1
|
Berenguer Roque A, Zgheib A, Salomon-Izquierdo S, Manso Peña A, Osoria Alfonso LA, Piloto-Ferrer J, Annabi B. Xanthatin nanocrystals exert anti-inflammatory properties against TNFα-primed 2D monolayers and in 3D spheroids of human HT29 colorectal cancer cells. DISCOVER NANO 2025; 20:83. [PMID: 40388049 PMCID: PMC12089583 DOI: 10.1186/s11671-025-04257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025]
Abstract
Poor water-solubility of emerging new chemotherapeutic drugs lead to low absorption and tissue bioavailability. Improved drug delivery has therefore recently been achieved through the versatile physico-chemical properties of nanocrystals (NCs) in targeted cancer therapies. Here, nanocrystalization was used with xanthatin, a not highly water-soluble natural sesquiterpene lactone compound that possesses anti-tumour properties and which was recently investigated for potential use in the treatment of cancer and autoimmune diseases. Given that tumour-promoting inflammation is a hallmark of colorectal cancer (CRC), and that epidemiological studies associated inflammatory biomarkers to CRC poor prognosis and therapy resistance, the anti-inflammatory properties of xanthatin NCs were assessed in 2D monolayers and in 3D spheroids of a human HT29 CRC cell model. The 3D spheroids being a model recapitulating a cancer stem cells and chemoresistant phenotype. HT29 2D monolayer cell response was first tested against four pro-inflammatory inducers including phorbol-12-myristate-13-acetate, tumour necrosis factor alpha (TNFα), transforming growth factor beta, and Concanavalin A. Of these inducers, HT29 cell response to TNFα resulted in the most elevated expression of cyclooxygenase (COX)-2 which was prevented by commercial xanthatin along with the phosphorylation of the extracellular signal-regulated kinase 1/2 and of IkappaB (IκB). Alteration of 3D spheroids formation and of the inflammatory/immunity transcriptomic signature was also found better altered by xanthatin NCs in comparison to commercial xanthatin and the isolated molecule. Collectively, our data indicate that xanthatin nanocrystallization did not alter the potential in vitro anti-inflammatory and anticancer properties of xanthatin against a 3D CRC chemoresistance cellular model. These properties make NCs a significant advancement in the field of cancer theranostics to improve patient outcomes.
Collapse
Affiliation(s)
- Aleksandra Berenguer Roque
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Alain Zgheib
- Chair in Cancer Prevention and Treatment, Département de Chimie, Université du Québec à Montréal, Succ. Centre-ville, Montreal, QC, C.P. 8888, Canada
| | - Suslebys Salomon-Izquierdo
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Amanda Manso Peña
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Luis A Osoria Alfonso
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Janet Piloto-Ferrer
- Department of Experimental Oncology and Toxicology, Center for Pharmaceutical Research and Development, Havana, Cuba
| | - Borhane Annabi
- Chair in Cancer Prevention and Treatment, Département de Chimie, Université du Québec à Montréal, Succ. Centre-ville, Montreal, QC, C.P. 8888, Canada.
| |
Collapse
|
2
|
Kartal B, Alimoğulları E, Çaylı S. Investigation of the effects of small VCP-interacting protein (SVIP)on the migration and invasion of breast cancer cells. Pathol Res Pract 2025; 269:155929. [PMID: 40184728 DOI: 10.1016/j.prp.2025.155929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Endoplasmic reticulum-associated protein degradation(ERAD) eliminates misfolded proteins. Although there are many proteins involved in ERAD, we focused on small VCP-interacting protein (SVIP). The study aimed to investigate the expression of SVIP in breast cancer types and to determine whether SVIP contributes to the migration and invasion of breast cancer cells. Normal (MCF -10A), estrogen-positive (MCF-7), and triple-negative (MDA-MB-231) breast cancer cell lines were used in this study. Cellular localization of SVIP in breast cancer cells was examined by immunocytochemistry Western blot analysis was used to evaluate protein expression after SVIP siRNA transfection. RTCA identified the consequences of this suppression on cell invasion and migration. The immunoexpression of SVIP was observed in the cytoplasm of MCF-10A, MCF-7, and MDA-MB-231. The transfection of cells with SVIP siRNA led to a reduction in the protein expression of SVIP. SVIPsi RNA suppression results in decreased invasion and migration of MCF -10A. MDA-MB 231 cells' index of invasion and migration increased, and MCF- 7 cell index increased in the invasion but decreased in the migration as a result of SVIP siRNA suppression. In conclusion, SVIPsi transfection of the three cell types altered the ability of migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Bahar Kartal
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| | - Ebru Alimoğulları
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| | - Sevil Çaylı
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
3
|
Vishnyakova P, Elchaninov A, Fatkhudinov T, Kolesov D. Unravelling approaches to study macrophages: from classical to novel biophysical methodologies. PeerJ 2025; 13:e19039. [PMID: 39989743 PMCID: PMC11847493 DOI: 10.7717/peerj.19039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Macrophages play crucial roles in immune responses and tissue homeostasis. Despite the fact that macrophages were described more than a century ago, they continue to be the cells of intensive interest. Advanced understanding of phenotypic diversity in macrophages holds great promise for development of cell-based therapeutic strategies. The introduction of innovative approaches in cell biology greatly enhances our ability to investigate the unique characteristics of macrophages. The review considers both classical methods to study macrophages and high-tech approaches, including single-cell sequencing, single-cell mass spectrometry, droplet microfluidics, scanning probe microscopy and atomic force spectroscopy. This review will be valuable both to specialists beginning their study of macrophages and to experienced scientists seeking to deepen their understanding of methods at the intersection of biological and physical sciences.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Dmitry Kolesov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Moscow Polytechnic University, Moscow, Russia
| |
Collapse
|
4
|
Charalampopoulou A, Barcellini A, Bistika M, Ivaldi GB, Lillo S, Magro G, Orlandi E, Pullia MG, Ronchi S, De Fatis PT, Facoetti A. Vaginal Mucosal Melanoma Cell Activation in Response to Photon or Carbon Ion Irradiation. Int J Part Ther 2024; 14:100630. [PMID: 39507347 PMCID: PMC11538786 DOI: 10.1016/j.ijpt.2024.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Primary gynecological melanomas are uncommon with lower survival rates compared to cutaneous melanomas. Although melanocytes have been identified in a variety of mucosal membranes, little is known about their interactions or roles inside the mucosa layer. Melanin is a common pigment in nature and is endowed with several peculiar chemical, paramagnetic, and semiconductive characteristics. One of its latest explored functions is its interaction with ionizing radiation as a protective mechanism as well as its implication in the metastatic cascade of tumor cells. Materials and Methods In this work, we analyzed in vitro the effects of different doses of photon and carbon ion irradiation on dendrite formation, pigmentation, migration, and invasion abilities of human mucosal melanoma cells of the vagina. We evaluated the morphology and melanin production of HMV-II cells exposed to photon and carbon ion beams with single doses between 0.5 and 10 Gy. Results Our results showed that irradiation induces dendrite formation or elongation and pigmentation in HMV-II cells in a dose-type-dependent and radiation-type-dependent way but also a decrease in cell motility. Conclusion The present study describes for the first time an induction of dendritic formation, melanin production, and alterations in migration and invasion abilities by low-linear energy transfer and high-linear energy transfer radiation in human mucosal melanoma cells, suggesting a radioprotective response to further possible exposures increasing the radioresistance of these cells.
Collapse
Affiliation(s)
- Alexandra Charalampopoulou
- Radiobiology Unit, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- University School for Advanced Studies IUSS, Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Margarita Bistika
- Department of Biology and Biotechnology “L.Spallanzani”, Univeristy of Pavia, Pavia, Italy
| | | | - Sara Lillo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Giuseppe Pullia
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | | | - Angelica Facoetti
- Radiobiology Unit, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
5
|
Chan YJ, Dileep D, Rothstein SM, Cochran EW, Reuel NF. Single-Use, Metabolite Absorbing, Resonant Transducer (SMART) Culture Vessels for Label-Free, Continuous Cell Culture Progression Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401260. [PMID: 38900081 PMCID: PMC11348071 DOI: 10.1002/advs.202401260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Secreted metabolites are an important class of bio-process analytical technology (PAT) targets that can correlate to cell conditions. However, current strategies for measuring metabolites are limited to discrete measurements, resulting in limited understanding and ability for feedback control strategies. Herein, a continuous metabolite monitoring strategy is demonstrated using a single-use metabolite absorbing resonant transducer (SMART) to correlate with cell growth. Polyacrylate is shown to absorb secreted metabolites from living cells containing hydroxyl and alkenyl groups such as terpenoids, that act as a plasticizer. Upon softening, the polyacrylate irreversibly conformed into engineered voids above a resonant sensor, changing the local permittivity which is interrogated, contact-free, with a vector network analyzer. Compared to sensing using the intrinsic permittivity of cells, the SMART approach yields a 20-fold improvement in sensitivity. Tracking growth of many cell types such as Chinese hamster ovary, HEK293, K562, HeLa, and E. coli cells as well as perturbations in cell proliferation during drug screening assays are demonstrated. The sensor is benchmarked to show continuous measurement over six days, ability to track different growth conditions, selectivity to transducing active cell growth metabolites against other components found in the media, and feasibility to scale out for high throughput campaigns.
Collapse
Affiliation(s)
- Yee Jher Chan
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | - Dhananjay Dileep
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | | | - Eric W. Cochran
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | - Nigel F. Reuel
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
- Skroot Laboratory IncAmesIA50010USA
| |
Collapse
|
6
|
Pipiya VV, Gilazieva ZE, Issa SS, Rizvanov AA, Solovyeva VV. Comparison of primary and passaged tumor cell cultures and their application in personalized medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:581-599. [PMID: 38966179 PMCID: PMC11220317 DOI: 10.37349/etat.2024.00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024] Open
Abstract
Passaged cell lines represent currently an integral component in various studies of malignant neoplasms. These cell lines are utilized for drug screening both in monolayer cultures or as part of three-dimensional (3D) tumor models. They can also be used to model the tumor microenvironment in vitro and in vivo through xenotransplantation into immunocompromised animals. However, immortalized cell lines have some limitations of their own. The homogeneity of cell line populations and the extensive passaging in monolayer systems make these models distant from the original disease. Recently, there has been a growing interest among scientists in the use of primary cell lines, as these are passaged directly from human tumor tissues. In this case, cells retain the morphological and functional characteristics of the tissue from which they were derived, an advantage often not observed in passaged cultures. This review highlights the advantages and limitations of passaged and primary cell cultures, their similarities and differences, as well as existing test systems that are based on primary and passaged cell cultures for drug screening purposes.
Collapse
Affiliation(s)
- Vladislava V. Pipiya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Biriz N, Canturk Z. Investigation of the immunological effects of escitalopram oxalate in the breast cancer co-culture model. ASIAN BIOMED 2024; 18:133-145. [PMID: 39175950 PMCID: PMC11337846 DOI: 10.2478/abm-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background During breast cancer treatment, approximately half of the patients are prescribed psychotropic medication, such as selective serotonin reuptake inhibitors (SSRIs). Escitalopram oxalate is an SSRI used as an antidepressant. Objectives In this study, by creating a breast cancer microenvironment with THP-1, MCF-7 and MDA-MB-231 breast cancer co-culture models were created. Methods MCF-7, MDA-MB-231, and THP-1 cell lines to determine the concentration range of the cytotoxic effect of escitalopram oxalate MTS and MTT test were used. IC50 values were determined by the xCELLigence real-time cell analysis (RTCA) system. Apoptotic activities and cytokine levels were determined by flow cytometry. Results In the xCELLigence real-time analysis made according to the results, the IC50 value of escitalopram oxalate was measured as 13.7 μM for MCF-7 and 10.9 μM for MDA-MB-231. The IC50 value was measured as 54.6 μM for MCF-7 and 58.4 μM for MDA-MB-231 in xCELLigence analysis with tamoxifen. According to the MTS test results, the IC50 value of tamoxifen for THP-1 was 92.03 μM and the IC50 value for escitalopram oxalate was 95.32 μM. In the co-culture model, the immunological effects of escitalopram oxalate on MCF-7 cells were 2.8%, 11.1%, 15.6%, 10.6%, and 12.1% for interleukin (IL)-1β, IL-6, IL-8, IL-10, and TNF-α, respectively, while MDA effects on MB-231 cells, respectively, were 2.1%, 15.9%, 16.2%, 8.8%, and 11.8%. Conclusions According to the results obtained, it was concluded that the immunological effects of escitalopram oxalate are more effective than tamoxifen and that it can be used as an adjunctive agent in breast cancer treatment.
Collapse
Affiliation(s)
- Nalan Biriz
- Department of Pharmaceutical Microbiology, Institute of Health Sciences, Anadolu University, Eskisehir26470, Turkey
| | - Zerrin Canturk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskisehir26470, Turkey
| |
Collapse
|
8
|
Ayass MA, Tripathi T, Griko N, Okyay T, Ramankutty Nair R, Zhang J, Zhu K, Melendez K, Pashkov V, Abi-Mosleh L. Dual Checkpoint Aptamer Immunotherapy: Unveiling Tailored Cancer Treatment Targeting CTLA-4 and NKG2A. Cancers (Basel) 2024; 16:1041. [PMID: 38473398 DOI: 10.3390/cancers16051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Recent strides in immunotherapy have illuminated the crucial role of CTLA-4 and PD-1/PD-L1 pathways in contemporary oncology, presenting both promises and challenges in response rates and adverse effects. This study employs a computational biology tool (in silico approach) to craft aptamers capable of binding to dual receptors, namely, inhibitory CTLA4 and NKG2A, thereby unleashing both T and NK cells and enhancing CD8+ T and NK cell functions for tumor cell lysis. Computational analysis highlighted AYA22T-R2-13 with HADDOCK scores of -78.2 ± 10.2 (with CTLA4), -60.0 ± 4.2 (with NKG2A), and -77.5 ± 5.6 (with CD94/NKG2A). Confirmation of aptamer binding to targeted proteins was attained via ELISA and flow cytometry methods. In vitro biological functionality was assessed using lactate dehydrogenase (LDH) cytotoxicity assay. Direct and competitive assays using ELISA and flow cytometry demonstrated the selective binding of AYA22T-R2-13 to CTLA4 and NKG2A proteins, as well as to the cell surface receptors of IL-2-stimulated T cells and NK cells. This binding was inhibited in the presence of competition from CTLA4 or NKG2A proteins. Remarkably, the blockade of CTLA4 or NKG2A by AYA22T-R2-13 augmented human CD8 T cell- and NK cell-mediated tumor cell lysis in vitro. Our findings highlight the precise binding specificity of AYA22T-R2-13 for CTLA4-B7-1/B7-2 (CD80/CD86) or CD94/NKG2A-HLA-E interactions, positioning it as a valuable tool for immune checkpoint blockade aptamer research in murine tumor models. These in vitro studies establish a promising foundation for further enhancing binding capacity and establishing efficacy and safety in animal models. Consequently, our results underscore the potential of AYA22T-R2-13 in cancer immunotherapy, offering high specificity, low toxicity, and the potential for cost-effective production.
Collapse
Affiliation(s)
| | | | - Natalya Griko
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Tutku Okyay
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | | | - Jin Zhang
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kevin Zhu
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kristen Melendez
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Victor Pashkov
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| |
Collapse
|
9
|
Talbot EJ, Joshi L, Thornton P, Dezfouli M, Tsafou K, Perkinton M, Khoronenkova S. cGAS-STING signalling regulates microglial chemotaxis in genome instability. Nucleic Acids Res 2024; 52:1188-1206. [PMID: 38084916 PMCID: PMC10853792 DOI: 10.1093/nar/gkad1184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
Defective DNA damage signalling and repair is a hallmark of age-related and genetic neurodegenerative disease. One mechanism implicated in disease progression is DNA damage-driven neuroinflammation, which is largely mediated by tissue-resident immune cells, microglia. Here, we utilise human microglia-like cell models of persistent DNA damage and ATM kinase deficiency to investigate how genome instability shapes microglial function. We demonstrate that upon DNA damage the cytosolic DNA sensing cGAS-STING axis drives chronic inflammation and a robust chemokine response, exemplified by production of CCL5 and CXCL10. Transcriptomic analyses revealed that cell migratory pathways were highly enriched upon IFN-β treatment of human iPSC-derived microglia, indicating that the chemokine response to DNA damage mirrors type I interferon signalling. Furthermore, we find that STING deletion leads to a defect in microglial chemotaxis under basal conditions and upon ATM kinase loss. Overall, this work provides mechanistic insights into cGAS-STING-dependent neuroinflammatory mechanisms and consequences of genome instability in the central nervous system.
Collapse
Affiliation(s)
- Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lisha Joshi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Peter Thornton
- Neuroscience, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Mahya Dezfouli
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Gothenburg, Sweden
| | - Kalliopi Tsafou
- Department of Data Sciences & Quantitative Biology, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
10
|
Shao L, González-Cardenete MA, Prieto-Garcia JM. In Vitro Cytotoxic Effects of Ferruginol Analogues in Sk-MEL28 Human Melanoma Cells. Int J Mol Sci 2023; 24:16322. [PMID: 38003511 PMCID: PMC10671721 DOI: 10.3390/ijms242216322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ferruginol is a promising abietane-type antitumor diterpene able to induce apoptosis in SK-Mel-28 human malignant melanoma. We aim to increase this activity by testing the effect of a small library of ferruginol analogues. After a screening of their antiproliferative activity (SRB staining, 48 h) on SK-Mel-28 cells the analogue 18-aminoferruginol (GI50 ≈ 10 µM) was further selected for mechanistic studies including induction of apoptosis (DAPI staining, p < 0.001), changes in cell morphology associated with the treatment (cell shrinkage and membrane blebbing), induction of caspase-3/7 activity (2.5 at 48 h, 6.5 at 72 h; p < 0.0001), changes in the mitochondrial membrane potential (not significant) and in vitro effects on cell migration and cell invasion (Transwell assays, not significant). The results were compared to those of the parent molecule (ferruginol, GI50 ≈ 50 µM, depolarisation of mitochondrial membrane p < 0.01 at 72 h; no caspases 3/7 activation) and paclitaxel (GI50 ≈ 10 nM; caspases 3/7 activation p < 0.0001) as a reference drug. Computational studies of the antiproliferative activity of 18-aminoferruginol show a consistent improvement in the activity over ferruginol across a vast majority of cancer cells in the NCI60 panel. In conclusion, we demonstrate here that the derivatisation of ferruginol into 18-aminoferruginol increases its antiproliferative activity five times in SK-MEL-28 cells and changes the apoptotic mechanism of its parent molecule, ferruginol.
Collapse
Affiliation(s)
- Luying Shao
- School of Pharmacy, University College London, London WC1E 6HX, UK;
| | - Miguel A. González-Cardenete
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain;
| | - Jose M. Prieto-Garcia
- School of Pharmacy, University College London, London WC1E 6HX, UK;
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UX, UK
| |
Collapse
|
11
|
Cao M, Carlson RD, Staudt RE, Snook AE. In vitro assays to evaluate CAR-T cell cytotoxicity. Methods Cell Biol 2023; 183:303-315. [PMID: 38548415 DOI: 10.1016/bs.mcb.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This chapter introduces four commonly used in vitro chimeric antigen receptor (CAR)-T cell cytotoxicity assays (lactate dehydrogenase release assay, 51Cr release assay, IncuCyte live cell killing assay, and xCELLigence real-time analysis) and provides a detailed protocol for xCELLigence real-time analysis. Focusing on in vitro assays, this chapter starts with explaining the mechanisms and discussing the utilization of each assay to quantify T-cell-induced cytotoxicity. Due to the high-throughput quantification and straightforward workflow of xCELLigence real-time analysis, a protocol entailing reagents and equipment, a 3-day step-by-step procedure, and instructions for data analysis are provided.
Collapse
Affiliation(s)
- Miao Cao
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Robert D Carlson
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ross E Staudt
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Tang Y, Yang K, Liu Q, Ma Y, Zhu H, Tang K, Geng C, Xie J, Zhuo D, Wu W, Jin L, Xiao W, Wang J, Zhu Q, Liu J. Preosteoclast plays a pathogenic role in syndesmophyte formation of ankylosing spondylitis through the secreted PDGFB - GRB2/ERK/RUNX2 pathway. Arthritis Res Ther 2023; 25:194. [PMID: 37798786 PMCID: PMC10552372 DOI: 10.1186/s13075-023-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is a chronic inflammatory disease that mainly affects the sacroiliac joint and spine. However, the real mechanisms of immune cells acting on syndesmophyte formation in AS are not well identified. We aimed to find the key AS-associated cytokine and assess its pathogenic role in AS. METHODS A protein array with 1000 cytokines was performed in five AS patients with the first diagnosis and five age- and gender-matched healthy controls to discover the differentially expressed cytokines. The candidate differentially expressed cytokines were further quantified by multiplex protein quantitation (3 AS-associated cytokines and 3 PDGF-pathway cytokines) and ELISA (PDGFB) in independent samples (a total of 140 AS patients vs 140 healthy controls). The effects of PDGFB, the candidate cytokine, were examined by using adipose-derived stem cells (ADSCs) and human fetal osteoblast cell line (hFOB1.19) as in vitro mesenchymal cell and preosteoblast models, respectively. Furthermore, whole-transcriptome sequencing and enrichment of phosphorylated peptides were performed by using cell models to explore the underlying mechanisms of PDGFB. The xCELLigence system was applied to examine the proliferation, chemotaxis, and migration abilities of PDGFB-stimulated or PDGFB-unstimulated cells. RESULTS The PDGF pathway was observed to have abnormal expression in the protein array, and PDGFB expression was further found to be up-regulated in 140 Chinese AS patients. Importantly, PDGFB expression was significantly correlated with BASFI (Pearson coefficient/p value = 0.62/6.70E - 8) and with the variance of the mSASSS score (mSASSS 2 years - baseline, Pearson coefficient/p value = 0.76/8.75E - 10). In AS patients, preosteoclasts secreted more PDGFB than the healthy controls (p value = 1.16E - 2), which could promote ADSCs osteogenesis and enhance collagen synthesis (COLI and COLIII) of osteoblasts (hFOB 1.19). In addition, PDGFB promoted the proliferation, chemotaxis, and migration of ADSCs. Mechanismly, in ADSCs, PDGFB stimulated ERK phosphorylation by upregulating GRB2 expression and then increased the expression of RUNX2 to promote osteoblastogenesis of ADSCs. CONCLUSION PDGFB stimulates the GRB2/ERK/RUNX2 pathway in ADSCs, promotes osteoblastogenesis of ADSCs, and enhances the extracellular matrix of osteoblasts, which may contribute to pathological bone formation in AS.
Collapse
Affiliation(s)
- Yulong Tang
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Kai Yang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Hao Zhu
- Stem Cell Base, Shanghai East Hospital, Shanghai, China
| | - Kunhai Tang
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Chengchun Geng
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jiangnan Xie
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Dachun Zhuo
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China.
| | - Qi Zhu
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital, Shanghai, China.
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China.
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Jung SM, Lee BM, Shin HS. Development of tissue culture system with automated pulsation and Kalman filter control for an artificial artery model. Bioprocess Biosyst Eng 2023; 46:1437-1446. [PMID: 37470868 DOI: 10.1007/s00449-023-02910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Tissue-engineered arterial vessels have been used as substitutes for unnecessary animal experiments to evaluate the pharmacokinetics of drugs targeting various arteriopathies caused by structural or physiological arterial defects. An arterial tissue culture system was established to simulate the mechanical characteristics of a heart-beating pump and to do online feedback control of lactate and glucose concentrations. The mechanically controlled flow pump mimicked the heart pumping inside a tissue-engineered artery composed of muscle and endothelial cells within a nanofibrous scaffold. After monitoring the pH of the culture medium online, lactate and glucose were estimated using the Kalman filter algorithm, and the set-point online control was operated to maintain glucose for artery tissue engineering. The composition of the artificial artery was confirmed by immunofluorescence staining, and its mechanical characteristics were examined. The online automated system successfully demonstrated its applicability as a standardized process for arterial tissue culture to replace animal arterial experiments.
Collapse
Affiliation(s)
- Sang-Myung Jung
- Department of Biological Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Byung Man Lee
- Department of Biological Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Hwa Sung Shin
- Department of Biological Engineering, Inha University, Incheon, 22201, Republic of Korea.
| |
Collapse
|
14
|
Grilli F, Hassan EM, Variola F, Zou S. Harnessing graphene oxide nanocarriers for siRNA delivery in a 3D spheroid model of lung cancer. Biomater Sci 2023; 11:6635-6649. [PMID: 37609774 DOI: 10.1039/d3bm00732d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Gene therapy has been recently proposed as an effective strategy for cancer treatment. A significant body of literature proved the effectiveness of nanocarriers to deliver therapeutic agents to 2D tumour models, which are simple but not always representative of the in vivo reality. In this study, we analyze the efficiency of 3D spheroids combined with a minimally modified graphene oxide (GO)-based nanocarrier for siRNA delivery as a new system for cell transfection. Small interfering RNA (siRNA) targeting cluster of differentiation 47 (CD47; CD47_siRNA) was used as an anti-tumour therapeutic agent to silence the genes expressing CD47. This is a surface marker able to send a "don't eat me" signal to macrophages to prevent their phagocytosis. Also, we report the analysis of different GO formulations, in terms of size (small: about 100 nm; large: >650 nm) and functionalization (unmodified or modified with polyethylene glycol (PEG) and the dendrimer PAMAM), aiming to establish the efficiency of unmodified GO as a nanocarrier for the transfection of A549 lung cancer spheroids. Small modified GO (smGO) showed the highest transfection efficiency values (>90%) in 3D models. Interestingly, small unmodified GO (sGO) was found to be promising for transfection, with efficiency values >80% using a higher siRNA ratio (i.e., 3 : 1). These results demonstrated the higher efficiency of spheroids compared to 2D models for transfection, and the high potential of unmodified GO to carry siRNA, providing a promising new in vitro model system for the analysis of anticancer gene therapies.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Eman M Hassan
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
Li D, Liu W, Sun S, Zhang Y, Zhang P, Feng G, Wei J, Chai L. Chinese herbal formula, modified Xianfang Huoming Yin, alleviates the inflammatory proliferation of rat synoviocytes induced by IL-1β through regulating the migration and differentiation of T lymphocytes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116297. [PMID: 36849102 DOI: 10.1016/j.jep.2023.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xianfang Huoming Yin (XFH) is a traditional Chinese herbal formula, which has the effect of clearing heat and detoxifying toxins, dispersing swellings, activating blood circulation, and relieving pain. It is usually applied to treat various autoimmune diseases, including Rheumatoid arthritis (RA). AIM OF THE STUDY The migration of T lymphocytes plays an indispensable role in the pathogenesis of RA. Our previous studies demonstrated that modified Xianfang Huoming Yin (XFHM) could modulate the differentiation of T, B, and NK cells, and contribute to the restoration of immunologic balance. It also could downregulate the production of pro-inflammatory cytokines by regulating the activation of NF-κ B and JAK/STAT signaling pathways in the collagen-induced arthritis mouse model. In this study, we want to investigate whether XFHM has therapeutic effects on the inflammatory proliferation of rat fibroblast-like synovial cells (FLSs) by interfering with the migration of T lymphocytes in vitro experiments. MATERIALS AND METHODS High performance liquid chromatography-electrospray ionization/mass spectrometer system was used to identify the constituents of the XFHM formula. A co-culture system of rat fibroblast-like synovial cells (RSC-364 cells) and peripheral blood lymphocytes stimulated by interleukin-1 beta (IL-1β) was used as the cell model. IL-1β inhibitor (IL-1βRA) was used as a positive control medicine, and two concentrations (100 μg/mL and 250 μg/mL) of freeze-dried XFHM powder were used as intervention measure. The lymphocyte migration levels were analyzed by the Real-time xCELLigence analysis system after 24 h and 48 h of treatment. The percentage of CD3+CD4+ T cells and CD3+CD8+ T cells, and the apoptosis rate of FLSs were detected by flow cytometry. The morphology of RSC-364 cells was observed by hematoxylin-eosin staining. The protein expression of key factors for T cell differentiation and NF-κ B signaling pathway-related proteins in RSC-364 cells were examined by western-blot analysis. The migration-related cytokines levels of P-selectin, VCAM-1, and ICAM-1 in the supernatant were measured by enzyme-linked immunosorbent assay. RESULTS Twenty-one different components in XFHM were identified. The migration CI index of T cells was significantly decreased in treatment with XFHM. XFHM also could significantly downregulate the levels r of CD3+CD4+T cells and CD3+CD8+T cells that migrated to the FLSs layer. Further study found that XFHM suppresses the production of P-selectin, VCAM-1, and ICAM-1. Meanwhile, it downregulated the protein levels of T-bet, ROR γ t, IKKα/β, TRAF2, and NF-κ B p50, upregulated the expression of GATA-3 and alleviated synovial cells inflammation proliferation, contributing to the FLSs apoptosis. CONCLUSION XFHM could attenuate the inflammation of synovium by inhibiting T lymphocyte cell migration, regulating differentiation of T cells through modulating the activation of the NF-κ B signaling pathway.
Collapse
Affiliation(s)
- Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wei
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
16
|
Wijewantha N, Sane S, Eikanger M, Antony RM, Potts RA, Lang L, Rezvani K, Sereda G. Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles. Cancers (Basel) 2023; 15:cancers15041145. [PMID: 36831488 PMCID: PMC9953800 DOI: 10.3390/cancers15041145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG's rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a "smart" enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The "smart" eNPs-EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs-EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs-EUG is a promising strategy for innovative anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Nisitha Wijewantha
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Ryan M. Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rashaun A. Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Lydia Lang
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| | - Grigoriy Sereda
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| |
Collapse
|
17
|
Chen M, Pan Y, Liu H, Ning F, Lu Q, Duan Y, Gan X, Lu S, Hou H, Zhang M, Tian Y, Lash GE. Ezrin accelerates breast cancer liver metastasis through promoting furin-like convertase-mediated cleavage of Notch1. Cell Oncol 2022; 46:571-587. [PMID: 36580262 DOI: 10.1007/s13402-022-00761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Ezrin, known as a crosslinker between the plasma membrane and actin cytoskeleton, is closely associated with breast cancer (BC) progression. Here, we explored a novel role of ezrin in breast cancer liver metastasis (BCLM). METHODS The clinical relevance of ezrin was evaluated using in silico tools and confirmed in BC specimens. The effect of ezrin on proliferation, migration and invasion was examined in vitro and in vivo using murine primary liver-metastatic breast cancer cells (mLM). The molecular mechanism involved in ezrin-mediated activation of the Notch1 signaling pathway was elucidated using in vitro models. RESULTS Data-mining demonstrated that ezrin mRNA and protein expression is up-regulated in breast cancer cohorts and has prognostic significance. Ezrin overexpression promotes cell proliferation, migration and invasion in vitro and in vivo. Hairy and enhancer of split-1 (Hes1) is one of the most significantly enriched candidates of differentially expressed genes in ezrin overexpression and control mLM cells. Ezrin can positively regulate Hes1 mRNA and protein expression, and their coexpression was associated with poor prognosis in BC patients. Ezrin promoted BC cell proliferation in a Hes1-dependent manner without directly interacting with Hes1. The functional link between ezrin and Hes1 is dependent on Notch1 activation through promotion of furin-like convertase cleavage. CONCLUSION Our results demonstrated that ezrin drives BCLM through activation of the Notch signaling pathway via furin-like convertase. These findings provide a better understanding of the mechanism of ezrin in breast cancer progression, with the goal of discovering a novel target for the treatment of BCLM in the future.
Collapse
Affiliation(s)
- Miaojuan Chen
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yue Pan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hanbo Liu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fen Ning
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qinsheng Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yaoyun Duan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaowen Gan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shenjiao Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huomei Hou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Min Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yun Tian
- Department of Surgery, Zhaoqing Medical College, Guangdong, 526070, China.
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
18
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
19
|
Ferreira KCB, Valle ABCDS, Gualberto ACM, Aleixo DT, Silva LM, Santos MM, Costa DDS, Oliveira LL, Gameiro J, Tavares GD, da Silva Filho AA, Corrêa JODA, Pittella F. Kaurenoic acid nanocarriers regulates cytokine production and inhibit breast cancer cell migration. J Control Release 2022; 352:712-725. [PMID: 36374787 DOI: 10.1016/j.jconrel.2022.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/15/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is the type of cancer with the highest incidence in women around the world. Noteworthy, the triple-negative subtype affects 20% of the patients while presenting the highest death rate among subtypes. This is due to its aggressive phenotype and the capability of invading other tissues. In general, tumor-associated macrophages (TAM) and other immune cells, are responsible for maintaining a favorable tumor microenvironment for inflammation and metastasis by secreting several mediators such as pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, chemokines like CCL2, and other proteins, as metalloproteinases of matrix (MMP). On the other hand, immunomodulatory agents can interfere in the immune response of TAM and change the disease prognosis. In this work, we prepared nanostructured lipid carriers containing kaurenoic acid (NLC-KA) to evaluate the effect on cytokine production in vitro of bone marrow-derived macrophages (BMDM) and the migratory process of 4 T1 breast cancer cells. NLC-KA prepared from a blend of natural lipids was shown to have approximately 90 nm in diameter with low polydispersity index. To test the effect on cytokine production in vitro in NLC-KA treated BMDM, ELISA assay was performed and pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were quantified. The formulation reduced the secretion of IL-1β and TNF-α cytokines while presenting no hemolytic activity. Noteworthy, an anti-migratory effect in 4 T1 breast cancer cells treated with NLC-KA was observed in scratch assays. Further, MMP9 and CCL2 gene expressions in both BMDM and 4 T1 treated cells confirmed that the mechanism of inhibition of migration is related to the blockade of this pathway by KA. Finally, cell invasion assays confirmed that NLC-KA treatment resulted in less invasiveness of 4 T1 cells than control, and it is independent of CCL2 stimulus or BMDM direct stimulus. Ultimately, NLC-KA was able to regulate the cytokine production in vitro and reduce the migration of 4 T1 breast cancer cells by decreasing MMP9 gene expression.
Collapse
Affiliation(s)
- Kézia Cristine Barbosa Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | | | - Ana Cristina Moura Gualberto
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Davi Trombini Aleixo
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Lívia Mara Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Milena Maciel Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Danilo de Souza Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Letícia Ludmilla Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Jacy Gameiro
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Ademar Alves da Silva Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - José Otávio do Amaral Corrêa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Eghbal M, Rozman M, Kononenko V, Hočevar M, Drobne D. A549 Cell-Covered Electrodes as a Sensing Element for Detection of Effects of Zn 2+ Ions in a Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3493. [PMID: 36234621 PMCID: PMC9565818 DOI: 10.3390/nano12193493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+ ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their death and detachment from the electrode surface as cytotoxic effects were detected through changes in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were checked by light microscopy, while the cell morphology and attachment pattern were explored by scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their cytotoxic concentrations.
Collapse
Affiliation(s)
- Mina Eghbal
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Martin Rozman
- FunGlass—Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Otręba M, Stojko J, Kabała‑Dzik A, Rzepecka‑Stojko A. Perphenazine and prochlorperazine decrease glioblastoma U‑87 MG cell migration and invasion: Analysis of the ABCB1 and ABCG2 transporters, E‑cadherin, α‑tubulin and integrins (α3, α5, and β1) levels. Oncol Lett 2022; 23:182. [PMID: 35527777 PMCID: PMC9073583 DOI: 10.3892/ol.2022.13302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme is the most frequent type of malignant brain tumor, and is one of the most lethal and untreatable human tumors with a very poor survival rate. Therefore, novel and effective strategies of treatment are required. Integrins play a crucial role in the regulation of cellular adhesion and invasion. Integrins and α-tubulin are very important in cell migration, whereas E-cadherin plays a main role in tumor metastasis. Notably, drugs serve a crucial role in glioblastoma treatment; however, they have to penetrate the blood-brain barrier (BBB) to be effective. ABC transporters, including ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily G member 2 (ABCG2), are localized in the brain endothelial capillaries of the BBB, have a crucial role in the development of multidrug resistance and are modulated by phenothiazine derivatives. The impact of perphenazine and prochlorperazine on the motility of human Uppsala 87 malignant glioma (U87-MG) cells was evaluated using a wound-healing assay, cellular migration and invasion were assessed by Transwell assay, and the protein expression levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins were determined by western blotting. The present study explored the effects of perphenazine and prochlorperazine on the levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins (α3, α5, and β1), as well as on the migratory and invasive ability of U87-MG cells. The results suggested that perphenazine and prochlorperazine may modulate the expression levels of multidrug resistance proteins (they decreased ABCB1 and increased ABCG2 expression), E-cadherin, α-tubulin and integrins, and could impair the migration and invasion of U-87 MG cells. In conclusion, the decrease in migratory and invasive ability following treatment with phenothiazine derivatives due to the increase in ABCG2 and E-cadherin expression, and decrease in α-tubulin and integrins expression, may suggest that research on perphenazine and prochlorperazine in the treatment of glioblastoma is worth continuing.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Agata Kabała‑Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Anna Rzepecka‑Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| |
Collapse
|
22
|
Seyfried N, Yurttas C, Burkard M, Oswald B, Tolios A, Herster F, Kauer J, Jäger T, Königsrainer I, Thiel K, Quante M, Rammensee HG, Venturelli S, Schwab M, Königsrainer A, Beckert S, Löffler MW. Prolonged Exposure to Oxaliplatin during HIPEC Improves Effectiveness in a Preclinical Micrometastasis Model. Cancers (Basel) 2022; 14:cancers14051158. [PMID: 35267468 PMCID: PMC8909393 DOI: 10.3390/cancers14051158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Absence of survival benefits when adding hyperthermic intraperitoneal chemotherapy (HIPEC) with oxaliplatin to cytoreductive surgery in peritoneal metastasis from colorectal cancer has recently been shown in the randomized controlled PRODIGE 7 trial. We therefore aimed to investigate the effects of this treatment modality in a preclinical micrometastasis model. Cancer cells were incubated with either patient samples obtained during HIPEC procedures or with defined oxaliplatin-containing solutions prepared according to clinically established HIPEC protocols. Our results demonstrate a limited effectiveness of short-term HIPEC in simulations with oxaliplatin to eliminate micrometastases, although we used platinum-sensitive cell lines for our model. Since these results are in line with findings from current research, our studies might offer further convincing evidence and potential explanations for HIPEC futility observed in clinical application. Abstract Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) was considered a promising treatment for patients with peritoneal metastasis from colorectal cancer. However, the recently published randomized controlled PRODIGE 7 trial failed to demonstrate survival benefits through the addition of short-term oxaliplatin-based HIPEC. Constituting a complex multifactorial treatment, we investigated HIPEC in a preclinical model concerning the elimination of minimal tumor residues, thereby aiming to better understand the size of effects and respective clinical trial results. Patient samples of peritoneal perfusates obtained during HIPEC treatments and oxaliplatin-containing solutions at clinically relevant dosages, conforming with established HIPEC protocols, were assessed regarding their ability to eliminate modelled ~100 µm thickness cancer cell layers. Impedance-based real-time cell analysis and classical end-point assays were used. Flow cytometry was employed to determine the effect of different HIPEC drug solvents on tumor cell properties. Effectiveness of peritoneal perfusate patient samples and defined oxaliplatin-containing solutions proved limited but reproducible. HIPEC simulations for 30 min reduced the normalized cell index below 50% with peritoneal perfusates from merely 3 out of 9 patients within 72 h, indicating full-thickness cytotoxic effects. Instead, prolonging HIPEC to 1 h enhanced these effects and comprised 7 patients’ samples, while continuous drug exposure invariably resulted in complete cell death. Further, frequently used drug diluents caused approximately 25% cell size reduction within 30 min. Prolonging oxaliplatin exposure improved effectiveness of HIPEC to eliminate micrometastases in our preclinical model. Accordingly, insufficient penetration depth, short exposure time, and the physicochemical impact of drug solvents may constitute critical factors.
Collapse
Affiliation(s)
- Nick Seyfried
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (B.O.); (F.H.); (J.K.); (H.-G.R.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, 81675 Munich, Germany
| | - Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
- Correspondence:
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (M.B.); (S.V.)
| | - Benedikt Oswald
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (B.O.); (F.H.); (J.K.); (H.-G.R.)
| | - Alexander Tolios
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17A, 1090 Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Artificial Intelligence, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Franziska Herster
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (B.O.); (F.H.); (J.K.); (H.-G.R.)
- Robert Bosch Center for Tumor Diseases (RBCT), Robert Bosch Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany
| | - Joseph Kauer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (B.O.); (F.H.); (J.K.); (H.-G.R.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany;
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tarkan Jäger
- Department of Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria;
| | - Ingmar Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
- Department of General, Visceral and Thoracic Surgery, Landeskrankenhaus Feldkirch, Carinagasse 47, 6800 Feldkirch, Austria
| | - Karolin Thiel
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
| | - Hans-Georg Rammensee
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (B.O.); (F.H.); (J.K.); (H.-G.R.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (M.B.); (S.V.)
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tübingen, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Matthias Schwab
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Departments of Pharmacy and Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Beckert
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
- Department of General and Visceral Surgery, Schwarzwald-Baar Hospital, Klinikstr. 11, 78052 Villingen-Schwenningen, Germany
| | - Markus W. Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; (N.S.); (I.K.); (K.T.); (M.Q.); (A.K.); (S.B.); (M.W.L.)
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; (B.O.); (F.H.); (J.K.); (H.-G.R.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Haque S, Norbert CC, Acharyya R, Mukherjee S, Kathirvel M, Patra CR. Biosynthesized Silver Nanoparticles for Cancer Therapy and In Vivo Bioimaging. Cancers (Basel) 2021; 13:cancers13236114. [PMID: 34885224 PMCID: PMC8657022 DOI: 10.3390/cancers13236114] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
In the current communication, a simple, environmentally compatible, non-toxic green chemistry process is used for the development of silver nanoparticles (AgZE) by the reaction between silver nitrate (AgNO3) and the ethanolic leaf extract of Zinnia elegans (ZE). The optimization of AgZE is carried out using a series of experiments. Various physico-chemical techniques are utilized to characterize the nanomaterials. The cell viability assay of AgZE in normal cells (CHO, HEK-293T, EA.hy926, and H9c2) shows their biocompatible nature, which is supported by hemolytic assay using mouse RBC. Interestingly, the nanoparticles exhibited cytotoxicity towards different cancer cell lines (U-87, MCF-7, HeLa, PANC-1 and B16F10). The detailed anticancer activity of AgZE on human glioblastoma cell line (U-87) is exhibited through various in vitro assays. In vivo the AgZE illustrates anticancer activity by inhibiting blood vessel formation through CAM assay. Furthermore, the AgZE nanoparticles when intraperitoneally injected in C57BL6/J mice (with and without tumor) exhibit fluorescence properties in the NIR region (excitation: 710 nm, emission: 820 nm) evidenced by bioimaging studies. The AgZE biodistribution through ICPOES analysis illustrates the presence of silver in different vital organs. Considering all the results, AgZE could be useful as a potential cancer therapeutic agent, as well as an NIR based non-invasive imaging tool in near future.
Collapse
Affiliation(s)
- Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.H.); (C.C.N.); (R.A.); (S.M.); (M.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Caroline Celine Norbert
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.H.); (C.C.N.); (R.A.); (S.M.); (M.K.)
| | - Rajarshi Acharyya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.H.); (C.C.N.); (R.A.); (S.M.); (M.K.)
| | - Sudip Mukherjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.H.); (C.C.N.); (R.A.); (S.M.); (M.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Muralidharan Kathirvel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.H.); (C.C.N.); (R.A.); (S.M.); (M.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; (S.H.); (C.C.N.); (R.A.); (S.M.); (M.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: or ; Tel.: +91-40-27191855
| |
Collapse
|
24
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Luong A, Cerignoli F, Abassi Y, Heisterkamp N, Abdel-Azim H. Analysis of acute lymphoblastic leukemia drug sensitivity by changes in impedance via stromal cell adherence. PLoS One 2021; 16:e0258140. [PMID: 34591931 PMCID: PMC8483355 DOI: 10.1371/journal.pone.0258140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022] Open
Abstract
The bone marrow is a frequent location of primary relapse after conventional cytotoxic drug treatment of human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Because stromal cells have a major role in promoting chemotherapy resistance, they should be included to more realistically model in vitro drug treatment. Here we validated a novel application of the xCELLigence system as a continuous co-culture to assess long-term effects of drug treatment on BCP-ALL cells. We found that bone marrow OP9 stromal cells adhere to the electrodes but are progressively displaced by dividing patient-derived BCP-ALL cells, resulting in reduction of impedance over time. Death of BCP-ALL cells due to drug treatment results in re-adherence of the stromal cells to the electrodes, increasing impedance. Importantly, vincristine inhibited proliferation of sensitive BCP-ALL cells in a dose-dependent manner, correlating with increased impedance. This system was able to discriminate sensitivity of two relapsed Philadelphia chromosome (Ph) positive ALLs to four different targeted kinase inhibitors. Moreover, differences in sensitivity of two CRLF2-drivenBCP-ALL cell lines to ruxolitinib were also seen. These results show that impedance can be used as a novel approach to monitor drug treatment and sensitivity of primary BCP-ALL cells in the presence of protective microenvironmental cells.
Collapse
Affiliation(s)
- Annie Luong
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Fabio Cerignoli
- Agilent Technologies, Inc., Santa Clara, CA, United States of America
| | - Yama Abassi
- Agilent Technologies, Inc., Santa Clara, CA, United States of America
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, United States of America
| | - Hisham Abdel-Azim
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
26
|
Zaryouh H, De Pauw I, Baysal H, Pauwels P, Peeters M, Vermorken JB, Lardon F, Wouters A. The Role of Akt in Acquired Cetuximab Resistant Head and Neck Squamous Cell Carcinoma: An In Vitro Study on a Novel Combination Strategy. Front Oncol 2021; 11:697967. [PMID: 34568028 PMCID: PMC8462273 DOI: 10.3389/fonc.2021.697967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). Resistance to EGFR-targeted therapies, such as cetuximab, poses a challenging problem. This study aims to characterize acquired cetuximab resistance mechanisms in HNSCC cell lines by protein phosphorylation profiling. Through this, promising combination treatments can be identified to possibly overcome acquired cetuximab resistance in HNSCC. Protein phosphorylation profiling showed increased phosphorylation of Akt1/2/3 after cetuximab treatment in acquired cetuximab resistant cells compared to cetuximab sensitive cells, which was confirmed by western blotting. Based on this protein phosphorylation profile, a novel combination treatment with cetuximab and the Akt1/2/3 inhibitor MK2206 was designed. Synergy between cetuximab and MK2206 was observed in two cetuximab sensitive HNSCC cell lines and one acquired cetuximab resistant variant in simultaneous treatment schedules. In conclusion, this study demonstrates that increased Akt1/2/3 phosphorylation seems to be characteristic for acquired cetuximab resistance in HNSCC cell lines. Our results also show an additive to synergistic interaction between cetuximab and MK2206 in simultaneous treatment schedules. These data support the hypothesis that the combination of cetuximab with PI3K/Akt pathway inhibition might be a promising novel therapeutic strategy to overcome acquired cetuximab resistance in HNSCC patients.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Ruiz-Torres V, Forsythe N, Pérez-Sánchez A, Van Schaeybroeck S, Barrajón-Catalán E, Micol V. A Nudibranch Marine Extract Selectively Chemosensitizes Colorectal Cancer Cells by Inducing ROS-Mediated Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:625946. [PMID: 34456713 PMCID: PMC8388012 DOI: 10.3389/fphar.2021.625946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
The present study shows the putative antiproliferative mechanism of action of the previously analytically characterized nudibranch extract (Dolabella auricularia, NB) and its different effects in colon cancer cells vs. nontumor colon cells. NB extract increased the accumulation of reactive oxygen species (ROS) and increased endoplasmic reticulum (ER) stress via stimulation of the unfolded protein response. Stress scavengers, N-acetylcysteine (NAC) and 4-phenylbutyric acid (4-PBA), decreased the stress induced by NB. The results showed that NB extract increased ER stress through overproduction of ROS in superinvasive colon cancer cells, decreased their resistance threshold, and produced a nonreturn level of ER stress, causing DNA damage and cell cycle arrest, which prevented them from achieving hyperproliferative capacity and migrating to and invading other tissues. On the contrary, NB extract had a considerably lower effect on nontumor human colon cells, suggesting a selective effect related to stress balance homeostasis. In conclusion, our results confirm that the growth and malignancy of colon cancer cells can be decreased by marine compounds through the modification of one of the most potent resistance mechanisms present in tumor cells; this characteristic differentiates cancer cells from nontumor cells in terms of stress balance.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain
| | - Nicholas Forsythe
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Almudena Pérez-Sánchez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Enrique Barrajón-Catalán
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain.,CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III, Mallorca, Spain
| |
Collapse
|
28
|
Cabezudo S, Sanz-Flores M, Caballero A, Tasset I, Rebollo E, Diaz A, Aragay AM, Cuervo AM, Mayor F, Ribas C. Gαq activation modulates autophagy by promoting mTORC1 signaling. Nat Commun 2021; 12:4540. [PMID: 34315875 PMCID: PMC8316552 DOI: 10.1038/s41467-021-24811-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.
Collapse
Affiliation(s)
- Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
- Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Sanz-Flores
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alvaro Caballero
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elena Rebollo
- Molecular Imaging Platform (MIP), Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna M Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Ana María Cuervo
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
29
|
Basmaeil Y, Al Subayyil A, Abumaree M, Khatlani T. Conditions Mimicking the Cancer Microenvironment Modulate the Functional Outcome of Human Chorionic Villus Mesenchymal Stem/Stromal Cells in vitro. Front Cell Dev Biol 2021; 9:650125. [PMID: 34235143 PMCID: PMC8255990 DOI: 10.3389/fcell.2021.650125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem/stromal cells isolated from chorionic villi of human term placentae (CV-MSCs) possess unique biological characters. They exhibit self-renewal, directional migration, differentiation, and immunomodulatory effects on other cell lineages, by virtue of which they can be utilized as therapeutic carriers, for drug targeting, and therapy. Tumors display characteristic features of a damaged tissue microenvironment, which is saturated with conditions such as hypoxia, sustained inflammation, and increased oxidative stress. CV-MSCs function normally in a high oxidative stress environment induced by hydrogen peroxide (H2O2) and glucose and also protect endothelial cells from their damaging effects. For their therapeutic applications in a disease like cancer, it is necessary to ascertain the effects of tumor microenvironment on their functional outcome. In this study, we investigated the functional activities, of CV-MSCs in response to conditioned media (CM) obtained from the culture of breast cancer cell line MDA-231 (CM-MDA231). CV-MSCs were exposed to CM-MDA231 for different spatio-temporal conditions, and their biological functions as well as modulation in gene expression were evaluated. Effect of CM-MDA231 on factors responsible for changes in functional outcome were also investigated at the protein levels. CV-MSCs exhibited significant reduction in proliferation but increased adhesion and migration after CM-MDA231 treatment. Interestingly, there was no change in their invasion potential. CM-MDA231 treatment modulated expression of various genes involved in important cellular events including, integration, survival, message delivery and favorable outcome after transplantation. Analysis of pathways related to cell cycle regulation revealed significant changes in the expression of p53, and increased phosphorylation of Retinoblastoma (Rb) and Checkpoint Kinase 2 in CV-MSCs treated with CM-MDA231. To summarize, these data reveal that CV-MSCs retain the ability to survive, adhere, and migrate after sustained treatment with CM-MDA231, a medium that mimics the cancer microenvironment. These properties of CV-MSCs to withstand the inflammatory tumor like microenvironment prove that they may make useful candidate in a stem cell based therapy against cancer. However, further pre-clinical studies are needed to validate their therapeutic usage.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammad Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Ilyas AO, Alam MK, Musah JD, Yang M, Lam YW, Roy VAL, Lau C. Investigation on the Direct and Bystander Effects in HeLa Cells Exposed to Very Low α-Radiation Using Electrical Impedance Measurement. ACS OMEGA 2021; 6:13995-14003. [PMID: 34124424 PMCID: PMC8190804 DOI: 10.1021/acsomega.0c05888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The impact of radiation-induced bystander effect (RIBE) is still not well understood in radiotherapy. RIBEs are biological effects expressed by nonirradiated cells near or far from the irradiated cells. Most radiological studies on cancer cells have been based on biochemical characterization. However, biophysical investigation with label-free techniques to analyze and compare the direct irradiation effect and RIBE has lagged. In this work, we employed an electrical cell-indium tin oxide (ITO) substrate impedance system (ECIIS) as a bioimpedance sensor to evaluate the HeLa cells' response. The bioimpedance of untreated/nonirradiated HeLa (N-HeLa) cells, α-particle (Am-241)-irradiated HeLa (I-HeLa) cells, and bystander HeLa (B-HeLa) cells exposed to media from I-HeLa cells was monitored with a sampling interval of 8 s over a period of 24 h. Also, we imaged the cells at times where impedance changes were observed. Different radiation doses (0.5 cGy, 1.2 cGy, and 1.7 cGy) were used to investigate I-HeLa and B-HeLa cells' radiation-dose-dependence. By analyzing the changes in absolute impedance and cell size/number with time, compared to N-HeLa cells, B-HeLa cells mimicked the I-HeLa cells' damage and modification of proliferation rate. Contrary to the irradiated cells, the bystander cells' damage rate and proliferation rate enhancements have an inverse radiation-dose-response. Also, we report multiple RIBEs in HeLa cells in a single measurement and provide crucial insights into the RIBE mechanism without any labeling procedure. Unambiguously, our results have shown that the time-dependent control of RIBE is important during α-radiation-based radiotherapy of HeLa cells.
Collapse
Affiliation(s)
- AbdulMojeed O. Ilyas
- Department
of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department
of Physics, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 3600001, Nigeria
| | - Md Kowsar Alam
- Department
of Biomedical Sciences, City University
of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department
of Physics, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jamal-Deen Musah
- Department
of Material Science and Engineering and State Key Laboratory of Terahertz
and Millimeter Waves, City University of
Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Mengsu Yang
- Department
of Biomedical Sciences, City University
of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yun Wah Lam
- Department
of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Vellaisamy A. L. Roy
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Condon Lau
- Department
of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
31
|
Ilyas AM, Alam MK, Musah JD, Yang M, Roy VAL, Lam YW, Lau C. CHO cell dysfunction due to radiation-induced bystander signals observed by real-time electrical impedance measurement. Biosens Bioelectron 2021; 181:113142. [PMID: 33752028 DOI: 10.1016/j.bios.2021.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
Radiation-induced bystander effects (RIBE) have raised many concerns about radiation safety and protection. In RIBE, unirradiated cells receive signals from irradiated cells and exhibit irradiation effects. Until now, most RIBE studies have been based on morphological and biochemical characterization. However, research on the impact of RIBE on biophysical properties of cells has been lagging. Non-invasive indium tin oxide (ITO)-based impedance systems have been used as bioimpedance sensors for monitoring cell behaviors. This powerful technique has not been applied to RIBE research. In this work, we employed an electrical cell-ITO substrate impedance system (ECIIS) to study the RIBE on Chinese hamster ovary (CHO) cells. The bioimpedance of bystander CHO cells (BCHO), alpha(α)-particle (Am-241) irradiated CHO (ICHO), and untreated/unirradiated CHO (UCHO) cells were monitored with a sampling interval of 8 s over a period of 24 h. Media from ICHO cells exposed to different radiation doses (0.3 nGy, 0.5 nGy, and 0.7 nGy) were used to investigate the radiation dose dependence of BCHO cells' impedance. In parallel, we imaged the cells at times where impedance changes were observed. By analyzing the changes in absolute impedance and cell size/cell number with time, we observed that BCHO cells mimicked ICHO cells in terms of modification in cell morphology and proliferation rate. Furthermore, these effects appeared to be time-dependent and inversely proportional to the radiation dose. Hence, this approach allows a label-free study of cellular responses to RIBE with high sensitivity and temporal resolution and can provide crucial insights into the RIBE mechanism.
Collapse
Affiliation(s)
- A M Ilyas
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China; Department of Physics, Federal University Oye-Ekiti, Ekiti State 3600001, Nigeria.
| | - Md Kowsar Alam
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong, China; Department of Physics, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jamal-Deen Musah
- Department of Material Science and Engineering, State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
32
|
Schneider L, Liu J, Zhang C, Azoitei A, Meessen S, Zheng X, Cremer C, Gorzelanny C, Kempe-Gonzales S, Brunner C, Wezel F, Bolenz C, Gunes C, John A. The Role of Interleukin-1-Receptor-Antagonist in Bladder Cancer Cell Migration and Invasion. Int J Mol Sci 2021; 22:ijms22115875. [PMID: 34070905 PMCID: PMC8198563 DOI: 10.3390/ijms22115875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) as well as an IL1-dependent decrease in tissue barrier function, potentially contributing to cancer cell invasion. Objective: Based on these observations, here we investigated the potential roles of IL1RA, IL1A, and IL1B in bladder cancer cell invasion in vitro. Methods: Cell culture, real-time impedance sensing, invasion assays (Boyden chamber, pig bladder model), qPCR, Western blot, ELISA, gene overexpression. Results: We observed a loss of IL1RA expression in invasive, high-grade bladder cancer cell lines T24, UMUC-3, and HT1197 while IL1RA expression was readily detectable in the immortalized UROtsa cells, the non-invasive bladder cancer cell line RT4, and in benign patient urothelium. Thus, we modified the invasive human bladder cancer cell line T24 to ectopically express IL1RA, and measured changes in cell migration/invasion using the xCELLigence Real-Time-Cell-Analysis (RTCA) system and the Boyden chamber assay. The real-time observation data showed a significant decrease of cell migration and invasion in T24 cells overexpressing IL1RA (T24-IL1RA), compared to cells harboring an empty vector (T24-EV). Concurrently, tumor cytokines, e.g., IL1B, attenuated the vascular endothelial barrier, which resulted in a reduction of the Cell Index (CI), an impedance-based dimensionless unit. This reduction could be reverted by the simultaneous incubation with IL1RA. Moreover, we used an ex vivo porcine organ culture system to evaluate cell invasion capacity and showed that T24-IL1RA cells showed significantly less invasive capacity compared to parental T24 cells or T24-EV. Conclusions: Taken together, our results indicate an inverse correlation between IL1RA expression and tumor cell invasive capacity and migration, suggesting that IL1RA plays a role in bladder carcinogenesis, while the exact mechanisms by which IL1RA influences tumor cells migration/invasion remain to be clarified in future studies. Furthermore, we confirmed that real-time impedance sensing and the porcine ex vivo organ culture methods are powerful tools to discover differences in cancer cell migration and invasion.
Collapse
Affiliation(s)
- Lisa Schneider
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Cheng Zhang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Catharina Cremer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | | | - Sybille Kempe-Gonzales
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Hospital, 89075 Ulm, Germany; (S.K.-G.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Hospital, 89075 Ulm, Germany; (S.K.-G.); (C.B.)
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Cagatay Gunes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
- Correspondence: ; Tel.: +49-731-500-58019
| | - Axel John
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| |
Collapse
|
33
|
Liu S, Liu B, Zhao Q, Shi J, Gu Y, Guo Y, Li Y, Liu Y, Cheng Y, Qiao Y, Liu Y. Down-regulated FST expression is involved in the poor prognosis of triple-negative breast cancer. Cancer Cell Int 2021; 21:267. [PMID: 34001106 PMCID: PMC8130405 DOI: 10.1186/s12935-021-01977-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is more commonly associated with young patients, featuring high histological grade, visceral metastasis, and distant recurrence. Follistatin (FST) is a secreted extracellular regulatory protein that antagonizes TGF-β superfamily such as activin and TGF-β related superfamily such as bone morphogenetic protein (BMP). The implication of FST in the proliferation, angiogenesis, and metastasis of solid tumors documents good or poor outcome of patients with BC. However, the role of FST in TNBC remains unclear. Methods Data of 935 patients with breast cancer (BC) were extracted from TCGA. Case–control study, Kaplan–Meier, uni-multivariate COX, and ROC curve were utilized to investigate the relationship between FST expression and the clinical characteristics and prognosis of BC. Functional studies were used to analyze the effect of FST expression on proliferation, apoptosis, migration, and invasion of TNBC cell lines. Bioinformatic methods such as volcanoplot, GO annd KEGG enrichment, and protein–protein interactions (PPI) analyses were conducted to further confirm the different roles of FST in the apoptotic pathways among mesenchymal and mesenchymal stem-like cells of TNBC. Results Data from TCGA showed that low FST expression correlated with poor prognosis (for univariate analysis, HR = 0.47, 95% CI: 0.27–0.82, p = 0.008; for multivariate analysis, HR = 0.40, 95% CI: 0.21–0.75, p = 0.004). Low FST expression provided high predicted value of poor prognosis in TNBC amongst BCs. FST knockdown promoted the proliferation, migration and invasion of BT549 and HS578T cell lines. FST inhibited the apoptosis of mesenchymal cells by targeting BMP7. Conclusions Low FST expression is associated with poor prognosis of patients with TNBC. FST expressions exhibit the anisotropic roles of apoptosis between mesenchymal and mesenchymal stem-like cells but promote the proliferation, migration, invasion in both of two subtypes of TNBC in vitro. FST may be a subtype-heterogeneous biomarker for monitoring the progress of TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01977-x.
Collapse
Affiliation(s)
- Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Breast Surgery, Second Affiliated Hospital of Jilin University, Changchun, 130021, China
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yunkai Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
34
|
Bernardo L, Corallo L, Caterini J, Su J, Gisonni-Lex L, Gajewska B. Application of xCELLigence real-time cell analysis to the microplate assay for pertussis toxin induced clustering in CHO cells. PLoS One 2021; 16:e0248491. [PMID: 33720984 PMCID: PMC7959359 DOI: 10.1371/journal.pone.0248491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The microplate assay with Chinese Hamster Ovary (CHO) cells is currently used as a safety test to monitor the residual pertussis toxin (PT) amount in acellular pertussis antigens prior to vaccine formulation. The assay is based on the findings that the exposure of CHO cells to PT results in a concentration-dependent clustering response which can be used to estimate the amount of PT in a sample preparation. A major challenge with the current CHO cell assay methodology is that scoring of PT-induced clustering is dependent on subjective operator visual assessment using light microscopy. In this work, we have explored the feasibility of replacing the microscopy readout for the CHO cell assay with the xCELLigence Real-Time Cell Analysis system (ACEA BioSciences, a part of Agilent). The xCELLigence equipment is designed to monitor cell adhesion and growth. The electrical impedance generated from cell attachment and proliferation is quantified via gold electrodes at the bottom of the cell culture plate wells, which is then translated into a unitless readout called cell index. Results showed significant decrease in the cell index readouts of CHO cells exposed to PT compared to the cell index of unexposed CHO cells. Similar endpoint concentrations were obtained when the PT reference standard was titrated with either xCELLigence or microscopy. Testing genetically detoxified pertussis samples unspiked or spiked with PT further supported the sensitivity and reproducibility of the xCELLigence assay in comparison with the conventional microscopy assay. In conclusion, the xCELLigence RTCA system offers an alternative automated and higher throughput method for evaluating PT-induced clustering in CHO cells.
Collapse
Affiliation(s)
- Lidice Bernardo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
- * E-mail:
| | - Lucas Corallo
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Judy Caterini
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Jin Su
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Lucy Gisonni-Lex
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| | - Beata Gajewska
- Department of Analytical Sciences, Sanofi Pasteur, Toronto, ON, Canada
| |
Collapse
|
35
|
Ravera M, Gabano E, Zanellato I, Rangone B, Perin E, Ferrari B, Bottone MG, Osella D. Cis,cis,trans-[Pt IVCl 2(NH 3) 2(perillato) 2], a dual-action prodrug with excellent cytotoxic and antimetastatic activity. Dalton Trans 2021; 50:3161-3177. [PMID: 33595015 DOI: 10.1039/d0dt04051g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two Pt(iv) conjugates containing one or two molecules of perillic acid (4-isopropenylcyclohexene-1-carboxylic acid), an active metabolite of limonene, were synthesized both with traditional and microwave-assisted methods and characterized. Their antiproliferative activity was tested on a panel of human tumor cell lines. In particular, cis,cis,trans-[PtIVCl2(NH3)2(perillato)2] exhibited excellent antiproliferative and antimetastatic activity on A-549 lung tumor cells at nanomolar concentrations. A number of in vitro biological tests were performed to decipher some aspects of its mechanism of action, including transwell migration and invasion as well as wound healing assay.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li N, Cui W, Cong P, Tang J, Guan Y, Huang C, Liu Y, Yu C, Yang R, Zhang X. Biomimetic inorganic-organic hybrid nanoparticles from magnesium-substituted amorphous calcium phosphate clusters and polyacrylic acid molecules. Bioact Mater 2021; 6:2303-2314. [PMID: 33553817 PMCID: PMC7841502 DOI: 10.1016/j.bioactmat.2021.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Amorphous calcium phosphate (ACP) has been widely found during bone and tooth biomineralization, but the meta-stability and labile nature limit further biomedical applications. The present study found that the chelation of polyacrylic acid (PAA) molecules with Ca2+ ions in Mg-ACP clusters (~2.1 ± 0.5 nm) using a biomineralization strategy produced inorganic-organic Mg-ACP/PAA hybrid nanoparticles with better thermal stability. Mg-ACP/PAA hybrid nanoparticles (~24.0 ± 4.8 nm) were pH-responsive and could be efficiently digested under weak acidic conditions (pH 5.0–5.5). The internalization of assembled Mg-ACP/PAA nanoparticles by MC3T3-E1 cells occurred through endocytosis, indicated by laser scanning confocal microscopy and cryo-soft X-ray tomography. Our results showed that cellular lipid membranes remained intact without pore formation after Mg-ACP/PAA particle penetration. The assembled Mg-ACP/PAA particles could be digested in cell lysosomes within 24 h under weak acidic conditions, thereby indicating the potential to efficiently deliver encapsulated functional molecules. Both the in vitro and in vivo results preliminarily demonstrated good biosafety of the inorganic-organic Mg-ACP/PAA hybrid nanoparticles, which may have potential for biomedical applications. Mg-ACP/PAA hybrid nanoparticles have been synthesized following a biomineralization strategy. The chelation of PAA molecules in synergy with Mg2+ substitution improves thermal stability of Mg-ACP/PAA nanoparticles. The Mg-ACP/PAA nanoparticles are pH sensitive and can be digested in cell lysosomes within 24 h.
Collapse
Affiliation(s)
- Na Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Cui
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peifang Cong
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
37
|
Smyth R, Berton S, Rajabalee N, Chan T, Sun J. Protein Kinase R Restricts the Intracellular Survival of Mycobacterium tuberculosis by Promoting Selective Autophagy. Front Microbiol 2021; 11:613963. [PMID: 33552025 PMCID: PMC7862720 DOI: 10.3389/fmicb.2020.613963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a deadly infectious lung disease caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). The identification of macrophage signaling proteins exploited by Mtb during infection will enable the development of alternative host-directed therapies (HDT) for TB. HDT strategies will boost host immunity to restrict the intracellular replication of Mtb and therefore hold promise to overcome antimicrobial resistance, a growing crisis in TB therapy. Protein Kinase R (PKR) is a key host sensor that functions in the cellular antiviral response. However, its role in defense against intracellular bacterial pathogens is not clearly defined. Herein, we demonstrate that expression and activation of PKR is upregulated in macrophages infected with Mtb. Immunological profiling of human THP-1 macrophages that overexpress PKR (THP-PKR) showed increased production of IP-10 and reduced production of IL-6, two cytokines that are reported to activate and inhibit IFNγ-dependent autophagy, respectively. Indeed, sustained expression and activation of PKR reduced the intracellular survival of Mtb, an effect that could be enhanced by IFNγ treatment. We further demonstrate that the enhanced anti-mycobacterial activity of THP-PKR macrophages is mediated by a mechanism dependent on selective autophagy, as indicated by increased levels of LC3B-II that colocalize with intracellular Mtb. Consistent with this mechanism, inhibition of autophagolysosome maturation with bafilomycin A1 abrogated the ability of THP-PKR macrophages to limit replication of Mtb, whereas pharmacological activation of autophagy enhanced the anti-mycobacterial effect of PKR overexpression. As such, PKR represents a novel and attractive host target for development of HDT for TB, and our data suggest value in the design of more specific and potent activators of PKR.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Nusrah Rajabalee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Therese Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, Miao Z, Hao D, Zhao M, Xu J, Zeng J, Wong KH, Di L, Wong AHH, Xu X, Deng CX. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Am J Cancer Res 2021; 11:2442-2459. [PMID: 33500735 PMCID: PMC7797698 DOI: 10.7150/thno.46460] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer growth is usually accompanied by metastasis which kills most cancer patients. Here we aim to study the effect of cisplatin at different doses on breast cancer growth and metastasis. Methods: We used cisplatin to treat breast cancer cells, then detected the migration of cells and the changes of epithelial-mesenchymal transition (EMT) markers by migration assay, Western blot, and immunofluorescent staining. Next, we analyzed the changes of RNA expression of genes by RNA-seq and confirmed the binding of activating transcription factor 3 (ATF3) to cytoskeleton related genes by ChIP-seq. Thereafter, we combined cisplatin and paclitaxel in a neoadjuvant setting to treat xenograft mouse models. Furthermore, we analyzed the association of disease prognosis with cytoskeletal genes and ATF3 by clinical data analysis. Results: When administered at a higher dose (6 mg/kg), cisplatin inhibits both cancer growth and metastasis, yet with strong side effects, whereas a lower dose (2 mg/kg) cisplatin blocks cancer metastasis without obvious killing effects. Cisplatin inhibits cancer metastasis through blocking early steps of EMT. It antagonizes transforming growth factor beta (TGFβ) signaling through suppressing transcription of many genes involved in cytoskeleton reorganization and filopodia formation which occur early in EMT and are responsible for cancer metastasis. Mechanistically, TGFβ and fibronectin-1 (FN1) constitute a positive reciprocal regulation loop that is critical for activating TGFβ/SMAD3 signaling, which is repressed by cisplatin induced expression of ATF3. Furthermore, neoadjuvant administration of cisplatin at 2 mg/kg in conjunction with paclitaxel inhibits cancer growth and blocks metastasis without causing obvious side effects by inhibiting colonization of cancer cells in the target organs. Conclusion: Thus, cisplatin prevents breast cancer metastasis through blocking early EMT, and the combination of cisplatin and paclitaxel represents a promising therapy for killing breast cancer and blocking tumor metastasis.
Collapse
|
39
|
Lee YJ, Han BH, Yoon JJ, Kim HY, Ahn YM, Hong MH, Son CO, Kang DG, Lee HS. Identification of securinine as vascular protective agent targeting atherosclerosis in vascular endothelial cells, smooth muscle cells, and apolipoprotein E deficient mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153430. [PMID: 33341451 DOI: 10.1016/j.phymed.2020.153430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/28/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic vascular disease and characterized by accumulation within the intima of inflammatory cells, smooth muscle cells, lipid, and connective tissue. PURPOSE The purpose of the present study was to identify natural agents that commonly reverse advanced atherosclerotic plaque to early atherosclerotic plaque. METHODS Differentially expressed genes (DEGs) were analyzed in silico. The differentially expressed genes from 9 intimal thickening and 8 fibrous cap atheroma tissue which were collected from GEO data were assessed by the connectivity map. Natural candidate securinine, a main compound from Securinega suffruticosa, was selected and administrated 1, 5 mg/kg/day in apolipoprotein-E-deficient (ApoE KO) mice for 18 weeks. RESULTS Securinine significantly showed lowered blood pressure and improvement of metabolic parameters with hyperlipidemia. The impairment in vasorelaxation was remarkably decreased by treatment with securinine. H&E staining revealed that treatment with securinine reduced atherosclerotic lesions. Securinine suppressed the expression of adhesion molecules and matrix metalloproteinase-2/-9 in both ApoE KO and vascular endothelial cells (HUVEC). In HUVEC pretreatment with securinine significantly inhibited ROS generation and NF-κB activation. Growth curve assays using the real-time cell analyzer showed that securinine significantly decreased TNF-α-induced aortic smooth muscle cell proliferation and migration in a dose-dependent manner. CONCLUSION Securinine may be a potential natural candidate for the treatment of atherosclerosis because it attenuates vascular inflammation and dysfunction as well as vascular lesion.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Azepines/pharmacology
- Endothelial Cells/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Gene Expression Regulation/drug effects
- Heterocyclic Compounds, Bridged-Ring/pharmacology
- Human Umbilical Vein Endothelial Cells
- Humans
- Lactones/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/metabolism
- Piperidines/pharmacology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/metabolism
- Protective Agents/pharmacology
- Vasodilation/drug effects
- Mice
Collapse
Affiliation(s)
- Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byung Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jung Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - You Mee Ahn
- Clinical Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34504, Republic of Korea
| | - Mi Hyeon Hong
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chan Ok Son
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea.
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
40
|
Rajabi F, Liu-Bordes WY, Pinskaya M, Dominika F, Kratassiouk G, Pinna G, Nanni S, Farsetti A, Gespach C, Londoño-Vallejo A, Groisman I. CPEB1 orchestrates a fine-tuning of miR-145-5p tumor-suppressive activity on TWIST1 translation in prostate cancer cells. Oncotarget 2020; 11:4155-4168. [PMID: 33227047 PMCID: PMC7665230 DOI: 10.18632/oncotarget.27806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
TWIST1 is a basic helix-loop-helix transcription factor, and one of the master Epithelial-to-Mesenchymal Transition (EMT) regulators. We show that tumor suppressor miR-145-5p controls TWIST1 expression in an immortalized prostate epithelial cell line and in a tumorigenic prostate cancer-derived cell line. Indeed, shRNA-mediated miR-145-5p silencing enhanced TWIST1 expression and induced EMT-associated malignant properties in these cells. However, we discovered that the translational inhibitory effect of miR-145-5p on TWIST1 is lost in 22Rv1, another prostate cancer cell line that intrinsically expresses high levels of the CPEB1 cytoplasmic polyadenylation element binding protein. This translational regulator typically reduces TWIST1 translation efficiency by shortening the TWIST1 mRNA polyA tail. However, our results indicate that the presence of CPEB1 also interferes with the binding of miR-145-5p to the TWIST1 mRNA 3′UTR. Mechanistically, CPEB1 binding to its first cognate site either directly hampers the access to the miR-145-5p response element or redirects the cleavage/polyadenylation machinery to an intermediate polyadenylation site, resulting in the elimination of the miR-145-5p binding site. Taken together, our data support the notion that the tumor suppressive activity of miR-145-5p on TWIST1 translation, consequently on EMT, self-renewal, and migration, depends on the CPEB1 expression status of the cancer cell. A preliminary prospective study using clinical samples suggests that reconsidering the relative status of miR-145-5p/TWIST1 and CPEB1 in the tumors of prostate cancer patients may bear prognostic value.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Win-Yan Liu-Bordes
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Marina Pinskaya
- Non-Coding RNA, Epigenetic and Genome Fluidity, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Foretek Dominika
- Non-Coding RNA, Epigenetic and Genome Fluidity, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Gueorgui Kratassiouk
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), Gif-sur-Yvette, France
| | - Guillaume Pinna
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), Gif-sur-Yvette, France
| | - Simona Nanni
- Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonella Farsetti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Christian Gespach
- Sorbonne Université, Inserm U938, Team TGFβ Signaling in Cellular Plasticity and Cancer, Centre de Recherche Saint-Antoine, Paris, France
| | - Arturo Londoño-Vallejo
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| | - Irina Groisman
- Telomeres and Cancer Laboratory, CNRS, Sorbonne Université, Université PSL, Institut Curie, Paris, France
| |
Collapse
|
41
|
Wang HH, Chen Y, Changchien CY, Chang HH, Lu PJ, Mariadas H, Cheng YC, Wu ST. Pharmaceutical Evaluation of Honokiol and Magnolol on Apoptosis and Migration Inhibition in Human Bladder Cancer Cells. Front Pharmacol 2020; 11:549338. [PMID: 33240083 PMCID: PMC7677562 DOI: 10.3389/fphar.2020.549338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Among herbal medicines, magnolia bark extract, particularly its components honokiol (Hono) and magnolol (Mag), has been widely documented to have antineoplastic properties. The present study aimed to evaluate the synergism of Hono and Mag in bladder cancer therapy both in vitro and in vivo. Treatment with Mag alone at concentrations up to 80 μM failed to have an antiproliferative effect. In contrast, the combination of Hono and Mag at 40 μM decreased viability, caused cell cycle arrest and enhanced the proportion of Annexin V/7AAD-positive cells. Moreover, Mag with Hono at 40 μM induced caspase 3-dependent apoptosis and autophagy. Neither Hono nor Mag alone had an anti-migratory effect on bladder cancer cells. In contrast, Hono and Mag at 20 μM inhibited the motility of TSGH8301 and T24 cells in wound-healing and Transwell assays. The above phenomena were further confirmed by decreased phosphorylated focal adhesion kinase (p-FAK), p-paxillin, integrin β1, and integrin β3 protein levels. In a nude mouse xenograft model, Mag/Hono administration preferentially retarded T24 tumor progression, which was consistent with the results of cellular experiments. Current findings suggest Hono and Mag treatment as a potential anticancer therapy for both low- and high-grade urothelial carcinoma.
Collapse
Affiliation(s)
- Hisao-Hsien Wang
- Division of Urology, Department of Surgery, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Ying Changchien
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Jyun Lu
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Heidi Mariadas
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Planning, Medical Affairs Bureau Ministry of National Defense, Taipei, Taiwan
| |
Collapse
|
42
|
Diederen K, Li JV, Donachie GE, de Meij TG, de Waart DR, Hakvoort TBM, Kindermann A, Wagner J, Auyeung V, Te Velde AA, Heinsbroek SEM, Benninga MA, Kinross J, Walker AW, de Jonge WJ, Seppen J. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn's disease. Sci Rep 2020; 10:18879. [PMID: 33144591 PMCID: PMC7609694 DOI: 10.1038/s41598-020-75306-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
A nutritional intervention, exclusive enteral nutrition (EEN) can induce remission in patients with pediatric Crohn's disease (CD). We characterized changes in the fecal microbiota and metabolome to identify the mechanism of EEN. Feces of 43 children were collected prior, during and after EEN. Microbiota and metabolites were analyzed by 16S rRNA gene amplicon sequencing and NMR. Selected metabolites were evaluated in relevant model systems. Microbiota and metabolome of patients with CD and controls were different at all time points. Amino acids, primary bile salts, trimethylamine and cadaverine were elevated in patients with CD. Microbiota and metabolome differed between responders and non-responders prior to EEN. EEN decreased microbiota diversity and reduced amino acids, trimethylamine and cadaverine towards control levels. Patients with CD had reduced microbial metabolism of bile acids that partially normalized during EEN. Trimethylamine and cadaverine inhibited intestinal cell growth. TMA and cadaverine inhibited LPS-stimulated TNF-alpha and IL-6 secretion by primary human monocytes. A diet rich in free amino acids worsened inflammation in the DSS model of intestinal inflammation. Trimethylamine, cadaverine, bile salts and amino acids could play a role in the mechanism by which EEN induces remission. Prior to EEN, microbiota and metabolome are different between responders and non-responders.
Collapse
Affiliation(s)
- Kay Diederen
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Tim G de Meij
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Angelika Kindermann
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
| | - Josef Wagner
- Pathogen Genomics Group, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Victoria Auyeung
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Location AMC & VUmc, Amsterdam, The Netherlands
| | - James Kinross
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alan W Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Meibergdreef 69, 1105BK, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Porcine Reproductive and Respiratory Syndrome Virus Interferes with Swine Influenza A Virus Infection of Epithelial Cells. Vaccines (Basel) 2020; 8:vaccines8030508. [PMID: 32899579 PMCID: PMC7565700 DOI: 10.3390/vaccines8030508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections are still a major concern in pigs. Amongst the involved viruses, the porcine reproductive and respiratory syndrome virus (PRRSV) and the swine influenza type A virus (swIAV) have a major impact. These viruses frequently encounter and dual infections are reported. We analyzed here the molecular interactions between viruses and porcine tracheal epithelial cells as well as lung tissue. PRRSV-1 species do not infect porcine respiratory epithelial cells. However, PRRSV-1, when inoculated simultaneously or shortly before swIAV, was able to inhibit swIAV H1N2 infection, modulate the interferon response and alter signaling protein phosphorylations (ERK, AKT, AMPK, and JAK2), in our conditions. SwIAV inhibition was also observed, although at a lower level, by inactivated PRRSV-1, whereas acid wash treatment inactivating non-penetrated viruses suppressed the interference effect. PRRSV-1 and swIAV may interact at several stages, before their attachment to the cells, when they attach to their receptors, and later on. In conclusion, we showed for the first time that PRRSV can alter the relation between swIAV and its main target cells, opening the doors to further studies on the interplay between viruses. Consequences of these peculiar interactions on viral infections and vaccinations using modified live vaccines require further investigations.
Collapse
|
44
|
Ghosh S, Guimaraes JC, Lanzafame M, Schmidt A, Syed AP, Dimitriades B, Börsch A, Ghosh S, Mittal N, Montavon T, Correia AL, Danner J, Meister G, Terracciano LM, Pfeffer S, Piscuoglio S, Zavolan M. Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO J 2020; 39:e103922. [PMID: 32812257 PMCID: PMC7507497 DOI: 10.15252/embj.2019103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023] Open
Abstract
Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein‐level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double‐stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA‐induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Afzal Pasha Syed
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Shreemoyee Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Montavon
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ana Luisa Correia
- Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Johannes Danner
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Small Extracellular Vesicles from Human Fetal Dermal Cells and Their MicroRNA Cargo: KEGG Signaling Pathways Associated with Angiogenesis and Wound Healing. Stem Cells Int 2020; 2020:8889379. [PMID: 32855639 PMCID: PMC7443045 DOI: 10.1155/2020/8889379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The use of cell secreted factors in clinical settings could be an alternative to conventional cell therapy, with the advantage of limiting concerns generally associated with traditional cell transplantation, such as tumorigenicity, immunoreactivity, and carrying of infections. Based on our published data, we predict a potential role for extracellular vesicles (EVs) in contributing to the proangiogenic activity of human fetal dermal cell secretome. Depletion of nanosized EVs from secretome significantly impaired its ability to induce formation of mesh-like structures in vitro. The isolated EVs were characterized for size and concentration by nanoparticle tracking analysis, and for protein markers (Rab5+, Alix+, CD63+, and calnexin−). The microRNA profile of EVs revealed 87 microRNAs significantly upregulated (≥15-fold increase) in fetal compared to adult dermal cell-derived EVs. Interestingly, these upregulated microRNAs included microRNAs with a validated role in angiogenesis according to literature. Moreover, the DIANA-TarBase v7.0 analysis confirmed enrichment in the KEGG signaling pathways associated with angiogenesis and wound healing, with the identification of putative target genes including thrombospondin 1. To validate the in silico data, EVs were also characterized for total protein contents. When tested in in vitro angiogenesis, fetal dermal cell-derived EVs were more effective than their adult counterpart in inducing formation of complete mesh-like structures. Furthermore, treatment of fibroblasts with fetal dermal-derived EVs determined a 4-fold increase of thrombospondin 1 protein amounts compared with the untreated fibroblasts. Finally, visualization of CSFE-labeled EVs in the cytosol of target cells suggested a successful uptake of these particles at 4-8 hours of incubation. We conclude that EVs are important contributors of the proangiogenic effect of fetal dermal cell secretome. Hence, EVs could also serve as vehicle for a successful delivery of microRNAs or other molecules of therapeutic interest to target cells.
Collapse
|
46
|
Liu C, Wang H, Yang M, Liang Y, Jiang L, Sun S, Fan S. Downregulation of cAMP-Dependent Protein Kinase Inhibitor-b Promotes Preeclampsia by Decreasing Phosphorylated Akt. Reprod Sci 2020; 28:178-185. [PMID: 32676926 PMCID: PMC7782383 DOI: 10.1007/s43032-020-00258-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Preeclampsia is a multi-system disease that is unique to human pregnancy. Impaired extravillous trophoblast migration and invasion accompanied by poor spiral vascular remodeling is thought to be the initial reason. This study investigated cAMP-dependent protein kinase inhibitor-b(PKIB) expression in placentas and its involvement in the pathogenesis of PE. We used immunohistochemistry and western blotting to calculate PKIB levels in the placentas. Then we knocked down PKIB by siRNA and used real-time cell analysis to assess the invasion and migration ability of trophoblasts. Tube formation assay and spheroid sprouting assay were utilized to identify the ability to form vessels of trophoblasts. At last, western blotting was used to demonstrate the level of phosphorylated Akt, as well as downstream-related genes of Akt signaling pathway in trophoblasts. We first found that PKIB expression level was lower in the PE placentas than in the normal placentas. In addition, we found that downregulation of PKIB can inhibit the migration, invasion, and the ability to form vessels of HTR8/SVneo cells. Downregulation of PKIB leaded to a decrease in phosphorylated Akt, as well as downstream proteins such as matrix metalloproteinase 2, matrix metalloproteinase 9, and glycogen synthase kinase 3β, which are related to migration and invasion. Our study revealed that the downregulation of PKIB expression resulted in decreased migration, invasion, and vessel formation ability by regulating Akt signaling pathway in placental trophoblasts in PE.
Collapse
Affiliation(s)
- Chunfeng Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, No. 1120 Lianhua Rd, Futian District, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, No. 1120 Lianhua Rd, Futian District, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, No. 1120 Lianhua Rd, Futian District, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Li Jiang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, No. 1120 Lianhua Rd, Futian District, Shenzhen, 518036, China
| | - Siman Sun
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, No. 1120 Lianhua Rd, Futian District, Shenzhen, 518036, China.
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China.
| |
Collapse
|
47
|
Sheetz T, Mills J, Tessari A, Pawlikowski M, Braddom AE, Posid T, Zynger DL, James C, Embrione V, Parbhoo K, Foray C, Coppola V, Croce CM, Palmieri D. NCL Inhibition Exerts Antineoplastic Effects against Prostate Cancer Cells by Modulating Oncogenic MicroRNAs. Cancers (Basel) 2020; 12:1861. [PMID: 32664322 PMCID: PMC7408652 DOI: 10.3390/cancers12071861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men and second most common cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is only temporarily effective for advanced-stage PCa, as the disease inevitably progresses to castration-resistant prostate cancer (CRPC). The protein nucleolin (NCL) is overexpressed in several types of human tumors where it is also mislocalized to the cell surface. We previously reported the identification of a single-chain fragment variable (scFv) immuno-agent that is able to bind NCL on the surface of breast cancer cells and inhibit proliferation both in vitro and in vivo. In the present study, we evaluated whether NCL could be a valid therapeutic target for PCa, utilizing DU145, PC3 (CRPC), and LNCaP (androgen-sensitive) cell lines. First, we interrogated the publicly available databases and noted that higher NCL mRNA levels are associated with higher Gleason Scores as well as with recurrent and metastatic tumors. Then, using our anti-NCL scFv, we demonstrated that NCL is expressed on the surface of all three tested cell lines and that NCL inhibition results in reduced proliferation and migration. We also measured the inhibitory effect of NCL targeting on the biogenesis of oncogenic microRNAs such as miR-21, -221 and -222, which was cell context dependent. Taken together, our data provide evidence that NCL targeting inhibits the key hallmarks of malignancy in PCa cells and may provide a novel therapeutic option for patients with advanced-stage PCa.
Collapse
Affiliation(s)
- Tyler Sheetz
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Joseph Mills
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan Pawlikowski
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley E. Braddom
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tasha Posid
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Debra L. Zynger
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Cindy James
- Mass Spectroscopy and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA;
| | - Valerio Embrione
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kareesma Parbhoo
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Foray
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Cetuximab-induced natural killer cell cytotoxicity in head and neck squamous cell carcinoma cell lines: investigation of the role of cetuximab sensitivity and HPV status. Br J Cancer 2020; 123:752-761. [PMID: 32541873 PMCID: PMC7462851 DOI: 10.1038/s41416-020-0934-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background The epidermal growth factor receptor (EGFR) is overexpressed by 80–90% of squamous cell carcinoma of head and neck (HNSCC). In addition to inhibiting EGFR signal transduction, cetuximab, a monoclonal antibody targeting EGFR can also bind to fragment crystallisable domain of immunoglobulins G1 present on natural killer (NK), causing antibody-dependent cellular cytotoxicity (ADCC). However, presence of cetuximab resistance limits effective clinical management of HNSCC. Methods In this study, differences in induction of ADCC were investigated in a panel of ten HNSCC cell lines. Tumour cells were co-cultured with NK cells and monitored using the xCELLigence RTCA. Results While ADCC was not influenced by HPV status, hypoxia and cetuximab resistance did affect ADCC differentially. Intrinsic cetuximab-resistant cell lines showed an increased ADCC induction, whereas exposure to hypoxia reduced ADCC. Baseline EGFR expression was not correlated with ADCC. In contrast, EGFR internalisation following cetuximab treatment was positively correlated with ADCC. Conclusion These findings support the possibility that resistance against cetuximab can be overcome by NK cell-based immune reactions. As such, it provides an incentive to combine cetuximab with immunotherapeutic approaches, thereby possibly enhancing the anti-tumoural immune responses and achieving greater clinical effectiveness of EGFR-targeting agents.
Collapse
|
49
|
Abstract
Shock waves are gaining interests in biological and medical applications. In this work, we investigated the mechanical characteristics of shock waves that affect cell viability. In vitro testing was conducted using the metastatic breast epithelial cell line MDA-MB-231. Shock waves were generated using a high-power pulse laser. Two different coating materials and different laser energy levels were used to vary the peak pressure, decay time, and the strength of subsequent peaks of the shock waves. Within the testing capability of the current study, it is shown that shock waves with a higher impulse led to lower cell viability, a higher detached cell ratio, and a higher cell death ratio, while shock waves with the same peak pressure could lead to different levels of cell damage. The results also showed that the detached cells had a higher cell death ratio compared to the attached cells. Moreover, a critical shock impulse of 5 Pa·s was found to cause the cell death ratio of the detached cells to exceed 50%. This work has demonstrated that, within the testing range shown here, the impulse, rather than the peak pressure, is the governing shock wave parameter for the damage of MDA-MB-231 breast cancer cells. The result suggests that a lower-pressure shock wave with a longer duration, or multiple sequential low amplitude shock waves can be applied over a duration shorter than the fundamental response period of the cells to achieve the same impact as shock waves with a high peak pressure but a short duration. The finding that cell viability is better correlated with shock impulse rather than peak pressure has potential significant implications on how shock waves should be tailored for cancer treatments, enhanced drug delivery, and diagnostic techniques to maximize efficacy while minimizing potential side effects.
Collapse
|
50
|
Dikmen M, Öztürk SE, Cantürk Z, Ceylan G, Karaduman AB, Yamaç M. Anticancer and antimetastatic activity of Hypomyces chrysospermus, a cosmopolitan parasite in different human cancer cells. Mol Biol Rep 2020; 47:3765-3778. [PMID: 32378168 DOI: 10.1007/s11033-020-05468-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/25/2020] [Indexed: 11/29/2022]
Abstract
The importance of microbial natural compounds in drug research is increasing every year and they are used to prevent or treat a variety of diseases. Hypomyces chrysospermus is a cosmopolitan parasite of many Boletaceae members. Since not much work has been conducted to date, this study is undertaken to explore the anticancer effect, including the antiproliferative and antimetastatic activity of Hypomyces chrysospermus. The aim of this study is to determine the antiproliferative and antimetastatic activity of Hypomyces chrysospermus ethyl acetate extract, having antioxidant activity, against A549, Caco2, MCF-7 human cancer and CCD-19 Lu and CCD 841 CoN healthy human cell lines. Firstly, cytotoxic activity was determined by the WST-1 assay. After cell proliferations and anti-metastatic effects were investigated by a real-time cell analysis system (RTCA-DP) and IC50 concentrations were calculated for each cell line. In addition, the expression levels of Apaf-1, TNF and NF-kB mRNA in cancer cells were investigated with RealTime-PCR. The ethyl acetate extract of Hypomyces chrysospermus presented anticancer activities including antiproliferative and antimetastatic effects. Hypomyces chrysospermus as a source of biologically active metabolites can be used as an important resource in the development of new anticancer effective agents.
Collapse
Affiliation(s)
- Miriş Dikmen
- Faculty of Pharmacy, Department of Pharmacology, Anadolu University, 26210, Eskisehir, Turkey.
| | - Selin Engür Öztürk
- Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Zerrin Cantürk
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Anadolu University, 26210, Eskisehir, Turkey
| | - Göksu Ceylan
- Public Health Research and Application Center, Central Immunology Laboratory, Gazi University, Ankara, Turkey
| | - Ayşe Betül Karaduman
- Duzen Norwest Laboratories, Kaptanpasa Street, No: 2, Buyukesat District, 06700, Ankara, Turkey
| | - Mustafa Yamaç
- Faculty of Science and Letters, Department of Biology, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|