1
|
Li Z, Xiao F, Hou Y, Jia B, Zhuang J, Cao Y, Ma J, Zhao J, Xu Z, Jia Z, Liu F, Pang L, Liu J. Genomic epidemiology and evolution of Bordetella pertussis under the vaccination pressure of acellular vaccines in Beijing, China, 2020-2023. Emerg Microbes Infect 2025; 14:2447611. [PMID: 39725566 PMCID: PMC11721623 DOI: 10.1080/22221751.2024.2447611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Pertussis (or whooping cough) has experienced a global resurgence despite widespread vaccine efforts. In China, the incidence of pertussis has rapidly increased, particularly following the COVID-19 pandemic. Whole-genome sequencing analysis was performed on 60 Bordetella pertussis strains isolated in Beijing from 2020-2023, and the sequences were compared with those of 635 strains from China and 943 strains from other countries. In this study, the genetic evolution of B. pertussis was investigated, focusing on key virulence genes (ptxP, ptxA, prn, fim2, fim3, tcfA) and the resistance-related locus A2047 across different periods and regions. The dominant antigen genotype among the 60 isolates was ptxP3/prn2/ptxA1/fim2-1/fim3-1/tcfA2 (88.3%), differing from the prevalent genotype ptxP-1/prn-1/ptxA-1 in Beijing prior to 2019 and the vaccine strain genotype ptxP-1/prn-1/ptxA-2/fim2-1/fim3-1/tcfA2. Evolutionary analysis revealed significant genetic shifts associated with the introduction of vaccines, particularly acellular vaccines. Initially, the prevalent genotypes included ptxP-1, prn-1, ptxA-2, fim2-2, and fim3-2. However, currently, ptxP-3, prn-2 and ptxA-1 have become predominant globally, indicating vaccine-induced selection pressure. Additionally, all 60 isolated strains (100%) presented the A2047G mutation associated with erythromycin resistance, of which ptxP3 accounted for 91.7%. Macrolide-resistant Bordetella pertussis (MRBP) is widespread in China, and the prevalence of ptxP3-MRBP may be increasing. The significant changes of dominance of subtypes in Beijing in recent years underscore the need for continuous surveillance and adaptation of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Zhen Li
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Fei Xiao
- Experimental research center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yue Hou
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bin Jia
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ji Zhuang
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Yang Cao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianxin Ma
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianhong Zhao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zengquan Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhe Jia
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Fang Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lin Pang
- Department of Pediatrics, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jie Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Niinikoski V, Barkoff AM, Mertsola J, He Q. Bordetella pertussis isolates in Finland after acellular vaccination: serotype change and biofilm formation. Clin Microbiol Infect 2024; 30:683.e1-683.e3. [PMID: 38310999 DOI: 10.1016/j.cmi.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVES In Finland, whole cell pertussis vaccine (wP) was introduced in 1952 and was replaced by acellular pertussis vaccine (aP) without fimbrial (FIM) antigen in 2005. We aimed to analyse the changes in serotypes of circulating Bordetella pertussis before and after acellular vaccination and to explore the relationship between biofilm formation and serotype diversity after the introduction of aP vaccine. METHODS Serotyping of 1399 B. pertussis isolates collected at the Finnish National Reference Laboratory for Pertussis and Diphtheria in Turku, Finland, from 1974 to 2023 was performed by slide agglutination or indirect ELISA. Of 278 isolates collected after 2005, 53 were selected, genotyped for fim3 and fim2 alleles, and tested for biofilm formation. The selection criteria included maintaining a relatively equal distribution of isolates per time interval, ensuring approximately a 50:50 ratio of FIM2 (N = 26) and FIM3 (N = 27) serotypes. The reference strain Tohama I was used as a control. RESULTS During the wP era, the majority of circulating B. pertussis exhibited the FIM2 serotype. However, FIM3 strains have appeared since 1999 and become prevalent. After the implementation of aP vaccines, the distribution of serotypes has exhibited substantial variability. FIM3 isolates displayed an enhanced biofilm formation compared to FIM2 isolates (Geometric mean value (95% CI): 0.90 (0.79-1.03) vs. 0.75 (0.65-0.85); p < 0.05). Of the 27 FIM3 isolates, 8 harboured fim3-1 and 19 fim3-2 alleles. FIM3 isolates with fim3-2 allele were significantly associated with increased biofilm formation when compared to those with fim3-1 (1.07 (0.96-1.19) vs. 0.61 (0.52-0.72); p < 0.0001). CONCLUSION Following the implementation of aP vaccines, the distribution of serotypes in Finland has exhibited substantial variability. FIM3 isolates with the fim3-2 allele displayed an enhanced biofilm formation capability compared to FIM2 isolates.
Collapse
Affiliation(s)
- Vili Niinikoski
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Alex-Mikael Barkoff
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Jussi Mertsola
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Qiushui He
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Moosa F, du Plessis M, Weigand MR, Peng Y, Mogale D, de Gouveia L, Nunes MC, Madhi SA, Zar HJ, Reubenson G, Ismail A, Tondella ML, Cohen C, Walaza S, von Gottberg A, Wolter N. Genomic characterization of Bordetella pertussis in South Africa, 2015-2019. Microb Genom 2023; 9:001162. [PMID: 38117675 PMCID: PMC10763497 DOI: 10.1099/mgen.0.001162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023] Open
Abstract
Pertussis remains a public health concern in South Africa, with an increase in reported cases and outbreaks in recent years. Whole genome sequencing was performed on 32 Bordetella pertussis isolates sourced from three different surveillance programmes in South Africa between 2015 and 2019. Genome sequences were characterized using multilocus sequence typing, vaccine antigen genes (ptxP, ptxA, ptxB, prn and fimH) and overall genome structure. All isolates were sequence type 2 and harboured the pertussis toxin promoter allele ptxP3. The dominant genotype was ptxP3-ptxA1-ptxB2-prn2-fimH2 (31/32, 96.9 %), with no pertactin-deficient or other mutations in vaccine antigen genes identified. Amongst 21 isolates yielding closed genome assemblies, eight distinct genome structures were detected, with 61.9 % (13/21) of the isolates exhibiting three predominant structures. Increases in case numbers are probably not due to evolutionary changes in the genome but possibly due to other factors such as the cyclical nature of B. pertussis disease, waning immunity due to the use of acellular vaccines and/or population immunity gaps.
Collapse
Affiliation(s)
- Fahima Moosa
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael R. Weigand
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dineo Mogale
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marta C. Nunes
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather J. Zar
- Department of Pediatrics and Child Health, Red Cross Children’s Hospital, Cape Town, South Africa; MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Gary Reubenson
- Rahima Moosa Mother & Child Hospital, Department of Pediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - M. Lucia Tondella
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Characterization of Bordetella pertussis Strains Isolated from India. Pathogens 2022; 11:pathogens11070794. [PMID: 35890038 PMCID: PMC9322502 DOI: 10.3390/pathogens11070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Despite high level vaccination and the availability of two different types of vaccines, whole cell (wP) and acellular vaccines (aP), the resurgence of pertussis has been reported in many countries. Antigenic variation within circulating and vaccine strains is the most documented reason reported for the resurgence of pertussis. Research on genetic divergence among circulating and vaccine strains has largely been reported in countries using aP vaccines. There are inadequate data available for antigenic variation in B. pertussis from wP-using countries. India has used wP for more than 40 years in their primary immunization program. The present study reports five clinical isolates of B. pertussis from samples of pediatric patients with pertussis symptoms observed in India. Genotypic and phenotypic characterization of clinical isolates were performed by serotyping, genotyping, whole genome analyses and comparative genomics. All clinical isolates showed serotype 1, 2 and 3 based on the presence of fimbriae 2 and 3. Genotyping showed genetic similarities in allele types for five aP genes within vaccine strains and clinical isolates reported from India. The presence of the ptxP3 genotype was observed in two out of five clinical isolates. Whole-genome sequencing was performed for clinical isolates using the hybrid strategy of combining Illumina (short reads) and oxford nanopore (long reads) sequencing strategies. Clinical isolates (n = 5) and vaccine strains (n = 7) genomes of B. pertussis from India were compared with 744 B. pertussis closed genomes available in the public databases. The phylogenomic comparison of B. pertussis genomes reported from India will be advantageous in better understanding pertussis resurgence reported globally with respect to pathogen adaptation.
Collapse
|
5
|
Brandal LT, Vestrheim DF, Bruvik T, Roness RB, Bjørnstad ML, Greve-Isdahl M, Steens A, Brynildsrud OB. Evolution of Bordetella pertussis in the acellular vaccine era in Norway, 1996 to 2019. Eur J Clin Microbiol Infect Dis 2022; 41:913-924. [PMID: 35543837 PMCID: PMC9135841 DOI: 10.1007/s10096-022-04453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/28/2022] [Indexed: 01/16/2023]
Abstract
We described the population structure of Bordetella pertussis (B. pertussis) in Norway from 1996 to 2019 and determined if there were evolutionary shifts and whether these correlated with changes in the childhood immunization program. We selected 180 B. pertussis isolates, 22 from the whole cell vaccine (WCV) era (1996-1997) and 158 from the acellular vaccine (ACV) era (1998-2019). We conducted whole genome sequencing and determined the distribution and frequency of allelic variants and temporal changes of ACV genes. Norwegian B. pertussis isolates were evenly distributed across a phylogenetic tree that included global strains. We identified seven different allelic profiles of ACV genes (A-F), in which profiles A1, A2, and B dominated (89%), all having pertussis toxin (ptxA) allele 1, pertussis toxin promoter (ptxP) allele 3, and pertactin (prn) allele 2 present. Isolates with ptxP1 and prn1 were not detected after 2007, whereas the prn2 allele likely emerged prior to 1972, and ptxP3 before the early 1980s. Allele conversions of ACV genes all occurred prior to the introduction of ACV. Sixteen percent of our isolates showed mutations within the prn gene. ACV and its booster doses (implemented for children in 2007 and adolescents in 2013) might have contributed to evolvement of a more uniform B. pertussis population, with recent circulating strains having ptxA1, ptxP3, and prn2 present, and an increasing number of prn mutations. These strains clearly deviate from ACV strains (ptxA1, ptxP1, prn1), and this could have implications for vaccine efficiency and, therefore, prevention and control of pertussis.
Collapse
Affiliation(s)
- Lin T Brandal
- Norwegian Institute of Public Health, Oslo, Norway.
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | | | | | | | | | | | | | - Ola B Brynildsrud
- Norwegian Institute of Public Health, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Lefrancq N, Bouchez V, Fernandes N, Barkoff AM, Bosch T, Dalby T, Åkerlund T, Darenberg J, Fabianova K, Vestrheim DF, Fry NK, González-López JJ, Gullsby K, Habington A, He Q, Litt D, Martini H, Piérard D, Stefanelli P, Stegger M, Zavadilova J, Armatys N, Landier A, Guillot S, Hong SL, Lemey P, Parkhill J, Toubiana J, Cauchemez S, Salje H, Brisse S. Global spatial dynamics and vaccine-induced fitness changes of Bordetella pertussis. Sci Transl Med 2022; 14:eabn3253. [PMID: 35476597 DOI: 10.1126/scitranslmed.abn3253] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As with other pathogens, competitive interactions between Bordetella pertussis strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures; however, this has rarely been measured because of inadequate data and analytical tools. We used 3344 sequences from 23 countries to show that, on average, there are 28.1 transmission chains circulating within a subnational region, with the number of chains strongly associated with host population size. It took 5 to 10 years for B. pertussis to be homogeneously distributed throughout Europe, with the same time frame required for the United States. Increased fitness of pertactin-deficient strains after implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of vaccine policy in shifting local diversity of a pathogen that is responsible for 160,000 deaths annually.
Collapse
Affiliation(s)
- Noémie Lefrancq
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Nadia Fernandes
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France
| | - Alex-Mikael Barkoff
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, Netherlands
| | - Tine Dalby
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Thomas Åkerlund
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Jessica Darenberg
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Katerina Fabianova
- National Institute of Public Health, Department of Infectious Diseases Epidemiology, CZ-10000 Prague, Czech Republic
| | - Didrik F Vestrheim
- Norwegian Institute of Public Health, Department of Infectious Disease Control and Vaccine, N-0213 Oslo, Norway
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK.,Immunisation and Countermeasures Division, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Juan José González-López
- University Hospital Vall d'Hebron, Microbiology Department, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, 08193 Barcelona, Spain
| | - Karolina Gullsby
- Centre for Research and Development, Uppsala University/Region Gävleborg, 80187 Gävle, Sweden
| | - Adele Habington
- Molecular Microbiology Laboratory, Children's Health Ireland, Crumlin, D12 N512 Dublin, Ireland
| | - Qiushui He
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Helena Martini
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, IT-00161 Rome, Italy
| | - Marc Stegger
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Jana Zavadilova
- National Institute of Public Health, National Reference Laboratory for Pertussis and Diphtheria, 100 00 Prague, Czech Republic
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France.,Université Paris Cité, Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Simon Cauchemez
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France
| | - Henrik Salje
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| |
Collapse
|
7
|
Zhang J, Zhang D, Wang X, Wei X, Li H. Macrolide susceptibility and molecular characteristics of Bordetella pertussis. J Int Med Res 2022; 50:3000605221078782. [PMID: 35225710 PMCID: PMC8894965 DOI: 10.1177/03000605221078782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To analyse macrolide resistance and molecular characteristics of Bordetella pertussis clinical isolates from western China, and to explore the relationship between macrolide-resistance and genotypes. Methods Susceptibilities of B. pertussis clinical isolates to erythromycin, azithromycin and clarithromycin were determined by epsilometer test (E-test). Isolated strains were sequenced to ascertain the presence of the 23S rRNA gene A2047G mutation. Strains were typed using multilocus antigen sequence typing, multilocus variable-number tandem-repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). Results Of 58 B. pertussis strains isolated in this study, 46 were macrolide-resistant and 12 were macrolide sensitive. All macrolide-resistant strains carried the A2047G mutation and were the prn1/ptxP1/ptxA1/fim3-1/fim2-1 genotype; the MLVA types were MT195 (19/58), MT55 (13/58) and MT104 (14/58), and the PFGE profiles were classified into BpSR23 (17/58) and BpFINR9 (29/58) types. None of the macrolide-sensitive strains carried the A2047G mutation; genotypes were (prn9 or prn2)/ptxP3/ptxA1/fim3-1/fim2-1, and all were MT27. PFGE profiles differed from the macrolide-resistant strains. Conclusions B. pertussis clinical isolates from western China were severely resistant to macrolides. Genotypes differed between macrolide-resistant and macrolide-sensitive strains, and there may be a correlation between acquisition of macrolide resistance and changes in specific molecular types.
Collapse
Affiliation(s)
- Juansheng Zhang
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Diqiang Zhang
- Department of Obstetrics and Gynaecology, Pingchuan District People's Hospital, Baiyin, Gansu Province, China
| | - Xiaoqiang Wang
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Xiaoguang Wei
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Hao Li
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| |
Collapse
|
8
|
Barkoff AM, Knuutila A, Mertsola J, He Q. Evaluation of Anti-PT Antibody Response after Pertussis Vaccination and Infection: The Importance of Both Quantity and Quality. Toxins (Basel) 2021; 13:toxins13080508. [PMID: 34437379 PMCID: PMC8402585 DOI: 10.3390/toxins13080508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Pertussis toxin (PT) is considered the main virulence factor causing whooping cough or pertussis. The protein is widely studied and its composition was revealed and sequenced already during the 1980s. The human immune system creates a good response against PT when measured in quantity. However, the serum anti-PT antibodies wane rapidly, and only a small amount of these antibodies are found a few years after vaccination/infection. Therefore, multiple approaches to study the functionality (quality) of these antibodies, e.g., avidity, neutralizing capacity, and epitope specificity, have been investigated. In addition, the long-term B cell memory (Bmem) to PT is crucial for good protection throughout life. In this review, we summarize the findings from functional PT antibody and Bmem studies. These results are discussed in line with the quantity of serum anti-PT antibodies. PT neutralizing antibodies and anti-PT antibodies with proper avidity are crucial for good protection against the disease, and certain epitopes have been identified to have multiple functions in the protection. Although PT-specific Bmem responses are detectable at least five years after vaccination, long-term surveillance is lacking. Variation of the natural boosting of circulating Bordetella pertussis in communities is an important confounding factor in these memory studies.
Collapse
Affiliation(s)
- Alex-Mikael Barkoff
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
| | - Aapo Knuutila
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
| | - Jussi Mertsola
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Qiushui He
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-40-472-2255
| |
Collapse
|
9
|
Genomic Surveillance and Improved Molecular Typing of Bordetella pertussis Using wgMLST. J Clin Microbiol 2021; 59:JCM.02726-20. [PMID: 33627319 DOI: 10.1128/jcm.02726-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
Multilocus sequence typing (MLST) provides allele-based characterization of bacterial pathogens in a standardized framework. However, classical MLST schemes for Bordetella pertussis, the causative agent of whooping cough, seldom reveal diversity among the small number of gene targets and thereby fail to delineate population structure. To improve the discriminatory power of allele-based molecular typing of B. pertussis, we have developed a whole-genome MLST (wgMLST) scheme from 225 reference-quality genome assemblies. Iterative refinement and allele curation resulted in a scheme of 3,506 coding sequences and covering 81.4% of the B. pertussis genome. This wgMLST scheme was further evaluated with data from a convenience sample of 2,389 B. pertussis isolates sequenced on Illumina instruments, including isolates from known outbreaks and epidemics previously characterized by existing molecular assays, as well as replicates collected from individual patients. wgMLST demonstrated concordance with whole-genome single nucleotide polymorphism (SNP) profiles, accurately resolved outbreak and sporadic cases in a retrospective comparison, and clustered replicate isolates collected from individual patients during diagnostic confirmation. Additionally, a reanalysis of isolates from two statewide epidemics using wgMLST reconstructed the population structures of circulating strains with increased resolution, revealing new clusters of related cases. Comparison with an existing core genome (cgMLST) scheme highlights the stable gene content of this bacterium and forms the initial foundation for necessary standardization. These results demonstrate the utility of wgMLST for improving B. pertussis characterization and genomic surveillance during the current pertussis disease resurgence.
Collapse
|
10
|
Mir-Cros A, Moreno-Mingorance A, Martín-Gómez MT, Codina G, Cornejo-Sánchez T, Rajadell M, Van Esso D, Rodrigo C, Campins M, Jané M, Pumarola T, Fàbrega A, González-López JJ. Population dynamics and antigenic drift of Bordetella pertussis following whole cell vaccine replacement, Barcelona, Spain, 1986-2015. Emerg Microbes Infect 2019; 8:1711-1720. [PMID: 31769735 PMCID: PMC6882445 DOI: 10.1080/22221751.2019.1694395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Among the factors associated with the resurgence of whooping cough, special emphasis has been given to pathogen adaptation after the introduction of the acellular vaccine (ACV). To assess the impact of the vaccine transition strategy from whole-cell vaccine (WCV) to ACV on population dynamics of Bordetella pertussis in Barcelona (Spain), we studied 339 isolates collected from 1986 to 2015 by PFGE and multi-locus variable-number tandem repeat analysis (MLVA). Additionally, allelic variants for the pertussis toxin and its promoter, pertactin, type 3 fimbriae and fimbrial serotyping were assessed to determine its antigenic drift. A shift was observed in the B. pertussis population as well as in its antigenic profile concurrently with the introduction of ACV in Barcelona. Four out of the five most prevalent PFGE profiles were replaced by new profiles following the ACV introduction. MLVA type 27 was the dominant genotype, and its frequency increased from 25% to 79.3% after WCV replacement. Antigen typing demonstrated the emergence of prn2, ptxP3, fim3-2 and a shift from the fimbriae 3 to the fimbriae 2 serotypes after the ACV introduction. Our findings support the presence of population and antigenic dynamic changes in B. pertussis likely driven by the introduction of ACV.
Collapse
Affiliation(s)
- Alba Mir-Cros
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Moreno-Mingorance
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Teresa Martín-Gómez
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gema Codina
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Thais Cornejo-Sánchez
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mireia Rajadell
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diego Van Esso
- Primary Care Health Centre Service 'Muntanya', Catalan Institute of Health, Barcelona, Spain
| | - Carlos Rodrigo
- Department of Paediatrics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mireia Jané
- Public Health Agency of Catalonia, Barcelona, Spain
| | - Tomàs Pumarola
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Fàbrega
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Faculty of Health Sciences, University of Vic - Central University of Catalonia (UVic-UCC), Manresa, Spain
| | - Juan José González-López
- Department of Clinical Microbiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Role of Evolutionary Selection Acting on Vaccine Antigens in the Re-Emergence of Bordetella Pertussis. Diseases 2019; 7:diseases7020035. [PMID: 30995764 PMCID: PMC6630436 DOI: 10.3390/diseases7020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pertussis (“whooping cough”) is a re-emerging disease with increasing incidence among fully vaccinated individuals. We explored the genetic diversity of five Bordetella pertussis proteins used to generate the subunit vaccine across ancestral and newly emergent strains using immunoinformatics and evolutionary selection measurements. The five subunits of pertussis toxin (Ptx1–Ptx5) were highly conserved with regard to sequence, predicted structure, predicted antigenicity, and were under purifying selection. In contrast, the adhesin proteins pertactin (Prn) and filamentous hemagglutinin (FHA) were under statistically significant (p < 0.01) diversifying selection. Most heavily diversified sites of each protein fell within antigenic epitopes, and the functional adhesin motifs were conserved. Protein secondary structure was conserved despite sequence diversity for FHA but was changeable in Prn. These findings suggest that subunit vaccine-derived immunity does not impact Ptx1–Ptx5 but may apply evolutionary pressure to Prn and FHA to undergo diversifying selection. These findings offer further insight into the emergence of vaccine-resistant strains of B. pertussis.
Collapse
|
12
|
Multicenter Clinical Evaluation of the Automated Aries Bordetella Assay. J Clin Microbiol 2019; 57:JCM.01471-18. [PMID: 30518543 DOI: 10.1128/jcm.01471-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
Molecular methods offer superior sensitivity and specificity and reduce testing turnaround time from days to hours for detection of Bordetella pertussis and Bordetella parapertussis In this study, we evaluated the performance of the automated PCR-based Aries Bordetella Assay, which detects both B. pertussis and B. parapertussis directly from nasopharyngeal swab specimens. The limits of detection (LoDs) were 1,800 CFU·ml-1 for B. pertussis and 213 CFU·ml-1 for B. parapertussis The assay detected 16/18 unique B. pertussis/B. parapertussis strains. Of 71 potentially cross-reacting organisms, 5 generated false positives in 1/6 replicates; none of 6 additional Bordetella spp. were erroneously detected. Specimens were stable at 20 to 25°C for at least 10 h, at 4 to 8°C for 10 days, and at temperatures not exceeding -70°C for 6 months. Of 1,052 nasopharyngeal specimens from patients with suspected pertussis, 3.0% (n = 32) were B. pertussis positive and 0.2% (n = 2) were B. parapertussis positive. Combining these data with Aries Bordetella Assay data from 57 nasopharyngeal samples with previously confirmed B. pertussis or B. parapertussis data and with data from 50 contrived B. parapertussis samples, the proportions of positive and negative agreement of the respective Aries assays with the reference assays were 97.1% and 99.0% for B. pertussis and 100% and 99.7% for B. parapertussis The Aries Bordetella Assay provides accurate detection and distinction of B. pertussis and B. parapertussis infections within 2 h. (This study has been registered at ClinicalTrials.gov under registration no. NCT02862262.).
Collapse
|
13
|
da Silva Antunes R, Babor M, Carpenter C, Khalil N, Cortese M, Mentzer AJ, Seumois G, Petro CD, Purcell LA, Vijayanand P, Crotty S, Pulendran B, Peters B, Sette A. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J Clin Invest 2018; 128:3853-3865. [PMID: 29920186 DOI: 10.1172/jci121309] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
In the mid-1990s, whole-cell pertussis (wP) vaccines were associated with local and systemic adverse events that prompted their replacement with acellular pertussis (aP) vaccines in many high-income countries. In the past decade, rates of pertussis disease have increased in children receiving only aP vaccines. We compared the immune responses to aP boosters in individuals who received their initial doses with either wP or aP vaccines using activation-induced marker (AIM) assays. Specifically, we examined pertussis-specific memory CD4+ T cell responses ex vivo, highlighting a type 2/Th2 versus type 1/Th1 and Th17 differential polarization as a function of childhood vaccination. Remarkably, after a contemporary aP booster, cells from donors originally primed with aP were (a) associated with increased IL-4, IL-5, IL-13, IL-9, and TGF-β and decreased IFN-γ and IL-17 production, (b) defective in their ex vivo capacity to expand memory cells, and (c) less capable of proliferating in vitro. These differences appeared to be T cell specific, since equivalent increases of antibody titers and plasmablasts after aP boost were seen in both groups. In conclusion, our data suggest that there are long-lasting effects and differences in polarization and proliferation of T cell responses in adults originally vaccinated with aP compared with those that initially received wP, despite repeated acellular boosters.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mariana Babor
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Natalie Khalil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mario Cortese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Lisa A Purcell
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| |
Collapse
|
14
|
Zomer A, Otsuka N, Hiramatsu Y, Kamachi K, Nishimura N, Ozaki T, Poolman J, Geurtsen J. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines. Microb Genom 2018; 4. [PMID: 29771235 PMCID: PMC5994715 DOI: 10.1099/mgen.0.000180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, has experienced a resurgence in the past 15 years, despite the existence of both whole-cell and acellular vaccines. Here, we performed whole genome sequencing analysis of 149 clinical strains, provided by the National Institute of Infectious Diseases (NIID), Japan, isolated in 1982–2014, after Japan became the first country to adopt acellular vaccines against B. pertussis. Additionally, we sequenced 39 strains provided by the Konan Kosei Hospital in Aichi prefecture, Japan, isolated in 2008–2013. The genome sequences afforded insight into B. pertussis genome variability and population dynamics in Japan, and revealed that the B. pertussis population in Japan was characterized by two major clades that divided more than 40 years ago. The pertactin gene was disrupted in about 20 % of the 149 NIID isolates, by either a deletion within the signal sequence (ΔSS) or the insertion of IS element IS481 (prn :: IS481). Phylogeny suggests that the parent clones for these isolates originated in Japan. Divergence dating traced the first generation of the pertactin-deficient mutants in Japan to around 1990, and indicated that strains containing the alternative pertactin allele prn2 may have appeared in Japan around 1974. Molecular clock data suggested that observed fluctuations in B. pertussis population size may have coincided with changes in vaccine usage in the country. The continuing failure to eradicate the disease warrants an exploration of novel vaccine compositions.
Collapse
Affiliation(s)
- Aldert Zomer
- 1Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nao Otsuka
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yukihiro Hiramatsu
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,†Present address: Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazunari Kamachi
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Naoko Nishimura
- 3Department of Pediatrics, Konan Kosei Hospital, Takaya-cho, Konan, Aichi, Japan
| | - Takao Ozaki
- 3Department of Pediatrics, Konan Kosei Hospital, Takaya-cho, Konan, Aichi, Japan
| | - Jan Poolman
- 4Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Jeroen Geurtsen
- 4Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
15
|
Surveillance of Circulating Bordetella pertussis Strains in Europe during 1998 to 2015. J Clin Microbiol 2018; 56:JCM.01998-17. [PMID: 29491017 DOI: 10.1128/jcm.01998-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
One reason for increased pertussis incidence is the adaptation of Bordetella pertussis to vaccine-induced immunity by modulating its genomic structure. This study, EUpert IV, includes 265 isolates collected from nine European countries during 2012 to 2015 (n = 265) and compares the results to previous EUpert I to III studies (1998 to 2009). The analyses included genotyping, serotyping, pulsed-field gel electrophoresis (PFGE), and multilocus variable-number tandem-repeat analysis (MLVA). Genotyping results showed only small variations among the common virulence genes of B. pertussis The frequencies of serotypes Fim2 and Fim3 varied among the four collections. Genomic analyses showed that MLVA type 27 increased to 80% between the periods of 1998 to 2001 and 2012 to 2015. Two PFGE profiles, BpSR3 (29.4%) and BpSR10 (27.2%), constituted more than 50% of the circulating isolates in the present collection. Our study indicates that the European B. pertussis population is changing and became more homogenous after the introduction of acellular pertussis vaccines.
Collapse
|
16
|
Screening and Genomic Characterization of Filamentous Hemagglutinin-Deficient Bordetella pertussis. Infect Immun 2018; 86:IAI.00869-17. [PMID: 29358336 DOI: 10.1128/iai.00869-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure.
Collapse
|
17
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2018; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
18
|
The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement. J Bacteriol 2017; 199:JB.00806-16. [PMID: 28167525 DOI: 10.1128/jb.00806-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/03/2017] [Indexed: 01/08/2023] Open
Abstract
Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology.IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-encoding genes, which otherwise exhibit little nucleotide sequence diversity. By comparing the complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology.
Collapse
|
19
|
van Twillert I, Bonačić Marinović AA, Kuipers B, van Gaans-van den Brink JAM, Sanders EAM, van Els CACM. Impact of age and vaccination history on long-term serological responses after symptomatic B. pertussis infection, a high dimensional data analysis. Sci Rep 2017; 7:40328. [PMID: 28091579 PMCID: PMC5238437 DOI: 10.1038/srep40328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
Capturing the complexity and waning patterns of co-occurring immunoglobulin (Ig) responses after clinical B. pertussis infection may help understand how the human host gradually loses protection against whooping cough. We applied bi-exponential modelling to characterise and compare B. pertussis specific serological dynamics in a comprehensive database of IgG, IgG subclass and IgA responses to Ptx, FHA, Prn, Fim2/3 and OMV antigens of (ex-) symptomatic pertussis cases across all age groups. The decay model revealed that antigen type and age group were major factors determining differences in levels and kinetics of Ig (sub) classes. IgG-Ptx waned fastest in all age groups, while IgA to Ptx, FHA, Prn and Fim2/3 decreased fast in the younger but remained high in older (ex-) cases, indicating an age-effect. While IgG1 was the main IgG subclass in response to most antigens, IgG2 and IgG3 dominated the anti-OMV response. Moreover, vaccination history plays an important role in post-infection Ig responses, demonstrated by low responsiveness to Fim2/3 in unvaccinated elderly and by elevated IgG4 responses to multiple antigens only in children primed with acellular pertussis vaccine (aP). This work highlights the complexity of the immune response to this re-emerging pathogen and factors determining its Ig quantity and quality.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Axel A Bonačić Marinović
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Immunology and Infectious Diseases, Wilhelmina Childrens Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
20
|
Emerging Bordetella pertussis Strains Induce Enhanced Signaling of Human Pattern Recognition Receptors TLR2, NOD2 and Secretion of IL-10 by Dendritic Cells. PLoS One 2017; 12:e0170027. [PMID: 28076445 PMCID: PMC5226795 DOI: 10.1371/journal.pone.0170027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/26/2016] [Indexed: 01/04/2023] Open
Abstract
Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity. Nonetheless, studies on the effects of these bacterial changes on the immune response are limited. Here, we characterize innate immune recognition and activation by a collection of genetically diverse B. pertussis strains isolated from Dutch pertussis patients before and after the introduction of the pertussis vaccines. For this purpose, we used HEK-Blue cells transfected with human pattern recognition receptors TLR2, TLR4, NOD2 and NOD1 as a high throughput system for screening innate immune recognition of more than 90 bacterial strains. Physiologically relevant human monocyte derived dendritic cells (moDC), purified from peripheral blood of healthy donors were also used. Findings indicate that, in addition to inducing TLR2 and TLR4 signaling, all B. pertussis strains activate the NOD-like receptor NOD2 but not NOD1. Furthermore, we observed a significant increase in TLR2 and NOD2, but not TLR4, activation by strains circulating after the introduction of pertussis vaccines. When using moDC, we observed that the recently circulating strains induced increased activation of these cells with a dominant IL-10 production. In addition, we observed an increased expression of surface markers including the regulatory molecule PD-L1. Expression of PD-L1 was decreased upon blocking TLR2. These in vitro findings suggest that emerging B. pertussis strains have evolved to dampen the vaccine-induced inflammatory response, which would benefit survival and transmission of this pathogen. Understanding how this disease has resurged in a highly vaccinated population is crucial for the design of improved vaccines against pertussis.
Collapse
|
21
|
Lapidot R, Gill CJ. The Pertussis resurgence: putting together the pieces of the puzzle. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2016; 2:26. [PMID: 28883970 PMCID: PMC5530967 DOI: 10.1186/s40794-016-0043-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/23/2016] [Indexed: 01/13/2023]
Abstract
Pertussis incidence is rising in almost every country where acellular pertussis (aP) vaccines have been introduced, and is occurring across all age groups from infancy to adulthood. The key question is why? While several known factors such as waning of immunity, detection bias due to more sensitive tests and higher awareness of the disease among practitioners, and evolutionary shifts among B. pertussis all likely contribute, collectively, these do not adequately explain the existing epidemiologic data, suggesting that additional factors also contribute. Key amongst these is recent data indicating that the immune responses induced by aP vaccines differ fundamentally from those induced by the whole cell pertussis (wP) vaccines, and do not lead to mucosal immunity. If so, it appears likely that differences in how the two categories of vaccines work, may be pivotal to our overall understanding of the pertussis resurgence.
Collapse
Affiliation(s)
- Rotem Lapidot
- Department of Pediatric Infectious Diseases, Boston Medical Center, Boston, MA USA
| | - Christopher J Gill
- Department of Global Health, Boston University School of Public Health, Boston, MA USA.,Center for Global Health and Development, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118 USA
| |
Collapse
|
22
|
Complete Genome Sequences of Bordetella pertussis Vaccine Reference Strains 134 and 10536. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00979-16. [PMID: 27635001 PMCID: PMC5026441 DOI: 10.1128/genomea.00979-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccine formulations and vaccination programs against whooping cough (pertussis) vary worldwide. Here, we report the complete genome sequences of two divergent Bordetella pertussis reference strains used in the production of pertussis vaccines.
Collapse
|
23
|
Bailon H, León-Janampa N, Padilla C, Hozbor D. Increase in pertussis cases along with high prevalence of two emerging genotypes of Bordetella pertussis in Perú, 2012. BMC Infect Dis 2016; 16:422. [PMID: 27530444 PMCID: PMC4988040 DOI: 10.1186/s12879-016-1700-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
Background As has occurred in many regions worldwide, in 2012 the incidence of pertussis increased in Perú. This epidemiologic situation has been associated with a waning vaccine-induced immunity and the adaptation of Bordetella pertussis to vaccine-induced immunity along with improved diagnostic methods. Methods The study comprised a total of 840 pertussis-suspected cases reported in Perú during 2012. We summarize here the distribution of pertussis cases according to age and immunization status along with the immunization-coverage rate. Laboratory diagnosis was performed by culture test and real-time polymerase-chain reaction (PCR). B. pertussis bacteria recovered from infected patients were characterized by pulsed-field gel electrophoresis (PFGE), and the DNA sequencing of the pertussis-toxin (promoter and subunit A), pertactin, and fimbriae (fim2 and fim3) genes. Results From the total pertussis-suspected cases, 191 (22.7 %) infections were confirmed by real-time PCR and 18 through cultivation of B. pertussis (2.1 %), while one infection of B. parapertussis (0.11 %) was also detected by culture. Pertussis was significantly higher in patients that had had 0–3 vaccine doses (pentavalent vaccine alone) than in those who had had 4–5 vaccine doses (pentavalent plus DwPT boosters) at 94.3 vs. 5.7 %, respectively (p < 0.00001). The relative risk (RR) for patients with 4–5 doses compared to those with fewer than 4 doses or no dose was 0.23 (95 % Confidence Interval: 0.11–0.44), while the vaccine effectiveness was 77 % and coverage 50.5 %. Genetic analysis of B. pertussis isolates from different Peruvian regions detected two clonal groups as identified by PFGE. Those two groups corresponded to the B. pertussis genotypes emerging worldwide ptxP3-ptxA1-prn2 or 9-fim3-1 and ptxP3-ptxA1-prn2 or 9-fim3-2. Conclusions Two emerging B. pertussis genotypes similar to isolates involved in worldwide epidemics were detected in Perú. Low vaccine coverage (<50 %) and genetic divergence between the vaccine-producing strain and the local isolates could contribute to this pertussal epidemic.
Collapse
Affiliation(s)
- H Bailon
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Ministerio de Salud, Lima, Peru.
| | - N León-Janampa
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Ministerio de Salud, Lima, Peru
| | - C Padilla
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Ministerio de Salud, Lima, Peru
| | - D Hozbor
- Departamento de Ciencias Biológicas, Laboratorio VacSal del Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| |
Collapse
|
24
|
Sealey KL, Belcher T, Preston A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. INFECTION GENETICS AND EVOLUTION 2016; 40:136-143. [PMID: 26932577 DOI: 10.1016/j.meegid.2016.02.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 11/28/2022]
Abstract
Whooping cough, or pertussis, is resurgent in many countries world-wide. This is linked to switching from the use of whole cell vaccines to acellular vaccines in developed countries. Current evidence suggests that this has resulted in the earlier waning of vaccine-induced immunity, an increase in asymptomatic infection with concomitant increases in transmission and increased selection pressure for Bordetellapertussis variants that are better able to evade vaccine-mediated immunity than older isolates. This review discusses recent findings in B. pertussis epidemiology and evolution in the light of pertussis resurgence, and highlights the important role for genomics-based studies in monitoring B. pertussis adaptation.
Collapse
Affiliation(s)
- Katie L Sealey
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Thomas Belcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Andrew Preston
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
25
|
Preston A. The role of B. pertussis vaccine antigen gene variants in pertussis resurgence and possible consequences for vaccine development. Hum Vaccin Immunother 2016; 12:1274-6. [PMID: 26889694 DOI: 10.1080/21645515.2015.1137402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whooping cough, or pertussis, caused by Bordetella pertussis is considered resurgent in a number of countries world-wide, despite continued high level vaccine coverage. Among a number of causes for this that have been proposed, is the emergence of B. pertussis strains expressing variants of the antigens contained in acellular pertussis vaccines; i.e. the evolution of B. pertussis toward vaccine escape. This commentary highlights the contradictory nature of evidence for this but also discusses the importance of understanding the role of B. pertussis adaptation to vaccine-mediated immune selection pressures for vaccine-mediated pertussis control strategies.
Collapse
Affiliation(s)
- Andrew Preston
- a Milner Center for Evolution and Department of Biology and Biochemistry, University of Bath , Bath , UK
| |
Collapse
|
26
|
Safarchi A, Octavia S, Wu SZ, Kaur S, Sintchenko V, Gilbert GL, Wood N, McIntyre P, Marshall H, Keil AD, Lan R. Genomic dissection of Australian Bordetella pertussis isolates from the 2008-2012 epidemic. J Infect 2016; 72:468-77. [PMID: 26826518 DOI: 10.1016/j.jinf.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Despite high pertussis vaccination coverage, Australia experienced a prolonged epidemic in 2008-2012. The predominant Bordetella pertussis genotype harboured pertussis toxin promoter allele, ptxP3, and pertactin gene allele, prn2. The emergence and expansion of prn non-expressing isolates (Prn negative), were also observed. We aimed to investigate the microevolution and genomic diversity of epidemic B. pertussis isolates. METHODS We sequenced 22 B. pertussis isolates collected in 2008-2012 from two states of Australia which are geographically widely separated. Ten of the 22 were Prn negative isolates with three different modes of silencing of prn (prn::IS481F, prn::IS481R and prn::IS1002). Five pre-epidemic isolates were also sequenced for comparison. RESULTS Five single nucleotide polymorphisms were common in the epidemic isolates and differentiated them from pre-epidemic isolates. The Australian epidemic isolates can be divided into five lineages (EL1-EL5) with EL1 containing only Prn negative isolates. Comparison with global isolates showed that three lineages remained geographically and temporally distinct whereas two lineages mixed with isolates from 2012 UK outbreak. CONCLUSION Our results suggest significant diversification and the microevolution of B. pertussis within the 2008-2012 Australian epidemic.
Collapse
Affiliation(s)
- Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sunny Z Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology - Public Health, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, New South Wales, Australia
| | - Gwendolyn L Gilbert
- Centre for Infectious Diseases and Microbiology - Public Health, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, New South Wales, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases (NCIRS), The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Department of Microbiology and Infectious Diseases, The Children's Hospital at Westmead, New South Wales, Australia
| | - Peter McIntyre
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases (NCIRS), The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Department of Microbiology and Infectious Diseases, The Children's Hospital at Westmead, New South Wales, Australia
| | - Helen Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital and School of Medicine and Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - Anthony D Keil
- Department of Microbiology, PathWest Laboratory Medicine WA, Princess Margaret Hospital for Children, Perth, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
27
|
The relationship between Bordetella pertussis genotype and clinical severity in Australian children with pertussis. J Infect 2015; 72:171-8. [PMID: 26675318 DOI: 10.1016/j.jinf.2015.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Changes in circulating Bordetella pertussis genotypes, including a novel pertussis toxin promoter ptxP3 allele and absence of pertactin (Prn) antigen, have been reported from several countries but limited data on relative severity are available. We compared markers of disease severity in children with B. pertussis infection due to strains of differing genotype. METHODS Culture confirmed cases presenting to tertiary paediatric hospitals in three Australian states between 2008 and 2012 were classified as severe if they required a hospital stay greater than seven days, were admitted to intensive care, or if death occurred. Associations between age, vaccination, genotype and severity were assessed. RESULTS Of 199 pertussis cases, 81 (41%) were <3 months, including 32/39 (82%) of severe cases. The proportion of isolates from these cases that were Prn deficient increased markedly between 2008 and 2012. Of B. pertussis isolates, the proportion considered severe was similar for Prn positive (27/128, 21%) and Prn deficient (12/71, 17%) cases but only 1/22 (4.5%) of non ptxP3 cases were severe versus 38/177 (21.4%) ptxP3 positive. Adjusting for ptxP type, vaccination status and age, disease severity was not significantly associated with Prn status (RRA: 0.95, [0.57-1.56]; p = 0.83). CONCLUSIONS In children, we found no relationship between Prn status and markers of severe pertussis. An increased proportion of severe disease in isolates with the ptxP3 allele was observed.
Collapse
|
28
|
Bart MJ, van der Heide HGJ, Zeddeman A, Heuvelman K, van Gent M, Mooi FR. Complete Genome Sequences of 11 Bordetella pertussis Strains Representing the Pandemic ptxP3 Lineage. GENOME ANNOUNCEMENTS 2015; 3:e01394-15. [PMID: 26607899 PMCID: PMC4661318 DOI: 10.1128/genomea.01394-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 01/31/2023]
Abstract
Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin.
Collapse
Affiliation(s)
- Marieke J Bart
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han G J van der Heide
- Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Anne Zeddeman
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees Heuvelman
- Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein van Gent
- Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Frits R Mooi
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Infectious Diseases Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
29
|
Crespo I, Toledo D, Soldevila N, Jordán I, Solano R, Castilla J, Caylà JA, Godoy P, Muñoz-Almagro C, Domínguez Á. Characteristics of Hospitalized Cases of Pertussis in Catalonia and Navarra, Two Regions in the North of Spain. PLoS One 2015; 10:e0139993. [PMID: 26440655 PMCID: PMC4595087 DOI: 10.1371/journal.pone.0139993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/21/2015] [Indexed: 11/18/2022] Open
Abstract
Pertussis causes a large number of cases and hospitalizations in Catalonia and Navarra. We made a study of household cases of pertussis during 2012 and 2013 in order to identify risk factors for hospitalization in pertussis cases. Each primary case reported triggered the study of their contacts. Close contacts at home and people who were in contact for >2 hours during the transmission period of cases were included. The adjusted OR and 95% confidence intervals (CI) was calculated using logistic regression. A total of 1124 pertussis cases were detected, of which 14.9% were hospitalized. Inspiratory whoop (aOR: 1.64; CI: 1.02-2.65), apnoea (aOR: 2.47; CI: 1.51-4.03) and cyanosis (aOR: 15.51; CI: 1.87-128.09) were more common in hospitalized than in outpatient cases. Hospitalization occurred in 8.7% of correctly-vaccinated cases, 41.1% of non-vaccinated cases and 9.4% of partially-vaccinated cases. In conclusion, inspiratory whoop, apnoea and cyanosis were associated factors to hospitalization while vaccination reduced hospitalizations due to pertussis.
Collapse
Affiliation(s)
- Inma Crespo
- CIBER Epidemiology and Public Health. Barcelona, Spain
- Public Health Department, University of Barcelona, Barcelona, Spain
- * E-mail:
| | - Diana Toledo
- Public Health Department, University of Barcelona, Barcelona, Spain
- Public Health Agency, Barcelona, Spain
| | - Núria Soldevila
- CIBER Epidemiology and Public Health. Barcelona, Spain
- Public Health Department, University of Barcelona, Barcelona, Spain
| | - Iolanda Jordán
- Paediatric Intensive Care Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Rubén Solano
- CIBER Epidemiology and Public Health. Barcelona, Spain
- Public Health Department, University of Barcelona, Barcelona, Spain
- Public Health Agency, Barcelona, Spain
| | - Jesús Castilla
- CIBER Epidemiology and Public Health. Barcelona, Spain
- Public Health Institute, Navarra Institute for Health Research, Pamplona, Spain
| | - Joan A. Caylà
- CIBER Epidemiology and Public Health. Barcelona, Spain
- Public Health Agency, Barcelona, Spain
| | - Pere Godoy
- CIBER Epidemiology and Public Health. Barcelona, Spain
- Agency of Public Health of Catalonia, Barcelona, Spain
| | | | - Ángela Domínguez
- CIBER Epidemiology and Public Health. Barcelona, Spain
- Public Health Department, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
30
|
Bouchez V, Hegerle N, Strati F, Njamkepo E, Guiso N. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates. Vaccines (Basel) 2015; 3:751-70. [PMID: 26389958 PMCID: PMC4586476 DOI: 10.3390/vaccines3030751] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023] Open
Abstract
Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN), were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA) or pertussis toxin (PT) deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE) cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.
Collapse
Affiliation(s)
- Valérie Bouchez
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Nicolas Hegerle
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Francesco Strati
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Elisabeth Njamkepo
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Nicole Guiso
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| |
Collapse
|
31
|
Belcher T, Preston A. Bordetella pertussis evolution in the (functional) genomics era. Pathog Dis 2015; 73:ftv064. [PMID: 26297914 DOI: 10.1093/femspd/ftv064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 11/12/2022] Open
Abstract
The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps.
Collapse
Affiliation(s)
- Thomas Belcher
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Andrew Preston
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
32
|
Xu Y, Liu B, Gröndahl-Yli-Hannuksila K, Tan Y, Feng L, Kallonen T, Wang L, Peng D, He Q, Wang L, Zhang S. Whole-genome sequencing reveals the effect of vaccination on the evolution of Bordetella pertussis. Sci Rep 2015; 5:12888. [PMID: 26283022 PMCID: PMC4539551 DOI: 10.1038/srep12888] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022] Open
Abstract
Herd immunity can potentially induce a change of circulating viruses. However, it remains largely unknown that how bacterial pathogens adapt to vaccination. In this study, Bordetella pertussis, the causative agent of whooping cough, was selected as an example to explore possible effect of vaccination on the bacterial pathogen. We sequenced and analysed the complete genomes of 40 B. pertussis strains from Finland and China, as well as 11 previously sequenced strains from the Netherlands, where different vaccination strategies have been used over the past 50 years. The results showed that the molecular clock moved at different rates in these countries and in distinct periods, which suggested that evolution of the B. pertussis population was closely associated with the country vaccination coverage. Comparative whole-genome analyses indicated that evolution in this human-restricted pathogen was mainly characterised by ongoing genetic shift and gene loss. Furthermore, 116 SNPs were specifically detected in currently circulating ptxP3-containing strains. The finding might explain the successful emergence of this lineage and its spread worldwide. Collectively, our results suggest that the immune pressure of vaccination is one major driving force for the evolution of B. pertussis, which facilitates further exploration of the pathogenicity of B. pertussis.
Collapse
Affiliation(s)
- Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes of Food and Drug Control, Beijing 100050, P. R. China
| | - Bin Liu
- 1] TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, P. R. China
| | | | - Yajun Tan
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes of Food and Drug Control, Beijing 100050, P. R. China
| | - Lu Feng
- 1] TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, P. R. China
| | - Teemu Kallonen
- Department of Medical Microbiology and Immunology, Turku University, Turku 20520, Finland
| | - Lichan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes of Food and Drug Control, Beijing 100050, P. R. China
| | - Ding Peng
- 1] TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, P. R. China
| | - Qiushui He
- 1] Department of Medical Microbiology and Immunology, Turku University, Turku 20520, Finland [2] Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku 20520, Finland [3] Department of Medical Microbiology, Capital Medical University, Beijing 100069, P. R. China
| | - Lei Wang
- 1] TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, Tianjin 300457, P. R. China [3] State Key Laboratory of Medicinal Chemical Biology, Nankai University 300457, Tianjin, P. R. China
| | - Shumin Zhang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes of Food and Drug Control, Beijing 100050, P. R. China
| |
Collapse
|
33
|
Gaillard ME, Bottero D, Moreno G, Rumbo M, Hozbor D. Strategies and new developments to control pertussis, an actual health problem. Pathog Dis 2015; 73:ftv059. [PMID: 26260328 DOI: 10.1093/femspd/ftv059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of this article is to describe the current epidemiological situation of pertussis, as well as different short-term strategies that have been implemented to alleviate this threat. The state of the art of the development of new vaccines that are expected to provide long-lasting immunity against pertussis was also included.
Collapse
Affiliation(s)
- María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| | - Griselda Moreno
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, UNLP 47 y 115 (1900) La Plata, Argentina
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, UNLP 47 y 115 (1900) La Plata, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| |
Collapse
|
34
|
Wagner B, Melzer H, Freymüller G, Stumvoll S, Rendi-Wagner P, Paulke-Korinek M, Repa A, Mooi FR, Kollaritsch H, Mittermayer H, Kessler HH, Stanek G, Steinborn R, Duchêne M, Wiedermann U. Genetic Variation of Bordetella pertussis in Austria. PLoS One 2015; 10:e0132623. [PMID: 26182210 PMCID: PMC4504479 DOI: 10.1371/journal.pone.0132623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32), Linz (n = 63) and Graz (n = 15) by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis) (n = 77), by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin) gene (n = 110), and by amplification refractory mutation system quantitative PCR (ARMS-qPCR) (n = 110) to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB), a fimbrial adhesin (fimD), tracheal colonisation factor (tcfA), and the virulence sensor protein (bvgS). Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517). The major part of the samples (93%) displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.
Collapse
Affiliation(s)
- Birgit Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Helen Melzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Astellas Pharma, Vienna, Austria
| | - Georg Freymüller
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Sabine Stumvoll
- Department of Hygiene, Microbiology and Tropical Medicine, Elisabethinen Hospital, Linz, Austria
- analyse BioLab, Linz, Austria
| | - Pamela Rendi-Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Federal Ministry of Health, Vienna, Austria
| | - Maria Paulke-Korinek
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Federal Ministry of Health, Vienna, Austria
| | - Andreas Repa
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Frits R. Mooi
- Centre for Infectious Diseases Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Herwig Kollaritsch
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Helmut Mittermayer
- Department of Hygiene, Microbiology and Tropical Medicine, Elisabethinen Hospital, Linz, Austria
- analyse BioLab, Linz, Austria
| | - Harald H. Kessler
- Department of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Abstract
BACKGROUND Bordetella pertussis infection causes considerable morbidity, even in countries with high vaccination coverage. Surveillance of pertussis is usually passive and based on mandatory reporting. We assessed the epidemiologic and clinical characteristics of pertussis cases detected by passive or enhanced surveillance. METHODS A prospective population-based study was carried out from January 2012 to December 2013 in Catalonia and Navarre, 2 Spanish regions with a total population of 8.2 million. For each confirmed case, variables of age, sex, clinical symptoms, laboratory results and vaccination status were investigated. Associations between the variables studied and the type of surveillance were assessed by odds ratio (OR) and its 95% confidence interval (CI). Logistic regression was used to estimate adjusted OR (aOR). RESULTS In children <18 years of age, passive surveillance was the most important source of detection (95.7% in <1 year). In children 5-10 years of age, passive surveillance detected 67.5% of cases. In those ≥18 years, enhanced surveillance was the most frequent source of case detection (82.5%). Inspiratory whoop (aOR: 1.94; 95% CI: 1.40-2.70), apnea (aOR: 1.92; 95% CI: 1.28-2.87) and posttussive vomiting (aOR: 1.43; 95% CI: 1.04-1.96) were symptoms included in the clinical case definition that were associated with passive surveillance. CONCLUSIONS Underreporting of symptomatic cases is important not only in adults, but also in children >1 year of age and suggests that providing clinics with free, fast laboratory diagnostic tests, together with enhanced surveillance of family contacts of any age is necessary to better determine existing cases. Enhanced surveillance may be helpful to better understand transmission patterns in the family and in the community.
Collapse
|
36
|
Mooi FR, Zeddeman A, van Gent M. The pertussis problem: classical epidemiology and strain characterization should go hand in hand. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2015. [DOI: 10.1016/j.jpedp.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Mooi FR, Zeddeman A, van Gent M. The pertussis problem: classical epidemiology and strain characterization should go hand in hand. J Pediatr (Rio J) 2015; 91:315-7. [PMID: 25704450 DOI: 10.1016/j.jped.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Frits R Mooi
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands.
| | - Anne Zeddeman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Marjolein van Gent
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
38
|
Barnett TC, Lim JY, Soderholm AT, Rivera-Hernandez T, West NP, Walker MJ. Host-pathogen interaction during bacterial vaccination. Curr Opin Immunol 2015; 36:1-7. [PMID: 25966310 DOI: 10.1016/j.coi.2015.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/30/2022]
Abstract
Vaccines have been developed and deployed against several important bacterial pathogens of humans, including Neisseria meningitidis, Bordetella pertussis, Streptococcus pneumoniae and Mycobacterium tuberculosis. These vaccines are generally considered a successful public health measure and are effective at controlling disease symptoms and/or burden. However, a troubling consequence of recent vaccination programs has been the selection of vaccine escape mutants, whereby the pathogen displays a different repertoire of immune targets than those represented in the vaccine formulation. To address these issues of antigenic variation and bacterial evolution, continued and sustained efforts in epidemiological surveillance, vaccine development/formulation research, and understanding of the host-pathogen interaction are required.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jin Yan Lim
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Amelia T Soderholm
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
39
|
Lopalco PL, DeStefano F. The complementary roles of Phase 3 trials and post-licensure surveillance in the evaluation of new vaccines. Vaccine 2015; 33:1541-8. [PMID: 25444788 PMCID: PMC4596394 DOI: 10.1016/j.vaccine.2014.10.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 10/24/2014] [Indexed: 12/11/2022]
Abstract
Vaccines have led to significant reductions in morbidity and saved countless lives from many infectious diseases and are one of the most important public health successes of the modern era. Both vaccines' effectiveness and safety are keys for the success of immunisation programmes. The role of post-licensure surveillance has become increasingly recognised by regulatory authorities in the overall vaccine development process. Safety, purity, and effectiveness of vaccines are carefully assessed before licensure, but some safety and effectiveness aspects need continuing monitoring after licensure; Post-marketing activities are a necessary complement to pre-licensure activities for monitoring vaccine quality and to inform public health programmes. In the recent past, the availability of large databases together with data-mining and cross-linkage techniques have significantly improved the potentialities of post-licensure surveillance. The scope of this review is to present challenges and opportunities offered by vaccine post-licensure surveillance. While pre-licensure activities form the foundation for the development of effective and safe vaccines, post-licensure monitoring and assessment, are necessary to assure that vaccines are effective and safe when translated in real world settings. Strong partnerships and collaboration at an international level between different stakeholders is necessary for finding and optimally allocating resources and establishing robust post-licensure processes.
Collapse
Affiliation(s)
- Pier Luigi Lopalco
- European Centre for Disease Prevention and Control (ECDC), SE-171 83 Stockholm, Sweden.
| | - Frank DeStefano
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
40
|
Studying Bordetella pertussis populations by use of SNPeX, a simple high-throughput single nucleotide polymorphism typing method. J Clin Microbiol 2015; 53:838-46. [PMID: 25568442 DOI: 10.1128/jcm.02995-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large outbreaks of pertussis occur despite vaccination. A first step in the analyses of outbreaks is strain typing. However, the typing of Bordetella pertussis, the causative agent of pertussis, is problematic because the available assays are insufficiently discriminatory, not unequivocal, time-consuming, and/or costly. Here, we describe a single nucleotide primer extension assay for the study of B. pertussis populations, SNPeX (single nucleotide primer extension), which addresses these problems. The assay is based on the incorporation of fluorescently labeled dideoxynucleotides (ddNTPs) at the 3' end of allele-specific poly(A)-tailed primers and subsequent analysis with a capillary DNA analyzer. Each single nucleotide polymorphism (SNP) primer has a specific length, and as a result, up to 20 SNPs can be determined in one SNPeX reaction. Importantly, PCR amplification of target DNA is not required. We selected 38 SNPeX targets from the whole-genome sequencing data of 74 B. pertussis strains collected from across the world. The SNPeX-based phylogenetic trees preserved the general tree topology of B. pertussis populations based on whole-genome sequencing, with a minor loss of details. We envisage a strategy whereby SNP types (SnpTs) are quickly identified with the SNPeX assay during an outbreak, followed by whole-genome sequencing (WGS) of a limited number of isolates representing predominant SnpTs and the incorporation of novel SNPs in the SNPeX assay. The flexibility of the SNPeX assay allows the method to evolve along with the pathogen, making it a promising method for studying outbreaks of B. pertussis and other pathogens.
Collapse
|
41
|
Complete Genome Sequences of Bordetella pertussis Isolates B1917 and B1920, Representing Two Predominant Global Lineages. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01301-14. [PMID: 25540342 PMCID: PMC4276820 DOI: 10.1128/genomea.01301-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella pertussis is the causative agent of pertussis, a disease which has resurged despite vaccination. We report the complete, annotated genomes of isolates B1917 and B1920, representing two lineages predominating globally in the last 50 years. The B1917 lineage has been associated with the resurgence of pertussis in the 1990s.
Collapse
|
42
|
van Gent M, Heuvelman CJ, van der Heide HG, Hallander HO, Advani A, Guiso N, Wirsing von Kőnig CH, Vestrheim DF, Dalby T, Fry NK, Pierard D, Detemmerman L, Zavadilova J, Fabianova K, Logan C, Habington A, Byrne M, Lutyńska A, Mosiej E, Pelaz C, Gröndahl-Yli-Hannuksela K, Barkoff AM, Mertsola J, Economopoulou A, He Q, Mooi FR. Analysis of Bordetella pertussis clinical isolates circulating in European countries during the period 1998-2012. Eur J Clin Microbiol Infect Dis 2014; 34:821-30. [PMID: 25527446 PMCID: PMC4365279 DOI: 10.1007/s10096-014-2297-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Despite more than 50 years of vaccination, pertussis is still an endemic disease, with regular epidemic outbreaks. With the exception of Poland, European countries have replaced whole-cell vaccines (WCVs) by acellular vaccines (ACVs) in the 1990s. Worldwide, antigenic divergence in vaccine antigens has been found between vaccine strains and circulating strains. In this work, 466 Bordetella pertussis isolates collected in the period 1998–2012 from 13 European countries were characterised by multi-locus antigen sequence typing (MAST) of the pertussis toxin promoter (ptxP) and of the genes coding for proteins used in the ACVs: pertussis toxin (Ptx), pertactin (Prn), type 2 fimbriae (Fim2) and type 3 fimbriae (Fim3). Isolates were further characterised by fimbrial serotyping, multi-locus variable-number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). The results showed a very similar B. pertussis population for 12 countries using ACVs, while Poland, which uses a WCV, was quite distinct, suggesting that ACVs and WCVs select for different B. pertussis populations. This study forms a baseline for future studies on the effect of vaccination programmes on B. pertussis populations.
Collapse
Affiliation(s)
- M van Gent
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sealey KL, Harris SR, Fry NK, Hurst LD, Gorringe AR, Parkhill J, Preston A. Genomic Analysis of Isolates From the United Kingdom 2012 Pertussis Outbreak Reveals That Vaccine Antigen Genes Are Unusually Fast Evolving. J Infect Dis 2014; 212:294-301. [DOI: 10.1093/infdis/jiu665] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
|
44
|
Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells. Infect Immun 2014; 83:227-38. [PMID: 25348634 DOI: 10.1128/iai.02197-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system. Here, we describe innate immune recognition and responses to different B. pertussis clinical isolates. By using HEK-Blue cells transfected with different pattern recognition receptors, we found that 3 out of 19 clinical isolates failed to activate Toll-like receptor 4 (TLR4). These findings were confirmed by using the monocytic MM6 cell line. Although incubation with high concentrations of these 3 strains resulted in significant activation of the MM6 cells, it was found to occur mainly through interaction with TLR2 and not through TLR4. When using live bacteria, these 3 strains also failed to activate TLR4 on HEK-Blue cells, and activation of MM6 cells or human monocyte-derived dendritic cells was significantly lower than activation induced by the other 16 strains. Mass spectrum analysis of the lipid A moieties from these 3 strains indicated an altered structure of this molecule. Gene sequence analysis revealed mutations in genes involved in lipid A synthesis. Findings from this study indicate that B. pertussis isolates that do not activate TLR4 occur naturally and that this phenotype may give this bacterium an advantage in tempering the innate immune response and establishing infection. Knowledge on the strategies used by this pathogen in evading the host immune response is essential for the improvement of current vaccines or for the development of new ones.
Collapse
|
45
|
Investigating genome reduction of Bordetella pertussis using a multiplex PCR-based reverse line blot assay (mPCR/RLB). BMC Res Notes 2014; 7:727. [PMID: 25319278 PMCID: PMC4209057 DOI: 10.1186/1756-0500-7-727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background The genetic composition of the bacterium causing whooping cough, Bordetella pertussis, has been investigated using microarray studies in order to examine potential genetic contributors to the disease re-emergence in the past decade. Regions of difference (RDs) have been previously identified as clusters of genes flanked by insertion sequences which are variably present in different sets of isolates, and have also been shown to be potential markers of B. pertussis evolution. This study used microarray data to identify and select a panel of RDs; primers and probes for these RDs were then designed to test for the presence or absence of these regions in a novel and less expensive multiplex PCR-based reverse line blot (mPCR/RLB) assay. By comparing the presence or absence of RDs, we aimed to determine the genomic variability of a diverse collection of B. pertussis strains and how they have changed over time. Results A B. pertussis specific mPCR/RLB using 43 genes representing 30 RDs, was developed and used to characterise a set of 42 B. pertussis isolates. When mapped against the previously identified evolutionary relationships of the strains, the losses of two RDs - BP0910A - BP00930 and BP1948-BP1962 - were found to be associated with significant events in B. pertussis history: the loss of BP0910A - BP00930 coincided with introduction of whole cell vaccines in the 1950s while that of BP1948-BP1962 occurred after the introduction of acellular vaccines. The loss of BP1948-BP1962 also coincided with expansion of the most recent B. pertussis strains. Conclusions The mPCR/RLB assay offers an inexpensive and fast method of determining the gene content of B. pertussis strains and also confirms that gene losses are an ongoing feature of B. pertussis evolution. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-727) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Place DE, Muse SJ, Kirimanjeswara GS, Harvill ET. Caspase-1-independent interleukin-1β is required for clearance of Bordetella pertussis infections and whole-cell vaccine-mediated immunity. PLoS One 2014; 9:e107188. [PMID: 25198773 PMCID: PMC4157866 DOI: 10.1371/journal.pone.0107188] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/13/2014] [Indexed: 12/20/2022] Open
Abstract
Whooping cough remains a significant disease worldwide and its re-emergence in highly vaccinated populations has been attributed to a combination of imperfect vaccines and evolution of the pathogen. The focus of this study was to examine the role of IL-1α/β and the inflammasome in generation of the interleukin-1 (IL-1) response, which is required for the clearance of Bordetella pertussis. We show that IL-1β but not IL-1α is required for mediating the clearance of B. pertussis from the lungs of mice. We further found that IL-1β and IL-1R deficient mice, compared to wild-type, have similar but more persistent levels of inflammation, characterized by immune cell infiltration, with significantly increased IFNγ and a normal IL-17A response during B. pertussis infection. Contrary to expectations, the cleavage of precursor IL-1β to its mature form did not require caspase-1 during primary infections within the lung despite being required by bone marrow-derived macrophages exposed to live bacteria. We also found that the caspase-1 inflammasome was not required for protective immunity against a B. pertussis challenge following vaccination with heat-killed whole cell B. pertussis, despite IL-1R signaling being required. These findings demonstrate that caspase-1-independent host factors are involved in the processing of protective IL-1β responses that are critical for bacterial clearance and vaccine-mediated immunity.
Collapse
Affiliation(s)
- David E. Place
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Diseases, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah J. Muse
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Biochemistry, Microbiology and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
47
|
Zeddeman A, van Gent M, Heuvelman CJ, van der Heide HG, Bart MJ, Advani A, Hallander HO, Wirsing von Konig CH, Riffelman M, Storsaeter J, Vestrheim DF, Dalby T, Krogfelt KA, Fry NK, Barkoff AM, Mertsola J, He Q, Mooi F. Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries, 1996 to 2012. ACTA ACUST UNITED AC 2014; 19. [PMID: 25166348 DOI: 10.2807/1560-7917.es2014.19.33.20881] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathogen adaptation has been proposed to contribute to the resurgence of pertussis. A striking recent example is the emergence of isolates deficient in the vaccine component pertactin (Prn). This study explores the emergence of such Prn-deficient isolates in six European countries. During 2007 to 2009, 0/83 isolates from the Netherlands, 0/18 from the United Kingdom, 0/17 Finland, 0/23 Denmark, 4/99 Sweden and 5/20 from Norway of the isolates collected were Prn-deficient. In the Netherlands and Sweden, respectively 4/146 and 1/8 were observed in a later period (2010–12). The Prn-deficient isolates were genetically diverse and different mutations were found to inactivate the prn gene. These are indications that Prn-deficiency is subject to positive selective pressure. We hypothesise that the switch from whole cell to acellular pertussis vaccines has affected the balance between ‘costs and benefits’ of Prn production by Bordetella pertussis to the extent that isolates that do not produce Prn are able to expand. The absence of Prn-deficient isolates in some countries may point to ways to prevent or delay the spread of Prn-deficient strains. In order to substantiate this hypothesis, trends in the European B. pertussis population should be monitored continuously.
Collapse
Affiliation(s)
- A Zeddeman
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Centre for Infectious Diseases Control (CIb), National Institute of Public Health and the Environment (RIVM), the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de Gouw D, Jonge MID, Hermans PWM, Wessels HJCT, Zomer A, Berends A, Pratt C, Berbers GA, Mooi FR, Diavatopoulos DA. Proteomics-identified Bvg-activated autotransporters protect against bordetella pertussis in a mouse model. PLoS One 2014; 9:e105011. [PMID: 25133400 PMCID: PMC4136822 DOI: 10.1371/journal.pone.0105011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022] Open
Abstract
Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.
Collapse
Affiliation(s)
- Daan de Gouw
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marien I. de. Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hans J. C. T. Wessels
- Nijmegen Centre for Mitochondrial Disorders, Department of Laboratory Medicine, Radboud Proteomics Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aldert Zomer
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alinda Berends
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Catherine Pratt
- Public Health England, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, United Kingdom
| | - Guy A. Berbers
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Frits R. Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dimitri A. Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Abstract
Bordetella pertussis produces two serologically distinct fimbriae, Fim2 and Fim3. Expression of these antigens is governed by the BvgA/S system and by the length of a poly(C) tract in the promoter of each gene. Fim2 and Fim3 are important antigens for whole cell pertussis vaccines as clinical trials have shown an association of anti-fimbriae antibody-mediated agglutination and protection. The current five component acellular pertussis vaccine contains co-purified Fim2/3 and provided good efficacy in clinical trials with the anti-Fim antibody response correlating with protection when pre and post exposure antibody levels were analysed. The predominant serotype of B. pertussis isolates has changed over time in most countries but it is not understood whether this is vaccine-driven or whether serotype is linked to the prevailing predominant genotype. Recent studies have shown that both Fim2 and Fim3 are expressed during infection and that Fim2 is more immunogenic than Fim3 in the acellular vaccine.
Collapse
|
50
|
Molecular epidemiology of the pertussis epidemic in Washington State in 2012. J Clin Microbiol 2014; 52:3549-57. [PMID: 25031439 DOI: 10.1128/jcm.01189-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although pertussis disease is vaccine preventable, Washington State experienced a substantial rise in pertussis incidence beginning in 2011. By June 2012, the reported cases reached 2,520 (37.5 cases per 100,000 residents), a 1,300% increase compared with the same period in 2011. We assessed the molecular epidemiology of this statewide epidemic using 240 isolates collected from case patients reported from 19 of 39 Washington counties during 2012 to 2013. The typing methods included pulsed-field gel electrophoresis (PFGE), multilocus variable number tandem repeat analysis (MLVA), multilocus sequence typing (MLST), and pertactin gene (prn) mutational analysis. Using the scheme PFGE-MLVA-MLST-prn mutations-Prn deficiency, the 240 isolates comprised 65 distinct typing profiles. Thirty-one PFGE types were found, with the most common types, CDC013 (n = 51), CDC237 (n = 44), and CDC002 (n = 42), accounting for 57% of them. Eleven MLVA types were observed, mainly comprising type 27 (n = 183, 76%). Seven MLST types were identified, with the majority of the isolates typing as prn2-ptxP3-ptxA1-fim3-1 (n = 157, 65%). Four different prn mutations accounted for the 76% of isolates exhibiting pertactin deficiency. PFGE provided the highest discriminatory power (D = 0.87) and was found to be a more powerful typing method than MLVA and MLST combined (D = 0.67). This study provides evidence for the continued predominance of MLVA 27 and prn2-ptxP3-ptxA1 alleles, along with the reemergence of the fim3-1 allele. Our results indicate that the Bordetella pertussis population causing this epidemic was diverse, with a few molecular types predominating. The PFGE, MLVA, and MLST profiles were consistent with the predominate types circulating in the United States and other countries. For prn, several mutations were present in multiple molecular types.
Collapse
|