1
|
Bezvoda R, Landeo‐Ríos YM, Kubátová Z, Kollárová E, Kulich I, Busch W, Žárský V, Cvrčková F. A Genome-Wide Association Screen for Genes Affecting Leaf Trichome Development and Epidermal Metal Accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:3708-3734. [PMID: 39812181 PMCID: PMC11963502 DOI: 10.1111/pce.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions. Subsequent GWAS analysis identified 1546 loci with protein sequence-altering SNPs associated with one or more traits, including 5 genes with previously reported relevant mutant phenotypes and 80 additional genes with known or predicted roles in relevant developmental and cellular processes. Some candidates, including GFS9/TT9, exhibited environmentally correlated allele distribution. Several large gene famiLies, namely DUF674, DUF784, DUF1262, DUF1985, DUF3741, cytochrome P450, receptor-Like kinases, Cys/His-rich C1 domain proteins and formins were overrepresented among the candidates for various traits, suggesting epidermal development-related functions. A possible participation of formins in guard cell metal deposition was supported by observations in available loss of function mutants. Screening of candidate gene lists against the STRING interactome database uncovered several predominantly nuclear protein interaction networks with possible novel roles in epidermal development.
Collapse
Affiliation(s)
- Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | | | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| |
Collapse
|
2
|
Pankasem N, Hsu PK, Lopez BNK, Franks PJ, Schroeder JI. Warming triggers stomatal opening by enhancement of photosynthesis and ensuing guard cell CO 2 sensing, whereas higher temperatures induce a photosynthesis-uncoupled response. THE NEW PHYTOLOGIST 2024; 244:1847-1863. [PMID: 39353606 DOI: 10.1111/nph.20121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf-to-air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming-induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature-sensitive proteins, Phytochrome B (phyB) and EARLY-FLOWERING-3 (ELF3). We confirmed that phot1-5/phot2-1 leaves lacking blue-light photoreceptors showed partially reduced warming-induced stomatal opening. Furthermore, ABA-biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, Arabidopsis (dicot) and Brachypodium distachyon (monocot) mutants lacking guard cell CO2 sensors and signaling mechanisms, including ht1, mpk12/mpk4-gc, and cbc1/cbc2 abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis. We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2 assimilation and stomatal CO2 sensing. Additionally, increasing heat stress functions via a distinct photosynthesis-uncoupled stomatal opening pathway.
Collapse
Affiliation(s)
- Nattiwong Pankasem
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Po-Kai Hsu
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Bryn N K Lopez
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Peter J Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| |
Collapse
|
3
|
Peng Y, Liu Y, Wang Y, Geng Z, Qin Y, Ma S. Stomatal maturomics: hunting genes regulating guard cell maturation and function formation from single-cell transcriptomes. J Genet Genomics 2024; 51:1286-1299. [PMID: 38768655 DOI: 10.1016/j.jgg.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Stomata play critical roles in gas exchange and immunity to pathogens. While many genes regulating early stomatal development up to the production of young guard cells (GCs) have been identified in Arabidopsis, much less is known about how young GCs develop into mature functional stomata. Here we perform a maturomics study on stomata, with "maturomics" defined as omics analysis of the maturation process of a tissue or organ. We develop an integrative scheme to analyze three public stomata-related single-cell RNA-seq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation. The list, termed sc_586, is enriched with known regulators of stomatal maturation and functions. To validate the reliability of the dataset, we selected two candidate G2-like transcription factor genes, MYS1 and MYS2, to investigate their roles in stomata. These two genes redundantly regulate the size and hoop rigidity of mature GCs, and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures. Taken together, our results provide a valuable list of genes for studying GC maturation and function formation.
Collapse
Affiliation(s)
- Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yi Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yue Qin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Shisong Ma
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China; School of Data Science, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
4
|
Fleetwood SK, Kleiman M, Foster EJ. Preparation of isolated guard cells, containing cell walls, from Vicia faba. PLoS One 2024; 19:e0299810. [PMID: 38513160 PMCID: PMC10957180 DOI: 10.1371/journal.pone.0299810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Stomatal movement, initiated by specialized epidermal cells known as guard cells (GCs), plays a pivotal role in plant gas exchange and water use efficiency. Despite protocols existing for isolating GCs through proplasting for carrying out biochemical, physiological, and molecular studies, protocals for isolating GCs with their cell walls still intact have been lacking in the literature. In this paper, we introduce a method for the isolation of complete GCs from Vicia faba and show their membrane to remain impermeable through propidium iodide staining. This methodology enables further in-depth analyses into the cell wall composition of GCs, facilitating our understanding of structure-function relationship governing reversible actuation within cells.
Collapse
Affiliation(s)
- Sara K. Fleetwood
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maya Kleiman
- Plant Sciences Institute, Agricultural Research Organization (Volcani Center), Rishon LeZiyyon, Israel
| | - E. Johan Foster
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Piro L, Flütsch S, Santelia D. Arabidopsis Sucrose Synthase 3 (SUS3) regulates starch accumulation in guard cells at the end of day. PLANT SIGNALING & BEHAVIOR 2023; 18:2171614. [PMID: 36774587 PMCID: PMC9928453 DOI: 10.1080/15592324.2023.2171614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Starch in the stomatal guard cells is largely synthesized using carbon precursors originating from sugars imported from the leaf mesophyll. Such heterotrophic nature of guard cell starch synthesis prompted us to investigate the role of cytosolic sucrose synthases (SUS) in this pathway. Out of the six members of the Arabidopsis SUS gene family, SUS3 was the most highly expressed isoform in guard cells. The Arabidopsis sus3 mutant displayed changes in guard cell starch contents comparable to the Wild Type (WT) up until 6 h into the day. After this time point, sus3 guard cells surprisingly started to accumulate starch at very high rates, reaching the end of the day with significantly more starch than WT. Based on the phenotype of the sus3 mutant, we suggest that in guard cells, SUS3 is involved in the regulation of carbon fluxes towards starch synthesis during the second half of the day. SUS3 may be part of a previously predicted guard cell futile cycle of metabolic reactions, in which sucrose is re-synthesized from UDP-glucose to avoid excessive starch synthesis toward the end of the day. This is in contrast to typical storage organs, in which cytosolic SUS is required to produce ADP-glucose for starch synthesis.
Collapse
Affiliation(s)
- Lucia Piro
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Biological Analyses and References, Swiss Federal Institute of Metrology METAS, Bern, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Lima VF, Freire FBS, Cândido-Sobrinho SA, Porto NP, Medeiros DB, Erban A, Kopka J, Schwarzländer M, Fernie AR, Daloso DM. Unveiling the dark side of guard cell metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107862. [PMID: 37413941 DOI: 10.1016/j.plaphy.2023.107862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Francisco Bruno S Freire
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, D-48143, Münster, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
7
|
Rasouli F, Kiani-Pouya A, Movahedi A, Wang Y, Li L, Yu M, Pourkheirandish M, Zhou M, Chen Z, Zhang H, Shabala S. Guard Cell Transcriptome Reveals Membrane Transport, Stomatal Development and Cell Wall Modifications as Key Traits Involved in Salinity Tolerance in Halophytic Chenopodium quinoa. PLANT & CELL PHYSIOLOGY 2023; 64:204-220. [PMID: 36355785 DOI: 10.1093/pcp/pcac158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
A comparative investigation was conducted to evaluate transcriptional changes in guard cells (GCs) of closely related halophytic (Chenopodium quinoa) and glycophytic (Spinacia oleracea) species. Plants were exposed to 3 weeks of 250 mM sodium chloride treatment, and GC-enriched epidermal fragments were mechanically prepared. In both species, salt-responsive genes were mainly related to categories of protein metabolism, secondary metabolites, signal transduction and transport systems. Genes related to abscisic acid (ABA) signaling and ABA biosynthesis were strongly induced in quinoa but not in spinach GCs. Also, expression of the genes encoding transporters of amino acids, proline, sugars, sucrose and potassium increased in quinoa GCs under salinity stress. Analysis of cell-wall-related genes suggests that genes involved in lignin synthesis (e.g. lignin biosynthesis LACCASE 4) were highly upregulated by salt in spinach GCs. In contrast, transcripts related to cell wall plasticity Pectin methylesterase3 (PME3) were highly induced in quinoa. Faster stomatal response to light and dark measured by observing kinetics of changes in stomatal conductance in quinoa might be associated with higher plasticity of the cell wall regulated by PME3 Furthermore, genes involved in the inhibition of stomatal development and differentiation were highly expressed by salt in quinoa, but not in spinach. These changes correlated with reduced stomatal density and index in quinoa, thus improving its water use efficiency. The fine modulation of transporters, cell wall modification and controlling stomatal development in GCs of quinoa may have resulted in high K+/Na+ ratio, lower stomatal conductance and higher stomatal speed for better adaptation to salinity stress in quinoa.
Collapse
Affiliation(s)
- Fatemeh Rasouli
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Ali Kiani-Pouya
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Wang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Leiting Li
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Mohammad Pourkheirandish
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Zhonghua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2747, Australia
| | - Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
The CRK5 and WRKY53 Are Conditional Regulators of Senescence and Stomatal Conductance in Arabidopsis. Cells 2022; 11:cells11223558. [PMID: 36428987 PMCID: PMC9688832 DOI: 10.3390/cells11223558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
In Arabidopsis thaliana, cysteine-rich receptor-like kinases (CRKs) constitute a large group of membrane-localized proteins which perceive external stimuli and transduce the signal into the cell. Previous reports based on their loss-of-function phenotypes and expression profile support their role in many developmental and stress-responsive pathways. Our study revealed that one member of this family, CRK5, acts as a negative regulator of leaf aging. Enrichment of the CRK5 promoter region in W-box cis-elements demonstrated that WRKY transcription factors control it. We observed significantly enhanced WRKY53 expression in crk5 and reversion of its early-senescence phenotype in the crk5 wrky53 line, suggesting a negative feedback loop between these proteins antagonistically regulating chlorophyll a and b contents. Yeast-two hybrid assay showed further that CRK5 interacts with several proteins involved in response to water deprivation or calcium signaling, while gas exchange analysis revealed a positive effect of CRK5 on water use efficiency. Consistent with that, the crk5 plants showed disturbed foliar temperature, stomatal conductance, transpiration, and increased susceptibility to osmotic stress. These traits were fully or partially reverted to wild-type phenotype in crk5 wrky53 double mutant. Obtained results suggest that WRKY53 and CRK5 are antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
Collapse
|
9
|
de la Osa C, Pérez‐López J, Feria A, Baena G, Marino D, Coleto I, Pérez‐Montaño F, Gandullo J, Echevarría C, García‐Mauriño S, Monreal JA. Knock-down of phosphoenolpyruvate carboxylase 3 negatively impacts growth, productivity, and responses to salt stress in sorghum (Sorghum bicolor L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:231-249. [PMID: 35488514 PMCID: PMC9539949 DOI: 10.1111/tpj.15789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a carboxylating enzyme with important roles in plant metabolism. Most studies in C4 plants have focused on photosynthetic PEPC, but less is known about non-photosynthetic PEPC isozymes, especially with respect to their physiological functions. In this work, we analyzed the precise roles of the sorghum (Sorghum bicolor) PPC3 isozyme by the use of knock-down lines with the SbPPC3 gene silenced (Ppc3 lines). Ppc3 plants showed reduced stomatal conductance and plant size, a delay in flowering time, and reduced seed production. In addition, silenced plants accumulated stress indicators such as Asn, citrate, malate, and sucrose in roots and showed higher citrate synthase activity, even in control conditions. Salinity further affected stomatal conductance and yield and had a deeper impact on central metabolism in silenced plants compared to wild type, more notably in roots, with Ppc3 plants showing higher nitrate reductase and NADH-glutamate synthase activity in roots and the accumulation of molecules with a higher N/C ratio. Taken together, our results show that although SbPPC3 is predominantly a root protein, its absence causes deep changes in plant physiology and metabolism in roots and leaves, negatively affecting maximal stomatal opening, growth, productivity, and stress responses in sorghum plants. The consequences of SbPPC3 silencing suggest that this protein, and maybe orthologs in other plants, could be an important target to improve plant growth, productivity, and resistance to salt stress and other stresses where non-photosynthetic PEPCs may be implicated.
Collapse
Affiliation(s)
- Clara de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Jesús Pérez‐López
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Ana‐Belén Feria
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Guillermo Baena
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Daniel Marino
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU)LeioaSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Inmaculada Coleto
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU)LeioaSpain
| | | | - Jacinto Gandullo
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Sofía García‐Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - José A. Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| |
Collapse
|
10
|
Flütsch S, Horrer D, Santelia D. Starch biosynthesis in guard cells has features of both autotrophic and heterotrophic tissues. PLANT PHYSIOLOGY 2022; 189:541-556. [PMID: 35238373 PMCID: PMC9157084 DOI: 10.1093/plphys/kiac087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
The pathway of starch synthesis in guard cells (GCs), despite the crucial role starch plays in stomatal movements, is not well understood. Here, we characterized starch dynamics in GCs of Arabidopsis (Arabidopsis thaliana) mutants lacking enzymes of the phosphoglucose isomerase-phosphoglucose mutase-ADP-glucose pyrophosphorylase starch synthesis pathway in leaf mesophyll chloroplasts or sugar transporters at the plastid membrane, such as glucose-6-phosphate/phosphate translocators, which are active in heterotrophic tissues. We demonstrate that GCs have metabolic features of both photoautotrophic and heterotrophic cells. GCs make starch using different carbon precursors depending on the time of day, which can originate both from GC photosynthesis and/or sugars imported from the leaf mesophyll. Furthermore, we unravel the major enzymes involved in GC starch synthesis and demonstrate that they act in a temporal manner according to the fluctuations of stomatal aperture, which is unique for GCs. Our work substantially enhances our knowledge on GC starch metabolism and uncovers targets for manipulating GC starch dynamics to improve stomatal behavior, directly affecting plant productivity.
Collapse
Affiliation(s)
- Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
11
|
Wang J, Yu YC, Li Y, Chen LQ. Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase. PLANT PHYSIOLOGY 2022; 189:388-401. [PMID: 35188197 PMCID: PMC9070816 DOI: 10.1093/plphys/kiac068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/15/2022] [Indexed: 05/12/2023]
Abstract
Galactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in different organisms, including plants. Galactose metabolism is tightly and finely controlled, since excess galactose and its derivatives are inhibitory to plant growth. In Arabidopsis (Arabidopsis thaliana), root growth and pollen germination are strongly inhibited by excess galactose. However, the mechanism of galactose-induced inhibition during pollen germination remains obscure. In this study, we characterized a plasma membrane-localized transporter, Arabidopsis Sugars Will Eventually be Exported Transporter 5, that transports glucose and galactose. SWEET5 protein levels started to accumulate at the tricellular stage of pollen development and peaked in mature pollen, before rapidly declining after pollen germinated. SWEET5 levels are responsible for the dosage-dependent sensitivity to galactose, and galactokinase is essential for these inhibitory effects during pollen germination. However, sugar measurement results indicate that galactose flux dynamics and sugar metabolism, rather than the steady-state galactose level, may explain phenotypic differences between sweet5 and Col-0 in galactose inhibition of pollen germination.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ya-Chi Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | | |
Collapse
|
12
|
Yu X, Lara NAH, Carbajal EM, Milla-Lewis SR. QTL mapping of morphological characteristics that correlated to drought tolerance in St. Augustinegrass. PLoS One 2022; 17:e0268004. [PMID: 35500017 PMCID: PMC9060340 DOI: 10.1371/journal.pone.0268004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
St. Augustinegrass is a warm-season grass species widely utilized as turf in the southeastern U.S. It shows significant variation in plant growth and morphological characteristics, some of which are potentially associated with drought tolerance. However, the genetic basis of these variations is not well understood. Detecting quantitative trait loci (QTL) associated with morphological traits will provide a foundation for the application of genetic and molecular breeding in St. Augustinegrass. In this study, we report QTL associated with morphological traits, including leaf blade width (LW), leaf blade length (LL), canopy density (CD), and shoot growth orientation (SGO) in a St. Augustinegrass ‘Raleigh’ x ‘Seville’ mapping population containing 115 F1 hybrids. Phenotypic data were collected from one greenhouse and two field trials. Single and joint trial analyses were performed, finding significant phenotypic variance among the hybrids for all traits. Interval mapping (IM) and multiple QTL method (MQM) analysis detected seven QTL for CD, four for LL, five for LW, and two for SGO, which were distributed on linkage groups RLG1, RLG9, SLG3, SLG7, SLG8 and SLG9. In addition, three genomic regions where QTL colocalized were identified on Raleigh LG1 and Seville LG3. One genomic region on Seville LG3 overlapped with two previously reported drought-related QTL for leaf relative water content (RWC) and percent green cover (GC). Several candidate genes related to plant development and drought stress response were identified within QTL intervals. The QTL identified in this study represent a first step in identifying genes controlling morphological traits that might accelerate progress in selection of St. Augustinegrass lines with lower water usage.
Collapse
Affiliation(s)
- Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Nicolas A. H. Lara
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Esdras M. Carbajal
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Susana R. Milla-Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
13
|
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci 2022; 23:ijms23063227. [PMID: 35328648 PMCID: PMC8954910 DOI: 10.3390/ijms23063227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.
Collapse
|
14
|
Wang J, Li Y, Wu T, Miao C, Xie M, Ding B, Li M, Bao S, Chen X, Hu Z, Xie X. Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1087-1099. [PMID: 34551854 DOI: 10.1071/fp20368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/05/2021] [Indexed: 05/24/2023]
Abstract
Stomatal closure, driven by shrinking guard cells in response to the accumulation of abscisic acid (ABA) under drought stress, has a great impact on plant growth and environmental acclimation. However, the molecular regulatory mechanism underlying the turgor alteration of guard cells remains elusive, especially in cereal grasses. Here, we develop a modified enzyme digestion-based approach for the isolation of wheat (Triticum aestivum L.) guard cells. With this approach, we can remove mesophyll, pavement cells and subsidiary cells successively from the epidermis of the trichomeless coleoptile in wheat and preserve guard cells on the cuticle layers in an intact and physiologically active conditions. Using a robust single-cell-type RNA sequencing analysis, we discovered 9829 differentially expressed genes (DEGs) as significantly up- or down-regulated in guard cells in response to ABA treatment. Transcriptome analysis revealed a large percent of DEGs encoding multiple phytohormone signalling pathways, transporters, calcium signalling components, protein kinases and other ABA signalling-related proteins, which are primarily involved in key signalling pathways in ABA-regulated stomatal control and stress response. Our findings provide valuable resource for investigating the transcriptional regulatory mechanism underlying wheat guard cells in response to ABA.
Collapse
Affiliation(s)
- Junbin Wang
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China; and College of Basic Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Yang Li
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Tianwen Wu
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Chen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Meijuan Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Bo Ding
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Ming Li
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuguang Bao
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoqiang Chen
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE) and Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
15
|
Kelly G, Brandsma D, Egbaria A, Stein O, Doron-Faigenboim A, Lugassi N, Belausov E, Zemach H, Shaya F, Carmi N, Sade N, Granot D. Guard cells control hypocotyl elongation through HXK1, HY5, and PIF4. Commun Biol 2021; 4:765. [PMID: 34155329 PMCID: PMC8217561 DOI: 10.1038/s42003-021-02283-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
The hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved. We found that overexpression of a sugar sensor, Arabidopsis hexokinase 1 (HXK1), in guard cells promotes hypocotyl elongation under white and blue light through PIF4. Furthermore, expression of PIF4 in guard cells is sufficient to promote hypocotyl elongation in the light, while expression of HY5 in guard cells is sufficient to inhibit the elongation of the hy5 mutant and the elongation stimulated by HXK1. HY5 exits the guard cells and inhibits hypocotyl elongation, but is degraded in the dark. We also show that the inhibition of hypocotyl elongation by guard cells' HY5 involves auto-activation of HY5 expression in other tissues. It appears that guard cells are capable of coordinating hypocotyl elongation and that sugar and HXK1 have the opposite effect of light on hypocotyl elongation, converging at PIF4.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Danja Brandsma
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Aiman Egbaria
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Stein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Felix Shaya
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nir Sade
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
16
|
Cisneros-Hernández I, Vargas-Ortiz E, Sánchez-Martínez ES, Martínez-Gallardo N, Soto González D, Délano-Frier JP. Highest Defoliation Tolerance in Amaranthus cruentus Plants at Panicle Development Is Associated With Sugar Starvation Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:658977. [PMID: 34163500 PMCID: PMC8215675 DOI: 10.3389/fpls.2021.658977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 05/15/2023]
Abstract
Defoliation tolerance (DT) in Amaranthus cruentus is known to reach its apex at the panicle emergence (PE) phase and to decline to minimal levels at flowering (FL). In this study, defoliation-induced changes were recorded in the content of non-structural carbohydrates and raffinose family oligosaccharides (RFOs), and in the expression and/or activity of sugar starvation response-associated genes in plants defoliated at different vegetative and reproductive stages. This strategy identified sugar-starvation-related factors that explained the opposite DT observed at these key developmental stages. Peak DT at PE was associated with increased cytosolic invertase (CI) activity in all organs and with the extensive induction of various class II trehalose-phosphate synthase (TPS) genes. Contrariwise, least DT at FL coincided with a sharp depletion of starch reserves and with sucrose (Suc) accumulation, in leaves and stems, the latter of which was consistent with very low levels of CI and vacuolar invertase activities that were not further modified by defoliation. Increased Suc suggested growth-inhibiting conditions associated with altered cytosolic Suc-to-hexose ratios in plants defoliated at FL. Augmented cell wall invertase activity in leaves and roots, probably acting in a regulatory rather than hydrolytic role, was also associated with minimal DT observed at FL. The widespread contrast in gene expression patterns in panicles also matched the opposite DT observed at PE and FL. These results reinforce the concept that a localized sugar starvation response caused by C partitioning is crucial for DT in grain amaranth.
Collapse
Affiliation(s)
| | - Erandi Vargas-Ortiz
- Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | | | | | | | - John Paul Délano-Frier
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
17
|
Bjornson M, Pimprikar P, Nürnberger T, Zipfel C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. NATURE PLANTS 2021; 7:579-586. [PMID: 33723429 PMCID: PMC7610817 DOI: 10.1038/s41477-021-00874-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity.
Collapse
Affiliation(s)
- Marta Bjornson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Priya Pimprikar
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Tübingen, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Flütsch S, Nigro A, Conci F, Fajkus J, Thalmann M, Trtílek M, Panzarová K, Santelia D. Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. EMBO Rep 2020; 21:e49719. [PMID: 32627357 PMCID: PMC7403697 DOI: 10.15252/embr.201949719] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023] Open
Abstract
Guard cells on the leaf epidermis regulate stomatal opening for gas exchange between plants and the atmosphere, allowing a balance between photosynthesis and transpiration. Given that guard cells possess several characteristics of sink tissues, their metabolic activities should largely depend on mesophyll-derived sugars. Early biochemical studies revealed sugar uptake into guard cells. However, the transporters that are involved and their relative contribution to guard cell function are not yet known. Here, we identified the monosaccharide/proton symporters Sugar Transport Protein 1 and 4 (STP1 and STP4) as the major plasma membrane hexose sugar transporters in the guard cells of Arabidopsis thaliana. We show that their combined action is required for glucose import to guard cells, providing carbon sources for starch accumulation and light-induced stomatal opening that are essential for plant growth. These findings highlight mesophyll-derived glucose as an important metabolite connecting stomatal movements with photosynthesis.
Collapse
Affiliation(s)
- Sabrina Flütsch
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
| | - Arianna Nigro
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
- Present address:
Syngenta Crop Protection AGStein AGSwitzerland
| | - Franco Conci
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
| | - Jiří Fajkus
- Photon Systems Instruments (PSI)DrasovCzech Republic
| | - Matthias Thalmann
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
- Present address:
John Innes CentreNorwich Research ParkNorwichUK
| | | | | | - Diana Santelia
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
19
|
Kong W, Yoo MJ, Zhu D, Noble JD, Kelley TM, Li J, Kirst M, Assmann SM, Chen S. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C 3 to CAM transition. PLANT MOLECULAR BIOLOGY 2020; 103:653-667. [PMID: 32468353 DOI: 10.1007/s11103-020-01016-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/17/2020] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE: The timing and transcriptomic changes during the C3 to CAM transition of common ice plant support the notion that guard cells themselves can shift from C3 to CAM. Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis: stomata close during the day, enhancing water conservation, and open at night, allowing CO2 uptake. Mesembryanthemum crystallinum (common ice plant) is a facultative CAM species that can shift from C3 photosynthesis to CAM under salt or drought stresses. However, the molecular mechanisms underlying the stress induced transition from C3 to CAM remain unknown. Here we determined the transition time from C3 to CAM in M. crystallinum under salt stress. In parallel, single-cell-type transcriptomic profiling by 3'-mRNA sequencing was conducted in isolated stomatal guard cells to determine the molecular changes in this key cell type during the transition. In total, 495 transcripts showed differential expression between control and salt-treated samples during the transition, including 285 known guard cell genes, seven CAM-related genes, 18 transcription factors, and 185 other genes previously not found to be expressed in guard cells. PEPC1 and PPCK1, which encode key enzymes of CAM photosynthesis, were up-regulated in guard cells after seven days of salt treatment, indicating that guard cells themselves can shift from C3 to CAM. This study provides important information towards introducing CAM stomatal behavior into C3 crops to enhance water use efficiency.
Collapse
Affiliation(s)
- Wenwen Kong
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Mi-Jeong Yoo
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Dan Zhu
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Jerald D Noble
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Theresa M Kelley
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA.
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA.
| |
Collapse
|
20
|
Abstract
The control of gaseous exchange between the leaf and external atmosphere is governed by stomatal conductance (gs); therefore, stomata play a critical role in photosynthesis and transpiration and overall plant productivity. Stomatal conductance is determined by both anatomical features and behavioral characteristics. Here we review some of the osmoregulatory pathways in guard cell metabolism, genes and signals that determine stomatal function and patterning, and the recent work that explores coordination between gs and carbon assimilation (A) and the influence of spatial distribution of functional stomata on underlying mesophyll anatomy. We also evaluate the current literature on mesophyll-driven signals that may coordinate stomatal behavior with mesophyll carbon assimilation and explore stomatal kinetics as a possible target to improve A and water use efficiency. By understanding these processes, we can start to provide insight into manipulation of these regulatory pathways to improve stomatal behavior and identify novel unexploited targets for altering stomatal behavior and improving crop plant productivity.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Life Science, University of Essex, Colchester CO4 3SQ, United Kingdom;
| | - Jack Matthews
- School of Life Science, University of Essex, Colchester CO4 3SQ, United Kingdom;
| |
Collapse
|
21
|
Harris BJ, Harrison CJ, Hetherington AM, Williams TA. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr Biol 2020; 30:2001-2012.e2. [PMID: 32302587 DOI: 10.1016/j.cub.2020.03.048] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
The origin of land plants was accompanied by new adaptations to life on land, including the evolution of stomata-pores on the surface of plants that regulate gas exchange. The genes that underpin the development and function of stomata have been extensively studied in model angiosperms, such as Arabidopsis. However, little is known about stomata in bryophytes, and their evolutionary origins and ancestral function remain poorly understood. Here, we resolve the position of bryophytes in the land plant tree and investigate the evolutionary origins of genes that specify stomatal development and function. Our analyses recover bryophyte monophyly and demonstrate that the guard cell toolkit is more ancient than has been appreciated previously. We show that a range of core guard cell genes, including SPCH/MUTE, SMF, and FAMA, map back to the common ancestor of embryophytes or even earlier. These analyses suggest that the first embryophytes possessed stomata that were more sophisticated than previously envisioned and that the stomata of bryophytes have undergone reductive evolution, including their complete loss from liverworts.
Collapse
Affiliation(s)
- Brogan J Harris
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
22
|
Matthews JSA, Vialet-Chabrand S, Lawson T. Role of blue and red light in stomatal dynamic behaviour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2253-2269. [PMID: 31872212 PMCID: PMC7134916 DOI: 10.1093/jxb/erz563] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/19/2019] [Indexed: 05/20/2023]
Abstract
Plants experience changes in light intensity and quality due to variations in solar angle and shading from clouds and overlapping leaves. Stomatal opening to increasing irradiance is often an order of magnitude slower than photosynthetic responses, which can result in CO2 diffusional limitations on leaf photosynthesis, as well as unnecessary water loss when stomata continue to open after photosynthesis has reached saturation. Stomatal opening to light is driven by two distinct pathways; the 'red' or photosynthetic response that occurs at high fluence rates and saturates with photosynthesis, and is thought to be the main mechanism that coordinates stomatal behaviour with photosynthesis; and the guard cell-specific 'blue' light response that saturates at low fluence rates, and is often considered independent of photosynthesis, and important for early morning stomatal opening. Here we review the literature on these complicated signal transduction pathways and osmoregulatory processes in guard cells that are influenced by the light environment. We discuss the possibility of tuning the sensitivity and magnitude of stomatal response to blue light which potentially represents a novel target to develop ideotypes with the 'ideal' balance between carbon gain, evaporative cooling, and maintenance of hydraulic status that is crucial for maximizing crop performance and productivity.
Collapse
Affiliation(s)
- Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
23
|
Tian L, Xie Z, Lu C, Hao X, Wu S, Huang Y, Li D, Chen L. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:869-882. [PMID: 30963238 DOI: 10.1007/s00299-019-02408-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/27/2019] [Indexed: 05/29/2023]
Abstract
The TPS5 negatively regulates ABA signaling by mediating ROS level and NR activity during seed germination and stomatal closure in Arabidopsis thaliana. Trehalose metabolism is important in plant growth and development and in abiotic stress response. Eleven TPS genes were identified in Arabidopsis, divided into Class I (TPS1-TPS4) and Class II (TPS5-TPS11). Although Class I has been shown to have TPS activity, the function of most members of Class II remains enigmatic. Here, we characterized the biological function of the trehalose-6-phosphate synthase TPS5 in ABA signaling in Arabidopsis. TPS5 expression was induced by ABA and abiotic stress, and expression in epidermal and guard cells was dramatically increased after ABA treatment. Loss-of-function analysis revealed that tps5 mutants (tps5-1 and tps5-cas9) are more sensitive to ABA during seed germination and ABA-mediated stomatal closure. Furthermore, the H2O2 level increased in the tps5-1 and tps5-cas9 mutants, which was consistent with the changes in the expression of RbohD and RbohF, key genes responsible for H2O2 production. Further, TPS5 knockout reduced the amounts of trehalose and other soluble carbohydrates as well as nitrate reductase (NR) activity. In vitro, trehalose and other soluble carbohydrates promoted NR activity, which was blocked by the tricarboxylic acid cycle inhibitor iodoacetic acid. Thus, this study identified that TPS5 functions as a negative regulator of ABA signaling and is involved in altering the trehalose content and NR activity.
Collapse
Affiliation(s)
- Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Zijing Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Changqing Lu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Xiaohua Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Sha Wu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Yuan Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China.
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China.
| |
Collapse
|
24
|
González-Rodríguez T, Cisneros-Hernández I, Acosta Bayona J, Ramírez-Chavez E, Martínez-Gallardo N, Mellado-Mojica E, López-Pérez MG, Molina-Torres J, Délano-Frier J. Identification of Factors Linked to Higher Water-Deficit Stress Tolerance in Amaranthus hypochondriacus Compared to Other Grain Amaranths and A. hybridus, Their Shared Ancestor. PLANTS (BASEL, SWITZERLAND) 2019; 8:E239. [PMID: 31336665 PMCID: PMC6681232 DOI: 10.3390/plants8070239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023]
Abstract
Water deficit stress (WDS)-tolerance in grain amaranths (Amaranthus hypochondriacus, A. cruentus and A. caudatus), and A. hybridus, their presumed shared ancestor, was examined. A. hypochondriacus was the most WDS-tolerant species, a trait that correlated with an enhanced osmotic adjustment (OA), a stronger expression of abscisic acid (ABA) marker genes and a more robust sugar starvation response (SSR). Superior OA was supported by higher basal hexose (Hex) levels and high Hex/sucrose (Suc) ratios in A. hypochondriacus roots, which were further increased during WDS. This coincided with increased invertase, amylase and sucrose synthase activities and a strong depletion of the starch reserves in leaves and roots. The OA was complemented by the higher accumulation of proline, raffinose, and other probable raffinose-family oligosaccharides of unknown structure in leaves and/or roots. The latter coincided with a stronger expression of Galactinol synthase 1 and Raffinose synthase in leaves. Increased SnRK1 activity and expression levels of the class II AhTPS9 and AhTPS11 trehalose phosphate synthase genes, recognized as part of the SSR network in Arabidopsis, were induced in roots of stressed A. hypochondriacus. It is concluded that these physiological modifications improved WDS in A. hypochondriacus by raising its water use efficiency.
Collapse
Affiliation(s)
- Tzitziki González-Rodríguez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Ismael Cisneros-Hernández
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Jonathan Acosta Bayona
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Enrique Ramírez-Chavez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Norma Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Erika Mellado-Mojica
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Mercedes G López-Pérez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Jorge Molina-Torres
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - John Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
25
|
Granot D, Kelly G. Evolution of Guard-Cell Theories: The Story of Sugars. TRENDS IN PLANT SCIENCE 2019; 24:507-518. [PMID: 30862392 DOI: 10.1016/j.tplants.2019.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 05/05/2023]
Abstract
Stomata are dynamic pores in the impermeable cuticle that coats the aerial parts of vascular plants, allowing the entry of CO2 for photosynthesis and controlling water loss. They are composed of two guard cells that can swell or shrink due to an increase or decrease in their osmotic pressure, respectively. Swelling opens the stomata and shrinking closes the stomata. For more than a century, scientists have been working to uncover the nature of the osmolytes that modulate osmotic pressure in guard cells. Recent discoveries have undermined long-standing theories in this area, reversing the understood roles of sugars and demonstrating the evolution of scientific theories. Here, we describe the evolution of guard-cell osmoregulation theories with an emphasis on the role of sugars.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion 7505101, Israel.
| | - Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion 7505101, Israel
| |
Collapse
|
26
|
Marček T, Hamow KÁ, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS One 2019; 14:e0212411. [PMID: 30779775 PMCID: PMC6380608 DOI: 10.1371/journal.pone.0212411] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereals, whose growth and development is strongly limited by drought. This study investigated the physiological and metabolic response of six winter wheat cultivars to drought with the emphasis on the induction of dominant metabolites affected by the treatment and genotypes or both. The plants were exposed to a moderate (non-lethal) drought stress, which was induced by withholding watering for six days under controlled greenhouse conditions. A decline in CO2 assimilation (Pn) and transpiration rate, stomata closure, a decrease in relative water content (RWC) and increase of malondialdehyde content were observed in drought-treated plants of all cultivars. These changes were most pronounced in Ellvis, while Soissons was able to retain the higher RWC and Pn. Among the studied metabolites, sugars (sucrose, glucose, fructose, several disaccharides), organic acids (malic acid, oxalic acids), amino acids (proline, threonine, gamma-aminobutyric acid (GABA), glutamine) and sugar alcohols such as myo-inositol accumulated to higher levels in the plants exposed to drought stress in comparison with the control. The accumulation of several metabolites in response to drought differed between the genotypes. Drought induced the production of sucrose, malic acid and oxalic acid, unknown organic acid 1, unknown disaccharide 1, 2 and 3, GABA, L-threonine, glutamic acid in four (Soissons, Žitarka, Antonija or Toborzó) out of six genotypes. In addition, Soissons, which was the most drought tolerant genotype, accumulated the highest amount of unknown disaccharide 5, galactonic and phosphoric acids. The two most drought sensitive cultivars, Srpanjka and Ellvis, demonstrated different metabolic adjustment in response to the stress treatment. Srpanjka responded to drought by increasing the amount of glucose and fructose originated from hydrolyses of sucrose and accumulating unidentified sugar alcohols 1 and 2. In Ellvis, drought caused inhibition of photosynthetic carbon metabolism, as evidence by the decreased Pn, gs, RWC and accumulation levels of sugar metabolites (sucrose, glucose and fructose). The results revealed the differences in metabolic response to drought among the genotypes, which drew attention on metabolites related with general response and on those metabolites which are part of specific response that may play an important role in drought tolerance.
Collapse
Affiliation(s)
- Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kamirán Áron Hamow
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Végh
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
27
|
Geilfus CM, Lan J, Carpentier S. Dawn regulates guard cell proteins in Arabidopsis thaliana that function in ATP production from fatty acid beta-oxidation. PLANT MOLECULAR BIOLOGY 2018; 98:525-543. [PMID: 30392160 DOI: 10.1007/s11103-018-0794-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Based on the nature of the proteins that are altered in abundance, we conclude that guard cells switch their energy source from fatty acid metabolism to chloroplast activity, at the onset of dawn. During stomatal opening at dawn, evidence was recently presented for a breakdown and liquidation of stored triacylglycerols in guard cells to supply ATP for use in stomatal opening. However, proteome changes that happen in the guard cells during dawn were until now poorly understood. Bad accessibility to pure and intact guard cell samples can be considered as the primary reason behind this lack of knowledge. To overcome these technical constraints, epidermal guard cell samples with ruptured pavement cells were isolated at 1 h pre-dawn, 15 min post-dawn and 1 h post-dawn from Arabidopsis thaliana. Proteomic changes were analysed by ultra-performance-liquid-chromatography-mass-spectrometry. With 994 confidently identified proteins, we present the first analysis of the A. thaliana guard cell proteome that is not influenced by side effects of guard cell protoplasting. Data are available via ProteomeXchange with identifier PXD009918. By elucidating the identities of enzymes that change in abundance by the transition from dark to light, we corroborate the hypothesis that respiratory ATP production for stomatal opening results from fatty acid beta-oxidation. Moreover, we identified many proteins that were never reported in the context of guard cell biology. Among them are proteins that might play a role in signalling or circadian rhythm.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany.
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium.
| | - Jue Lan
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sebastien Carpentier
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42 - Box 2455, 3001, Leuven, Belgium
| |
Collapse
|
28
|
Yoshida T, Anjos LD, Medeiros DB, Araújo WL, Fernie AR, Daloso DM. Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:37-49. [PMID: 30447225 DOI: 10.1016/j.pbiomolbio.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
Abstract
Despite the fact that guard cell abscisic acid (ABA) signalling pathway is well documented, our understanding concerning how and to which extent ABA regulates guard cell metabolism remains fragmentary. Here we have adopted different systems approaches to investigate how ABA modulates guard cell central metabolism by providing genes that are possibly ABA-regulated. By using previous published Arabidopsis guard cell transcript profiling data, we carried out an extensive co-expression network analysis using ABA-related genes and those related to the metabolism and transport of sugars, starch and organic acids. Next, we investigated the presence of ABA responsive elements (ABRE) in the promoter of genes that are highly expressed in guard cells, responsive to ABA and co-expressed with ABA-related genes. Together, these analyses indicated that 44 genes are likely regulated by ABA and 8 of them are highly expressed in guard cells in both the presence and absence of ABA, including genes of the tricarboxylic acid cycle and those related to sucrose and hexose transport and metabolism. It seems likely that ABA may modulate both sucrose transport through guard cell plasma membrane and sucrose metabolism within guard cells. In this context, genes associated with sucrose synthase, sucrose phosphate synthase, trehalose-6-phosphate, invertase, UDP-glucose epimerase/pyrophosphorylase and different sugar transporters contain ABRE in their promoter and are thus possibly ABA regulated. Although validation experiments are required, our study highlights the importance of systems biology approaches to drive new hypothesis and to unravel genes and pathways that are regulated by ABA in guard cells.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany.
| | - Letícia Dos Anjos
- Departamento de Biologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais, 62700-000, Brazil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
29
|
Kottapalli J, David-Schwartz R, Khamaisi B, Brandsma D, Lugassi N, Egbaria A, Kelly G, Granot D. Sucrose-induced stomatal closure is conserved across evolution. PLoS One 2018; 13:e0205359. [PMID: 30312346 PMCID: PMC6185732 DOI: 10.1371/journal.pone.0205359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
As plants evolved to function on land, they developed stomata for effective gas exchange, for photosynthesis and for controlling water loss. We have recently shown that sugars, as the end product of photosynthesis, close the stomata of various angiosperm species, to coordinate sugar production with water loss. In the current study, we examined the sugar responses of the stomata of phylogenetically different plant species and species that employ different photosynthetic mechanisms (i.e., C3, C4 and CAM). To examine the effect of sucrose on stomata, we treated leaves with sucrose and then measured their stomatal apertures. Sucrose reduced stomatal aperture, as compared to an osmotic control, suggesting that regulation of stomata by sugars is a trait that evolved early in evolutionary history and has been conserved across different groups of plants.
Collapse
Affiliation(s)
- Jayaram Kottapalli
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Belal Khamaisi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Danja Brandsma
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Aiman Egbaria
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| |
Collapse
|
30
|
Azoulay‐Shemer T, Schwankl N, Rog I, Moshelion M, Schroeder JI. Starch biosynthesis by
AGP
ase, but not starch degradation by
BAM
1/3 and
SEX
1, is rate‐limiting for
CO
2
‐regulated stomatal movements under short‐day conditions. FEBS Lett 2018; 592:2739-2759. [DOI: 10.1002/1873-3468.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Tamar Azoulay‐Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section University of California San Diego La Jolla CA USA
| | - Nikki Schwankl
- Division of Biological Sciences, Cell and Developmental Biology Section University of California San Diego La Jolla CA USA
| | - Ido Rog
- Department of Plant & Environmental Sciences Weizmann Institute of Science Rehovot Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section University of California San Diego La Jolla CA USA
| |
Collapse
|
31
|
Song SJ, Feng QN, Li CL, Li E, Liu Q, Kang H, Zhang W, Zhang Y, Li S. A Tonoplast-Associated Calcium-Signaling Module Dampens ABA Signaling during Stomatal Movement. PLANT PHYSIOLOGY 2018; 177:1666-1678. [PMID: 29898977 PMCID: PMC6084651 DOI: 10.1104/pp.18.00377] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/05/2018] [Indexed: 05/22/2023]
Abstract
Stomatal movement, critical for photobiosynthesis, respiration, and stress responses, is regulated by many factors, among which abscisic acid (ABA) is critical. Early events of ABA signaling involve Ca2+ influx and an increase of cytoplasmic calcium ([Ca2+]cyt). Positive regulators of this process have been extensively studied, whereas negative regulators are obscure. ABA-induced stomatal closure involves K+ flux and vacuolar convolution. How these processes are connected with Ca2+ is not fully understood. We report that pat10-1, a null mutant of Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is hypersensitive to ABA-induced stomatal closure and vacuolar convolution. A similar phenotype was observed in cbl2;cbl3, the double mutant of CBL2 and CBL3, whose tonoplast association depends on PAT10. Functional loss of the PAT10-CBL2/CBL3 system resulted in enhanced Ca2+ influx and [Ca2+]cyt elevation. Promoting vacuolar K+ accumulation by overexpressing NHX2 suppressed ABA-hypersensitive stomatal closure and vacuolar convolution of the mutants, suggesting that PAT10-CBL2/CBL3 positively mediates vacuolar K+ accumulation. We have identified CBL-interacting protein kinases (CIPKs) that mediate CBL2/CBL3 signaling during ABA-induced stomatal movement. Functional loss of the PAT10-CBL2/3-CIPK9/17 system in guard cells enhanced drought tolerance. We propose that the tonoplast CBL-CIPK complexes form a signaling module that negatively regulates ABA signaling during stomatal movement.
Collapse
Affiliation(s)
- Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Chun-Long Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qi Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
32
|
Lawson T, Terashima I, Fujita T, Wang Y. Coordination Between Photosynthesis and Stomatal Behavior. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Lima VF, Medeiros DB, Dos Anjos L, Gago J, Fernie AR, Daloso DM. Toward multifaceted roles of sucrose in the regulation of stomatal movement. PLANT SIGNALING & BEHAVIOR 2018; 13:e1494468. [PMID: 30067434 PMCID: PMC6149408 DOI: 10.1080/15592324.2018.1494468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant atmospheric CO2 fixation depends on the aperture of stomatal pores at the leaf epidermis. Stomatal aperture or closure is regulated by changes in the metabolism of the two surrounding guard cells, which respond directly to environmental and internal cues such as mesophyll-derived metabolites. Sucrose has been shown to play a dual role during stomatal movements. The sucrose produced in the mesophyll cells can be transported to the vicinity of the guard cells via the transpiration stream, inducing closure in periods of high photosynthetic rate. By contrast, sucrose breakdown within guard cells sustains glycolysis and glutamine biosynthesis during light-induced stomatal opening. Here, we provide an update regarding the role of sucrose in the regulation of stomatal movement highlighting recent findings from metabolic and systems biology studies. We further explore how sucrose-mediated mechanisms of stomatal movement regulation could be useful to understand evolution of stomatal physiology among different plant groups.
Collapse
Affiliation(s)
- V. F. Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
- CONTACT Danilo M. Daloso Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - D. B. Medeiros
- Central metabolism group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm Germany
| | - L. Dos Anjos
- Departamento de Biologia, Universidade Federal de Lavras, Lavras-MG, Brasil
| | - J. Gago
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears)/Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Illes Balears, Spain
| | - A. R. Fernie
- Central metabolism group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm Germany
| | - D. M. Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| |
Collapse
|
34
|
Daloso DM, Medeiros DB, Dos Anjos L, Yoshida T, Araújo WL, Fernie AR. Metabolism within the specialized guard cells of plants. THE NEW PHYTOLOGIST 2017; 216:1018-1033. [PMID: 28984366 DOI: 10.1111/nph.14823] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 05/21/2023]
Abstract
Contents 1018 I. 1018 II. 1019 III. 1022 IV. 1025 V. 1026 VI. 1029 1030 References 1030 SUMMARY: Stomata are leaf epidermal structures consisting of two guard cells surrounding a pore. Changes in the aperture of this pore regulate plant water-use efficiency, defined as gain of C by photosynthesis per leaf water transpired. Stomatal aperture is actively regulated by reversible changes in guard cell osmolyte content. Despite the fact that guard cells can photosynthesize on their own, the accumulation of mesophyll-derived metabolites can seemingly act as signals which contribute to the regulation of stomatal movement. It has been shown that malate can act as a signalling molecule and a counter-ion of potassium, a well-established osmolyte that accumulates in the vacuole of guard cells during stomatal opening. By contrast, their efflux from guard cells is an important mechanism during stomatal closure. It has been hypothesized that the breakdown of starch, sucrose and lipids is an important mechanism during stomatal opening, which may be related to ATP production through glycolysis and mitochondrial metabolism, and/or accumulation of osmolytes such as sugars and malate. However, experimental evidence supporting this theory is lacking. Here we highlight the particularities of guard cell metabolism and discuss this in the context of the guard cells themselves and their interaction with the mesophyll cells.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Letícia Dos Anjos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
35
|
Medeiros DB, Barros KA, Barros JAS, Omena-Garcia RP, Arrivault S, Sanglard LMVP, Detmann KC, Silva WB, Daloso DM, DaMatta FM, Nunes-Nesi A, Fernie AR, Araújo WL. Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior. PLANT PHYSIOLOGY 2017; 175:1068-1081. [PMID: 28899959 PMCID: PMC5664473 DOI: 10.1104/pp.17.00971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/10/2017] [Indexed: 05/21/2023]
Abstract
Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis (Arabidopsis thaliana) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected.
Collapse
Affiliation(s)
- David B Medeiros
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Kallyne A Barros
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Jessica Aline S Barros
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Rebeca P Omena-Garcia
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Lílian M V P Sanglard
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Kelly C Detmann
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Willian Batista Silva
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| |
Collapse
|
36
|
Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ, Puri VM, Anderson CT. POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in Arabidopsis thaliana. THE PLANT CELL 2017; 29:2413-2432. [PMID: 28974550 PMCID: PMC5774581 DOI: 10.1105/tpc.17.00568] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 05/05/2023]
Abstract
Plant cell separation and expansion require pectin degradation by endogenous pectinases such as polygalacturonases, few of which have been functionally characterized. Stomata are a unique system to study both processes because stomatal maturation involves limited separation between sister guard cells and stomatal responses require reversible guard cell elongation and contraction. However, the molecular mechanisms for how stomatal pores form and how guard cell walls facilitate dynamic stomatal responses remain poorly understood. We characterized POLYGALACTURONASE INVOLVED IN EXPANSION3 (PGX3), which is expressed in expanding tissues and guard cells. PGX3-GFP localizes to the cell wall and is enriched at sites of stomatal pore initiation in cotyledons. In seedlings, ablating or overexpressing PGX3 affects both cotyledon shape and the spacing and pore dimensions of developing stomata. In adult plants, PGX3 affects rosette size. Although stomata in true leaves display normal density and morphology when PGX3 expression is altered, loss of PGX3 prevents smooth stomatal closure, and overexpression of PGX3 accelerates stomatal opening. These phenotypes correspond with changes in pectin molecular mass and abundance that can affect wall mechanics. Together, these results demonstrate that PGX3-mediated pectin degradation affects stomatal development in cotyledons, promotes rosette expansion, and modulates guard cell mechanics in adult plants.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Chaowen Xiao
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Baris Kandemir
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - James Z Wang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Virendra M Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
37
|
Kaundal A, Ramu VS, Oh S, Lee S, Pant B, Lee HK, Rojas CM, Senthil-Kumar M, Mysore KS. GENERAL CONTROL NONREPRESSIBLE4 Degrades 14-3-3 and the RIN4 Complex to Regulate Stomatal Aperture with Implications on Nonhost Disease Resistance and Drought Tolerance. THE PLANT CELL 2017; 29:2233-2248. [PMID: 28855332 PMCID: PMC5635975 DOI: 10.1105/tpc.17.00070] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
Plants have complex and adaptive innate immune responses against pathogen infections. Stomata are key entry points for many plant pathogens. Both pathogens and plants regulate stomatal aperture for pathogen entry and defense, respectively. Not all plant proteins involved in stomatal aperture regulation have been identified. Here, we report GENERAL CONTROL NONREPRESSIBLE4 (GCN4), an AAA+-ATPase family protein, as one of the key proteins regulating stomatal aperture during biotic and abiotic stress. Silencing of GCN4 in Nicotiana benthamiana and Arabidopsis thaliana compromises host and nonhost disease resistance due to open stomata during pathogen infection. AtGCN4 overexpression plants have reduced H+-ATPase activity, stomata that are less responsive to pathogen virulence factors such as coronatine (phytotoxin produced by the bacterium Pseudomonas syringae) or fusicoccin (a fungal toxin produced by the fungus Fusicoccum amygdali), reduced pathogen entry, and enhanced drought tolerance. This study also demonstrates that AtGCN4 interacts with RIN4 and 14-3-3 proteins and suggests that GCN4 degrades RIN4 and 14-3-3 proteins via a proteasome-mediated pathway and thereby reduces the activity of the plasma membrane H+-ATPase complex, thus reducing proton pump activity to close stomata.
Collapse
Affiliation(s)
| | | | - Sunhee Oh
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Seonghee Lee
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Bikram Pant
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | | | | | | |
Collapse
|
38
|
Robaina-Estévez S, Daloso DM, Zhang Y, Fernie AR, Nikoloski Z. Resolving the central metabolism of Arabidopsis guard cells. Sci Rep 2017; 7:8307. [PMID: 28814793 PMCID: PMC5559522 DOI: 10.1038/s41598-017-07132-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Photosynthesis and water use efficiency, key factors affecting plant growth, are directly controlled by microscopic and adjustable pores in the leaf-the stomata. The size of the pores is modulated by the guard cells, which rely on molecular mechanisms to sense and respond to environmental changes. It has been shown that the physiology of mesophyll and guard cells differs substantially. However, the implications of these differences to metabolism at a genome-scale level remain unclear. Here, we used constraint-based modeling to predict the differences in metabolic fluxes between the mesophyll and guard cells of Arabidopsis thaliana by exploring the space of fluxes that are most concordant to cell-type-specific transcript profiles. An independent 13C-labeling experiment using isolated mesophyll and guard cells was conducted and provided support for our predictions about the role of the Calvin-Benson cycle in sucrose synthesis in guard cells. The combination of in silico with in vivo analyses indicated that guard cells have higher anaplerotic CO2 fixation via phosphoenolpyruvate carboxylase, which was demonstrated to be an important source of malate. Beyond highlighting the metabolic differences between mesophyll and guard cells, our findings can be used in future integrated modeling of multi-cellular plant systems and their engineering towards improved growth.
Collapse
Affiliation(s)
- Semidán Robaina-Estévez
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Golm, Germany
| | - Danilo M Daloso
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Youjun Zhang
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany.
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Golm, Germany.
| |
Collapse
|
39
|
Jalakas P, Yarmolinsky D, Kollist H, Brosché M. Isolation of Guard-cell Enriched Tissue for RNA Extraction. Bio Protoc 2017; 7:e2447. [PMID: 34541162 DOI: 10.21769/bioprotoc.2447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/11/2017] [Accepted: 07/06/2017] [Indexed: 11/02/2022] Open
Abstract
This is a protocol for isolation of guard cell enriched samples from Arabidopsis thaliana plants for RNA extraction. Leaves are blended in ice-water and filtered through nylon mesh to obtain guard cell enriched fragments. With guard cell enriched samples, gene expression analysis can be done, e.g., comparing different gene expression levels in guard cells versus whole leaf to determine if a gene of interest is predominantly expressed in guard cells. It can also be used to study the effect of treatments or different genetic backgrounds in the regulation of the guard cell expressed genes.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Tartu, Estonia.,Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland*For correspondence:
| |
Collapse
|
40
|
Jezek M, Blatt MR. The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:487-519. [PMID: 28408539 PMCID: PMC5462021 DOI: 10.1104/pp.16.01949] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/11/2017] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved water use efficiency and agricultural yields.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
41
|
Hayashi M, Inoue SI, Ueno Y, Kinoshita T. A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening. Sci Rep 2017; 7:45586. [PMID: 28358053 PMCID: PMC5372365 DOI: 10.1038/srep45586] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Stomata in the plant epidermis open in response to blue light and affect photosynthesis and plant growth by regulating CO2 uptake and transpiration. In stomatal guard cells under blue light, plasma membrane H+-ATPase is phosphorylated and activated via blue light-receptor phototropins and a signaling mediator BLUS1, and H+-ATPase activation drives stomatal opening. However, details of the signaling between phototropins and H+-ATPase remain largely unknown. In this study, through a screening of specific inhibitors for the blue light-dependent H+-ATPase phosphorylation in guard cells, we identified a Raf-like protein kinase, BLUE LIGHT-DEPENDENT H+-ATPASE PHOSPHORYLATION (BHP). Guard cells in the bhp mutant showed impairments of stomatal opening and H+-ATPase phosphorylation in response to blue light. BHP is abundantly expressed in the cytosol of guard cells and interacts with BLUS1 both in vitro and in vivo. Based on these results, BHP is a novel signaling mediator in blue light-dependent stomatal opening, likely downstream of BLUS1.
Collapse
Affiliation(s)
- Maki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yoshihisa Ueno
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
42
|
Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S. Regulation of Stomatal Immunity by Interdependent Functions of a Pathogen-Responsive MPK3/MPK6 Cascade and Abscisic Acid. THE PLANT CELL 2017; 29:526-542. [PMID: 28254778 PMCID: PMC5385948 DOI: 10.1105/tpc.16.00577] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 05/18/2023]
Abstract
Activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses after plants sense an invading pathogen. Here, we show that MPK3 and MPK6, two Arabidopsis thaliana pathogen-responsive MAPKs, and their upstream MAPK kinases, MKK4 and MKK5, are essential to both stomatal and apoplastic immunity. Loss of function of MPK3 and MPK6, or their upstream MKK4 and MKK5, abolishes pathogen/microbe-associated molecular pattern- and pathogen-induced stomatal closure. Gain-of-function activation of MPK3/MPK6 induces stomatal closure independently of abscisic acid (ABA) biosynthesis and signaling. In contrast, exogenously applied organic acids such as malate or citrate are able to reverse the stomatal closure induced by MPK3/MPK6 activation. Gene expression analysis and in situ enzyme activity staining revealed that malate metabolism increases in guard cells after activation of MPK3/MPK6 or inoculation of pathogen. In addition, pathogen-induced malate metabolism requires functional MKK4/MKK5 and MPK3/MPK6. We propose that the pathogen-responsive MPK3/MPK6 cascade and ABA are two essential signaling pathways that control, respectively, the organic acid metabolism and ion channels, two main branches of osmotic regulation in guard cells that function interdependently to control stomatal opening/closure.
Collapse
Affiliation(s)
- Jianbin Su
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Mengmeng Zhang
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Tiefeng Sun
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Juan Xu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
43
|
Santelia D, Lawson T. Rethinking Guard Cell Metabolism. PLANT PHYSIOLOGY 2016; 172:1371-1392. [PMID: 27609861 PMCID: PMC5100799 DOI: 10.1104/pp.16.00767] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/27/2016] [Indexed: 05/18/2023]
Abstract
Stomata control gaseous fluxes between the internal leaf air spaces and the external atmosphere and, therefore, play a pivotal role in regulating CO2 uptake for photosynthesis as well as water loss through transpiration. Guard cells, which flank the stomata, undergo adjustments in volume, resulting in changes in pore aperture. Stomatal opening is mediated by the complex regulation of ion transport and solute biosynthesis. Ion transport is exceptionally well understood, whereas our knowledge of guard cell metabolism remains limited, despite several decades of research. In this review, we evaluate the current literature on metabolism in guard cells, particularly the roles of starch, sucrose, and malate. We explore the possible origins of sucrose, including guard cell photosynthesis, and discuss new evidence that points to multiple processes and plasticity in guard cell metabolism that enable these cells to function effectively to maintain optimal stomatal aperture. We also discuss the new tools, techniques, and approaches available for further exploring and potentially manipulating guard cell metabolism to improve plant water use and productivity.
Collapse
Affiliation(s)
- Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland (D.S.); and
- School of Biological Science, University of Essex, Colchester CO4 3SQ, United Kingdom (T.L.)
| | - Tracy Lawson
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland (D.S.); and
- School of Biological Science, University of Essex, Colchester CO4 3SQ, United Kingdom (T.L.)
| |
Collapse
|
44
|
Kaiser E, Morales A, Harbinson J, Heuvelink E, Prinzenberg AE, Marcelis LFM. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Sci Rep 2016; 6:31252. [PMID: 27502328 PMCID: PMC4977489 DOI: 10.1038/srep31252] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
A better understanding of the metabolic and diffusional limitations of photosynthesis in fluctuating irradiance can help identify targets for improving crop yields. We used different genotypes of Arabidopsis thaliana to characterise the importance of Rubisco activase (Rca), stomatal conductance (gs), non-photochemical quenching of chlorophyll fluorescence (NPQ) and sucrose phosphate synthase (SPS) on photosynthesis in fluctuating irradiance. Leaf gas exchange and chlorophyll fluorescence were measured in leaves exposed to stepwise increases and decreases in irradiance. rwt43, which has a constitutively active Rubisco enzyme in different irradiance intensities (except in darkness), showed faster increases than the wildtype, Colombia-0, in photosynthesis rates after step increases in irradiance. rca-2, having decreased Rca concentration, showed lower rates of increase. In aba2-1, high gs increased the rate of change after stepwise irradiance increases, while in C24, low gs tended to decrease it. Differences in rates of change between Colombia-0 and plants with low levels of NPQ (npq1-2, npq4-1) or SPS (spsa1) were negligible. In Colombia-0, the regulation of Rubisco activation and of gs were therefore limiting for photosynthesis in fluctuating irradiance, while levels of NPQ or SPS were not. This suggests Rca and gs as targets for improvement of photosynthesis of plants in fluctuating irradiance.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Alejandro Morales
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Aina E Prinzenberg
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
45
|
Daloso DM, Dos Anjos L, Fernie AR. Roles of sucrose in guard cell regulation. THE NEW PHYTOLOGIST 2016; 211:809-18. [PMID: 27060199 DOI: 10.1111/nph.13950] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/27/2016] [Indexed: 05/19/2023]
Abstract
The control of stomatal aperture involves reversible changes in the concentration of osmolytes in guard cells. Sucrose has long been proposed to have an osmolytic role in guard cells. However, direct evidence for such a role is lacking. Furthermore, recent evidence suggests that sucrose may perform additional roles in guard cells. Here, we provide an update covering the multiple roles of sucrose in guard cell regulation, highlighting the knowledge accumulated regarding spatiotemporal differences in the synthesis, accumulation, and degradation of sucrose as well as reviewing the role of sucrose as a metabolic connector between mesophyll and guard cells. Analysis of transcriptomic data from previous studies reveals that several genes encoding sucrose and hexose transporters and genes involved in gluconeogenesis, sucrose and trehalose metabolism are highly expressed in guard cells compared with mesophyll cells. Interestingly, this analysis also showed that guard cells have considerably higher expression of C4 -marker genes than mesophyll cells. We discuss the possible roles of these genes in guard cell function and the role of sucrose in stomatal opening and closure. Finally, we provide a perspective for future experiments which are required to fill gaps in our understanding of both guard cell metabolism and stomatal regulation.
Collapse
Affiliation(s)
- Danilo M Daloso
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Leticia Dos Anjos
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
46
|
Yamauchi S, Takemiya A, Sakamoto T, Kurata T, Tsutsumi T, Kinoshita T, Shimazaki KI. The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light. PLANT PHYSIOLOGY 2016; 171:2731-43. [PMID: 27261063 PMCID: PMC4972258 DOI: 10.1104/pp.16.01581] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Stomata open in response to a beam of weak blue light under strong red light illumination. A blue light signal is perceived by phototropins and transmitted to the plasma membrane H(+)-ATPase that drives stomatal opening. To identify the components in this pathway, we screened for mutants impaired in blue light-dependent stomatal opening. We analyzed one such mutant, provisionally named blus2 (blue light signaling2), and found that stomatal opening in leaves was impaired by 65%, although the magnitude of red light-induced opening was not affected. Blue light-dependent stomatal opening in the epidermis and H(+) pumping in guard cell protoplasts were inhibited by 70% in blus2 Whole-genome resequencing identified a mutation in the AHA1 gene of the mutant at Gly-602. T-DNA insertion mutants of AHA1 exhibited a similar phenotype to blus2; this phenotype was complemented by the AHA1 gene. We renamed blus2 as aha1-10 T-DNA insertion mutants of AHA2 and AHA5 did not show any impairment in stomatal response, although the transcript levels of AHA2 and AHA5 were higher than those of AHA1 in wild-type guard cells. Stomata in ost2, a constitutively active AHA1 mutant, did not respond to blue light. A decreased amount of H(+)-ATPase in aha1-10 accounted for the reduced stomatal blue light responses and the decrease was likely caused by proteolysis of misfolded AHA1. From these results, we conclude that AHA1 plays a major role in blue light-dependent stomatal opening in Arabidopsis and that the mutation made the AHA1 protein unstable in guard cells.
Collapse
Affiliation(s)
- Shota Yamauchi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Atsushi Takemiya
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Tomoaki Sakamoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Tetsuya Kurata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Toshifumi Tsutsumi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Toshinori Kinoshita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| |
Collapse
|
47
|
GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proc Natl Acad Sci U S A 2016; 113:4218-23. [PMID: 27035938 DOI: 10.1073/pnas.1513093113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.
Collapse
|
48
|
Aubry S, Aresheva O, Reyna-Llorens I, Smith-Unna RD, Hibberd JM, Genty B. A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra. PLANT PHYSIOLOGY 2016; 170:1345-57. [PMID: 26818731 PMCID: PMC4775106 DOI: 10.1104/pp.15.01203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/26/2016] [Indexed: 05/07/2023]
Abstract
C4 photosynthesis represents an excellent example of convergent evolution that results in the optimization of both carbon and water usage by plants. In C4 plants, a carbon-concentrating mechanism divided between bundle sheath and mesophyll cells increases photosynthetic efficiency. Compared with C3 leaves, the carbon-concentrating mechanism of C4 plants allows photosynthetic operation at lower stomatal conductance, and as a consequence, transpiration is reduced. Here, we characterize transcriptomes from guard cells in C3 Tareneya hassleriana and C4 Gynandropsis gynandra belonging to the Cleomaceae. While approximately 60% of Gene Ontology terms previously associated with guard cells from the C3 model Arabidopsis (Arabidopsis thaliana) are conserved, there is much less overlap between patterns of individual gene expression. Most ion and CO2 signaling modules appear unchanged at the transcript level in guard cells from C3 and C4 species, but major variations in transcripts associated with carbon-related pathways known to influence stomatal behavior were detected. Genes associated with C4 photosynthesis were more highly expressed in guard cells of C4 compared with C3 leaves. Furthermore, we detected two major patterns of cell-specific C4 gene expression within the C4 leaf. In the first, genes previously associated with preferential expression in the bundle sheath showed continually decreasing expression from bundle sheath to mesophyll to guard cells. In the second, expression was maximal in the mesophyll compared with both guard cells and bundle sheath. These data imply that at least two gene regulatory networks act to coordinate gene expression across the bundle sheath, mesophyll, and guard cells in the C4 leaf.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (S.A., I.R.-L., R.D.S.-U., J.M.H.); andCommissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, and Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (O.A., B.G.)
| | - Olga Aresheva
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (S.A., I.R.-L., R.D.S.-U., J.M.H.); andCommissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, and Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (O.A., B.G.)
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (S.A., I.R.-L., R.D.S.-U., J.M.H.); andCommissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, and Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (O.A., B.G.)
| | - Richard D Smith-Unna
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (S.A., I.R.-L., R.D.S.-U., J.M.H.); andCommissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, and Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (O.A., B.G.)
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (S.A., I.R.-L., R.D.S.-U., J.M.H.); andCommissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, and Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (O.A., B.G.)
| | - Bernard Genty
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (S.A., I.R.-L., R.D.S.-U., J.M.H.); andCommissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, and Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (O.A., B.G.)
| |
Collapse
|
49
|
Daloso DM, Williams TCR, Antunes WC, Pinheiro DP, Müller C, Loureiro ME, Fernie AR. Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic. THE NEW PHYTOLOGIST 2016; 209:1470-83. [PMID: 26467445 DOI: 10.1111/nph.13704] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/06/2015] [Indexed: 05/21/2023]
Abstract
Isoform 3 of sucrose synthase (SUS3) is highly expressed in guard cells; however, the precise function of SUS3 in this cell type remains to be elucidated. Here, we characterized transgenic Nicotiana tabacum plants overexpressing SUS3 under the control of the stomatal-specific KST1 promoter, and investigated the changes in guard cell metabolism during the dark to light transition. Guard cell-specific SUS3 overexpression led to increased SUS activity, stomatal aperture, stomatal conductance, transpiration rate, net photosynthetic rate and growth. Although only minor changes were observed in the metabolite profile in whole leaves, an increased fructose level and decreased organic acid levels and sucrose to fructose ratio were observed in guard cells of transgenic lines. Furthermore, guard cell sucrose content was lower during light-induced stomatal opening. In a complementary approach, we incubated guard cell-enriched epidermal fragments in (13) C-NaHCO3 and followed the redistribution of label during dark to light transitions; this revealed increased labeling in metabolites of, or associated with, the tricarboxylic acid cycle. The results suggest that sucrose breakdown is a mechanism to provide substrate for the provision of organic acids for respiration, and imply that manipulation of guard cell metabolism may represent an effective strategy for plant growth improvement.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Thomas C R Williams
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- Departamento de Botânica, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Werner C Antunes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- Departamento de Biologia, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Daniela P Pinheiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Caroline Müller
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Marcelo E Loureiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| |
Collapse
|
50
|
Rui Y, Anderson CT. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1398-419. [PMID: 26729799 PMCID: PMC4775103 DOI: 10.1104/pp.15.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/03/2016] [Indexed: 05/18/2023]
Abstract
Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3(je5) mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology (Y.R., C.T.A.) and Center for Lignocellulose Structure and Formation (C.T.A.), Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Department of Biology (Y.R., C.T.A.) and Center for Lignocellulose Structure and Formation (C.T.A.), Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|