1
|
Mansour O, Fadeev AV, Perederiy AA, Danilenko DM, Lioznov DA, Komissarov AB. Development of Primer Panels for Amplicon Sequencing of Human Parainfluenza Viruses Type 1 and 2. Int J Mol Sci 2024; 25:13119. [PMID: 39684830 DOI: 10.3390/ijms252313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Human parainfluenza viruses (hPIVs) are major contributors to respiratory tract infections in young children worldwide. Despite their global significance, genomic surveillance of hPIV1 and hPIV2 had not previously been conducted in Russia. This study aimed to develop a robust amplicon-based sequencing protocol for these viruses. The designed primer sets were tested on clinical samples containing hPIV RNA to evaluate their performance and efficiency. Sequencing results demonstrated high-quality genome data and efficient amplification across various Ct values. As a result, 41 hPIV1 and 13 hPIV2 near-complete genome sequences were successfully obtained from clinical specimens collected in Saint Petersburg (Russia). Phylogenetic analysis of the HN gene sequences showed that Russian hPIV1 strains clustered into clades II and III, while hPIV2 strains were distributed between clusters G1a and G3. The whole-genome-based trees confirmed the same distribution of the strains. These findings highlight the potential of our primer panels and contribute to a better understanding of the molecular characteristics and phylogenetic diversity of circulating hPIV strains. Notably, this study presents the first evolutionary analysis of hPIVs in Russia.
Collapse
Affiliation(s)
- Oula Mansour
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Artem V Fadeev
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | | | - Daria M Danilenko
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Dmitry A Lioznov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
- Department of Infectious Diseases and Epidemiology, Pavlov First Saint Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Andrey B Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| |
Collapse
|
2
|
Zhu Y, Sun Y, Li C, Lu G, Jin R, Xu B, Shang Y, Ai J, Wang R, Duan Y, Chen X, Xie Z. Genetic characteristics of human parainfluenza viruses 1-4 associated with acute lower respiratory tract infection in Chinese children, during 2015-2021. Microbiol Spectr 2024; 12:e0343223. [PMID: 39264196 PMCID: PMC11448424 DOI: 10.1128/spectrum.03432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Human parainfluenza viruses (HPIVs) are a significant cause of acute lower respiratory tract infections (ALRTIs) among young children and elderly individuals worldwide. The four types of HPIVs (HPIV1-4) can cause recurrent infections and pose a significant economic burden on health care systems globally. However, owing to the limited availability of complete genome sequences, the genetic evolution of these viruses and the development of vaccines and antiviral treatments are hampered. To address this issue, this study utilized next-generation sequencing to obtain 156 complete genome sequences of HPIV1-4, which were isolated from hospitalized children with ALRTIs in six regions of China between 2015 and 2021. This study revealed multiple clades, lineages, or sublineages of HPIVs circulating in mainland China, with a novel clade D of HPIV1 identified as geographically restricted to China. Moreover, this study identified the endemic dominant genotype of HPIV3, lineage C3, which has widely spread and continuously circulated in China. Bioinformatic analysis of the genome sequences revealed that the proteins of HPIV3 possessed the most variable sites, with the P protein showing more diversity than the other proteins among all types of HPIVs. The HN proteins of HPIV1-3 are all under negative/purifying selection, and two amino acid substitutions in the HN proteins correspond to known mAb neutralizing sites in the two HPIV3 strains. These findings provide crucial insights into the genetic diversity and evolutionary dynamics of HPIVs circulating among children in China and may facilitate research on the molecular diagnosis, vaccine development, and surveillance of HPIVs.IMPORTANCEPhylogenetic analysis revealed the prevalence of multiple clades, lineages, or sublineages of human parainfluenza viruses (HPIVs) circulating in mainland China. Notably, a unique evolutionary branch of HPIV1 containing only Chinese strains was identified and designated clade D. Furthermore, in 2023, HPIV3 strains from Pakistan and Russia formed a new lineage within clade C, named C6. The first HPIV4b sequence obtained in this study from China belongs to lineage C2. Evolutionary rate assessments revealed that both the HN and whole-genome sequences of HPIV3 presented the lowest evolutionary rates compared with those of the other HPIV types, with rates of 6.98E-04 substitutions/site/year (95% HPD: 5.87E-04 to 8.25E-03) and 5.85E-04 substitutions/site/year (95% HPD: 5.12E-04 to 6.62E-04), respectively. Recombination analysis revealed a potential recombination event in the F gene of an HPIV1 strain in this study. Additionally, all the newly obtained HPIV1-3 strains exhibited negative selection pressure, and two mutations were identified in the HN protein of two HPIV3 strains at monoclonal antibody-binding sites.
Collapse
MESH Headings
- Humans
- China/epidemiology
- Respiratory Tract Infections/virology
- Respiratory Tract Infections/epidemiology
- Phylogeny
- Child, Preschool
- Genome, Viral/genetics
- Child
- Male
- Genotype
- Female
- Infant
- Parainfluenza Virus 1, Human/genetics
- Parainfluenza Virus 1, Human/isolation & purification
- Parainfluenza Virus 1, Human/classification
- Parainfluenza Virus 4, Human/genetics
- Parainfluenza Virus 4, Human/classification
- Parainfluenza Virus 4, Human/isolation & purification
- Parainfluenza Virus 3, Human/genetics
- Parainfluenza Virus 3, Human/classification
- Parainfluenza Virus 3, Human/isolation & purification
- High-Throughput Nucleotide Sequencing
- Whole Genome Sequencing
- Genetic Variation
- Respirovirus Infections/virology
- Respirovirus Infections/epidemiology
- Respirovirus/genetics
- Respirovirus/classification
- Respirovirus/isolation & purification
- Parainfluenza Virus 2, Human/genetics
- Parainfluenza Virus 2, Human/classification
- Parainfluenza Virus 2, Human/isolation & purification
- East Asian People
Collapse
Affiliation(s)
- Yun Zhu
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Sun
- The Division of General Pediatrics, Yinchuan Women and Children Healthcare Hospital, Yinchuan, China
| | - Changchong Li
- Department of Pediatric of Pulmonology, The 2nd Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gen Lu
- The Respiratory Department, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Rong Jin
- The Respiratory Department, Guizhou Maternal and Child Health Care Hospital, Guiyang Children’s Hospital, Guiyang, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children’s Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Yunxiao Shang
- The Division of Pediatric Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junhong Ai
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Wang
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Duan
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangpeng Chen
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Research Unit of Critical infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Sugimoto S, Kawase M, Suwa R, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Hanaki KI, Hosoya M, Hashimoto K, Shirato K. Comparison of mutations in human parainfluenza viruses during passage in primary human bronchial/tracheal epithelial air-liquid interface cultures and cell lines. Microbiol Spectr 2024; 12:e0116424. [PMID: 39078148 PMCID: PMC11370246 DOI: 10.1128/spectrum.01164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Human parainfluenza virus (HPIV) causes respiratory infections, which are exacerbated in children and older people. Correct evaluation of viral characteristics is essential for the study of countermeasures. However, adaptation of viruses to cultured cells during isolation or propagation might select laboratory passage-associated mutations that modify the characteristics of the virus. It was previously reported that adaptation of HPIV3, but not other HPIVs, was avoided in human airway epithelia. To examine the influence of laboratory passage on the genomes of HPIV1-HPIV4, we evaluated the occurrence of mutations after passage in primary human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) culture and conventional cultured cells (Vero cells expressing the transmembrane protease, serine 2, and normal Vero cells). The occurrence of mutations was significantly lower in HBTEC-ALI than in conventional culture. In HBTEC-ALI culture, most of the mutations were silent or remained at low variant frequency, resulting in less impact on the viral consensus sequence. In contrast, passage in conventional culture induced or selected genetic mutations at high frequency with passage-associated unique substitutions. High mutagenesis of hemagglutinin-neuraminidase was commonly observed in all four HPIVs, and mutations even occurred in a single passage. In addition, in HPIV1 and HPIV2, mutations in the large protein were more frequent. These results indicate that passage in HBTEC-ALI culture is more suitable than conventional culture for maintaining the original characteristics of clinical isolates in all four HPIVs, which can help with the understanding of viral pathogenesis. IMPORTANCE Adaptation of viruses to cultured cells can increase the risk of misinterpretation in virological characterization of clinical isolates. In human parainfluenza virus (HPIV) 3, it has been reported that the human airway epithelial and lung organoid models are preferable for the study of viral characteristics of clinical strains without mutations. Therefore, we analyzed clinical isolates of all four HPIVs for the occurrence of mutations after five laboratory passages in human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) or conventional culture. We found a high risk of hemagglutinin-neuraminidase mutagenesis in all four HPIVs in conventional cultured cells. In addition, in HPIV1 and HPIV2, mutations of the large protein were also more frequent in conventional cultured cells than in HBTEC-ALI culture. HBTEC-ALI culture was useful for maintaining the original sequence and characteristics of clinical isolates in all four HPIVs. The present study contributes to the understanding of HPIV pathogenesis and antiviral strategies.
Collapse
Affiliation(s)
- Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ken-Ichi Hanaki
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Guo YJ, Sun J, Li YL, Lai QR, Li L, Zhou HY, Li W. Epidemiology and genetic characterization of human parainfluenza virus-1 infection in pediatric patients from Hangzhou China, 2021-2022. Virol J 2024; 21:206. [PMID: 39223668 PMCID: PMC11367859 DOI: 10.1186/s12985-024-02479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Human parainfluenza virus-1 (HPIV-1) is a notable pathogen instigating acute respiratory tract infections in children. The article is to elucidate the epidemiological and genetic characteristics of HPIV-1 circulating in Hangzhou during the period of 2021-2022. METHODS A cohort of 2360 nasopharyngeal swabs were amassed and subsequently examined via RT-PCR, with HPIV-1 positive samples undergoing P gene sequencing. RESULTS The highest HPIV-1 infection rates were found in children aged between 3 and 6 years. A pronounced positive rate persisted through the latter half of 2021, with a notable decline observed in the initial half of 2022. All HPIV-1 strains could be clustered into 2 groups: Cluster 1, with strains similar to those found in Japan (LC764865, LC764864), and Cluster 2, with strains similar to the Beijing strain (MW575643). CONCLUSION In conclusion, our study contributes to the comprehensive data on the epidemiological and genetic characteristics of HPIV-1 in pediatric patients from Hangzhou, post the COVID-19 peak.
Collapse
Affiliation(s)
- Ya-Jun Guo
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, PR China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Ya-Lin Li
- Zhejiang LAB, Hangzhou, 310003, PR China
| | - Qin-Rui Lai
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, PR China
| | - Lin Li
- Department of Infectious Diseases, Fujian Branch of Shanghai Children's Medical Center, Fujian Children's Hospital, Fuzhou, 350014, Fujian Province, China
| | - Hang-Yu Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, PR China.
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng road, Hangzhou, 310052, China.
| |
Collapse
|
5
|
Feng Y, Zhu Z, Xu J, Sun L, Zhang H, Xu H, Zhang F, Wang W, Han G, Jiang J, Liu Y, Zhou S, Zhang Y, Ji Y, Mao N, Xu W. Molecular Evolution of Human Parainfluenza Virus Type 2 Based on Hemagglutinin-Neuraminidase Gene. Microbiol Spectr 2023; 11:e0453722. [PMID: 37039701 PMCID: PMC10269610 DOI: 10.1128/spectrum.04537-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
To understand the molecular evolution of human parainfluenza virus type 2 (HPIV2), 21 Hemagglutinin-Neuraminidase (HN) gene sequences covering seven Chinese provinces in 2011 and 2017 to 2021 were combined with 90 published HN sequences worldwide for phylogenetic analysis. The result showed that global HPIV2 could be classified into two distinct clusters (I and II), five lineages (IA to IIE), and four sublineages (IB1 and 2, and IIE1 and 2). The minimum genetic distances between different clusters and lineages were 0.049 and 0.014, respectively. In the last decade, one lineage (IID) and three sublineages (IB1, IB2, and IIE1) have been cocirculating in China, with the sublineages IB2 and IIE1 dominating, while sublineages IB1 and IIE1 are dominant globally. In addition, the spread of HPIV2 had relative spatial clustering, and sublineage IB2 has only been detected in China thus far. The overall evolution rate of HPIV2 was relatively low, on the order of 10-4 substitutions/site/year, except for sublineage IB2 at 10-3 substitutions/site/year. Furthermore, human-animal transmission was observed, suggesting that the HPIV2 might have jumped out of animal reservoirs in approximately 1922, the predicted time of a common ancestor. The entire HN protein was under purifying/negative selection, and the specific amino acid changes and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 were mostly located in the globular head region of the HN protein. In this study, preliminary evolutionary characteristics of HPIV2 based on the HN gene were obtained, increasing the recognition of the evolution and adaptation of HPIV2. IMPORTANCE The phylogenetic analysis showed that global HPIV2 could be classified into two distinct clusters (I and II) and five lineages (IA to IIE) with at least 0.049 and 0.014 genetic distances between clusters and lineages, respectively. Furthermore, lineages IB and IIE could be further divided into two sublineages (IB1-2 and IIE1-2). All China sequences belong to one lineage and three sublineages (IB1, IB2, IID, and IIE1), among which sublineages IB2 and IIE1 are predominant and cocirculating in China, while sublineages IB1 and IIE1 are dominant globally. The overall evolution rate of HPIV2 is on the order of 10-4 substitutions/site/year, with the highest rate of 2.18 × 10-3 for sublineage IB2. The entire HN protein is under purifying/negative selection, and the specific amino acid substitutions and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 are mostly located in the globular head region of the HN protein.
Collapse
Affiliation(s)
- Yi Feng
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Liwei Sun
- Changchun Children's Hospital, Changchun, China
| | - Hui Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Hongmei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Zhang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Wenyang Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Guangyue Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jie Jiang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanshan Zhou
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Ji
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Naiying Mao
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Shishir TA, Jannat T, Naser IB. Genomic surveillance unfolds the SARS-CoV-2 transmission and divergence dynamics in Bangladesh. Front Genet 2022; 13:966939. [PMID: 36226176 PMCID: PMC9548531 DOI: 10.3389/fgene.2022.966939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The highly pathogenic virus SARS-CoV-2 has shattered the healthcare system of the world causing the COVID-19 pandemic since first detected in Wuhan, China. Therefore, scrutinizing the genome structure and tracing the transmission of the virus has gained enormous interest in designing appropriate intervention strategies to control the pandemic. In this report, we examined 4,622 sequences from Bangladesh and found that they belonged to thirty-five major PANGO lineages, while Delta alone accounted for 39%, and 78% were from just four primary lineages. Our research has also shown Dhaka to be the hub of viral transmission and observed the virus spreading back and forth across the country at different times by building a transmission network. The analysis resulted in 7,659 unique mutations, with an average of 24.61 missense mutations per sequence. Moreover, our analysis of genetic diversity and mutation patterns revealed that eight genes were under negative selection pressure to purify deleterious mutations, while three genes were under positive selection pressure. Together with an ongoing genomic surveillance program, these data will contribute to a better understanding of SARS-CoV-2, as well as its evolution pattern and pandemic characteristics in Bangladesh.
Collapse
Affiliation(s)
- Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
- Rangamati General Hospital, Chattogram, Bangladesh
| | - Taslimun Jannat
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Iftekhar Bin Naser
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
- *Correspondence: Iftekhar Bin Naser,
| |
Collapse
|
7
|
Naveed M, Yaseen AR, Khalid H, Ali U, Rabaan AA, Garout M, Halwani MA, Al Mutair A, Alhumaid S, Al Alawi Z, Alhashem YN, Ahmed N, Yean CY. Execution and Design of an Anti HPIV-1 Vaccine with Multiple Epitopes Triggering Innate and Adaptive Immune Responses: An Immunoinformatic Approach. Vaccines (Basel) 2022; 10:vaccines10060869. [PMID: 35746477 PMCID: PMC9228812 DOI: 10.3390/vaccines10060869] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Human Parainfluenza Virus (HPIV) Type-1, which is an anti-sense ribonucleic acid (RNA) virus belonging to the paramyxoviridae family, induces upper and lower respiratory tract infections. The infections caused by the HPIV Type-1 virus are usually confined to northwestern regions of America. HPIV-1 causes infections through the virulence of the hemagglutinin-neuraminidase (HN) protein, which plays a key role in the attachment of the viral particle with the host’s receptor cells. To the best of our knowledge, there is no effective antiviral drugs or vaccines being developed to combat the infection caused by HPIV-1. In the current study, a multiple epitope-based vaccine was designed against HPIV-1 by taking the viral HN protein as a probable vaccine candidate. The multiple epitopes were selected in accordance with their allergenicity, antigenicity and toxicity scoring. The determined epitopes of the HN protein were connected simultaneously using specific conjugates along with an adjuvant to construct the subunit vaccine, with an antigenicity score of 0.6406. The constructed vaccine model was docked with various Toll-like Receptors (TLRs) and was computationally cloned in a pET28a (+) vector to analyze the expression of vaccine sequence in the biological system. Immune stimulations carried out by the C-ImmSim Server showed an excellent result of the body’s defense system against the constructed vaccine model. The AllerTop tool predicted that the construct was non-allergen with and without the adjuvant sequence, and the VaxiJen 2.0 with 0.4 threshold predicted that the construct was antigenic, while the Toxinpred predicted that the construct was non-toxic. Protparam results showed that the selected protein was stable with 36.48 instability index (II) scores. The Grand average of Hydropathicity or GRAVY score indicated that the constructed protein was hydrophilic in nature. Aliphatic index values (93.53) confirmed that the construct was thermostable. This integrated computational approach shows that the constructed vaccine model has a potential to combat laryngotracheobronchitis infections caused by HPIV-I.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan; (A.R.Y.); (U.A.)
- Correspondence: (M.N.); (A.A.R.); (C.Y.Y.)
| | - Allah Rakha Yaseen
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan; (A.R.Y.); (U.A.)
| | - Hira Khalid
- Department of Medical Education, King Edward Medical University, Lahore 54000, Pakistan;
| | - Urooj Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan; (A.R.Y.); (U.A.)
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence: (M.N.); (A.A.R.); (C.Y.Y.)
| | - Mohamed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Muhammad A. Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia;
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia;
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
- Correspondence: (M.N.); (A.A.R.); (C.Y.Y.)
| |
Collapse
|
8
|
Buitrago SP, Garzón-Ospina D. Genetic diversity of SARS-CoV-2 in South America: demographic history and structuration signals. Arch Virol 2021; 166:3357-3371. [PMID: 34604926 PMCID: PMC8487618 DOI: 10.1007/s00705-021-05258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
In 2020, the emergence of SARS-CoV-2 caused a global public health crisis with significant mortality rates and a large socioeconomic burden. The rapid spread of this new virus has led to the appearance of new variants, making the characterization and monitoring of genetic diversity necessary to understand the population dynamics and evolution of the virus. Here, a population-genetics-based study was performed starting with South American genome sequences available in the GISAID database to investigate the genetic diversity of SARS-CoV-2 on this continent and the evolutionary mechanisms that modulate it.
Collapse
Affiliation(s)
- Sindy P Buitrago
- PGAME-Population Genetics and Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia. .,GEBIMOL, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia. .,GEO, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia.
| | - Diego Garzón-Ospina
- PGAME-Population Genetics and Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia.,GEBIMOL, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia.,GEO, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia
| |
Collapse
|
9
|
Oh DY, Biere B, Grenz M, Wolff T, Schweiger B, Dürrwald R, Reiche J. Virological Surveillance and Molecular Characterization of Human Parainfluenzavirus Infection in Children with Acute Respiratory Illness: Germany, 2015-2019. Microorganisms 2021; 9:1508. [PMID: 34361941 PMCID: PMC8307145 DOI: 10.3390/microorganisms9071508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Human parainfluenza viruses (HPIVs) are important causes of respiratory illness, especially in young children. However, surveillance for HPIV is rarely performed continuously, and national-level epidemiologic and genetic data are scarce. Within the German sentinel system, to monitor acute respiratory infections (ARI), 4463 respiratory specimens collected from outpatients < 5 years of age between October 2015 and September 2019 were retrospectively screened for HPIV 1-4 using real-time PCR. HPIV was identified in 459 (10%) samples. HPIV-3 was the most common HPIV-type, with 234 detections, followed by HPIV-1 (113), HPIV-4 (61), and HPIV-2 (49). HPIV-3 was more frequently associated with age < 2 years, and HPIV-4 was more frequently associated with pneumonia compared to other HPIV types. HPIV circulation displayed distinct seasonal patterns, which appeared to vary by type. Phylogenetic characterization clustered HPIV-1 in Clades 2 and 3. Reclassification was performed for HPIV-2, provisionally assigning two distinct HPIV-2 groups and six clades, with German HPIV-2s clustering in Clade 2.4. HPIV-3 clustered in C1, C3, C5, and, interestingly, in A. HPIV-4 clustered in Clades 2.1 and 2.2. The results of this study may serve to inform future approaches to diagnose and prevent HPIV infections, which contribute substantially to ARI in young children in Germany.
Collapse
Affiliation(s)
- Djin-Ye Oh
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Barbara Biere
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Markus Grenz
- Consultant Laboratory for RSV, PIV and HMPV, Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Brunhilde Schweiger
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Ralf Dürrwald
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Janine Reiche
- Consultant Laboratory for RSV, PIV and HMPV, Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| |
Collapse
|
10
|
Abstract
Viral recombination is a major evolutionary mechanism driving adaptation processes, such as the ability of host-switching. Understanding global patterns of recombination could help to identify underlying mechanisms and to evaluate the potential risks of rapid adaptation. Conventional approaches (e.g., those based on linkage disequilibrium) are computationally demanding or even intractable when sequence alignments include hundreds of sequences, common in viral data sets. We present a comprehensive analysis of recombination across 30 genomic alignments from viruses infecting humans. In order to scale the analysis and avoid the computational limitations of conventional approaches, we apply newly developed topological data analysis methods able to infer recombination rates for large data sets. We show that viruses, such as ZEBOV and MARV, consistently displayed low levels of recombination, whereas high levels of recombination were observed in Sarbecoviruses, HBV, HEV, Rhinovirus A, and HIV. We observe that recombination is more common in positive single-stranded RNA viruses than in negatively single-stranded RNA ones. Interestingly, the comparison across multiple viruses suggests an inverse correlation between genome length and recombination rate. Positional analyses of recombination breakpoints along viral genomes, combined with our approach, detected at least 39 nonuniform patterns of recombination (i.e., cold or hotspots) in 18 viral groups. Among these, noteworthy hotspots are found in MERS-CoV and Sarbecoviruses (at spike, Nucleocapsid and ORF8). In summary, we have developed a fast pipeline to measure recombination that, combined with other approaches, has allowed us to find both common and lineage-specific patterns of recombination among viruses with potential relevance in viral adaptation.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ioan Filip
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Hemmadi V, Biswas M. An overview of moonlighting proteins in Staphylococcus aureus infection. Arch Microbiol 2020; 203:481-498. [PMID: 33048189 PMCID: PMC7551524 DOI: 10.1007/s00203-020-02071-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus is responsible for numerous instances of superficial, toxin-mediated, and invasive infections. The emergence of methicillin-resistant (MRSA), as well as vancomycin-resistant (VRSA) strains of S. aureus, poses a massive threat to human health. The tenacity of S. aureus to acquire resistance against numerous antibiotics in a very short duration makes the effort towards developing new antibiotics almost futile. S. aureus owes its destructive pathogenicity to the plethora of virulent factors it produces among which a majority of them are moonlighting proteins. Moonlighting proteins are the multifunctional proteins in which a single protein, with different oligomeric conformations, perform multiple independent functions in different cell compartments. Peculiarly, proteins involved in key ancestral functions and metabolic pathways typically exhibit moonlighting functions. Pathogens mainly employ those proteins as virulent factors which exhibit high structural conservation towards their host counterparts. Consequentially, the host immune system counteracts these invading bacterial virulent factors with minimal protective action. Additionally, many moonlighting proteins also play multiple roles in various stages of pathogenicity while augmenting the virulence of the bacterium. This has necessitated elaborative studies to be conducted on moonlighting proteins of S. aureus that can serve as drug targets. This review is a small effort towards understanding the role of various moonlighting proteins in the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
12
|
Scotch M, Halden RU, Denton A, Sandrolini H, Fontenele RS, Varsani A. Coding-Complete Genome Sequence of a Human Respirovirus 1 Strain from a Clinical Sample in Arizona. Microbiol Resour Announc 2020; 9:e00465-20. [PMID: 32527776 PMCID: PMC7291101 DOI: 10.1128/mra.00465-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022] Open
Abstract
Human respirovirus 1 is a single-stranded, negative-sense RNA virus in the family Paramyxoviridae Using a high-throughput metagenomic approach, we identified and sequenced the coding-complete genome of a human respirovirus 1 strain from a nasal pharyngeal swab sample from a local health clinic in Tempe, Arizona.
Collapse
Affiliation(s)
- Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- OneWaterOneHealth, Arizona State University Foundation, Tempe, Arizona, USA
- AquaVitas, LLC, Scottsdale, Arizona, USA
| | - Anthony Denton
- ASU Health Services, Arizona State University, Tempe, Arizona, USA
| | - Helen Sandrolini
- ASU Health Services, Arizona State University, Tempe, Arizona, USA
| | - Rafaela S Fontenele
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Tempe, Arizona, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Tempe, Arizona, USA
| |
Collapse
|
13
|
Elusah J, Bulimo WD, Opanda SM, Symekher SL, Wamunyokoli F. Genetic diversity and evolutionary analysis of human respirovirus type 3 strains isolated in Kenya using complete hemagglutinin-neuraminidase (HN) gene. PLoS One 2020; 15:e0229355. [PMID: 32155160 PMCID: PMC7064169 DOI: 10.1371/journal.pone.0229355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Human respirovirus type 3 (HRV3) is a leading etiology of lower respiratory tract infections in young children and ranks only second to the human respiratory syncytial virus (HRSV). Despite the public health importance of HRV3, there is limited information about the genetic characteristics and diversity of these viruses in Kenya. To begin to address this gap, we analyzed 35 complete hemagglutinin-neuraminidase (HN) sequences of HRV3 strains isolated in Kenya between 2010 and 2013. Viral RNA was extracted from the isolates, and the entire HN gene amplified by RT-PCR followed by nucleotide sequencing. Phylogenetic analyses of the sequences revealed that all the Kenyan isolates grouped into genetic Cluster C; sub-clusters C1a, C2, and C3a. The majority (54%) of isolates belonged to sub-cluster C3a, followed by C2 (43%) and C1a (2.9%). Sequence analysis revealed high identities between the Kenyan isolates and the HRV3 prototype strain both at the amino acid (96.5-97.9%) and nucleotide (94.3-95.6%) levels. No amino acid variations affecting the catalytic/active sites of the HN glycoprotein were observed among the Kenyan isolates. Selection pressure analyses showed that the HN glycoprotein was evolving under positive selection. Evolutionary analyses revealed that the mean TMRCA for the HN sequence dataset was 1942 (95% HPD: 1928-1957), while the mean evolutionary rate was 4.65x10-4 nucleotide substitutions/site/year (95% HPD: 2.99x10-4 to 6.35x10-4). Overall, our results demonstrate the co-circulation of strains of cluster C HRV3 variants in Kenya during the study period. This is the first study to describe the genetic and molecular evolutionary aspects of HRV3 in Kenya using the complete HN gene.
Collapse
Affiliation(s)
- Juliet Elusah
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Wallace Dimbuson Bulimo
- Department of Emerging infections, US Army Medical Directorate–Africa, Nairobi, Kenya
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- * E-mail:
| | | | | | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| |
Collapse
|
14
|
Bose ME, Shrivastava S, He J, Nelson MI, Bera J, Fedorova N, Halpin R, Town CD, Lorenzi HA, Amedeo P, Gupta N, Noyola DE, Videla C, Kok T, Buys A, Venter M, Vabret A, Cordey S, Henrickson KJ. Sequencing and analysis of globally obtained human parainfluenza viruses 1 and 3 genomes. PLoS One 2019; 14:e0220057. [PMID: 31318956 PMCID: PMC6638977 DOI: 10.1371/journal.pone.0220057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human Parainfluenza viruses (HPIV) type 1 and 3 are important causes of respiratory tract infections in young children globally. HPIV infections do not confer complete protective immunity so reinfections occur throughout life. Since no effective vaccine is available for the two virus subtypes, comprehensive understanding of HPIV-1 and HPIV-3 genetic and epidemic features is important for diagnosis, prevention, and treatment of HPIV-1 and HPIV-3 infections. Relatively few whole genome sequences are available for both HPIV-1 and HPIV-3 viruses, so our study sought to provide whole genome sequences from multiple countries to further the understanding of the global diversity of HPIV at a whole-genome level. We collected HPIV-1 and HPIV-3 samples and isolates from Argentina, Australia, France, Mexico, South Africa, Switzerland, and USA from the years 2003-2011 and sequenced the genomes of 40 HPIV-1 and 75 HPIV-3 viruses with Sanger and next-generation sequencing with the Ion Torrent, Illumina, and 454 platforms. Phylogenetic analysis showed that the HPIV-1 genome is evolving at an estimated rate of 4.97 × 10-4 mutations/site/year (95% highest posterior density 4.55 × 10-4 to 5.38 × 10-4) and the HPIV-3 genome is evolving at a similar rate (3.59 × 10-4 mutations/site/year, 95% highest posterior density 3.26 × 10-4 to 3.94 × 10-4). There were multiple genetically distinct lineages of both HPIV-1 and 3 circulating on a global scale. Further surveillance and whole-genome sequencing are greatly needed to better understand the spatial dynamics of these important respiratory viruses in humans.
Collapse
Affiliation(s)
- Michael E. Bose
- Midwest Respiratory Virus Program, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | | | - Jie He
- Midwest Respiratory Virus Program, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Jayati Bera
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Nadia Fedorova
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Rebecca Halpin
- J. Craig Venter Institute, Rockville, MD, United States of America
| | | | | | - Paolo Amedeo
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Neha Gupta
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Daniel E. Noyola
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Cristina Videla
- Clinical Virology Laboratory, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires, Argentina
| | - Tuckweng Kok
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Amelia Buys
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Sandringham, South Africa
| | - Marietjie Venter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Sandringham, South Africa
- Zoonotic, arbo and respiratory virus program, Department Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Astrid Vabret
- Normandie Université, Caen, France
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM), Université de Caen, Caen, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Samuel Cordey
- Division of Infectious Diseases and Laboratory of Virology, University of Geneva Hospitals, Geneva, Switzerland
| | - Kelly J. Henrickson
- Midwest Respiratory Virus Program, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
15
|
Detection, isolation, and in vitro characterization of porcine parainfluenza virus type 1 isolated from respiratory diagnostic specimens in swine. Vet Microbiol 2019; 228:219-225. [DOI: 10.1016/j.vetmic.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
|
16
|
Tsutsui R, Tsukagoshi H, Nagasawa K, Takahashi M, Matsushima Y, Ryo A, Kuroda M, Takami H, Kimura H. Genetic analyses of the fusion protein genes in human parainfluenza virus types 1 and 3 among patients with acute respiratory infections in Eastern Japan from 2011 to 2015. J Med Microbiol 2017; 66:160-168. [PMID: 28266286 DOI: 10.1099/jmm.0.000431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To genetically explore the fusion protein gene (F) in human parainfluenza virus type 1 (HPIV1) and type 3 (HPIV3) strains, we analysed them in patients with acute respiratory infections in Eastern Japan from 2011 to 2015. METHODOLOGY We constructed phylogenetic trees based on the HPIV and HPIV3 F gene using the maximum likelihood method and conducted P-distance and selective pressure analyses. We also predicted the linear epitopes of the protein in the prototype strains. Furthermore, we mapped the amino acid substitutions of the proteins. RESULTS Nineteen strains of HPIV1 and 53 strains of HPIV3 were detected among the clinical acute respiratory infection cases. The phylogenetic trees indicated that the HPIV1 and HPIV3 strains were classified into clusters II and III and cluster C, respectively. The P-distance values of the HPIV1 and HPIV3 F genes were <0.03. Two positive selection sites were inferred in the HPIV1 (aa 8 and aa 10), and one positive selection site was inferred in the HPIV3 (aa 108), but over 10 negative selection sites were inferred. Four epitopes were predicted for the HPIV1 prototype strains, while five epitopes were predicted for the HPIV3 prototype strain. A positive selection site (aa 108) or the HPIV3 F protein was involved in the predicted epitope. Additionally, we found that an amino acid substitution (R73K) in the LC76627 HPIV3 strain presumably may affect the resistance to neutralization by antibodies. CONCLUSION The F gene of HPIV1 and HPIV3 was relatively well conserved in the eastern part of Japan during the investigation period.
Collapse
Affiliation(s)
- Rika Tsutsui
- Department of Pathologic Analysis, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan.,Aomori Prefecture Public Health and Environment Center, 1-1-1, Higashitsukurimichi, Aomori-shi, Aomori 030-8566, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Masaki Takahashi
- Research Institute for Environmental Sciences and Public Health of Iwate Prefecture, 1-11-16, Kitaiioka, Morioka-shi, Iwate 020-0857, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, 3-25-13, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Akihide Ryo
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hideki Takami
- Department of Pathologic Analysis, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.,Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| |
Collapse
|
17
|
Rapid Metagenomic Next-Generation Sequencing during an Investigation of Hospital-Acquired Human Parainfluenza Virus 3 Infections. J Clin Microbiol 2016; 55:177-182. [PMID: 27795347 PMCID: PMC5228228 DOI: 10.1128/jcm.01881-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is increasingly used for the unbiased detection of viruses, bacteria, fungi, and eukaryotic parasites in clinical samples. Whole-genome sequencing (WGS) of clinical bacterial isolates has been shown to inform hospital infection prevention practices, but this technology has not been utilized during potential respiratory virus outbreaks. Here, we report on the use of mNGS to inform the real-time infection prevention response to a cluster of hospital-acquired human parainfluenza 3 virus (HPIV3) infections at a children's hospital. Samples from 3 patients with hospital-acquired HPIV3 identified over a 12-day period on a general medical unit and 10 temporally associated samples from patients with community-acquired HPIV3 were analyzed. Our sample-to-sequencer time was <24 h, while our sample-to-answer turnaround time was <60 h with a hands-on time of approximately 6 h. Eight (2 cases and 6 controls) of 13 samples had sufficient sequencing coverage to yield the whole genome for HPIV3, while 10 (2 cases and 8 controls) of 13 samples gave partial genomes and all 13 samples had >1 read for HPIV3. Phylogenetic clustering revealed the presence of identical HPIV3 genomic sequence in the two of the cases with hospital-acquired infection, consistent with the concern for recent transmission within the medical unit. Adequate sequence coverage was not recovered for the third case. This work demonstrates the promise of mNGS for providing rapid information for infection prevention in addition to microbial detection.
Collapse
|
18
|
Esmaelizad M, Mayahi V, Pashaei M, Goudarzi H. Identification of novel Newcastle disease virus sub-genotype VII-(j) based on the fusion protein. Arch Virol 2016; 162:971-978. [DOI: 10.1007/s00705-016-3189-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
|
19
|
Košutić-Gulija T, Slovic A, Ljubin-Sternak S, Mlinarić-Galinović G, Forčić D. A study of genetic variability of human parainfluenza virus type 1 in Croatia, 2011-2014. J Med Microbiol 2016; 65:793-803. [PMID: 27302417 DOI: 10.1099/jmm.0.000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011-2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin-neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential N- and O-glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific N-glycosylation pattern could distinguish between clades II and III. Analysis of potential O-glycosylation sites in F protein indicated that samples from this study have two potential O-glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.
Collapse
Affiliation(s)
- Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Andrija Stampar Teaching Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Mlinarić-Galinović
- Department of Virology, Croatian National Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Matsunaga S, Kawakami S, Matsuo I, Okayama A, Tsukagoshi H, Kudoh A, Matsushima Y, Shimizu H, Okabe N, Hirano H, Yamamoto N, Kimura H, Ryo A. Wheat germ cell-free system-based production of hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 3 for generation and characterization of monoclonal antibody. Front Microbiol 2014; 5:208. [PMID: 24860558 PMCID: PMC4026691 DOI: 10.3389/fmicb.2014.00208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/18/2014] [Indexed: 12/20/2022] Open
Abstract
Human parainfluenza virus 3 (HPIV3) commonly causes respiratory disorders in infants and young children. Monoclonal antibodies (MAbs) have been produced to several components of HPIV3 and commercially available. However, the utility of these antibodies for several immunological and proteomic assays for understanding the nature of HPIV3 infection remain to be characterized. Herein, we report the development and characterization of MAbs against hemagglutinin-neuraminidase (HN) of HPIV3. A recombinant full-length HPIV3-HN was successfully synthesized using the wheat-germ cell-free protein production system. After immunization and cell fusion, 36 mouse hybridomas producing MAbs to HPIV3-HN were established. The MAbs obtained were fully characterized using ELISA, immunoblotting, and immunofluorescent analyses. Of the MAbs tested, single clone was found to be applicable in both flow cytometry and immunoprecipitation procedures. By utilizing the antibody, we identified HPIV3-HN binding host proteins via immunoprecipitation-based mass spectrometry analysis. The newly-developed MAbs could thus be a valuable tool for the study of HPIV3 infection as well as the several diagnostic tests of this virus.
Collapse
Affiliation(s)
- Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine Kanagawa, Japan
| | - Shiho Kawakami
- Department of Microbiology, Yokohama City University School of Medicine Kanagawa, Japan
| | - Izumi Matsuo
- Department of Microbiology, Yokohama City University School of Medicine Kanagawa, Japan
| | - Akiko Okayama
- Proteome Analysis Center, Yokohama City University School of Medicine Kanagawa, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences Gunma, Japan
| | - Ayumi Kudoh
- Department of Microbiology, Yokohama City University School of Medicine Kanagawa, Japan
| | - Yuki Matsushima
- Kawasaki City Health and Safety Research Center Kanagawa, Japan
| | - Hideaki Shimizu
- Kawasaki City Health and Safety Research Center Kanagawa, Japan
| | - Nobuhiko Okabe
- Kawasaki City Health and Safety Research Center Kanagawa, Japan
| | - Hisashi Hirano
- Proteome Analysis Center, Yokohama City University School of Medicine Kanagawa, Japan
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine Kanagawa, Japan
| |
Collapse
|
22
|
Abstract
Over the past several years a wide variety of molecular assays for the detection of respiratory viruses has reached the market. The tests described herein range from kits containing primers and probes detecting specific groups of viruses, to self-contained systems requiring specialized instruments that extract nucleic acids and perform the polymerase chain reaction with little operator input. Some of the tests target just the viruses involved in large yearly epidemics such as influenza, or specific groups of viruses such as the adenoviruses or parainfluenza viruses; others can detect most of the known respiratory viruses and some bacterial agents.
Collapse
|