to reduce morbidity and mortality. The early stages of MA-ARDS are characterized by the infiltration of leukocytes, in particular monocyte/macrophages, thus monitoring of immune infiltrates may provide a useful indicator of early pathology. Procedures. Plasmodium berghei ANKA-infected C57BL/6 mice, a rodent malaria model of MA-ARDS, were longitudinally imaged using the TSPO imaging agent [18F]FEPPA as a marker of macrophage accumulation during the development of pathology and response to combined artesunate and chloroquine diphosphate therapy (ART+CQ). [18F]FEPPA uptake was compared to blood parasitemia levels and pulmonary immune cell infiltrates using flow cytometry. Results. Infected animals showed rapid increases lung retention of [18F]FEPPA, correlating well with increases in blood parasitemia and pulmonary accumulation of interstitial inflammatory macrophages and MHC II+ alveolar macrophages. Treatment with ART+CQ therapy abrogated this increase in parasitemia and significantly reduced both lung uptake of [18F]FEPPA and macrophage infiltrates. Conclusions. Retention of [18F]FEPPA in the lungs is well correlated with changes in blood parasitemia and lung associated macrophages during disease progression and in response to ART+CQ therapy. With further development TSPO biomarkers may have the potential to be able to accurately assess early onset of MA-ARDS.
Collapse
|
23
|
Chen DL, Agapov E, Wu K, Engle JT, Solingapuram Sai KK, Arentson E, Spayd KJ, Moreland KT, Toth K, Byers DE, Pierce RA, Atkinson JJ, Laforest R, Gelman AE, Holtzman MJ. Selective Imaging of Lung Macrophages Using [ 11C]PBR28-Based Positron Emission Tomography. Mol Imaging Biol 2021; 23:905-913. [PMID: 34137002 DOI: 10.1007/s11307-021-01617-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE We tested whether the translocator protein (TSPO)-targeted positron emission tomography (PET) tracer, N-acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28), could distinguish macrophage dominant from neutrophilic inflammation better than 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mouse models of lung inflammation and assessed TSPO association with macrophages in lung tissue from the mouse models and in patients with chronic obstructive pulmonary disease (COPD). PROCEDURES MicroPET imaging quantified [11C]PBR28 and [18F]FDG lung uptake in wild-type (Wt) C57BL/6J or heterozygous transgenic monocyte-deficient Wt/opT mice at 49 days after Sendai virus (SeV) infection, during macrophage-dominant inflammation, and in Wt mice at 3 days after SeV infection or 24 h after endotoxin instillation during neutrophilic inflammation. Immunohistochemical staining for TSPO in macrophages and neutrophils was performed using Mac3 and Ly6G for cell identification in mouse lung sections and CD68 and neutrophil elastase (NE) in human lung sections taken from explanted lungs from patients with COPD undergoing lung transplantation and donor lungs rejected for transplantation. Differences in tracer uptake among SeV-infected, endotoxin-treated, and uninfected/untreated control mice and in TSPO staining between neutrophils and macrophage populations in human lung sections were tested using analysis of variance. RESULTS In Wt mice, [11C]PBR28 uptake (% injected dose/ml lung tissue) increased significantly with macrophage-dominant inflammation at 49 days (D49) after SeV infection compared to controls (p = <0.001) but not at 3 days (D49) after SeV infection (p = 0.167). [11C]PBR28 uptake was unchanged at 24 h after endotoxin instillation (p = 0.958). [18F]FDG uptake increased to a similar degree in D3 and D49 SeV-infected and endotoxin-treated Wt mice compared to controls with no significant difference in the degree of increase among the tested conditions. [11C]PBR28 but not [18F]FDG lung uptake at D49 post-SeV infection was attenuated in Wt/opT mice compared to Wt mice. TSPO localized predominantly to macrophages in mouse lung tissue by immunostaining, and TSPO staining intensity was significantly higher in CD68+ cells compared to neutrophils in the human lung sections. CONCLUSIONS PET imaging with [11C]PBR28 can specifically detect macrophages versus neutrophils during lung inflammation and may be a useful biomarker of macrophage accumulation in lung disease.
Collapse
Affiliation(s)
- Delphine L Chen
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Radiology, University of Washington, Seattle Cancer Care Alliance, 1144 Eastlake Ave E, # LG2-200, Seattle, WA, 98109, USA.
| | - Eugene Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacquelyn T Engle
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Elizabeth Arentson
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine J Spayd
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kirby T Moreland
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelsey Toth
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard A Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Laforest
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Klenner MA, Pascali G, Fraser BH, Darwish TA. Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals. Nucl Med Biol 2021; 96-97:112-147. [PMID: 33892374 DOI: 10.1016/j.nucmedbio.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
The deuterium labelling of pharmaceuticals is a useful strategy for altering pharmacokinetic properties, particularly for improving metabolic resistance. The pharmacological effects of such metabolites are often assumed to be negligible during standard drug discovery and are factored in later at the clinical phases of development, where the risks and benefits of the treatment and side-effects can be wholly assessed. This paradigm does not translate to the discovery of radiopharmaceuticals, however, as the confounding effects of radiometabolites can inevitably show in preliminary positron emission tomography (PET) scans and thus complicate interpretation. Consequently, the formation of radiometabolites is crucial to take into consideration, compared to non-radioactive metabolites, and the application of deuterium labelling is a particularly attractive approach to minimise radiometabolite formation. Herein, we provide a comprehensive overview of the deuterated carbon-11 and fluorine-18 radiopharmaceuticals employed in PET imaging experiments. Specifically, we explore six categories of deuterated radiopharmaceuticals used to investigate the activities of monoamine oxygenase (MAO), choline, translocator protein (TSPO), vesicular monoamine transporter 2 (VMAT2), neurotransmission and the diagnosis of Alzheimer's disease; from which we derive four prominent deuteration strategies giving rise to a kinetic isotope effect (KIE) for reducing the rate of metabolism. Synthetic approaches for over thirty of these deuterated radiopharmaceuticals are discussed from the perspective of deuterium and radioisotope incorporation, alongside an evaluation of the deuterium labelling and radiolabelling efficacies across these independent studies. Clinical and manufacturing implications are also discussed to provide a more comprehensive overview of how deuterated radiopharmaceuticals may be introduced to routine practice.
Collapse
Affiliation(s)
- Mitchell A Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW 2170, Australia.
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Chemistry, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Benjamin H Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Tamim A Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| |
Collapse
|
25
|
Wongso H, Yamasaki T, Kumata K, Ono M, Higuchi M, Zhang MR, Fulham MJ, Katsifis A, Keller PA. Design, Synthesis, and Biological Evaluation of Novel Fluorescent Probes Targeting the 18-kDa Translocator Protein. ChemMedChem 2021; 16:1902-1916. [PMID: 33631047 DOI: 10.1002/cmdc.202000984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Indexed: 12/20/2022]
Abstract
A series of fluorescent probes from the 6-chloro-2-phenylimidazo[1,2-a]pyridine-3-yl acetamides ligands featuring the 7-nitro-2-oxa-1,3-diazol-4-yl (NBD) moiety has been synthesized and biologically evaluated for their fluorescence properties and for their binding affinity to the 18-kDa translocator protein (TSPO). Spectroscopic studies including UV/Vis absorption and fluorescence measurements showed that the synthesized fluorescent probes exhibit favorable spectroscopic properties, especially in nonpolar environments. In vitro fluorescence staining in brain sections from lipopolysaccharide (LPS)-injected mice revealed partial colocalization of the probes with the TSPO. The TSPO binding affinity of the probes was measured on crude mitochondrial fractions separated from rat brain homogenates in a [11 C]PK11195 radioligand binding assay. All the new fluorescent probes demonstrated moderate to high binding affinity to the TSPO, with affinity (Ki ) values ranging from 0.58 nM to 3.28 μM. Taking these data together, we propose that the new fluorescent probes could be used to visualize the TSPO.
Collapse
Affiliation(s)
- Hendris Wongso
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency, Bandung, 40132, Indonesia
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Michael J Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
26
|
Chang CW, Chiu CH, Lin MH, Wu HM, Yu TH, Wang PY, Kuo YY, Huang YY, Shiue CY, Huang WS, Yeh SHH. GMP-compliant fully automated radiosynthesis of [ 18F]FEPPA for PET/MRI imaging of regional brain TSPO expression. EJNMMI Res 2021; 11:26. [PMID: 33725191 PMCID: PMC7966678 DOI: 10.1186/s13550-021-00768-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
Background Expression of translocator protein (TSPO) on the outer mitochondrial membrane of activated microglia is strongly associated with neuroinflammation. The second-generation PET ligand [18F]FEPPA specifically binds TSPO to enable in vivo visualization and quantification of neuroinflammation. We optimized a fully automated radiosynthesis method and evaluated the utility of [18F]FEPPA, the second-generation PET ligand specifically binds TSPO, in a mouse model of systemic LPS challenge to detect TSPO-associated signals of central and peripheral inflammation. In vivo dynamic PET/MR imaging was performed in LPS-induced and control mice after [18F]FEPPA administration. The relationship between the [18F]FEPPA signal and the dose of LPS was assessed. The cytokine levels (i.e., TNF-α, Il-1β, Il-6) in LPS-induced mice were measured by RT-PCR. Standard uptake value (SUV), total volume of distribution (VT) and area under the curve (AUC) were determined based on the metabolite-uncorrected plasma input function. Western blotting and immunostaining were used to measure TSPO expression in the brain. Results The fully automated [18F]FEPPA radiosynthesis produced an uncorrected radiochemical yield of 30 ± 2% within 80 min, with a radiochemical purity greater than 99% and specific activity of 148.9‒216.8 GBq/µmol. Significant differences were observed in the brain after [18F]FEPPA administration: SUV, VT and AUC were 1.61 ± 0.1, 1.25 ± 0.12 and 1.58 ± 0.09-fold higher in LPS-injected mice than controls. TNF-α, Il-1β and Il-6 mRNA levels were also elevated in the brains of LPS-injected mice. Western blotting revealed TSPO (p < 0.05) and Iba-1 (p < 0.01) were upregulated in the brain after LPS administration. In LPS-injected mice, TSPO immunoactivity colocalized with Iba-1 in the cerebrum and TSPO was significantly overexpressed in the hippocampus and cerebellum. The peripheral organs (heart, lung) of LPS-injected mice had higher [18F]FEPPA signal-to-noise ratios than control mice. Conclusions Based on the current data on ligand specificity and selectivity in central tissues using 7 T PET/MR imaging, we demonstrate that [18F]FEPPA accumulations significant increased in the specific brain regions of systemic LPS-induced neuroinflammation (5 mg/kg). Future investigations are needed to determine the sensitivity of [18F]FEPPA as a biomarker of neuroinflammation as well as the correlation between the PET signal intensity and the expression levels of TSPO. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00768-9.
Collapse
Affiliation(s)
- Chi-Wei Chang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Imaging and Radiological Technology, The Institute of Radiological Sciences, Tzu Chi University of Science and Technology, Hualien City, Taiwan.,Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine, Camillian Saint Mary's Hospital Luodong, Yilan, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Hsun Yu
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Pao-Yeh Wang
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Yu-Yeh Kuo
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ya-Yao Huang
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Skye Hsin-Hsien Yeh
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
27
|
Adhikari A, Singh P, Mahar KS, Adhikari M, Adhikari B, Zhang MR, Tiwari AK. Mapping of Translocator Protein (18 kDa) in Peripheral Sterile Inflammatory Disease and Cancer through PET Imaging. Mol Pharm 2021; 18:1507-1529. [PMID: 33645995 DOI: 10.1021/acs.molpharmaceut.1c00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Positron emission tomography (PET) imaging of the translocator 18 kDa protein (TSPO) with radioligands has become an effective means of research in peripheral inflammatory conditions that occur in many diseases and cancers. The peripheral sterile inflammatory diseases (PSIDs) are associated with a diverse group of disorders that comprises numerous enduring insults including the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system. TSPO has recently been introduced as a potential biomarker for peripheral sterile inflammatory diseases (PSIDs). The major critical issue related to PSIDs is its timely characterization and localization of inflammatory foci for proper therapy of patients. As an alternative to metabolic imaging, protein imaging expressed on immune cells after activation is of great importance. The five transmembrane domain translocator protein-18 kDa (TSPO) is upregulated on the mitochondrial cell surface of macrophages during inflammation, serving as a potential ligand for PET tracers. Additionally, the overexpressed TSPO protein has been positively correlated with various tumor malignancies. In view of the association of escalated TSPO expression in both disease conditions, it is an immensely important biomarker for PET imaging in oncology and PSIDs. In this review, we summarize the most outstanding advances on TSPO-targeted PSIDs and cancer in the development of TSPO ligands as a potential diagnostic tool, specifically discussing the last five years.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, A Central University, Lucknow, Uttar Pradesh 226025, India
| | - Kamalesh S Mahar
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh 226007, India
| | - Manish Adhikari
- The George Washington University, Washington, D.C. 20052, United States
| | - Bhawana Adhikari
- Plasma Bio-science Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
28
|
Pallares R, Abergel RJ. Diagnostic, Prognostic, and Therapeutic Use of Radiopharmaceuticals in the Context of SARS-CoV-2. ACS Pharmacol Transl Sci 2021; 4:1-7. [PMID: 33615159 PMCID: PMC7839413 DOI: 10.1021/acsptsci.0c00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak has devastated the healthcare systems and economies of over 200 countries in just a few months. The etiological agent of COVID-19, SARS-CoV-2, is a highly contagious virus that can be transmitted by asymptomatic and symptomatic carriers alike. While in vitro testing techniques have allowed for population-wide screening, prognostic tools are required to assess the disease severity and therapeutic response, contributing to improve the patient clinical outcomes. Moreover, no specific antiviral against COVID-19 exists at the time of publication, severely limiting treatment against the infection. Hence, there is an urgent clinical need for innovative therapeutic strategies that may contribute to manage the COVID-19 outbreak and prevent future pandemics. Herein, we critically examine recent diagnostic, prognostic, and therapeutic advancements for COVID-19 in the field of radiopharmaceuticals. First, we summarize the gold standard techniques used to diagnose COVID-19, including in vitro assays and imaging techniques, and then discuss how radionuclide-based nuclear imaging provides complementary information for prognosis and treatment management of infected patients. Second, we introduce new emerging types of radiotherapies that employ radioimmunoconjugates, which have shown selective cytotoxic response in oncological studies, and critically analyze how these compounds could be used as therapeutic agents against SARS-CoV-2. Finally, this Perspective further discusses the emerging applications of radionuclides to study the behavior of pulmonary SARS-CoV-2 aerosol particles.
Collapse
Affiliation(s)
- Roger
M. Pallares
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Xu T, Chen Y. Research Progress of [ 68Ga]Citrate PET's Utility in Infection and Inflammation Imaging: a Review. Mol Imaging Biol 2021; 22:22-32. [PMID: 31076971 DOI: 10.1007/s11307-019-01366-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Imaging diagnosis of infection and inflammation has been challenging for many years. Infection imaging agents commonly used in nuclear medicine, such as [67Ga]citrate, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), and radionuclide-labeled leukocytes, have their own shortcomings. Identification of a tracer with considerable economic benefit, high specificity, and low radiation dose has become clinically urgent. In the twenty-first century, with the increasing availability of positron emission tomography (PET) devices and the commercialization of Ge-68/Ga-68 generators, the study of [68Ga]citrate applications for infection and inflammation has increased and shown good potential. In this report, the research progress that supports [68Ga]citrate PET's applications various infectious diseases and inflammation is reviewed.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping St., Luzhou, 646000, Sichuan, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping St., Luzhou, 646000, Sichuan, People's Republic of China. .,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Cui Y, Liang Y, Ip MSM, Mak JCW. Cigarette smoke induces apoptosis via 18 kDa translocator protein in human bronchial epithelial cells. Life Sci 2021; 265:118862. [PMID: 33301812 DOI: 10.1016/j.lfs.2020.118862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
AIMS The 18 kDa translocator protein (TSPO) - also known as peripheral benzodiazepine receptor, is found to be expressed in lung epithelium and pneumocytes, which is closely associated with the mitochondrial permeability transition pore (mPTP) and apoptosis. Cigarette smoking, a key risk factor for the development of chronic obstructive pulmonary disease (COPD), is known to induce apoptosis. We aimed to investigate TSPO subcellular localization and to examine whether cigarette smoke medium (CSM) induce apoptosis via TSPO in airway epithelial cells. MAIN METHODS TSPO subcellular localization and expression were evaluated using immunofluorescent staining and Western blot analysis respectively. TSPO ligands either PK 11195 (a specific antagonist) or AC-5216 (a specific agonist) were pre-incubated in human bronchial epithelial cells before treating with 2% CSM for measurements of apoptotic cells, mitochondrial membrane potential (ΔΨm), cytoplasmic/mitochondrial reactive oxygen species (ROS) and inflammatory marker interleukin (IL)-8 respectively. KEY FINDINGS TSPO was localized around the nucleus and overlapped with mitochondria in BEAS-2B cells. CSM caused an increase in apoptotic cells along with elevation of TSPO protein expression. Pretreatment of PK 11195 suppressed while AC-5216 potentiated CSM-induced apoptosis, collapse of ΔΨm, elevation of cytoplasmic/mitochondrial ROS levels and IL-8 release. In support, knockdown of TSPO caused a significant suppression of CSM-induced IL-8 release in BEAS-2B cells. SIGNIFICANCE The findings suggest that TSPO may play a crucial role in the regulation of cigarette smoke-induced mitochondrial dysfunction via mPTP. Therefore, the development of specific TSPO antagonists like PK11195 may be beneficial to combat smoking-related diseases, such as COPD.
Collapse
Affiliation(s)
- Yuting Cui
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yingmin Liang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mary S M Ip
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Judith C W Mak
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Radiosynthesis of 18F-fluoroethylated tracers via a simplified one-pot 18F-fluoroethylation method using [ 18F]fluoroethyl tosylate. Appl Radiat Isot 2021; 169:109571. [PMID: 33412382 DOI: 10.1016/j.apradiso.2020.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 11/24/2022]
Abstract
Recently, a straightforward one-pot method for 18F-fluoroethylation without azeotropic drying of cyclotron-produced [18F]F- was developed. In this study, we have attempted to simplify the automated radiosynthesis of two [18F]fluoroethylated tracers, [18F]FEDAC and [18F]FET, using a desmethyl labeling precursor and [18F]fluoroethyl tosylate, based on the above-mentioned method. The radiochemical yields of [18F]FEDAC and [18F]FET were 26 ± 3.7% (n = 5) and 14 ± 2.2% (n = 4), respectively, based on total [18F]F- at the end of irradiation.
Collapse
|
32
|
Vass L, Fisk M, Lee S, Wilson FJ, Cheriyan J, Wilkinson I. Advances in PET to assess pulmonary inflammation: A systematic review. Eur J Radiol 2020; 130:109182. [PMID: 32702614 DOI: 10.1016/j.ejrad.2020.109182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
|
33
|
Kim K, Kim H, Bae SH, Lee SY, Kim YH, Na J, Lee CH, Lee MS, Ko GB, Kim KY, Lee SH, Song IH, Cheon GJ, Kang KW, Kim SE, Chung JK, Kim EE, Paek SH, Lee JS, Lee BC, Youn H. [ 18F]CB251 PET/MR imaging probe targeting translocator protein (TSPO) independent of its Polymorphism in a Neuroinflammation Model. Am J Cancer Res 2020; 10:9315-9331. [PMID: 32802194 PMCID: PMC7415805 DOI: 10.7150/thno.46875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/12/2020] [Indexed: 01/03/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) has been proposed as a biomarker for the detection of neuroinflammation. Although various PET probes targeting TSPO have been developed, a highly selective probe for detecting TSPO is still needed because single nucleotide polymorphisms in the human TSPO gene greatly affect the binding affinity of TSPO ligands. Here, we describe the visualization of neuroinflammation with a multimodality imaging system using our recently developed TSPO-targeting radionuclide PET probe [18F]CB251, which is less affected by TSPO polymorphisms. Methods: To test the selectivity of [18F]CB251 for TSPO polymorphisms, 293FT cells expressing polymorphic TSPO were generated by introducing the coding sequences of wild-type (WT) and mutant (Alanine → Threonine at 147th Amino Acid; A147T) forms. Competitive inhibition assay was conducted with [3H]PK11195 and various TSPO ligands using membrane proteins isolated from 293FT cells expressing TSPO WT or mutant-A147T, representing high-affinity binder (HAB) or low-affinity binder (LAB), respectively. IC50 values of each ligand to [3H]PK11195 in HAB or LAB were measured and the ratio of IC50 values of each ligand to [3H]PK11195 in HAB to LAB was calculated, indicating the sensitivity of TSPO polymorphism. Cellular uptake of [18F]CB251 was measured with different TSPO polymorphisms, and phantom studies of [18F]CB251-PET using 293FT cells were performed. To test TSPO-specific cellular uptake of [18F]CB251, TSPO expression was regulated with pCMV-TSPO (or shTSPO)/eGFP vector. Intracranial lipopolysaccharide (LPS) treatment was used to induce regional inflammation in the mouse brain. Gadolinium (Gd)-DOTA MRI was used to monitor the disruption of the blood-brain barrier (BBB) and infiltration by immune cells. Infiltration of peripheral immune cells across the BBB, which exacerbates neuroinflammation to produce higher levels of neurotoxicity, was also monitored with bioluminescence imaging (BLI). Peripheral immune cells isolated from luciferase-expressing transgenic mice were transferred to syngeneic inflamed mice. Neuroinflammation was monitored with [18F]CB251-PET/MR and BLI. To evaluate the effects of anti-inflammatory agents on intracranial inflammation, an inflammatory cytokine inhibitor, 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid methyl ester (CDDO-Me) was administered in intracranial LPS challenged mice. Results: The ratio of IC50 values of [18F]CB251 in HAB to LAB indicated similar binding affinity to WT and mutant TSPO and was less affected by TSPO polymorphisms. [18F]CB251 was specific for TSPO, and its cellular uptake reflected the amount of TSPO. Higher [18F]CB251 uptake was also observed in activated immune cells. Simultaneous [18F]CB251-PET/MRI showed that [18F]CB251 radioactivity was co-registered with the MR signals in the same region of the brain of LPS-injected mice. Luciferase-expressing peripheral immune cells were located at the site of LPS-injected right striatum. Quantitative evaluation of the anti-inflammatory effect of CDDO-Me on neuroinflammation was successfully monitored with TSPO-targeting [18F]CB251-PET/MR and BLI. Conclusion: Our results indicate that [18F]CB251-PET has great potential for detecting neuroinflammation with higher TSPO selectivity regardless of polymorphisms. Our multimodal imaging system, [18F]CB251-PET/MRI, tested for evaluating the efficacy of anti-inflammatory agents in preclinical studies, might be an effective method to assess the severity and therapeutic response of neuroinflammation.
Collapse
|
34
|
Tanimoto Y, Yamasaki T, Nagoshi N, Nishiyama Y, Nori S, Nishimura S, Iida T, Ozaki M, Tsuji O, Ji B, Aoki I, Jinzaki M, Matsumoto M, Fujibayashi Y, Zhang MR, Nakamura M, Okano H. In vivo monitoring of remnant undifferentiated neural cells following human induced pluripotent stem cell-derived neural stem/progenitor cells transplantation. Stem Cells Transl Med 2020; 9:465-477. [PMID: 31904914 PMCID: PMC7103627 DOI: 10.1002/sctm.19-0150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022] Open
Abstract
Transplantation of human-induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) is a promising treatment for a variety of neuropathological conditions. Although previous reports have indicated the effectiveness of hiPSC-NS/PCs transplantation into the injured spinal cord of rodents and nonhuman primates, long-term observation of hiPSC-NS/PCs post-transplantation suggested some "unsafe" differentiation-resistant properties, resulting in disordered overgrowth. These findings suggest that, even if "safe" NS/PCs are transplanted into the human central nervous system (CNS), the dynamics of cellular differentiation of stem cells should be noninvasively tracked to ensure safety. Positron emission tomography (PET) provides molecular-functional information and helps to detect specific disease conditions. The current study was conducted to visualize Nestin (an NS/PC marker)-positive undifferentiated neural cells in the CNS of immune-deficient (nonobese diabetic-severe combined immune-deficient) mice after hiPSC-NS/PCs transplantation with PET, using 18 kDa translocator protein (TSPO) ligands as labels. TSPO was recently found to be expressed in rodent NS/PCs, and its expression decreased with the progression of neuronal differentiation. We hypothesized that TSPO would also be present in hiPSC-NS/PCs and expressed strongly in residual immature neural cells after transplantation. The results showed high levels of TSPO expression in immature hiPSC-NS/PCs-derived cells, and decreased TSPO expression as neural differentiation progressed in vitro. Furthermore, PET with [18 F] FEDAC (a TSPO radioligand) was able to visualize the remnant undifferentiated hiPSC-NS/PCs-derived cells consisting of TSPO and Nestin+ cells in vivo. These findings suggest that PET with [18 F] FEDAC could play a key role in the safe clinical application of CNS repair in regenerative medicine.
Collapse
Affiliation(s)
- Yuji Tanimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Soraya Nishimura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Iida
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Bin Ji
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Ichio Aoki
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuhisa Fujibayashi
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Kubota K, Ogawa M, Ji B, Watabe T, Zhang MR, Suzuki H, Sawada M, Nishi K, Kudo T. Basic Science of PET Imaging for Inflammatory Diseases. PET/CT FOR INFLAMMATORY DISEASES 2020. [PMCID: PMC7418531 DOI: 10.1007/978-981-15-0810-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
FDG-PET/CT has recently emerged as a useful tool for the evaluation of inflammatory diseases too, in addition to that of malignant diseases. The imaging is based on active glucose utilization by inflammatory tissue. Autoradiography studies have demonstrated high FDG uptake in macrophages, granulocytes, fibroblasts, and granulation tissue. Especially, activated macrophages are responsible for the elevated FDG uptake in some types of inflammation. According to one study, after activation by lipopolysaccharide of cultured macrophages, the [14C]2DG uptake by the cells doubled, reaching the level seen in glioblastoma cells. In activated macrophages, increase in the expression of total GLUT1 and redistributions from the intracellular compartments toward the cell surface have been reported. In one rheumatoid arthritis model, following stimulation by hypoxia or TNF-α, the highest elevation of the [3H]FDG uptake was observed in the fibroblasts, followed by that in macrophages and neutrophils. As the fundamental mechanism of elevated glucose uptake in both cancer cells and inflammatory cells, activation of glucose metabolism as an adaptive response to a hypoxic environment has been reported, with transcription factor HIF-1α playing a key role. Inflammatory cells and cancer cells seem to share the same molecular mechanism of elevated glucose metabolism, lending support to the notion of usefulness of FDGPET/CT for the evaluation of inflammatory diseases, besides cancer.
Collapse
|
36
|
Bitker L, Costes N, Le Bars D, Lavenne F, Orkisz M, Hernandez Hoyos M, Benzerdjeb N, Devouassoux M, Richard JC. Noninvasive quantification of macrophagic lung recruitment during experimental ventilation-induced lung injury. J Appl Physiol (1985) 2019; 127:546-558. [PMID: 31169472 DOI: 10.1152/japplphysiol.00825.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophagic lung infiltration is pivotal in the development of lung biotrauma because of ventilation-induced lung injury (VILI). We assessed the performance of [11C](R)-PK11195, a positron emission tomography (PET) radiotracer binding the translocator protein, to quantify macrophage lung recruitment during experimental VILI. Pigs (n = 6) were mechanically ventilated under general anesthesia, using protective ventilation settings (baseline). Experimental VILI was performed by titrating tidal volume to reach a transpulmonary end-inspiratory pressure (∆PL) of 35-40 cmH2O. We acquired PET/computed tomography (CT) lung images at baseline and after 4 h of VILI. Lung macrophages were quantified in vivo by the standardized uptake value (SUV) of [11C](R)-PK11195 measured in PET on the whole lung and in six lung regions and ex vivo on lung pathology at the end of experiment. Lung mechanics were extracted from CT images to assess their association with the PET signal. ∆PL increased from 9 ± 1 cmH2O under protective ventilation, to 36 ± 6 cmH2O during experimental VILI. Compared with baseline, whole-lung [11C](R)-PK11195 SUV significantly increased from 1.8 ± 0.5 to 2.9 ± 0.5 after experimental VILI. Regional [11C](R)-PK11195 SUV was positively associated with the magnitude of macrophage recruitment in pathology (P = 0.03). Compared with baseline, whole-lung CT-derived dynamic strain and tidal hyperinflation increased significantly after experimental VILI, from 0.6 ± 0 to 2.0 ± 0.4, and 1 ± 1 to 43 ± 19%, respectively. On multivariate analysis, both were significantly associated with regional [11C](R)-PK11195 SUV. [11C](R)-PK11195 lung uptake (a proxy of lung inflammation) was increased by experimental VILI and was associated with the magnitude of dynamic strain and tidal hyperinflation.NEW & NOTEWORTHY We assessed the performance of [11C](R)-PK11195, a translocator protein-specific positron emission tomography (PET) radiotracer, to quantify macrophage lung recruitment during experimental ventilation-induced lung injury (VILI). In this proof-of-concept study, we showed that the in vivo quantification of [11C](R)-PK11195 lung uptake in PET reflected the magnitude of macrophage lung recruitment after VILI. Furthermore, increased [11C](R)-PK11195 lung uptake was associated with harmful levels of dynamic strain and tidal hyperinflation applied to the lungs.
Collapse
Affiliation(s)
- Laurent Bitker
- Service de Médecine Intensive et Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| | | | - Didier Le Bars
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,CERMEP - Imagerie du Vivant, Bron, France
| | | | - Maciej Orkisz
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| | - Marcela Hernandez Hoyos
- Systems and Computing Engineering Department, School of Engineering, Universidad de los Andes, Bogota, Colombia
| | - Nazim Benzerdjeb
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,Centre d'Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Mojgan Devouassoux
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,Centre d'Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive et Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| |
Collapse
|
37
|
Micro-PET imaging of [18F]fluoroacetate combined with [18F]FDG to differentiate chronic Mycobacterium tuberculosis infection from an acute bacterial infection in a mouse model: a preliminary study. Nucl Med Commun 2019; 40:639-644. [PMID: 30932968 DOI: 10.1097/mnm.0000000000001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (TB) infection is one of the deadliest infectious diseases worldwide and is responsible for 1.7 million deaths per year. The increase in multidrug-resistant TB poses formidable challenges to the global control of tuberculosis. TB infection could easily yield false-positive results in fluorine-18-fluorodeoxyglucose ([F]FDG) PET imaging for cancer detection because of its high [F]FDG uptake. We describe the combined [F]FDG PET with fluorine-18-fluoroacetate ([F]FAC), a promising analog of carbon-11-acetate, for targeting glycolysis and de novo lipogenesis, respectively, to determine the metabolic differences between chronic TB infection and acute infection. MATERIALS AND METHODS Six-month-old BALB/c mice were inoculated with Mycobacterium bovis to induce chronic TB infection, and Escherichia coli as well as Staphylococcus aureus to induce acute infection for an in-vivo imaging study. Eighteen days after inoculation for chronic TB infection and 5 days for acute infection, both [F]FDG and [F]FAC micro-PET were performed on the infected mice. Analysis of variance and the Tukey honest ad-hoc test were carried out to determine differences among treatment with different bacterial infections. RESULTS TB infection showed much lower [F] FAC accumulation than acute infection. However, both TB infection and acute infection exhibited high [F]FAC accumulation. CONCLUSION The marked metabolic differences in de novo lipogenesis and glycolysis in [F]FDG and [F]FAC uptakes in micro-PET imaging, respectively, help to differentiate chronic TB infection from acute infection.
Collapse
|
38
|
Kinetic modelling and quantification bias in small animal PET studies with [18F]AB5186, a novel 18 kDa translocator protein radiotracer. PLoS One 2019; 14:e0217515. [PMID: 31150436 PMCID: PMC6544349 DOI: 10.1371/journal.pone.0217515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
Introduction Positron Emission Tomography (PET) imaging with selective 18 kDa translocator protein (TSPO) radiotracers has contributed to our understanding on the role of inflammation in disease development and progression. With an increasing number of rodent models of human disease and expansion of the preclinical PET imaging base worldwide, accurate quantification of longitudinal rodent TSPO PET datasets is necessary. This is particularly relevant as TSPO PET quantification relies on invasive blood sampling due to lack of a suitable tissue reference region. Here we investigate the kinetics and quantification bias of a novel TSPO radiotracer [18F]AB5186 in rats using automatic, manual and image derived input functions. Methods [18F]AB5186 was administered intravenously and dynamic PET imaging was acquired over 2 hours. Arterial blood was collected manually to derive a population based input function or using an automatic blood sampler to derive a plasma input function. Manually sampled blood was also used to analyze the [18F]AB5186 radiometabolite profile in plasma and applied to all groups as a population based dataset. Kinetic models were used to estimate distribution volumes (VT) and [18F]AB5186 outcome measure bias was determined. Results [18F]AB5186 distribution in rats was consistent with TSPO expression and at 2 h post-injection 50% of parent compound was still present in plasma. Population based manual sampling methods and image derived input function (IDIF) underestimated VT by ~50% and 88% compared with automatic blood sampling, respectively. The VT variability was lower when using IDIF versus arterial blood sampling methods and analysis of the Bland-Altman plots showed a good agreement between methods of analysis. Conclusion Quantification of TSPO PET rodent data using image-derived methods, which are more amenable for longitudinal scanning of small animals, yields outcome measures with reduced variability and good agreement, albeit biased, compared with invasive blood sampling methods.
Collapse
|
39
|
Fujinaga M, Kumata K, Zhang Y, Hatori A, Yamasaki T, Mori W, Ohkubo T, Xie L, Nengaki N, Zhang MR. Synthesis of two novel [ 18F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain. Org Biomol Chem 2019; 16:8325-8335. [PMID: 30206613 DOI: 10.1039/c8ob01700j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two novel radiotracers, namely, N-(4-[18F]fluorobenzyl)-N-methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([18F]5) and 2-(5-(4-[18F]fluorophenyl)-2-oxobenzo[d]oxazol-3(2H)-yl)-N-methyl-N-phenylacetamide ([18F]6), were developed for positron emission tomography (PET) imaging of translocator protein (18 kDa) (TSPO) in ischemic brain in this study. The two radiotracers with a [18F]fluorobenzene ring were derived from the corresponding [18F]fluoroethyl tracers [18F]7 and [18F]8 which underwent [18F]defluoroethylation in vivo easily. [18F]5 or [18F]6 was synthesized by the radiofluorination of the spirocyclic iodonium ylide precursor 10 or 17 with [18F]F- in 23 ± 10% (n = 7) or 56 ± 9% (n = 7) radiochemical yields (decay-corrected, based on [18F]F-). [18F]5 and [18F]6 showed high in vitro binding affinities (Ki = 0.70 nM and 5.9 nM) for TSPO and moderate lipophilicities (log D = 2.9 and 3.4). Low uptake of radioactivity for both radiotracers was observed in mouse bones. Metabolite analysis showed that the in vivo stability of [18F]5 and [18F]6 was improved in comparison to the parent radiotracers [18F]7 and [18F]8. In particular, no radiolabelled metabolite of [18F]5 was found in the mouse brains at 60 min after the radiotracer injection. PET studies with [18F]5 on ischemic rat brains revealed a higher binding potential (BPND = 3.42) and maximum uptake ratio (4.49) between the ipsilateral and contralateral sides. Thus, [18F]5 was shown to be a useful PET radiotracer for visualizing TSPO in neuroinflammation models.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Foss CA, Plyku D, Ordonez AA, Sanchez-Bautista J, Rosenthal HB, Minn I, Lodge MA, Pomper MG, Sgouros G, Jain SK. Biodistribution and Radiation Dosimetry of 124I-DPA-713, a PET Radiotracer for Macrophage-Associated Inflammation. J Nucl Med 2018; 59:1751-1756. [PMID: 29700124 PMCID: PMC6225541 DOI: 10.2967/jnumed.117.207431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Whole-body PET/CT was performed using 124I-DPA-713, a radioligand for the 18-kDa translocator protein (TSPO), to determine biodistribution and radiation dosimetry. Methods: Healthy subjects aged 18-65 y underwent whole-body PET/CT either at 4, 24, and 48 h or at 24, 48, and 72 h after intravenous injection of 124I-DPA-713. Time-activity curves were generated and used to calculate organ time-integrated activity coefficients for each subject. The resulting time-integrated activity coefficients provided input data for calculation of organ absorbed doses and effective dose for each subject using OLINDA. Subjects were genotyped for the TSPO polymorphism rs6971, and plasma protein binding of 124I-DPA-713 was measured. Results: Three male and 3 female adults with a mean age of 40 ± 19 y were imaged. The mean administered activity and mass were 70.5 ± 5.1 MBq (range, 62.4-78.1 MBq) and 469 ± 34 ng (range, 416-520 ng), respectively. There were no adverse or clinically detectable pharmacologic effects in any of the 6 subjects. No changes in vital signs, laboratory values, or electrocardiograms were observed. 124I-DPA-713 cleared rapidly (4 h after injection) from the lungs, with hepatic elimination and localization to the gastrointestinal tract. The mean effective dose over the 6 subjects was 0.459 ± 0.127 mSv/MBq, with the liver being the dose-limiting organ (0.924 ± 0.501 mGy/MBq). The percentage of free radiotracer in blood was approximately 30% at 30 and 60 min after injection. Conclusion:124I-DPA-713 clears rapidly from the lungs, with predominantly hepatic elimination, and is safe and well tolerated in healthy adults.
Collapse
Affiliation(s)
- Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Donika Plyku
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julian Sanchez-Bautista
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hailey B Rosenthal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin A Lodge
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
41
|
Manabe O, Kikuchi T, Scholte AJHA, El Mahdiui M, Nishii R, Zhang MR, Suzuki E, Yoshinaga K. Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol 2018; 25:1204-1236. [PMID: 29196910 PMCID: PMC6133155 DOI: 10.1007/s12350-017-1131-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disease burden worldwide. Nuclear myocardial perfusion imaging with either single-photon emission computed tomography or positron emission tomography has been used extensively to perform diagnosis, monitor therapies, and predict cardiovascular events. Several radiopharmaceutical tracers have recently been developed to evaluate CVD by targeting myocardial perfusion, metabolism, innervation, and inflammation. This article reviews old and newer used in nuclear cardiac imaging.
Collapse
Affiliation(s)
- Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Kikuchi
- Department of Radiopharmaceutical Development, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed El Mahdiui
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ryuichi Nishii
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceutical Development, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Eriko Suzuki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| |
Collapse
|
42
|
Jiemy WF, Heeringa P, Kamps JA, van der Laken CJ, Slart RH, Brouwer E. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: Current status and future prospects. Autoimmun Rev 2018; 17:715-726. [PMID: 29729443 DOI: 10.1016/j.autrev.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
43
|
Kuszpit K, Hollidge BS, Zeng X, Stafford RG, Daye S, Zhang X, Basuli F, Golden JW, Swenson RE, Smith DR, Bocan TM. [ 18F]DPA-714 PET Imaging Reveals Global Neuroinflammation in Zika Virus-Infected Mice. Mol Imaging Biol 2018; 20:275-283. [PMID: 28900831 PMCID: PMC5862915 DOI: 10.1007/s11307-017-1118-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The association of Zika virus (ZIKV) infection and development of neurological sequelae require a better understanding of the pathogenic mechanisms causing severe disease. The purpose of this study was to evaluate the ability and sensitivity of positron emission tomography (PET) imaging using [18F]DPA-714, a translocator protein (TSPO) 18 kDa radioligand, to detect and quantify neuroinflammation in ZIKV-infected mice. PROCEDURES We assessed ZIKV-induced pathogenesis in wild-type C57BL/6 mice administered an antibody to inhibit type I interferon (IFN) signaling. [18F]DPA-714 PET imaging was performed on days 3, 6, and 10 post-infection (PI), and tissues were subsequently processed for histological evaluation, quantification of microgliosis, and detection of viral RNA by in situ hybridization (ISH). RESULTS In susceptible ZIKV-infected mice, viral titers in the brain increased from days 3 to 10 PI. Over this span, these mice showed a two- to sixfold increase in global brain neuroinflammation using [18F]DPA-714 PET imaging despite limited, regional detection of viral RNA. No measurable increase in ionized calcium binding adaptor molecule 1 (Iba-1) expression was noted at day 3 PI; however, there was a modest increase at day 6 PI and an approximately significant fourfold increase in Iba-1 expression at day 10 PI in the susceptible ZIKV-infected group relative to controls. CONCLUSIONS The results of the current study demonstrate that global neuroinflammation plays a significant role in the progression of ZIKV infection and that [18F]DPA-714 PET imaging is a sensitive tool relative to histology for the detection of neuroinflammation. [18F]DPA-714 PET imaging may be useful in dynamically characterizing the pathology associated with neurotropic viruses and the evaluation of therapeutics being developed for treatment of infectious diseases.
Collapse
Affiliation(s)
- Kyle Kuszpit
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA
| | - Bradley S Hollidge
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA
| | - Xiankun Zeng
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA
| | - Robert G Stafford
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA
| | - Sharon Daye
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA
| | - Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 9800 Medical Center Drive, Bldg. B., #2034, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 9800 Medical Center Drive, Bldg. B., #2034, Bethesda, MD, 20892, USA
| | - Joseph W Golden
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA
| | - Rolf E Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 9800 Medical Center Drive, Bldg. B., #2034, Bethesda, MD, 20892, USA
| | - Darci R Smith
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA.
| | - Thomas M Bocan
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425, Porter St., Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
44
|
Chung SJ, Yoon HJ, Youn H, Kim MJ, Lee YS, Jeong JM, Chung JK, Kang KW, Xie L, Zhang MR, Cheon GJ. 18F-FEDAC as a Targeting Agent for Activated Macrophages in DBA/1 Mice with Collagen-Induced Arthritis: Comparison with 18F-FDG. J Nucl Med 2018; 59:839-845. [DOI: 10.2967/jnumed.117.200667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/13/2017] [Indexed: 11/16/2022] Open
|
45
|
Kupa LDVK, Drewes CC, Barioni ED, Neves CL, Sampaio SC, Farsky SHP. Role of Translocator 18 KDa Ligands in the Activation of Leukotriene B4 Activated G-Protein Coupled Receptor and Toll Like Receptor-4 Pathways in Neutrophils. Front Pharmacol 2017; 8:766. [PMID: 29163156 PMCID: PMC5664262 DOI: 10.3389/fphar.2017.00766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
TSPO (Translocator 18 KDa; tryptophan-rich sensory protein oxygen sensor) is a constitutive outer mitochondrial membrane protein overexpressed in inflammatory cells during local or systemic processes. Despite its expression is characterized, role of TSPO in inflammation remains elusive. For this study, we investigated the role of TSPO ligands on neutrophil functions elicited by two different inflammatory pathways. Peritoneal neutrophils were isolated from male Balb-C mice, treated with TSPO ligand diazepam, Ro5-4864 or PK11195 (1,100 or 1000 nM; 2 h) and further stimulated with lipopolysaccharide from Escherichia coli (LPS), a binding for Toll-Like Receptor-4 (TLR4), or leukotriene B4 (LTB4), a G-protein coupled receptor (GPCR) ligand. LPS treatment did not lead to overexpression of TSPO on neutrophils, and pre-treatment with any TSPO ligand did not alter cytokine expression, adhesion molecule expression, or the production of reactive oxygen and nitrogen species caused by LPS stimulation. Conversely, all TSPO ligands impaired LTB4’s actions, as visualized by reductions in L-selectin shedding, β2 integrin overexpression, neutrophil chemotaxis, and actin filament assembly. TSPO ligands showed distinct intracellular effects on LTB4-induced neutrophil locomotion, with diazepam enhancing cofilin but not modifying Arp2/3 expression, and Ro5-4864 and PK11195 reducing both cofilin and Arp2/3 expression. Taken together, our data exclude a direct role of TSPO ligands in TLR4-elicited pathways, and indicate that TSPO activation inhibits GPCR inflammatory pathways in neutrophils, with a relevant role in neutrophil influx into inflammatory sites.
Collapse
Affiliation(s)
- Léonard de Vinci Kanda Kupa
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carine C Drewes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eric D Barioni
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila L Neves
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, Brazil
| | | | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Sci Rep 2017; 7:13242. [PMID: 29038592 PMCID: PMC5643527 DOI: 10.1038/s41598-017-12829-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/15/2017] [Indexed: 02/05/2023] Open
Abstract
In vivo detection and quantification of inflammation is a major goal in molecular imaging. Furthermore, cell-specific detection of inflammation would be a tremendous advantage in the characterization of many diseases. Here, we show how this goal can be achieved through the synergistic combination of nanotechnology and nuclear imaging. One of the most remarkable features of this hybrid approach is the possibility to tailor the pharmacokinetics of the nanomaterial-incorporated biomolecule and radionuclide. A good example of this approach is the covalent binding of a large amount of a neutrophil-specific, hydrophobic peptide on the surface of 68Ga core-doped nanoparticles. This new nano-radiotracer has been used for non-invasive in vivo detection of acute inflammation with very high in vivo labelling efficiency, i.e. a large percentage of labelled neutrophils. Furthermore, we demonstrate that the tracer is neutrophil-specific and yields images of neutrophil recruitment of unprecedented quality. Finally, the nano-radiotracer was successfully detected in chronic inflammation in atherosclerosis-prone ApoE−/− mice after several weeks on a high-fat diet.
Collapse
|
47
|
Liu Y, Gunsten SP, Sultan DH, Luehmann HP, Zhao Y, Blackwell TS, Bollermann-Nowlis Z, Pan JH, Byers DE, Atkinson JJ, Kreisel D, Holtzman MJ, Gropler RJ, Combadiere C, Brody SL. PET-based Imaging of Chemokine Receptor 2 in Experimental and Disease-related Lung Inflammation. Radiology 2017; 283:758-768. [PMID: 28045644 PMCID: PMC5452886 DOI: 10.1148/radiol.2016161409] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose To characterize a chemokine receptor type 2 (CCR2)-binding peptide adapted for use as a positron emission tomography (PET) radiotracer for noninvasive detection of lung inflammation in a mouse model of lung injury and in human tissues from subjects with lung disease. Materials and Methods The study was approved by institutional animal and human studies committees. Informed consent was obtained from patients. A 7-amino acid CCR2 binding peptide (extracellular loop 1 inverso [ECL1i]) was conjugated to tetraazacyclododecane tetraacetic acid (DOTA) and labeled with copper 64 (64Cu) or fluorescent dye. Lung inflammation was induced with intratracheal administration of lipopolysaccharide (LPS) in wild-type (n = 19) and CCR2-deficient (n = 4) mice, and these mice were compared with wild-type mice given control saline (n = 5) by using PET performed after intravenous injection of 64Cu-DOTA-ECL1i. Lung immune cells and those binding fluorescently labeled ECL1i in vivo were detected with flow cytometry. Lung inflammation in tissue from subjects with nondiseased lungs donated for lung transplantation (n = 11) and those with chronic obstructive pulmonary disease (COPD) who were undergoing lung transplantation (n = 16) was evaluated for CCR2 with immunostaining and autoradiography (n = 6, COPD) with 64Cu-DOTA-ECL1i. Groups were compared with analysis of variance, the Mann-Whitney U test, or the t test. Results Signal on PET images obtained in mouse lungs after injury with LPS was significantly greater than that in the saline control group (mean = 4.43% of injected dose [ID] per gram of tissue vs 0.99% of injected dose per gram of tissue; P < .001). PET signal was significantly diminished with blocking studies using nonradiolabeled ECL1i in excess (mean = 0.63% ID per gram of tissue; P < .001) and in CCR2-deficient mice (mean = 0.39% ID per gram of tissue; P < .001). The ECL1i signal was associated with an elevated level of mouse lung monocytes. COPD lung tissue displayed significantly elevated CCR2 levels compared with nondiseased tissue (median = 12.8% vs 1.2% cells per sample; P = .002), which was detected with 64Cu-DOTA-ECL1i by using autoradiography. Conclusion 64Cu-DOTA-ECL1i is a promising tool for PET-based detection of CCR2-directed inflammation in an animal model and in human tissues as a step toward clinical translation. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yongjian Liu
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Sean P. Gunsten
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Deborah H. Sultan
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Hannah P. Luehmann
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Yongfeng Zhao
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - T. Scott Blackwell
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Zachary Bollermann-Nowlis
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Jie-hong Pan
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Derek E. Byers
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Jeffrey J. Atkinson
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Daniel Kreisel
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Michael J. Holtzman
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Robert J. Gropler
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Christophe Combadiere
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Steven L. Brody
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| |
Collapse
|
48
|
Fujinaga M, Luo R, Kumata K, Zhang Y, Hatori A, Yamasaki T, Xie L, Mori W, Kurihara Y, Ogawa M, Nengaki N, Wang F, Zhang MR. Development of a 18F-Labeled Radiotracer with Improved Brain Kinetics for Positron Emission Tomography Imaging of Translocator Protein (18 kDa) in Ischemic Brain and Glioma. J Med Chem 2017; 60:4047-4061. [PMID: 28422499 DOI: 10.1021/acs.jmedchem.7b00374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed four novel acetamidobenzoxazolone compounds 7a-d as candidates for positron emission tomography (PET) radiotracers for imaging the translocator protein (18 kDa, TSPO) in ischemic brain and glioma. Among these compounds, 2-(5-(6-fluoropyridin-3-yl)-2-oxobenzo[d]oxazol-3(2H)-yl)-N-methyl-N-phenylacetamide (7d) exhibited high binding affinity (Ki = 13.4 nM) with the TSPO and moderate lipophilicity (log D = 1.92). [18F]7d was radiosynthesized by [18F]fluorination of the bromopyridine precursor 7h with [18F]F- in 12 ± 5% radiochemical yield (n = 6, decay-corrected). In vitro autoradiography and PET studies of ischemic rat brain revealed higher binding of [18F]7d with TSPO on the ipsilateral side, as compared to the contralateral side, and improved brain kinetics compared with our previously developed radiotracers. Metabolite study of [18F]7d showed 93% of unchanged form in the ischemic brain at 30 min after injection. Moreover, PET study with [18F]7d provided a clear tumor image in a glioma-bearing rat model. We demonstrated that [18F]7d is a useful PET radiotracer for visualizing not only neuroinflammation but also glioma and will translate this radiotracer to a "first-in-human" study in our facility.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Rui Luo
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University , 68 Chanle Road, Nanjing 210006, China
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yusuke Kurihara
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Masanao Ogawa
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Nobuki Nengaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University , 68 Chanle Road, Nanjing 210006, China
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
49
|
Capitanio S, Nordin AJ, Noraini AR, Rossetti C. PET/CT in nononcological lung diseases: current applications and future perspectives. Eur Respir Rev 2017; 25:247-58. [PMID: 27581824 DOI: 10.1183/16000617.0051-2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) combined with computed tomography (CT) is an established diagnostic modality that has become an essential imaging tool in oncological practice. However, thanks to its noninvasive nature and its capability to provide physiological information, the main applications of this technique have significantly expanded.(18)F-labelled fluorodeoxyglucose (FDG) is the most commonly used radiopharmaceutical for PET scanning and demonstrates metabolic activity in various tissues. Since activated inflammatory cells, like malignant cells, predominantly metabolise glucose as a source of energy and increase expression of glucose transporters when activated, FDG-PET/CT can be successfully used to detect and monitor a variety of lung diseases, such as infections and several inflammatory conditions.The added value of FDG-PET/CT as a molecular imaging technique relies on its capability to identify disease in very early stages, long before the appearance of structural changes detectable by conventional imaging. Furthermore, by detecting the active phase of infectious or inflammatory processes, disease progression and treatment efficacy can be monitored.This review will focus on the clinical use of FDG-PET/CT in nonmalignant pulmonary diseases.
Collapse
Affiliation(s)
- Selene Capitanio
- Nuclear Medicine, ASST Grande Ospedale Metropolitano Niguarda, Dept of Advanced Diagnostic Therapeutic Technologies, Milan, Italy
| | - Abdul Jalil Nordin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Claudio Rossetti
- Nuclear Medicine, ASST Grande Ospedale Metropolitano Niguarda, Dept of Advanced Diagnostic Therapeutic Technologies, Milan, Italy
| |
Collapse
|
50
|
Wang H, Zhai K, Xue Y, Yang J, Yang Q, Fu Y, Hu Y, Liu F, Wang W, Cui L, Chen H, Zhang J, He W. Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile. PLoS One 2016; 11:e0167307. [PMID: 27907096 PMCID: PMC5131929 DOI: 10.1371/journal.pone.0167307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/12/2016] [Indexed: 01/30/2023] Open
Abstract
Translocator Protein (18kDa, TSPO) is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO) mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het) x Het or KO x KO breeding were consistent with Mendel’s Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj’s findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis.
Collapse
Affiliation(s)
- Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Kangle Zhai
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yingchao Xue
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jia Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Qi Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Fang Liu
- Beijing Thorgene Medical Laboratory, Yizhuang Biomedical Park, Beijing, China
| | - Weiqing Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
- * E-mail: (WH); (JZ)
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
- * E-mail: (WH); (JZ)
| |
Collapse
|