1
|
Slama M, Slougui N, Ounnas D, Benaissa A, Bataiche I. Hydrodistillation Optimization for Borago officinalis L. Essential Oil and Its Chemical Composition Analysis. Chem Biodivers 2025; 22:e202402478. [PMID: 39607867 DOI: 10.1002/cbdv.202402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
The essential oil extracted from Borago officinalis L. aerial parts using hydrodistillation contains several compounds, although it yields low amounts. For the first time, this study investigated the effects of hydrodistillation parameters and optimized conditions to maximize the yield of B. officinalis essential oil while characterizing its chemical composition using gas chromatography-mass spectrometry. A single-factor evaluation of three extraction parameters-extraction time, liquid-to-solid ratio, and soaking time-revealed optimal conditions of 4 h, 10:1 mL/g, and 2 h, respectively. Subsequently, the Box-Behnken response surface method produced a significant polynomial model, determining optimal conditions of an extraction time of 5 h, a liquid-to-solid ratio of 11.06:1 mL/g, and a soaking time of 2 h, 17 min, and 34 s, resulting in an essential oil yield of 0.42%. A total of 21 compounds were identified in B. officinalis essential oil, predominantly nonacosane (29.15%) and phytol (27.92%).
Collapse
Affiliation(s)
- Meriem Slama
- Département de génie des procédés, école nationale polytechnique de Constantine, Ville Universitaire Ali Mendjeli, Ali Mendjli, Constantine, Algeria
| | - Nabila Slougui
- Ecole Nationale Polytechnique de Constantine, Ali Mendjli, Constantine, Algeria
- Unité de Recherche Valorisation des ressources naturelles, Molécules Bioactives et Analyses Physico-Chimiques et biologiques Université des Frères Mentouri Constantine, Ali Mendjli, Constantine, Algeria
| | - Dounia Ounnas
- Département de génie des procédés, école nationale polytechnique de Constantine, Ville Universitaire Ali Mendjeli, Ali Mendjli, Constantine, Algeria
| | - Akila Benaissa
- Département de génie pharmaceutique, laboratoire de recherche pharmaceutique et développement durable (ReMeDD), Université de Constantine 3, Ali Mendjli, Constantine, Algeria
| | - Insaf Bataiche
- Département de biologie appliquée, Laboratoire de mycologie, de biotechnologie et de l'activité microbienne, Université des frères Mentouri-Constantine, Ali Mendjli, Constantine, Algeria
| |
Collapse
|
2
|
Momina SS, Gandla K. Flavonoid-Rich Trianthema decandra Ameliorates Cognitive Dysfunction in the Hyperglycemic Rats. Biochem Genet 2025; 63:1400-1435. [PMID: 38570442 DOI: 10.1007/s10528-024-10744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
The present study was aimed at the evaluation of neuroprotective ability of methanolic extract of Trianthema decandra (METD) against hyperglycemia-related cognitive impairment in rats. The extract of T. decandra was standardized by TLC and HPTLC methods. To verify the identity and purity of isolated compounds, they were segregated and characterized using various techniques, including UV-visible spectrophotometry, FT-IR, H-NMR, and Mass spectroscopy. α-Amylase and α-glucosidase inhibition property of the extracts were assessed in-vitro. The screening of the neuroprotective effects of METD in hyperglycemic rats was done utilizing Morri's water (MWM) and elevated plus maze (EPM) model, as well as acetylcholinesterase (AChE) activity. The extracts of Trianthema decandra and its chemical constituents, namely quercetin and phytol, demonstrated a significant protective effect on enzymes like α-amylase and α-glucosidase. Methanol and hydroalcoholic extracts have shown the strongest inhibitory activity followed by chloroform extract. Quercetin and phytol were associated with the methanolic and chloroform extracts which were identified using TLC and HPTLC techniques. During the thirty days of the study, the induction of diabetes in the rats exhibited persistent hyperglycemia, hyperlipidemia, higher escape latency during training trials and reduced time spent in target quadrant in probe trial in Morris water maze test, and increased escape latency in EPM task. Regimen of METD (200 and 400 mg/kg) in the diabetic rats reduced the glucose levels in blood, lipid, and liver profile and showed positive results on Morri's water and elevated plus maze tasks. During the investigation, it was determined that Trianthema decandra extracts and the chemical constituent's quercetin and phytol in it had anti-diabetic and neuroprotective activities.
Collapse
Affiliation(s)
- Sayyada Saleha Momina
- Department of Pharmacognosy and Phytochemistry, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India
| | - Kumaraswamy Gandla
- Department of Pharmacy, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India.
| |
Collapse
|
3
|
Basit A, Ahmad S, Ovatlarnporn C, Arshad MA, Saleem MF, Khurshid U, Saleem H, Khan KUR, Khan S, Alkahtani HM, Zen AA. Unrivalled Insight into Possible Biopharmaceutical Application of Justicia vahlii Roth. (Acanthaceae): Chemodiversity, In Vitro Bioactivities, and Computational Analysis. Chem Biodivers 2024; 21:e202401432. [PMID: 39083693 DOI: 10.1002/cbdv.202401432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Justicia vahliiRoth. is an important wild medicinal food plant traditionally used for treating inflammation and various common ailments. This study investigated the chemical composition, antioxidant, enzyme inhibition and toxicity profiles of n-hexane (nHEJv) and chloroform (CEJv) extracts of J. vahlii. Moreover, the effect of the extracts was evaluated on CCl4 induced liver injury. The total phenolic and flavonoid contents were present in both extracts in significant amount. The UPLC-Q-TOF-MS and GC-MS profiling of CEJv tentatively identified several important phytocompounds. The CEJv extract was comparatively more active for antioxidant activity and α-amylase inhibition, whereas the nHEJv extract presented higher inhibition potential against urease, tyrosinase, and α-glucosidase enzymes. Similarly, the in-silicostudy of four major compounds, i. e., 1-acetoxypinoresinol, 3-hydroxysebacic acid, nortrachelogenin, and viscidulin-III have shown a good docking score against the clinically significant enzymes. The acute oral toxicity and brine shrimp lethality assaysrevealed the extracts as non-toxic. The CCl4 treated animals showed a geared depletion of various antioxidant enzymes which were significantly reversed with the treatment of the extracts. Overall, the study's findings revealed J. vahliiwith antioxidant mediated hepatoprotective and enzyme inhibition potential and warrant further research on isolation of the bioactive compounds.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
- Drug Delivery System, Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
- Drug Delivery System, Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
| | - Muhammad Adeel Arshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical and Allied Health Science, Lahore College for Women University, Lahore, 51000, Pakistan
| | - Muhammad Farrukh Saleem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary &Animal Sciences (UVAS), Lahore, 51000, Pakistan
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Safiullah Khan
- Cadson College of Pharmacy, Kharian, Punjab, 50090, Pakistan
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham, Ng11 8NS, UK
| |
Collapse
|
4
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
5
|
Venkatesan S, Rajagopal A, Muthuswamy B, Mohan V, Manickam N. Phytochemical Analysis and Evaluation of Antioxidant, Antidiabetic, and Anti-inflammatory Properties of Aegle marmelos and Its Validation in an In-Vitro Cell Model. Cureus 2024; 16:e70491. [PMID: 39479139 PMCID: PMC11523027 DOI: 10.7759/cureus.70491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION Persistent hyperglycemia significantly increases oxidative stress and inflammation resulting in multiple cellular and molecular alterations which further exacerbate the diabetes associated complications. Aegle marmelos (L.) Corrêa is a medicinal plant used in the Indian system of medicine for treating various disorders including diabetes. However, studies on phytoconstituents and their pharmacological activity of this plant are limited. Therefore, we aimed to determine the phytochemical components, evaluate the antidiabetic activity, anti-inflammatory activity, and antioxidant activity of A. marmelos leaf extract, and validate its mechanistic effects in an in vitro cell model. METHODS The qualitative and quantitative analysis of the different phytoconstituents in the extract was determined using standardized protocols. The antioxidant activity of the extract was evaluated by 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay and ferric reducing antioxidant power (FRAP) assay. The antidiabetic activity of the extract was evaluated by α-amylase inhibition and α-glucosidase inhibition assay. The anti-inflammatory activity was studied using an albumin denaturation assay. In addition, the pharmacological effect(s) of leaf extract was checked in the normal rat kidney fibroblast cells (NRK-49F) under high glucose conditions. Intracellular reactive oxygen species (ROS) generation was measured by fluorometry using fluorescence probe 2',7'-dichlorodihydrofluorescin diacetate (DCF-DA). mRNA expression of inflammatory markers including inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) was studied using real-time quantitative polymerase chain reaction (RT-qPCR). Cell migration was studied using cell scratch assay. Statistical analysis was performed using GraphPad Prism version 8.0. RESULTS The phytochemical analysis of A. marmelos leaf extract revealed the presence of alkaloids, phenols, flavonoids, and saponins. The extract showed higher antioxidant activity in the DPPH (IC50=258.21 µg/mL) and FRAP assay (IC50=293.83 µg/mL). The extract exhibited prominent antidiabetic activity by inhibiting enzymes α-Amylase (IC50=73.2 µg/mL) and α-glucosidase (IC50=43.9 µg/mL). In addition, the extract showed effective anti-inflammatory activity by significantly inhibiting the denaturation of egg albumin (IC50=102.8 µg/mL). Further, the leaf extract significantly decreased the high glucose-induced ROS generation as well as inflammatory markers in rat fibroblast cell lines in a dose-dependent manner. Additionally, high glucose-induced cell migration as the measure of cell injury was effectively reduced by the extract treatment. CONCLUSION A. marmelos leaf extract was quantified to possess a substantial amount of important phytoconstituents that have promising pharmacological properties. Besides showing antidiabetic activity, the extract significantly combats the high glucose-induced ROS generation, inflammatory markers expressions, and cell migration. Further, in-depth studies and clinical trials are warranted so as to position these traditional remedies for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Saravanakumar Venkatesan
- Department of Vascular Biology, Madras Diabetes Research Foundation; Affiliated to University of Madras, Chennai, IND
| | - Anusha Rajagopal
- Department of Vascular Biology, Madras Diabetes Research Foundation; Affiliated to University of Madras, Chennai, IND
| | - Balasubramanyam Muthuswamy
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation; Affiliated to University of Madras, Chennai, IND
| | - Viswanathan Mohan
- Department of diabetology, Madras Diabetes Research Foundation; Dr. Mohan's Diabetes Specialities Centre, Chennai, IND
| | - Nagaraj Manickam
- Department of Vascular Biology, Madras Diabetes Research Foundation; Affiliated to University of Madras, Chennai, IND
| |
Collapse
|
6
|
Bhattacharya S, Gupta N, Flekalová A, Gordillo-Alarcón S, Espinel-Jara V, Fernández-Cusimamani E. Exploring Folklore Ecuadorian Medicinal Plants and Their Bioactive Components Focusing on Antidiabetic Potential: An Overview. PLANTS (BASEL, SWITZERLAND) 2024; 13:1436. [PMID: 38891245 PMCID: PMC11174784 DOI: 10.3390/plants13111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Diabetes mellitus (DM) is a global health concern characterized by a deficiency in insulin production. Considering the systemic toxicity and limited efficacy associated with current antidiabetic medications, there is the utmost need for natural, plant-based alternatives. Herbal medicines have experienced exponential growth in popularity globally in recent years for their natural origins and minimal side effects. Ecuador has a rich cultural history in ethnobotany that plays a crucial role in its people's lives. This study identifies 27 Ecuadorian medicinal plants that are traditionally used for diabetes treatment and are prepared through infusion, decoction, or juice, or are ingested in their raw forms. Among them, 22 plants have demonstrated hypoglycemic or anti-hyperglycemic properties that are rich with bioactive phytochemicals, which was confirmed in several in vitro and in vivo studies. However, Bryophyllum gastonis-bonnieri, Costus villosissimus, Juglans neotropica, Pithecellobium excelsum, and Myroxylon peruiferum, which were extensively used in traditional medicine preparation in Ecuador for many decades to treat diabetes, are lacking in pharmacological elucidation. The Ecuadorian medicinal plants used to treat diabetes have been found to have several bioactive compounds such as flavonoids, phenolics, fatty acids, aldehydes, and terpenoids that are mainly responsible for reducing blood sugar levels and oxidative stress, regulating intestinal function, improving insulin resistance, inhibiting α-amylase and α-glucosidase, lowering gluconeogenic enzymes, stimulating glucose uptake mechanisms, and playing an important role in glucose and lipid metabolism. However, there is a substantial lack of integrated approaches between the existing ethnomedicinal practices and pharmacological research. Therefore, this review aims to discuss and explore the traditional medicinal plants used in Ecuador for treating DM and their bioactive phytochemicals, which are mainly responsible for their antidiabetic properties. We believe that the use of Ecuadorian herbal medicine in a scientifically sound way can substantially benefit the local economy and industries seeking natural products.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic;
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Adéla Flekalová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Salomé Gordillo-Alarcón
- Department of Medicine, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Viviana Espinel-Jara
- Department of Nursing, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| |
Collapse
|
7
|
ullah S, Huyop F, Huda N, Ab Wahab R, Hamid AAA, Mohamad MAN, Ahmad HF, Shariff AHM, Nasir MHM. Green honey of Banggi Island: A preliminary anti-diabetic study on zebrafish model. Heliyon 2024; 10:e26469. [PMID: 38404777 PMCID: PMC10884957 DOI: 10.1016/j.heliyon.2024.e26469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Zebrafish is a developing vertebrate model with several advantages, including its small size, and high experimental efficiency. Malaysia exhibit one of the highest diabetes rates in the Western Pacific and incurring an annual cost of 600 million US dollars. The objective of the study is to determine the antidiabetic properties of green honey (GH) using a zebrafish model. Adult zebrafish, aged 3-4 months, were subjected to overfeeding and treated with streptozotocin (STZ) through intraperitoneal injection (IP) on days 7 and 9. The study assessed the oral sucrose tolerance test (OSTT) and the anti-diabetic effects of green honey. The evaluation was conducted at three time points: 30, 60, and 120 min after treatment and sucrose administration. The study utilised a model with a sample size of 5. The study was performed in six groups. These groups are (1) Normal control (non-diabetic, no intervention), (2) Normal control + GH (non-diabetic, supplemented with GH 3 μl), (3) DM control (diabetic, no intervention), (4) DM Gp1 (diabetic, 3 μL GH), (5) DM Gp2 (diabetic, 6 μ L GH), (6) DM Acarbose (diabetic, treated with acarbose). Fasting blood glucose levels for non-diabetic (non-DM) and diabetic (DM) groups were evaluated before and after the 10 days of diabetic induction. DM groups (excess of food and two injections of STZ) have caused a significant increment in the fasting blood glucose to 11.55 mmol/l (p < 0.0001). Both GH treatments effectively decreased postprandial blood glucose levels and the area under the curve in the oral glucose tolerance test (OSTT). Based on these results, it is concluded that green honey could play a role in hyperglycemia management and show potential as a natural alternative to conventional diabetes therapy. The underlying mechanisms need to be clarified, and their potential use in human diabetes therapy needs to be investigated.
Collapse
Affiliation(s)
- Saeed ullah
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509, Sandakan, Sabah, Malaysia
| | - Roswanira Ab Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Mohd Azrul Naim Mohamad
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al Sultan Abdullah, 26300, Gambang, Pahang, Malaysia
| | | | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| |
Collapse
|
8
|
Torequl Islam M, Shimul Bhuia M, Paulo Martins de Lima J, Paulo Araujo Maia F, Beatriz Herminia Ducati A, Douglas Melo Coutinho H. Phytanic acid, an inconclusive phytol metabolite: A review. Curr Res Toxicol 2023; 5:100120. [PMID: 37744206 PMCID: PMC10515296 DOI: 10.1016/j.crtox.2023.100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Phytanic acid (PA: 3,7,11,15-tetramethylhexadecanoic acid) is an important biometabolite of the chlorophyll-derived diterpenoid phytol. Its biological sources (occurrence) and ADME (absorption, distribution, metabolism, and elimination) profile are well-discussed in the literature. Cumulative literature suggests that PA has beneficial as well as harmful biological roles in humans and other animals. This study aimed to sketch a brief summary of PA's beneficial and harmful pharmacological effects in test systems on the basis of existing literature reports. Literature findings propose that PA has anti-inflammatory and immunomodulatory, antidiabetic, anti-obesity, anticancer, and oocyte maturation effects. Although a high plasma PA-level mediated SLS remains controversial, it is evident to link it with Refsum's disease and other peroxisomal enzyme deficiency diseases in humans, including RCDP and LD; ZHDA and Alzheimer's disease; progressive ataxia and dysarthria; and an increased risk of some lymphomas such as LBL, FL, and NHL. PA exerts toxic effects on different kinds of cells, including neuronal, cardiac, and renal cells, through diverse pathways such as oxidative stress, mitochondrial disturbance, apoptosis, disruption of Na+/K+-ATPase activity, Ca2+ homeostasis, alteration of AChE and MAO activities, etc. PA is considered a cardiac biomarker in humans. In conclusion, PA may be one of the most important biometabolites in humans.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | | | | | | |
Collapse
|
9
|
Álvarez-Almazán S, Solís-Domínguez LC, Duperou-Luna P, Fuerte-Gómez T, González-Andrade M, Aranda-Barradas ME, Palacios-Espinosa JF, Pérez-Villanueva J, Matadamas-Martínez F, Miranda-Castro SP, Mercado-Márquez C, Cortés-Benítez F. Anti-Diabetic Activity of Glycyrrhetinic Acid Derivatives FC-114 and FC-122: Scale-Up, In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2023; 24:12812. [PMID: 37628991 PMCID: PMC10454726 DOI: 10.3390/ijms241612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Luz Cassandra Solís-Domínguez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Paulina Duperou-Luna
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Teresa Fuerte-Gómez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Martin González-Andrade
- Laboratory of Biosensors and Molecular Modelling, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María E. Aranda-Barradas
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Juan Francisco Palacios-Espinosa
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Jaime Pérez-Villanueva
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Félix Matadamas-Martínez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Susana Patricia Miranda-Castro
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Crisóforo Mercado-Márquez
- Isolation and Animal Facility Unit, Facultad de Estudios Superiores Cuautitlán 28, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Francisco Cortés-Benítez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| |
Collapse
|
10
|
de Alencar MVOB, Islam MT, da Mata AMOF, Dos Reis AC, de Lima RMT, de Oliveira Ferreira JR, de Castro E Sousa JM, Ferreira PMP, de Carvalho Melo-Cavalcante AA, Rauf A, Hemeg HA, Alsharif KF, Khan H. Anticancer effects of phytol against Sarcoma (S-180) and Human Leukemic (HL-60) cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80996-81007. [PMID: 37308630 DOI: 10.1007/s11356-023-28036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Phytol (Pyt), a diterpenoid, possesses many important bioactivities. This study evaluates the anticancer effects of Pyt on sarcoma 180 (S-180) and human leukemia (HL-60) cell lines. For this purpose, cells were treated with Pyt (4.72, 7.08, or 14.16 μM) and a cell viability assay was performed. Additionally, the alkaline comet assay and micronucleus test with cytokinesis were also performed using doxorubicin (6 μM) and hydrogen peroxide (10 mM) as positive controls and stressors, respectively. Results revealed that Pyt significantly reduced the viability and rate of division in S-180 and HL-60 cells with IC50 values of 18.98 ± 3.79 and 1.17 ± 0.34 μM, respectively. Pyt at 14.16 μM exerted aneugenic and/or clastogenic effects in S-180 and HL-60 cells, where the number of micronuclei and other nuclear abnormalities (e.g., nucleoplasmic bridges and nuclear buds) were frequently observed. Moreover, Pyt at all concentrations induced apoptosis and showed necrosis at 14.16 μM, suggesting its anticancer effects on the tested cancer cell lines. Taken together, Pyt showed promising anticancer effects, possibly through inducing apoptosis and necrosis mechanisms, and it exerted aneugenic and/or clastogenic effects on the S-180 and HL-60 cell lines.
Collapse
Affiliation(s)
- Marcus Vinícius Oliveira Barros de Alencar
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Biomedical Sciences Research and Innovation Laboratory, Postgraduate Program in Biotechnology, INTA University Center, Sobral, 62.011-230, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Muhammad Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ana Maria Oliveira Ferreira da Mata
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antonielly Campinho Dos Reis
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Rosália Maria Torres de Lima
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - João Marcelo de Castro E Sousa
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa, 23430, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, 41411, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
11
|
Nuchuchua O, Inpan R, Srinuanchai W, Karinchai J, Pitchakarn P, Wongnoppavich A, Imsumran A. Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods 2023; 12:foods12112257. [PMID: 37297501 DOI: 10.3390/foods12112257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Gymnema inodorum (GI) is a leafy green vegetable found in the northern region of Thailand. A GI leaf extract has been developed as a dietary supplement for metabolic diabetic control. However, the active compounds in the GI leaf extract are relatively nonpolar. This study aimed to develop phytosome formulations of the GI extract to improve the efficiencies of their phytonutrients in terms of anti-inflammatory and anti-insulin-resistant activities in macrophages and adipocytes, respectively. Our results showed that the phytosomes assisted the GI extract's dispersion in an aqueous solution. The GI phytocompounds were assembled into a phospholipid bilayer membrane as spherical nanoparticles about 160-180 nm in diameter. The structure of the phytosomes allowed phenolic acids, flavonoids and triterpene derivatives to be embedded in the phospholipid membrane. The existence of GI phytochemicals in phytosomes significantly changed the particle's surface charge from neutral to negative within the range of -35 mV to -45 mV. The phytosome delivery system significantly exhibited the anti-inflammatory activity of the GI extract, indicated by the lower production of nitric oxide from inflamed macrophages compared to the non-encapsulated extract. However, the phospholipid component of phytosomes slightly interfered with the anti-insulin-resistant effects of the GI extract by decreasing the glucose uptake activity and increasing the lipid degradation of adipocytes. Altogether, the nano-phytosome is a potent carrier for transporting GI phytochemicals to prevent an early stage of T2DM.
Collapse
Affiliation(s)
- Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Ratchanon Inpan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Aamir Bhat M, Kumar Mishra A, Azhar Kamal M, Rahman S, Tasleem Jan A. Elaeagnus umbellata: A miraculous shrub with potent health-promoting benefits from Northwest Himalaya. Saudi J Biol Sci 2023; 30:103662. [PMID: 37213692 PMCID: PMC10196990 DOI: 10.1016/j.sjbs.2023.103662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
Medicinal plants encompassing a series of bioactive compounds have gained significant importance for use in the treatment of different diseases. Of them, Elaeagnus umbellata Thunb. (Deciduous shrub found in dappled shade, and sunny hedge) exhibits high medicinal value, with a widespread distribution across the Pir Panjal region of the Himalayas. Fruits serve as an excellent source of vitamins, minerals, and other essential compounds that exhibits hypolipidemic, hepatoprotective, and nephroprotective effects. The phytochemical fingerprint of berries revealed them to have a high content of polyphenols (with major proportion of anthocyanins), followed by monoterpenes and vitamin C. Extract of fruits help in regulating the digestion and absorption of glucose and reduces inflammation and oxidative stress. The phytosterols upholding anticoagulant activity serve the purpose of causing decrease in angina and the blood cholesterol levels. Phytochemicals such as eugenol, palmitic acid, and methyl palmitate exhibit potent antibacterial activity against broad range of disease-causing agents. Additionally, a high percentage of essential oils attribute it with the property of being effective against heart ailments. The present study highlights the importance of E. umbellata in traditional medicinal practices, and summarizes the knowledge of its bioactive constituents and a snapshot vision of remarkable biological activities like antimicrobial, antidiabetic, antioxidant, etc towards understanding its role in the development of efficient drug regimens for use in the treatment of different diseases. It also underlines the need to explore the plant on nutritional aspects to strengthen the existing knowledge pertaining to health promoting potential of E. umbellata.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- Gene Expression Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India
| | - Arif Tasleem Jan
- Gene Expression Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, India
- Corresponding author at: Gene Expression Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, India.
| |
Collapse
|
13
|
Melloni E, Grassilli S, Romani A, Rimondi E, Marcuzzi A, Zauli E, Secchiero P, Paganetto G, Guerrini A, Sacchetti G, Tacchini M. Convolvulus pluricaulis Choisy’s Extraction, Chemical Characterization and Evaluation of the Potential Effects on Glycaemic Balance in a 3T3-L1 Adipocyte Cell Model. Nutrients 2023; 15:nu15071727. [PMID: 37049568 PMCID: PMC10097163 DOI: 10.3390/nu15071727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Convolvulus pluricaulis (CP) is a common Indian herb, largely employed in Ayurvedic medicine and known for its neuroprotective and neuroinflammatory action. Its effectiveness against several pathologic/sub-pathologic conditions is widely accepted, but it is not yet completely chemically characterized. In recent years, several researchers have pointed out the involvement of CP and other Convolvulaceae in lipidic and glucidic metabolism, particularly in the control of hyperlipidaemia and diabetic conditions. In this scenario, the aim of the study was to chemically characterize the medium polarity part of the CP whole plant and its fractions and to shed light on their biological activity in adipocyte differentiation using the 3T3-L1 cell model. Our results demonstrated that the CP extract and fractions could upregulate the adipocyte differentiation through the modulation of the nuclear receptor PPARγ (Peroxisome Proliferator-Activated Receptor γ), broadly recognized as a key regulator of adipocyte differentiation, and the glucose transporter GLUT-4, which is fundamental for cellular glucose uptake and for metabolism control. CP also showed the ability to exert an anti-inflammatory effect, downregulating cytokines such as Rantes, MCP-1, KC, eotaxin, and GM-CSF, which are deeply involved in insulin resistance and glucose intolerance. Taken together, these data suggest that CP could exert a potential beneficial effect on glycemia and could be employed as an anti-diabetic adjuvant or, in any case, a means to better control glucose homeostasis.
Collapse
Affiliation(s)
- Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Gazali M, Jolanda O, Husni A, Nurjanah, Majid FAA, Zuriat, Syafitri R. In Vitro α-Amylase and α-Glucosidase Inhibitory Activity of Green Seaweed Halimeda tuna Extract from the Coast of Lhok Bubon, Aceh. PLANTS (BASEL, SWITZERLAND) 2023; 12:393. [PMID: 36679105 PMCID: PMC9865045 DOI: 10.3390/plants12020393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 09/29/2023]
Abstract
Seaweed belongs to marine biota and contains nutrients and secondary metabolites beneficial for health. This study aimed to determine the antidiabetic activity of extracts and fractions of green seaweed Halimeda tuna. The H. tuna sample was extracted with the maceration method using methanol and then partitioned using ethyl acetate and water to obtain ethyl acetate and water fractions. The methanol extract, ethyl acetate fraction, and water fraction of H. tuna were tested for their inhibitory activity against α-amilase and α-glucosidase. The methanol extract and the fractions with the highest inhibitory activity were phytochemically tested and analyzed using gas chromatography-mass spectrometry (GC-MS). The results showed that the ethyl acetate fraction (IC50 = 0.88 ± 0.20 mg/mL) inhibited α-amylase relatively similar to acarbose (IC50 = 0.76 ± 0.04 mg/mL). The methanol extract (IC50 = 0.05 ± 0.01 mg/mL) and the ethyl acetate fraction (IC50 = 0.01 ± 0.00 mg/mL) demonstrated stronger inhibitory activity against α-glucosidase than acarbose (IC50 = 0.27 ± 0.13 mg/mL). Phytochemical testing showed that the methanol extract and the ethyl acetate fraction contained secondary metabolites: alkaloids, flavonoids, steroids, and phenol hydroquinone. The compounds in methanol extract predicted to have inhibitory activity against α-amylase and α-glucosidase were Docosanol, Neophytadiene, Stigmasta-7,22-dien-3-ol,acetate,(3.beta.,5.alpha.,22E), Octadecanoic acid,2-oxo-,methyl ester, and phytol, while those in the ethyl acetate fraction were n-Nonadecane, Phytol, Butyl ester, 14-.Beta.-H-pregna, Octadecenoic acid, and Oleic acid.
Collapse
Affiliation(s)
- Mohamad Gazali
- Department of Marine Science, Faculty of Fisheries and Marine Science, Teuku Umar University, Aceh 23681, Indonesia
| | - Odi Jolanda
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Amir Husni
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nurjanah
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor 16680, Indonesia
| | | | - Zuriat
- Department of Fisheries, Faculty of Fisheries and Marine Science, Teuku Umar University, Aceh 23681, Indonesia
| | - Rina Syafitri
- Department of Agribusiness, Faculty of Agriculture, Teuku Umar University, Aceh 23681, Indonesia
| |
Collapse
|
15
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
16
|
New mechanistic insights on Justicia vahlii Roth: UPLC-Q-TOF-MS and GC–MS based metabolomics, in-vivo, in-silico toxicological, antioxidant based anti-inflammatory and enzyme inhibition evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Ismail MMF, Khalifa MM, El-Sehrawi HMA, Sabour R. Design, Synthesis and Antimicrobial Evaluation of New Arylazopyrazole and Arylazopyrazolo[1,5- a]pyrimidine Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1830811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Magda M. F. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Maha M. Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hend M. A. El-Sehrawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Potential of Diterpenes as Antidiabetic Agents: Evidence from Clinical and Pre-Clinical Studies. Pharmacol Res 2022; 179:106158. [PMID: 35272043 DOI: 10.1016/j.phrs.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used assays for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. Our data revealed that diterpenes hold promising antidiabetic potential. Stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane class have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.
Collapse
|
19
|
de Alencar MVOB, Islam MT, dos Reis AC, de Oliveira Santos JV, Nunes AMV, da Silva FCC, da Conceição Machado K, de Castro e Sousa JM, Reiner Ž, Martorell M, Fagoonee S, Sharifi-Rad J, de Carvalho Melo-Cavalcante AA. Oxidative stress mediated cytogenotoxicological effects of phytol in wistar albino rats. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Suryavanshi A, Kumar S, Kain D, Arya A, . V. In vitro antidiabetic, antioxidant activities and chemical composition of Ajuga parviflora Benth. shoot. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Ajuga parviflora Benth. (Lamiaceae) is an herbaceous plant that possesses ethnomedicinal values and is well known for its folkloric management of diabetes. This study was aimed to provide an experimental justification for its traditional antidiabetic use. Methods: Hydroalcoholic extract of A. parviflora shoot was quantified for its total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectrophotometer (FTIR) spectroscopy were also used for their chemical nature. Additionally, the extract was evaluated for its inhibitory potential against key enzymes linked with hyperglycemia by in vitro means. Subsequently, for estimation of the antioxidant capacities 2,2-diphenyl-2-picrylhydrazyl radical (DPPH), 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS), and hydrogen peroxide (H2O2) scavenging activities were determined.Results: GC-MS analysis revealed numerous biologically active phytoconstituents including brassicasterol, phytol, and palmitic acid. The presence of different active functional groups such as alcohol, nitrile, amine, alkyl halide, alkene, and alkane was confirmed by FTIR analysis. The extract showed a significant (P≤ 0.05) dose-dependent inhibition for α-amylase enzyme (132.38±1.18 μg/mL), α-glucosidase enzyme (22.66±0.11 μg/mL), DPPH radical (103.03±1.59 μg/mL), ABTS radical (140.10±3.40 μg/mL) and H2O2 radical (298.26±4.37 μg/mL). TPC, TFC, and TTC were found 64.06±0.35 mg/g of the gallic acid equivalent (GAE), 45.27±0.58 mg/g of the rutin equivalent (RE), and 127.42±1.82 mg/g of the tannic acid equivalent (TAE), respectively. Conclusion: A. parviflora extract showed significant antioxidant and antidiabetic potentials. Thus, this plant might be served as a novel approach for discovering new and effective drug molecules against hyperglycemia.
Collapse
Affiliation(s)
- Amrita Suryavanshi
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Suresh Kumar
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Dolly Kain
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Atul Arya
- Medicinal Plants Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi-110007, India
| | - Vandana .
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi-110007, India
| |
Collapse
|
21
|
Chemical composition, antioxidant and enzyme inhibitory properties of Ajuga parviflora Benth. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies. Metabolites 2021; 11:metabo11100676. [PMID: 34677391 PMCID: PMC8539516 DOI: 10.3390/metabo11100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Fat/carbohydrate-rich diet consumption or elevated secretion of pancreatic lipase (PL) in pancreatic injury results in increased fat digestion and storage. Several metabolites in plant-based diets can help achieve the requirements of nutrition and fitness together. Presently, nutritional metabolites from Amaranthus tricolor, A. viridis, and Achyranthes aspera were assessed and predicted for daily intake. The volatile-metabolite profiling of their extracts using GC-MS revealed various antioxidant and bioactive components. The implication of these specialized components and antioxidant-rich extracts (EC50 free radical scavenging: 34.1 ± 1.5 to 166.3 ± 14.2 µg/mL; FRAP values: 12.1 ± 1.0 to 34.0 ± 2.0 µg Trolox Equivalent/mg) in lipolysis regulation by means of interaction with PL was checked by in silico docking (Betahistine and vitamins: ΔGbind -2.3 to -4.4 kcal/mol) and in vitro fluorescence quenching. Out of the various compounds and extracts tested, Betahistine, ATRA and AVLA showed better quenching the PL fluorescence. The identification of potential extracts as source of functional components contributing to nutrition and fat regulation can be improved through such study.
Collapse
|
23
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Medicinal Plants Galega officinalis L. and Yacon Leaves as Potential Sources of Antidiabetic Drugs. Antioxidants (Basel) 2021; 10:antiox10091362. [PMID: 34572994 PMCID: PMC8466348 DOI: 10.3390/antiox10091362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Hypoglycemic and antioxidant properties of extracts of medicinal plants Galega officinalis L. (aboveground part) and yacon (Smallanthus sonchifolius Poepp. & Endl.) (leaves) as potential sources of biologically active substances with antidiabetic action have been studied. The pronounced hypoglycemic effect of Galega officinalis extract, devoid of alkaloids, at a dose of 600 mg/kg in experimental diabetes mellitus (DM) has been proven. The established effect is evidenced by a decrease in the concentration of glucose and glycosylated hemoglobin in the blood, increase glucose tolerance of cells, increase C-peptide and insulin content in the plasma of rats' blood. The effective hypoglycemic effect of the extract in the studied pathology was confirmed by histological examination of the pancreas. The cytoprotective effect of the studied extract on pancreatic cells at a dose of 1200 mg/kg was experimentally confirmed. In the standard cut area, an increase was found in the number of Langerhans islets, their average area, diameter, volume, and a number of β-cells relative to these indicators in animals with diabetes. Comparative screening of the antioxidant properties of 30, 50, 70, and 96% water-ethanol extracts of yacon indicates the highest potential of 50% water-ethanol extract to block free radicals in in vitro model experiments. The non-alkaloid fraction of Galega officinalis extract showed moderate antioxidant activity and was inferior to yacon extract in its ability to neutralize reactive oxygen species (ROS) and bind metal ions of variable valence. The level of antioxidant potential of the studied extracts is due to differences in the quantitative content of compounds of phenolic nature in their compositions. The obtained data on the biological effects of Galega officinalis extract on the structural and functional state of β-cells of the pancreas and antioxidant properties of Galega officinalis and yacon extracts substantiate the prospects of using these plants to create antidiabetic medicines and functional foods based on them.
Collapse
|
25
|
Schindler MSZ, Calisto JFF, Marins K, Regginato A, Mezzomo H, Zanatta AP, Radunz AL, Mariot MP, Dal Magro J, Zanatta L. Characterization of the chemical profile and the effects of ethanolic extracts of Maytenus ilicifolia Mart. ex Reissek on glucose metabolism in normal hyperglycemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114173. [PMID: 33932519 DOI: 10.1016/j.jep.2021.114173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maytenus ilicifolia Mart. ex Reissek, Celastraceae, is popularly known as "espinheira-santa" and used to treat pathologies related to the stomach. However, in popular culture, this species has also been used to treat other disorders such as diabetes, but without scientific evidence, requiring more phytochemical and pharmacological studies on the plant. AIM OF THE STUDY This work aims to investigate the anti-hyperglycemic potential of ethanolic extracts obtained from leaves from two different accessions of Maytenus ilicifolia (MIA and MIB) in normal hyperglycemic rats. MATERIALS AND METHODS The animals were divided into different experimental groups: normal hyperglycemic (negative control); MIA (treatment of Maytenus ilicifolia extract from access 116); MIB (treatment with Maytenus ilicifolia extract from access 122; and glipizide (positive control). At 30 min after treatment, all animals received glucose overload orally. Blood collection occurred at different periods for the assessment of blood glucose (0, 60, 90 and 210 min after treatment) and at the end of the experiment blood was collected through cardiac puncture and the liver, muscle, pancreas and intestine were dissected for further analysis. RESULTS Chromatographic analysis identified oleic and palmitic acid as the most common constituents, and both extracts of Maytenus ilicifolia caused a reduction in blood glucose levels within 60 min after administration of glucose overload when compared to the normal hyperglycemic group. No significant changes were observed in hepatic and muscular glycogen levels, plasma insulin concentration and disaccharidases activity with none of the extracts in the model employed. However, hyperglycemic rats treated with the extracts showed a marked increase in triglyceride and HDL cholesterol levels. CONCLUSIONS Our data suggest that Maytenus ilicifolia extracts from different locations showed differences in chemical composition which did not reflect significant differences in the results of biological tests. In addition, it was possible to conclude that the treatment with Maytenus ilicifolia had a discreet anti-hyperglycemic effect; however, it was not possible to identify the responsible mechanism, being necessary, therefore, new studies using different technologies in order to determine the possible mechanisms of action of the extract.
Collapse
Affiliation(s)
| | | | - Katiuska Marins
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil.
| | - Alissara Regginato
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil.
| | - Hemilli Mezzomo
- Pharmacy Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Ana Paula Zanatta
- Pharmacy Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Andre Luiz Radunz
- Agronomy Course - Federal University of Fronteira Sul (UFFS), Brazil.
| | - Márcio Paim Mariot
- Agronomy Course - Federal Institute of Science and Technology of Rio Grande do Sul (IFSul), Brazil.
| | - Jacir Dal Magro
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil; Chemical Engineering Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Leila Zanatta
- Western Higher Education Center, Santa Catarina State University - UDESC, Brazil.
| |
Collapse
|
26
|
A New Symmetrical Thiazolidinedione Derivative: In Silico Design, Synthesis, and In Vivo Evaluation on a Streptozotocin-Induced Rat Model of Diabetes. Processes (Basel) 2021. [DOI: 10.3390/pr9081294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
By activating PPAR-γ, thiazolidinediones normalize glucose levels in animal models of type 2 diabetes and in patients with this pathology. The aim of the present study was to analyze 219 new derivatives in silico and select the best for synthesis, to be evaluated for acute oral toxicity in female rats and for control of diabetes-related parameters in a rat model of streptozotocin-induced diabetes. The best compound was chosen based on pharmacokinetic, pharmacodynamic, and toxicological parameters obtained in silico and binding orientation observed by docking simulations on PPAR-γ. Compound 1G was synthesized by a quick and easy Knoevenagel condensation. Acute oral toxicity was found at a dose greater than 2000 mg/Kg. Compound 1G apparently produces therapeutic effects similar to those of pioglitazone, decreasing glycaemia and triglyceride levels in diabetic animals, without liver damage. Moreover, it did not cause a significant weight gain and tended to reduce polydipsia and polyphagia, while diminishing systemic inflammation related to TNF-α and IL-6. It lowered the level of endogenous antioxidant molecules such as reduced glutathione and glutathione reductase. In conclusion, 1G may be a candidate for further testing as an euglycemic agent capable of preventing the complications of diabetes.
Collapse
|
27
|
Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharm Res 2021; 38:549-567. [PMID: 33783666 PMCID: PMC8082541 DOI: 10.1007/s11095-021-03027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of overweight and obesity underlies many common metabolic diseases. Approaches aimed to reduce energy intake and/or stimulate energy expenditure represent potential strategies to control weight gain. Adipose tissue is a major energy balancing organ. It can be classified as white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT stores excess metabolic energy, BAT dissipates it as heat via adaptive thermogenesis. WAT also participates in thermogenesis by providing thermogenic fuels and by directly generating heat after browning. Browned WAT resembles BAT morphologically and metabolically and is classified as beige fat. Like BAT, beige fat can produce heat. Human adults have BAT-like or beige fat. Recruitment and activation of this fat type have the potential to increase energy expenditure, thereby countering against obesity and its metabolic complications. Given this, agents capable of inducing WAT browning have recently attracted broad attention from biomedical, nutritional and pharmaceutical societies. In this review, we summarize natural bioactive compounds that have been shown to promote beige adipocyte recruitment and activation in animals and cultured cells. We also discuss potential molecular mechanisms for each compound to induce adipose browning and metabolic benefits.
Collapse
|
28
|
Nazir N, Zahoor M, Uddin F, Nisar M. Chemical composition, in vitro antioxidant, anticholinesterase, and antidiabetic potential of essential oil of Elaeagnus umbellata Thunb. BMC Complement Med Ther 2021; 21:73. [PMID: 33618705 PMCID: PMC7898454 DOI: 10.1186/s12906-021-03228-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background Elaeagnus umbellata Thunb. (autumn olive) is a high valued medicinal plant. It belongs to Elaeagnaceae family and is widely distributed in Himalayan regions of Pakistan. In the present study essential oil were extracted from the fruit of this plant and their antioxidant, anticholinesterase and antidiabetic potentials were also evaluated. Methods Essential oils were extracted from the fruit of E. umbellata using hydro-distillation method and were characterized by GC-MS. The extracted oil were tested for its antioxidant, anticholinesterase, and antidiabetic potentials using standard protocols. Results About 68 compounds were identified by GC-MS. The extracted oil exhibited a fairly high free radical scavenging activities against DPPH and ABTS radicals with IC50 values of 70 and 105 μg/mL respectively (for ascorbic acid, used as standard, the IC50 values were 32 and 29 μg/mL, respectively against the mentioned radicals). The essential oil also exhibited anticholinesterase activities with IC50 values of 48 and 90 μg/mL respectively against AChE and BChE (for galantamine used as standard, the IC50 values were 25 and 30 μg/mL respectively). The essential oil also exhibited antidiabetic potential with IC50 values of 120 and 110 μg/mL respectively against α-glucosidase and α-amylase (IC50 values for standard acarbose = 28 and 30 μg/mL respectively). Conclusion Essential oil extracted from the fruits of E. umbellata exhibited reasonable antioxidant, anticholinesterase, and antidiabetic potentials that could be used as alternative medicine in treating diabetes and neurodegenerative disorders. However, further studies are needed to isolate responsible compounds and evaluate the observed potential in animal models. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03228-y.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Faheem Uddin
- Department of Electrical Engineering, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
29
|
Ahmed LA, Shiha NA, Attia AS. Escitalopram Ameliorates Cardiomyopathy in Type 2 Diabetic Rats via Modulation of Receptor for Advanced Glycation End Products and Its Downstream Signaling Cascades. Front Pharmacol 2021; 11:579206. [PMID: 33384599 PMCID: PMC7770111 DOI: 10.3389/fphar.2020.579206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has been recognized as a known risk factor for cardiovascular diseases. Additionally, studies have shown the prevalence of depression among people with diabetes. Thus, the current study aimed to investigate the possible beneficial effects of escitalopram, a selective serotonin reuptake inhibitor, on metabolic changes and cardiac complications in type 2 diabetic rats. Diabetes was induced by feeding the rats high fat-high fructose diet (HFFD) for 8 weeks followed by a subdiabetogenic dose of streptozotocin (STZ) (35 mg/kg, i. p.). Treatment with escitalopram (10 mg/kg/day; p. o.) was then initiated for 4 weeks. At the end of the experiment, electrocardiography was performed and blood samples were collected for determination of glycemic and lipid profiles. Animals were then euthanized and heart samples were collected for biochemical and histopathological examinations. Escitalopram alleviated the HFFD/STZ-induced metabolic and cardiac derangements as evident by improvement of oxidative stress, inflammatory, fibrogenic and apoptotic markers in addition to hypertrophy and impaired conduction. These results could be secondary to its beneficial effects on the glycemic control and hence the reduction of receptor for advanced glycation end products content as revealed in the present study. In conclusion, escitalopram could be considered a favorable antidepressant medication in diabetic patients as it seems to positively impact the glycemic control in diabetes in addition to prevention of its associated cardiovascular complications.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesma A Shiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amina S Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
30
|
Upadhyay HC, Mishra A, Pandey J, Sharma P, Tamrakar AK, Srivastava AK, Khan F, Srivastava SK. In vitro, in vivo and in silico Antihyperglycemic Activity of Some Semi-synthetic Phytol Derivatives. Med Chem 2020; 18:115-121. [PMID: 33327922 DOI: 10.2174/1573406417666201216124018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the prevalence of type-2 diabetes across the globe, there is unmet need to explore new molecular targets for the development of cost-effective and safer antihyperglycemic agents. OBJECTIVE Structural modification of phytol and evaluation of in vitro, in vivo and in silico antihyperglycemic activity of derivatives establishing the preliminary structure activity relationship (SAR). METHODS The semi-synthetic derivatives of phytol were prepared following previously described methods. The antihyperglycemic potential was measured in vitro in terms of increase in 2-deoxyglucose (2-DG) uptake by L-6 rat skeletal muscle cells as well as in vivo in sucrose-loaded (SLM) and streptozotocin (STZ)-induced diabetic rat models. The blood glucose profile was measured at 30, 60, 90, 120, 180, 240, 300 and 1440 min post administration of sucrose in rats. The in silico docking was performed on peroxisome proliferator-activated receptor gamma (PPARγ) as anti-diabetic target along with absorption, distribution, metabolism, excretion and toxicity (ADMET) studies. RESULTS Nine semi-synthetic ester derivatives: acetyl (1), lauroyl (2), palmitoyl (3), pivaloyl (4), trans-crotonyl (5), benzoyl (6), m-anisoyl (7), 3,4,5-trimethoxy benzoyl (8) cinnamoyl (9) along with bromo derivative (10) of phytol were prepared. The derivatives 9, 8 and 2 caused 4.5, 3.2 and 2.7 times more in vitro uptake of 2-DG respectively than rosiglitazone (ROSI). The derivatives showed significant improvement on oral glucose tolerance both in SLM (29.6-21%) as well as STZ-induced diabetic (30.8-19.0%) rats. The in silico ADMET, docking studies showed non-toxicity and high binding affinity with PPARγ. CONCLUSION The potent antihyperglycemic activity with favorable pharmacokinetics supports phytol derivatives as suitable antidiabetic lead.
Collapse
Affiliation(s)
- Harish C Upadhyay
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| | - Akansha Mishra
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Jyotsana Pandey
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Pooja Sharma
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Arvind K Srivastava
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Feroz Khan
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| | - Santosh K Srivastava
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| |
Collapse
|
31
|
Torrez Lamberti MF, DeBose-Scarlett E, Garret T, Parker LA, Neu J, Lorca GL. Metabolomic Profile of Personalized Donor Human Milk. Molecules 2020; 25:E5783. [PMID: 33302441 PMCID: PMC7763631 DOI: 10.3390/molecules25245783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother's own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.
Collapse
Affiliation(s)
- Monica F. Torrez Lamberti
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Timothy Garret
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Leslie Ann Parker
- College of Nursing, University of Florida, Gainesville, FL 32611, USA;
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| |
Collapse
|
32
|
Yahia H, Hassan A, El-Ansary MR, Al-Shorbagy MY, El-Yamany MF. IL-6/STAT3 and adipokine modulation using tocilizumab in rats with fructose-induced metabolic syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2279-2292. [PMID: 32651660 DOI: 10.1007/s00210-020-01940-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Metabolic syndrome (MetS) is a low-grade inflammation state that results from an interplay between genetic and environmental factors. The incidence of MetS among individuals with insulin resistance, dyslipidemia, elevated blood pressure, and obesity, which constitute the syndrome, is 40% in the Middle East. The absence of an approved therapeutic agent for MetS is one reason to investigate tocilizumab (TCZ), which might be effective in the treatment of MetS. Results have implicated interleukin 6 (IL-6) in the development of MetS, identifying inflammation as a critical factor in its etiology and offering hope for new therapeutic approaches development. Here, we evaluate whether tocilizumab can be used for metabolic syndrome treatment. We assigned rats to three groups, 8 rats each: a negative-control group, provided with standard rodent chow and water; a fructose-fed group, provided with standard rodent chow and 10% fructose in drinking water for 22 weeks; and a treatment group, fed as per the metabolic syndrome group but treated with tocilizumab (5 mg/kg/week, intraperitoneal) for the final 5 weeks. Treatment with TCZ successfully ameliorated the damaging effects of fructose by stabilizing body weight gain and through the normalization of serum biochemical parameters and histopathological examination. Significant differences in adipokine levels were perceived, resulting in a significant decline in serum leptin and interleukin 6 (IL-6) levels concurrent with adiponectin normalization. Tocilizumab might be an effective agent for the treatment of metabolic syndrome. However, further investigations on human subjects are needed before the clinical application of tocilizumab for this indication.
Collapse
Affiliation(s)
- Haneen Yahia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Muhammad Y Al-Shorbagy
- School of Pharmacy, Newgiza University, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Rout D, Chandra Dash U, Kanhar S, Swain SK, Sahoo AK. The modulatory role of prime identified compounds in the bioactive fraction of Homalium zeylanicum in high-fat diet fed-streptozotocin-induced type 2 diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113099. [PMID: 32535241 DOI: 10.1016/j.jep.2020.113099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Homalium zeylanicum (Gardner) Benth. is a medicinal plant traditionally used in controlling diabetes which thus far has been assessed by the authors only to a very limited extent. PURPOSE To fill the research gap in the literature review, we investigated the antihyperglycemic effects of hydro alcohol fraction of bark of H. zeylanicum (HAHZB) by modulating oxidative stress and inflammation in high-fat diet fed-streptozotocin (HFD/STZ)-induced type-2 diabetic rats. MATERIALS AND METHODS To understand the antioxidant capacity of HAHZB, oxygen radical absorbance capacity (ORAC) and cell-based antioxidant protection in erythrocytes (CAP-e) were performed. GC-MS/MS analysis was performed to assess the bioactive components in HAHZB. HFD/STZ-induced diabetic rats were treated orally with HAHZB (300 and 400 mg/kg) for 28 days. After the end of the experiment, marker profiling and histopathological observation of blood and pancreas were examined. The study also highlights interaction between diabetes, oxidative stress and inflammation by examining the increased pro-inflammatory cytokines e.g. TNF-α and C-reactive protein (CRP) promotes DNA damage e.g. oxidation of 8-hydroxy-2-deoxyguanosine (8-OHdG) in chronic hyperglycaemia. RESULTS In ex vivo cellular antioxidant capacity of -CAP-e and ORAC assays, HAHZB showed remarkable free radical scavenging ability in a dose dependent manner. GC-MS/MS analysis identified 28 no. of compounds and out of which, oleic acid (1.03%), ethyl tridecanoate (11.77%), phytol (1.29), 9,12-octadecadienoic acid, methyl ester, (E,E)-(5.97%), stigmasterol (1.30%) and β-sitosterol (2.86%) have antioxidant, anti-inflammatory and anti-diabetic activities. HAHZB 400 mg/kg significantly (p < 0.001) improved the lipid profile (TC: 74.66 ± 0.59, HDL-C: 22.08 ± 0.46, LDL-C: 38.06 ± 0.69, and TG: 171.92 ± 1.01 mg/dL) as well as restoring antidiabetic markers (SG: 209.62 ± 1.05 mg/dL, SI: 15.07 ± 0.11 μIU/mL, HOMA-IR: 7.79 ± 0.04 %, and HbA1C: 8.93 ± 0.03 %) and renal functional markers (Tg: 291.26 ± 0.57 pg/mL, BUN: 23.79 ± 0.14 mg/dL, and Cr: 1.34 ± 0.04 mg/dL) in diabetic rats. Oxidative stress markers of pancreas (MDA: 3.65 ± 0.17 nM TBARS /mg protein, SOD: 3.14 ± 0.28 U/mg protein, CAT: 7.88 ± 0.23 U/mg protein, GSH: 12.63 ± 0.28 µM/g of tissue) were restored to normal as evidenced by histological architecture of pancreatic islet cells. The increased level of pro-inflammatory cytokines and oxidative DNA damage were significantly restored (TNF-α: 54.48 ± 3.19 pg/mL, CRP: 440.22 ± 7.86 ng/mL, and 8-OHdG: 63.65 ± 1.84 ng/mL) by HAHZB in diabetic rats. CONCLUSION The present findings confirm that the presence of bioactive compounds in HAHZB exert therapeutic protective effect by decreasing oxidative, inflammation and pancreatic β-cell damage in oxidative stress induced diabetic rats.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine/blood
- Animals
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/isolation & purification
- Antioxidants/pharmacology
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cytokines/blood
- DNA Damage
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat
- Female
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Inflammation Mediators/blood
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Male
- Oxidative Stress/drug effects
- Plant Bark
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Wistar
- Salicaceae/chemistry
- Streptozocin
Collapse
Affiliation(s)
- Deeptimayee Rout
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
34
|
Servi H, Sen A, Dogan A. Chemical composition and biological activities of endemic
Tripleurospermum conoclinium
(Boiss. & Balansa) Hayek essential oils. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huseyin Servi
- Department of Pharmaceutical Botany Faculty of Pharmacy Altinbas University Istanbul Turkey
| | - Ali Sen
- Department of Pharmacognosy Faculty of Pharmacy Marmara University Istanbul Turkey
| | - Ahmet Dogan
- Department of Pharmaceutical Botany Faculty of Pharmacy Marmara University Istanbul Turkey
| |
Collapse
|
35
|
Sanjeev G, Sidharthan DS, Pranavkrishna S, Pranavadithya S, Abhinandan R, Akshaya RL, Balagangadharan K, Siddabathuni N, Srinivasan S, Selvamurugan N. An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H10T1/2) towards osteoblasts. Bioorg Med Chem Lett 2020; 30:127137. [PMID: 32245598 DOI: 10.1016/j.bmcl.2020.127137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/11/2023]
Abstract
In recent years, phytochemicals have been widely researched and utilized for the treatment of various medical conditions such as cancer, cardiovascular diseases, age-related problems and are also said to have bone regenerative effects. In this study, phytol (3,7,11,15-tetramethylhexadec-2-en-1-ol), an acyclic unsaturated diterpene alcohol and a secondary metabolite derived from aromatic plants was investigated for its effect on osteogenesis. Phytol was found to be nontoxic in mouse mesenchymal stem cells (C3H10T1/2). At the cellular level, phytol-treatment promoted osteoblast differentiation, as seen by the increased calcium deposits. At the molecular level, phytol-treatment stimulated the expression of Runx2 (a bone-related transcription factor) and other osteogenic marker genes. MicroRNAs (miRNAs) play an essential role in controlling bone metabolism by targeting genes at the post-transcriptional level. Upon phytol-treatment in C3H10T1/2 cells, mir-21a and Smad7 levels were increased and decreased, respectively. It was previously reported that mir-21a targets Smad7 (an antagonist of TGF-beta1 signaling) and thus, protects Runx2 from its degradation. Thus, based on our results, we suggest that phytol-treatment promoted osteoblast differentiation in C3H10T1/2 cells via Runx2 due to downregulation of Smad7 by mir-21a. Henceforth, phytol was identified to bolster osteoblast differentiation, which in turn may be used for bone regeneration.
Collapse
Affiliation(s)
- Ganesh Sanjeev
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Saleth Sidharthan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Pranavkrishna
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Pranavadithya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R Abhinandan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nishitha Siddabathuni
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Swathi Srinivasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
36
|
Abo El-Nasr NME, Saleh DO, Mahmoud SS, Nofal SM, Abdelsalam RM, Safar MM, El-Abhar HS. Olmesartan attenuates type 2 diabetes-associated liver injury: Cross-talk of AGE/RAGE/JNK, STAT3/SCOS3 and RAS signaling pathways. Eur J Pharmacol 2020; 874:173010. [PMID: 32067934 DOI: 10.1016/j.ejphar.2020.173010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Olmesartan (OLM), an angiotensin receptor blocker, was tested against diabetes/insulin resistance (IR) models associated with renal/cardiovascular complications. Methods: we tested its potential role against diabetes-induced hepatic hitches using an IR/type2 diabetic (IR/D) model induced by high fat/high fructose diet for 7 weeks + a single sub-diabetogenic dose of streptozotocin (35mg/kg; i.p). IR/D rats were orally treated with OLM (10 mg/kg), pioglitazone (PIO; 5 or 10 mg/kg) or their combinations for 4 consecutive weeks. OLM alone opposed the detrimental effects of IR/D; it significantly improved metabolic parameters, liver function, and abated hepatic oxidative stress, and inflammatory cytokine interleukin-6 (IL-6) and its upstream mediator nuclear factor kappa B. Consequently, OLM turned off the downstream cue p-Jak2/STAT3/SOCS3. Moreover, it suppressed the elevated AGE/RAGE/p-JNK pathway and increased the PPARγ/adiponectin cue to signify its anti-inflammatory and anti-oxidant capacity (GSH, MDA). Nevertheless, co-administration of OLM to PIO showed a synergistic improvement in all the aforementioned parameters in a dose dependent manner. Additionally, OLM with PIO10 provoked a surge in hepatic PPARγ and adiponectin (5 and 6 folds) with a sharp decrease of about 85% in the NF-κB/IL-6/p-STAT3/SCOS3 pathway. These effects were confirmed by the histopathological study. In conclusion, OLM and its combination with PIO enhanced insulin sensitivity and guarded against hepatic complications associated with type 2 diabetes probably via modulating various inter-related pathways; namely, metabolic alteration, renin-angiotensin system, inflammatory trajectories, as well as oxidative stress. This study manifests the potential synergistic effects of OLM as an adjuvant therapy to the conventional antidiabetic therapies.
Collapse
Affiliation(s)
- Nesma M E Abo El-Nasr
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt.
| | - Dalia Osama Saleh
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Sawsan S Mahmoud
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Salwa M Nofal
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industry, Future University, Cairo, Egypt
| |
Collapse
|
37
|
Antihyperglycemic Effects and Mode of Actions of Musa paradisiaca Leaf and Fruit Peel Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9276343. [PMID: 32047529 PMCID: PMC7007756 DOI: 10.1155/2020/9276343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The present study aimed to evaluate the antihyperglycemic effects of Musa paradisiaca (M. paradisiaca) leaf and fruit peel hydroethanolic extracts and to suggest their probable mode of actions in nicotinamide (NA)/streptozotocin (STZ)-induced diabetic rats. The leaf and fruit peel hydroethanolic extracts were analyzed by GC-MS that indicated the presence of phytol, octadecatrienoic acid, hexadecanoic acid, and octadecadienoic acid as major components in the leaf extract and vitamin E, octadecenamide, β-sitosterol, and stigmasterol as major phytochemicals in the fruit peel extract. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight) dissolved in citrate buffer (pH 4.5), 15 minutes after intraperitoneal injection of NA (120 mg/kg body weight). The NA/STZ-induced diabetic rats were, respectively, treated with M. paradisiaca leaf and fruit peel hydroethanolic extracts at a dose of 100 mg/kg body weight/day by oral administration for 28 days. The treatment of NA/STZ-induced diabetic rats with leaf and fruit peel extracts significantly improved the impaired oral glucose tolerance and significantly increased the lowered serum insulin and C-peptide levels. The HOMA-IR (as the index of insulin resistance) and QUICKI (as a marker for insulin sensitivity), as well as HOMA-β cell function were significantly alleviated as a result of treatment of diabetic rats with leaf and fruit peel extracts. In association, the elevated serum-free fatty acids, TNF-α, and IL-6 levels were significantly decreased. In addition, the suppressed adipose tissue PPARγ, GLUT4, adiponectin, and insulin receptor β-subunit mRNA expressions were upregulated while the elevated adipose tissue resistin expression was downregulated in diabetic rats as a result of treatment with the leaf and peel extract. Based on these results, it can be concluded that M. paradisiaca leaf and fruit peel hydroethanolic extracts have antihyperglycemic effects which may be mediated via their insulinotropic and insulin-sensitizing effects.
Collapse
|
38
|
Ghaedi N, Pouraboli I, Askari N. Antidiabetic Properties of Hydroalcoholic Leaf and Stem Extract of Levisticum officinale: An implication for α-amylase Inhibitory Activity of Extract Ingredients through Molecular Docking. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:231-250. [PMID: 32922483 PMCID: PMC7462500 DOI: 10.22037/ijpr.2020.15140.12901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Levisticum officinale (Apiaceae) is a favorite food spice. Iranian folk medicine claims that it has a prominent antidyslipidemic property but this is not documented scientifically so far. This study evaluated antidyslipidemic and the other antidiabetic aspects of the stem and leaf hydroalcoholic extract of it (LOE). Regarding oral glucose tolerance test results, LOE (500 mg/kg) administration 30 min before glucose loading significantly decreased the blood glucose level (13%) at 90 min in male rats. Additionally, LOE treatment (500 mg/kg, orally, once a day) for 14 days significantly reduced the serum glucose level (24.97%) and markedly improved the lipid profile and the insulin, creatinine, alanine aminotransferase and aspartate aminotransferase serum levels in diabetic rats. Moreover, LOE effectively amended the impaired antioxidant status and ameliorated lipid peroxidation in the plasma and pancreas and liver tissues of diabetics. Also, 14 days LOE treatment, significantly decreased the renal sodium-glucose cotransporter 2 and facilitated glucose transporter 2 (GLUT2) mRNA levels and GLUT2 gene expression in the enterocytes of jejunum tissue in comparison with diabetic untreated rats. HPLC method revealed the presence of chlorogenic acid, rosmarinic acid, caffeic acid, quercetin and luteolin and GC-MS analysis detected bioactive compounds like phthalides, thymol, phytol, hexanoic acid, carene and menthofuran. LOE showed α-amylase (αΑ) inhibitory activity and in silico studies predicted that among extract ingredients luteolin, quercetin, rosmarinic, caffeic, and hexanoic acids have the greatest αΑ inhibition potecy. Thus, current results justify antidyslipidemic value of L. officinale and shed light on more antidiabetic health benefits of it.
Collapse
|
39
|
Alves-Silva JM, Zuzarte M, Marques C, Girão H, Salgueiro L. Protective Effects of Phenylpropanoids and Phenylpropanoid-rich Essential Oils on the Cardiovascular System. Mini Rev Med Chem 2019; 19:1459-1471. [PMID: 31218957 DOI: 10.2174/1389557519666190620091915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cardiovascular diseases are the leading cause of global mortality with a tendency to increase due to population ageing as well as an increase in associated risk factors. Although current therapies improve survival rates, they are associated with several side effects, thus justifying the development of novel preventive and/or therapeutic approaches. In this way, plant metabolites such as essential oils have emerged as promising agents due to their biological effects. OBJECTIVE Bearing in mind that several essential oils are characterized by high amounts of phenylpropanoids, which may play a crucial role in the activity of these volatile extracts, a comprehensive and systematic review focusing on the cardiovascular effects of phenylpropanoid-rich essential oils is presented. METHODS Popular search engines including PubMed, Science Direct, Scopus and Google Scholar were consulted and papers from 2000 onwards were selected. Non-volatile phenylpropanoids were not considered in this review. RESULTS A compilation of the current knowledge on this thematic pointed out beneficial effects for volatile phenylpropanoids namely hypotensive, vasorelaxant, antiplatelet aggregation, antidyslipidaemic and antidiabetic, as well as protective properties against ischemia/reperfusion injury and heart hypertrophy. CONCLUSION A better understanding of the protective effects of phenylpropanoids on the cardiovascular system is presented, thus paving the way towards future research on plant-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal.,CIEPQPF and Faculty of Pharmacy, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Mónica Zuzarte
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Carla Marques
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Henrique Girão
- iCBR, Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| | - Lígia Salgueiro
- CIEPQPF and Faculty of Pharmacy, University of Coimbra, Azinhaga de Sta Comba, Coimbra, Portugal
| |
Collapse
|
40
|
Ahmad S, Ullah F, Ayaz M, Ahmad A, Sadiq A, Mohani SNUH. Nutritional and medicinal aspects of Rumex hastatus D. Don along with in vitro anti-diabetic activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1666868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sajjad Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, KPK, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KPK, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, KPK, Pakistan
| | | |
Collapse
|
41
|
Podda A, Pollastri S, Bartolini P, Pisuttu C, Pellegrini E, Nali C, Cencetti G, Michelozzi M, Frassinetti S, Giorgetti L, Fineschi S, Del Carratore R, Maserti B. Drought stress modulates secondary metabolites in Brassica oleracea L. convar. acephala (DC) Alef, var. sabellica L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5533-5540. [PMID: 31106430 DOI: 10.1002/jsfa.9816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Consumer preference today is for the consumption of functional food and the reduction of chemical preservatives. Moreover, the antimicrobial properties and health-promoting qualities of plant secondary metabolites are well known. Due to forecasted climate changes and increasing human population, agricultural practices for saving water have become a concern. In the present study, the physiological responses of curly kale Brassica oleracea L. convar. Acephala (DC) var. sabellica to drought stress and the impact of water limitation on the concentration of selected secondary metabolites were investigated under laboratory-controlled conditions. RESULTS Results indicated that drought stress increased the content of trans-2-hexenal, phytol and δ-tocopherol, and decreased chlorophyll content. Moreover, drought stress increased antioxidant capacity and the expression of AOP2, a gene associated with the biosynthesis of aliphatic alkenyl glucosinolates, and of three genes - TGG1, TGGE and PEN2 - encoding for myrosinases, the enzymes involved in glucosinolate breakdown. CONCLUSION The present study shows that water limitation during the growing phase might be exploited as a sustainable practice for producing curly kale with a high concentration of nutritionally important health-promoting bioactive metabolites. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alessandra Podda
- Department of Bio and Agri-food, Institute for Sustainable Plant Protection - National Research Council, Sesto Fiorentino, Italy
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Susanna Pollastri
- Department of Bio and Agri-food, Institute for Sustainable Plant Protection - National Research Council, Sesto Fiorentino, Italy
| | - Paola Bartolini
- Department of Bio and Agri-food, Institute for Sustainable Plant Protection - National Research Council, Sesto Fiorentino, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Gabriele Cencetti
- Department of Bio and Agri-food, Institute of Biosciences and BioResources - National Research Council, Sesto Fiorentino, Italy
| | - Marco Michelozzi
- Department of Bio and Agri-food, Institute of Biosciences and BioResources - National Research Council, Sesto Fiorentino, Italy
| | - Stefania Frassinetti
- Research Unit of Pisa, Institute of Agricultural Biology and Biotechnology - National Research Council, Pisa, Italy
| | - Lucia Giorgetti
- Research Unit of Pisa, Institute of Agricultural Biology and Biotechnology - National Research Council, Pisa, Italy
| | - Silvia Fineschi
- Department of Social Sciences and Humanities, and Cultural Heritage, Institute for the Conservation and Valorisation of Cultural Heritage - National Research Council, Sesto Fiorentino, Italy
| | - Renata Del Carratore
- Department of Biomedical Sciences, Institute of Clinical Physiology - National Research Council, Pisa, Italy
| | - Biancaelena Maserti
- Department of Bio and Agri-food, Institute for Sustainable Plant Protection - National Research Council, Sesto Fiorentino, Italy
| |
Collapse
|
42
|
Phytol and its metabolites phytanic and pristanic acids for risk of cancer: current evidence and future directions. Eur J Cancer Prev 2019; 29:191-200. [PMID: 31436750 PMCID: PMC7012361 DOI: 10.1097/cej.0000000000000534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review summarizes the current evidence on the potential role of phytol, a microbial metabolite of chlorophyl A, and its metabolites, phytanic and pristanic acids, in carcinogenesis. Primary food sources in Western diets are the nut skin for phytol and lipids in dairy, beef and fish for its metabolites. Phytol and its metabolites gained interest as dietary compounds for cancer prevention because, as natural ligands of peroxisome proliferator-activated receptor-α and -γ and retinoid X receptor, phytol and its metabolites have provided some evidence in cell culture studies and limited evidence in animal models of anti-carcinogenic, anti-inflammatory and anti-metabolic-syndrome properties at physiological concentrations. However, there may be a narrow range of efficacy, because phytol and its metabolites at supra-physiological concentrations can cause in vitro cytotoxicity in non-cancer cells and can cause morbidity and mortality in animal models. In human studies, evidence for a role of phytol and its metabolites in cancer prevention is currently limited and inconclusive. In short, phytol and its metabolites are potential dietary compounds for cancer prevention, assuming the challenges in preventing cytotoxicity in non-cancer cells and animal models and understanding phytol metabolism can be mitigated.
Collapse
|
43
|
Biochemical evaluation of phenolic compounds and steviol glycoside from Stevia rebaudiana extracts associated with in vitro antidiabetic potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Shawky NM, Shehatou GSG, Suddek GM, Gameil NM. Comparison of the effects of sulforaphane and pioglitazone on insulin resistance and associated dyslipidemia, hepatosteatosis, and endothelial dysfunction in fructose-fed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:43-54. [PMID: 30597379 DOI: 10.1016/j.etap.2018.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this work was to compare the influences of sulforaphane (SFN) to those of the standard insulin sensitizer pioglitazone (PIO) on high fructose diet (HFrD)-induced insulin resistance, dyslipidemia, hepatosteatosis, and vascular dysfunction in rats. Male Sprague Dawley rats (150-200 g) were fed on a standard diet (control) or a high fructose diet (HFrD, 60% w/w fructose) for 60 days. From day 16, two subgroups of HFrD-fed rats received either SFN (0.5 mg/kg/day, orally) or PIO (5 mg/kg/day, orally) along with HFrD until the end of the experiment. Fructose-fed rats showed significant decreases in food intake, body weight and feeding efficiency; effects that were not altered by either treatment. Data from insulin tolerance test (ITT), oral glucose tolerance test (OGTT), and HOMA-IR and HOMA-β indices demonstrated impaired insulin sensitivity and glucose utilization in HFrD-fed rats. SFN and PIO treatments significantly reduced OGTTAUC (Glass's Delta values = 1.12 and 0.84, respectively), decreased ITTAUC (Glass's Delta values = 1.05 and 0.71, respectively), significantly diminished HOMA-IR index (by 55.6% and 77.6%, respectively), and increased HOMA-β value (by 1.8 and 1.3 fold, respectively) compared to the HFrD rats. Moreover, SFN and PIO ameliorated hepatic oxidative stress and reduced serum levels of C-reactive protein and lactate dehydrogenase in HFrD-fed rats. Furthermore, SFN and PIO administrations improved insulin resistance-associated heaptosteatosis and enhanced vascular responsiveness to acetylcholine-induced relaxations. However, only SFN was able to enhance serum HDL-C levels in HFrD group. These finding suggests that SFN elicited insulin-sensitizing, hepatoprotective, and vasculoprotective effects in HFrD insulin-resistant rats that were comparable to those exerted by PIO.
Collapse
Affiliation(s)
- Noha M Shawky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
45
|
Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, Chandra Shill M, Karmakar UK, Yarla NS, Khan IN, Billah MM, Pieczynska MD, Zengin G, Malainer C, Nicoletti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung AW, El-Demerdash A, Xiao J, Dey P, Yele S, Jóźwik A, Strzałkowska N, Marchewka J, Rengasamy KR, Horbańczuk J, Kamal MA, Mubarak MS, Mishra SK, Shilpi JA, Atanasov AG. Phytol: A review of biomedical activities. Food Chem Toxicol 2018; 121:82-94. [PMID: 30130593 DOI: 10.1016/j.fct.2018.08.032] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023]
|
46
|
Gomaa AA, El-Sers DA, Al-Zokeim NI, Gomaa MA. Amelioration of experimental metabolic syndrome induced in rats by orlistat and Corchorus olitorius leaf extract; role of adipo/cytokines. J Pharm Pharmacol 2018; 71:281-291. [PMID: 30362563 DOI: 10.1111/jphp.13032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine the efficacy of Corchorus olitorius (C. olitorius) leaf extract in the prevention of metabolic syndrome induced in rats by high-fat diet (HFD) and compare it with that of orlistat. METHODS Phytochemical analysis was performed. Effect of orlistat and C. olitorius extract on lipase activity and acute food intake were investigated. Body weight, biochemical parameters and histopathological examination were demonstrated. KEY FINDINGS Corchorus olitorius extract inhibited the pancreatic lipase activity, but orlistat was more potent. Cumulative food intake has not changed by the tested agents. In obese rats, C. olitorius or orlistat significantly decreased weight gain and visceral white adipose tissue. They exhibited a significant reduction in serum glucose, total cholesterol, triglycerides, low density lipoprotein cholesterol, free fatty acids, IL-1β, tumour necrosis factor-α (TNF-α), insulin and leptin levels of obese rat groups while high density lipoprotein cholesterol and adiponectin levels were significantly increased by them. Histopathological examination of the liver revealed that C. olitorius was more effective than orlistat in the alleviating of steatosis and adipocyte hypertrophy shown in obese control rats. CONCLUSIONS Corchorus olitorius is effective as orlistat in preventing obesity, hyperlipidaemia, steatosis and insulin resistance. These actions may be mediated by inhibiting of lipase activity, TNF-α, IL-1β and leptin resistance along with increasing of adiponectin.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dalia A El-Sers
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nahla I Al-Zokeim
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A Gomaa
- Department of Plastic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
47
|
Lavatera critica controls systemic insulin resistance by ameliorating adipose tissue inflammation and oxidative stress using bioactive compounds identified by GC-MS. Biomed Pharmacother 2018; 106:183-191. [PMID: 29958142 DOI: 10.1016/j.biopha.2018.06.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lavatera critica, a leafy green herb, is reported to have many pharmacological activities; but, the improvement of insulin sensitivity against the high gram-fat diet (HGFD)-caused insulin resistance (IR) has not yet been studied. OBJECTIVE This study evaluated the role of Lavatera critica leaf extract (LCE) in systemic insulin resistance through the alleviation of adipose tissue inflammation and oxidative damage in HGFD fed mice. METHODS The mice were fed with HGFD for 10 weeks and the diet was supplemented with LCE each day for the next five weeks. Body weight, food intake, leptin, blood glucose, insulin, insulin resistance, and pro- and anti-inflammatory genes expression were assessed on day 106. RESULTS The HGFD control mice displayed markedly elevated adipose tissue inflammation, oxidative stress, insulin inactivity, and hyperglycemia. Administration of LCE in the HGFD mice, especially a dose of 100 mg/kg, lowered the body weight, food intake, plasma leptin, plasma glucose, plasma insulin, insulin resistance, and increased the food efficacy ratio when compared with the HGFD control mice. The oral glucose tolerance test (OGTT) revealed that LCE prevented further increase in the circulating levels after the glucose load. LCE-treated mice demonstrated a marked suppression of pro-inflammatory cytokines mRNA expression. On the other hand, the mice showed a higher anti-inflammatory genes mRNA expression in the adipose tissue. In addition, LCE treatment improved the oxidative damage as evidenced by the reduced levels of lipid hydroperoxides and thiobarbituric acid reactive substances coupled with the increased antioxidants (superoxide dismutase, total glutathione, glutathione/glutathione disulfide ratio and glutathione peroxidase) in the adipose tissue, plasma and erythrocytes. Gas chromatography-mass spectrometry analysis of the bioactive compounds revealed the presence of 9, 12, 15-octadecatrienoic acid, vitamin E, phytol, hexadecanoic acid, benzenepropanoic acid, and stigmasterol. CONCLUSIONS These findings prove that LCE improves the insulin-sensitizing activity in the mouse model of HGFD-caused IR, probably due to the amelioration of adipose tissue inflammation and oxidative damage. Hence, the LCE could serve as a useful anti-diabetic agent.
Collapse
|
48
|
Extruded sorghum flour (Sorghum bicolor L.) modulate adiposity and inflammation in high fat diet-induced obese rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
49
|
An JY, Jheng HF, Nagai H, Sanada K, Takahashi H, Iwase M, Watanabe N, Kim YI, Teraminami A, Takahashi N, Nakata R, Inoue H, Seno S, Mastuda H, Kawada T, Goto T. A Phytol-Enriched Diet Activates PPAR-α in the Liver and Brown Adipose Tissue to Ameliorate Obesity-Induced Metabolic Abnormalities. Mol Nutr Food Res 2018; 62:e1700688. [DOI: 10.1002/mnfr.201700688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/28/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Ji-Yeong An
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Hiroyuki Nagai
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
- Gifu Prefectural Research Institute for Health and Environmental Science; Kakamigahara Japan
| | - Kohei Sanada
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Mari Iwase
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Aki Teraminami
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Uji Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition; Nara Women's University; Nara Japan
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition; Nara Women's University; Nara Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology; Osaka University; Osaka Japan
| | - Hideo Mastuda
- Graduate School of Information Science and Technology; Osaka University; Osaka Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Uji Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Uji Japan
| |
Collapse
|
50
|
Zhang F, Ai W, Hu X, Meng Y, Yuan C, Su H, Wang L, Zhu X, Gao P, Shu G, Jiang Q, Wang S. Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet. Food Funct 2018; 9:2043-2050. [DOI: 10.1039/c7fo01817g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vivo and in vitro studies show that phytol stimulates the browning of mice iWAT and formation of brown-like adipocytes in the differentiated 3T3-L1 through the activation of the AMPKα signaling pathway.
Collapse
|