1
|
Acosta F, Candanedo D, Patel P, Llanes A, Ku JE, Salazar K, Morán M, Sambrano D, Jurado J, Martínez I, Garibaldi L, Delgado M, Solís L, Luque O, Da Silva K, Andrews J, Goodridge A. Endemic transmission of a Mycobacterium tuberculosis L2.2.M3 sublineage of the L2 lineage within Colon, Panama: A prospective study. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105749. [PMID: 40274251 DOI: 10.1016/j.meegid.2025.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Mycobacterium tuberculosis lineage 2 (L2) remains a globally significant lineage associated with increased drug resistance and rapid transmission. The L2 lineage exhibits a hotspot for genetic diversity and evolution in Panama, requiring an in-depth analysis. We conducted a prospective analysis of 274 Mycobacterium tuberculosis L2 isolates from Colon City between January 2021 and October 2023. Drug resistance was determined using GeneXpert and MTBDRplus-Genotype assays, strain lineage was determined by strain-specific PCR (ASO-PCR), and whole-genome sequencing was conducted for phylogenetic analysis. Sequencing data were analyzed using the mtb-call2 pipeline and TB-gen tools to predict drug resistance and sublineage, respectively. Genome-wide single-nucleotide polymorphisms (SNPs) were used for phylogenetic and evolutionary analyses. ASO-PCR results identified all 31.7 % (86/271) isolates as Modern L2.2. WGS analysis of 66 strains confirmed all isolates belonged to the L2.2.1 sublineage. Sixty-four strains were analyzed in depth, with 96.9 % (62/64) classified as pan-susceptible and 3.1 % (2/64) as rifampicin/pyrazinamide-resistant. The sublineage analysis based on SNPs using the TB-gen tool identified a SNP at position 1219683G > A, which genotyped all 64 strains as L2.2.M3 sublineage. Phylogenetic analysis revealed a correlation with geographical distribution compared to other Latin American L2 isolates. Transmission clusters (≤12 SNPs) were identified and used to determine recent transmission events or TB transmission clusters. These analyses also confirmed a relatively low evolutionary rate within Panama L2 isolates and a highly conserved common ancestor shared with L2 isolates from Peru, Colombia, and Guatemala. These findings suggest endemic transmission of the Mycobacterium tuberculosis L2.2.M3 sublineage in Colon, Panama. We recommend combining genomic information with epidemiological data to accurately track and identify the source hotspot for the L2.2.M3 sublineage and focus control measures.
Collapse
Affiliation(s)
- Fermín Acosta
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Daniela Candanedo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá; Universidad Latina de Panamá, Ciudad de Panamá, Panamá
| | - Priya Patel
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Johanna Elizabeth Ku
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Kharla Salazar
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá; Universidad Latina de Panamá, Ciudad de Panamá, Panamá
| | - Mitchelle Morán
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | - Dilcia Sambrano
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá
| | | | - Isolina Martínez
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panamá
| | | | | | - Laura Solís
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panamá
| | - Odemaris Luque
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panamá
| | - Kesia Da Silva
- Division of Infectious Diseases & Geographic Medicine, Stanford University, California, United States
| | - Jason Andrews
- Division of Infectious Diseases & Geographic Medicine, Stanford University, California, United States
| | - Amador Goodridge
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, Ciudad del Saber, Panamá.
| |
Collapse
|
2
|
Hirai S, Nakamura M, Kawato S, Hachisu Y, Kikuchi T, Ando N, Shigemura H, Takemae N, Yokoyama E. Successful detection of an unrecognized outbreak of Mycobacterium tuberculosis in the modern Beijing subfamily through combined molecular epidemiological and population genetic analyses. J Infect Chemother 2025; 31:102700. [PMID: 40209932 DOI: 10.1016/j.jiac.2025.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
INTRODUCTION While multi-locus variable number tandem repeat analysis (MLVA) as molecular epidemiological analysis has been used to detect Mycobacterium tuberculosis outbreaks, its discriminatory power for identifying strains is limited. Whole-genome sequencing (WGS) offers high discriminatory power but is expensive. This study was established to develop a strategy to overcome these limitations of molecular epidemiological analysis by combining it with population genetic analysis. METHODS MLVA data from 2732 M.tuberculosis strains isolated in Chiba Prefecture, Japan, in 2008-2016 were subjected to Bayesian population genetic analysis to subdivide the strains into subfamilies and estimate subpopulations within each subfamily. Annual changes in the number of strains within subpopulations exhibiting linkage disequilibrium (LD) in MLVA data were examined. Only strains from subpopulations displaying significant increases were analyzed by WGS. RESULTS Significant LD was observed in one subpopulation using Bayesian analysis (designated P3) within the modern Beijing subfamily, which exhibited a significant increase in strain number in 2016. WGS analysis of strains belonging to P3 from 2016 revealed that 17 out of 21 of them differed by three or fewer single-nucleotide polymorphisms from their most similar strain, indicating that they had a common origin (i.e., an outbreak). Among these common-origin strains, one exhibited a four-locus variant in the MLVA, which would not be suspected of being an outbreak-related strain based on MLVA alone without Bayesian analysis. CONCLUSION The combination of Bayesian population genetic analysis with MLVA successfully detected M. tuberculosis strains from an unrecognized outbreak by performing WGS on only a subset of the strains.
Collapse
Affiliation(s)
- Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba, 260-8715, Japan; Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan.
| | - Masaki Nakamura
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba, 260-8715, Japan
| | - Satoshi Kawato
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Yushi Hachisu
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba, 260-8715, Japan
| | - Takashi Kikuchi
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba, 260-8715, Japan
| | - Naoshi Ando
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba, 260-8715, Japan
| | - Hiroaki Shigemura
- Division of Pathology and Bacteriology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Nobuhiro Takemae
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba, 260-8715, Japan; Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| |
Collapse
|
3
|
Rudeeaneksin J, Bunchoo S, Phetsuksiri B, Srisungngam S, Khummin R, Thapa J, Nakajima C, Suzuki Y. The first insight into Mycobacterium tuberculosis complex isolates in the lower northern region in Thailand. Trans R Soc Trop Med Hyg 2024; 118:527-536. [PMID: 38554067 DOI: 10.1093/trstmh/trae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) remains an important infectious disease and different genotypes have been reported. This study aimed to investigate the genetic diversity and molecular epidemiology of TB in the lower northern region of Thailand, where genotyping data are limited. METHODS A total of 159 Mycobacterium tuberculosis complex (MTBC) isolates from this region were genotyped by spoligotyping and the major spoligotypes were further subdivided by the mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) method. RESULTS Spoligotyping identified 34 types and classified them into 14 clusters. East African-Indian (EAI) groups were the most frequent (44.7%), followed by Beijing (36.5%), with a higher prevalence of drug resistance. By 15-loci MIRU-VNTR typing, the major groups of the Beijing and EAI2_NTB were further differentiated into 44 and 21 subtypes forming 9 and 5 subclusters with cluster rates of 0.26 and 0.44, respectively. The Hunter-Gaston Discriminatory Index among the Beijing and EAI2_NTB groups were 0.987 and 0.931, respectively, indicating high diversity. CONCLUSIONS This is the first look at the MTBC genotypes in the lower northern region of Thailand, which could aid in understanding the distribution and potential spread of MTBC and Mycobacterium bovis in the target region to support TB control in Thailand.
Collapse
Affiliation(s)
- Janisara Rudeeaneksin
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Supranee Bunchoo
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Benjawan Phetsuksiri
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
- Medical Sciences Technical Office, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sopa Srisungngam
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Ratchaneeporn Khummin
- Office of Disease Prevention and Control Region 2 Phitsanulok, Department of Disease Control, Ministry of Public Health, Phitsanulok 65000, Thailand
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| |
Collapse
|
4
|
Castro-Rodriguez B, Espinoza-Andrade S, Franco-Sotomayor G, Benítez-Medina JM, Jiménez-Pizarro N, Cárdenas-Franco C, Granda JC, Jouvin JL, Orlando SA, Hermoso de Mendoza J, García-Bereguiain MÁ. A first insight into tuberculosis transmission at the border of Ecuador and Colombia: a retrospective study of the population structure of Mycobacterium tuberculosis in Esmeraldas province. Front Public Health 2024; 12:1343350. [PMID: 38384875 PMCID: PMC10879341 DOI: 10.3389/fpubh.2024.1343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Objective Tuberculosis (TB) is a major public health concern in Ecuador and Colombia, considering that both countries are high-burden TB settings. Molecular epidemiology is crucial to understand the transmission dynamics of Mycobacterium tuberculosis complex (MTBC) and to identify active transmission clusters of regional importance. Methods We studied the potential transmission of TB between Colombia and Ecuador through the analysis of the population structure of MTBC lineages circulating in the Ecuadorian province of Esmeraldas at the border with Colombia. A total of 105 MTBC strains were characterized by 24-loci MIRU-VNTR and spoligotyping. Results MTBC lineage 4 is only present in Esmeraldas; no MTBC strains belonging to Lineage 2-sublineage Beijing were found despite its presence in other provinces of Ecuador and, in Colombia. Genotyping results revealed a high degree of diversity for MTBC in Esmeraldas: Neither active transmission clusters within this province nor including MTBC strains from Colombia or other provinces of Ecuador were found. Conclusion Our data suggest that tuberculosis dynamics in this rural and isolated area may be not related to highly transmitted strains but could be influenced by other health determinants that favor TB relapse such as poverty and poor health system access. Further studies including a larger number of MTBC strains from Esmeraldas are necessary to test this hypothesis.
Collapse
Affiliation(s)
| | | | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Facultad de Medicina, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - José Manuel Benítez-Medina
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Natalia Jiménez-Pizarro
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Juan Carlos Granda
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
| | - Jose Luis Jouvin
- Facultad de Medicina, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Javier Hermoso de Mendoza
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | |
Collapse
|
5
|
Genetic Diversity and Primary Drug Resistance of Mycobacterium tuberculosis Beijing Genotype Strains in Northwestern Russia. Microorganisms 2023; 11:microorganisms11020255. [PMID: 36838219 PMCID: PMC9966048 DOI: 10.3390/microorganisms11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The Beijing genotype is the main family of Mycobacterium tuberculosis in Russia. We analyzed its diversity and drug resistance in provinces across Northwestern Russia to identify the epidemiologically relevant Beijing strains. The study collection included 497 isolates from newly-diagnosed tuberculosis (TB) patients. Bacterial isolates were subjected to drug-susceptibility testing and genotyping. The Beijing genotype was detected in 57.5% (286/497); 50% of the Beijing strains were multidrug-resistant (MDR). Central Asian/Russian and B0/W148 groups included 176 and 77 isolates, respectively. MDR was more frequent among B0/W148 strains compared to Central Asian/Russian strains (85.7% vs. 40.3%, p < 0.0001). Typing of 24 minisatellite loci of Beijing strains revealed 82 profiles; 230 isolates were in 23 clusters. The largest Central Asian/Russian types were 94-32 (n = 75), 1065-32 (n = 17), and 95-32 (n = 12). B0/W148 types were 100-32 (n = 59) and 4737-32 (n = 5). MDR was more frequent in types 1065-32 (88.2%), 100-32 (83.1%), and 4737-32 (100%). In contrast, type 9391-32 (n = 9) included only drug-susceptible strains. To conclude, M. tuberculosis Beijing genotype is dominant in Northwestern Russia, and an active transmission of overwhelmingly MDR B0/W148 types explains the reported increase of MDR-TB. The presence of MDR-associated minor variants (type 1071-32/ancient Beijing and Central Asia Outbreak strain) in some of the studied provinces also requires attention.
Collapse
|
6
|
Yin C, Mijiti X, Liu H, Wang Q, Cao B, Anwaierjiang A, Li M, Liu M, Jiang Y, Xu M, Wan K, Zhao X, Li G, Xiao H. Molecular Epidemiology of Clinical Mycobacterium tuberculosis Isolates from Southern Xinjiang, China Using Spoligotyping and 15-Locus MIRU-VNTR Typing. Infect Drug Resist 2023; 16:1313-1326. [PMID: 36919034 PMCID: PMC10008323 DOI: 10.2147/idr.s393192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Background In the last decades, the molecular epidemiological investigation of Mycobacterium tuberculosis has significantly increased our understanding of tuberculosis epidemiology. However, few such studies have been done in southern Xinjiang, China. We aimed to clarify the molecular epidemic characteristics and their association with drug resistance in the M. tuberculosis isolates circulating in this area. Methods A total of 347 isolates obtained from southern Xinjiang, China between Sep, 2017 and Sep, 2019 were included to characterize using a 15-locus MIRU-VNTR (VNTR-15China) typing and spoligotyping, and test for drug susceptibility profiles. Then the lineages and clustering of the isolates were analyzed, as well as their association with drug resistance. Results Spoligotyping results showed that 60 spoligotype international types (SITs) containing 35 predefined SITs and 25 Orphan or New patterns, and 12 definite genotypes were found, and the top three prevalent genotypes were Beijing genotype (207, 59.7%), followed by CAS1-Delhi (46, 13.6%), and Ural-2 (30, 8.6%). The prevalence of Beijing genotype infection in the younger age group (≤30) was more frequent than the two older groups (30~59 and ≥60 years old, both P values <0.05). The Beijing genotype showed significantly higher prevalence of resistance to isoniazid, rifampicin, ethambutol, multi-drug or at least one drug than the non-Beijing genotype (All P values ≤0.05). The estimated proportion of tuberculosis cases due to transmission was 18.4% according to the cluster rate acquired by VNTR-15China typing, and the Beijing genotype was the risk factor for the clustering (OR 9.15, 95% CI: 4.18-20.05). Conclusion Our data demonstrated that the Beijing genotype is the dominant lineage, associated with drug resistance, and was more likely to infect young people and contributed to tuberculosis transmission in southern Xinjiang, China. These findings will contribute to a better understanding of tuberculosis epidemiology in this area.
Collapse
Affiliation(s)
- Chunjie Yin
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Bin Cao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,School of Public Health, University of South China, Hengyang, People's Republic of China
| | | | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mengwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Miao Xu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hui Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
7
|
Prombutara P, Adriansyah Putra Siregar T, Laopanupong T, Kanjanasirirat P, Khumpanied T, Borwornpinyo S, Rai A, Chaiprasert A, Palittapongarnpim P, Ponpuak M. Host cell transcriptomic response to the multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Virulence 2022; 13:1810-1826. [PMID: 36242542 PMCID: PMC9578452 DOI: 10.1080/21505594.2022.2135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The upsurge of multidrug-resistant infections has rendered tuberculosis the principal cause of death among infectious diseases. A clonal outbreak multidrug-resistant triggering strain of Mycobacterium tuberculosis was identified in Kanchanaburi Province, labelled "MKR superspreader," which was found to subsequently spread to other regions, as revealed by prior epidemiological reports in Thailand. Herein, we showed that the MKR displayed a higher growth rate upon infection into host macrophages in comparison with the H37Rv reference strain. To further elucidate MKR's biology, we utilized RNA-Seq and differential gene expression analyses to identify host factors involved in the intracellular viability of the MKR. A set of host genes function in the cellular response to lipid pathway was found to be uniquely up-regulated in host macrophages infected with the MKR, but not those infected with H37Rv. Within this set of genes, the IL-36 cytokines which regulate host cell cholesterol metabolism and resistance against mycobacteria attracted our interest, as our previous study revealed that the MKR elevated genes associated with cholesterol breakdown during its growth inside host macrophages. Indeed, when comparing macrophages infected with the MKR to H37Rv-infected cells, our RNA-Seq data showed that the expression ratio of IL-36RN, the negative regulator of the IL-36 pathway, to that of IL-36G was greater in macrophages infected with the MKR. Furthermore, the MKR's intracellular survival and increased intracellular cholesterol level in the MKR-infected macrophages were diminished with decreased IL-36RN expression. Overall, our results indicated that IL-36RN could serve as a new target against this emerging multidrug-resistant M. tuberculosis strain.
Collapse
Affiliation(s)
- Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tegar Adriansyah Putra Siregar
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, University of Muhammadiyah Sumatera Utara, Medan, Indonesia
| | - Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Awantika Rai
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Guyeux C, Senelle G, Refrégier G, Bretelle-Establet F, Cambau E, Sola C. Connection between two historical tuberculosis outbreak sites in Japan, Honshu, by a new ancestral Mycobacterium tuberculosis L2 sublineage. Epidemiol Infect 2022; 150:1-25. [PMID: 35042579 PMCID: PMC8931808 DOI: 10.1017/s0950268822000048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022] Open
Abstract
By gathering 680 publicly available Sequence Read Archives from isolates of Mycobacterium tuberculosis complex (MTBC) including 190 belonging to the lineage 2 Beijing , and using an in-house bioinformatical pipeline, the TB-Annotator , that analyses more than 50 000 characters, we describe herein a new L2 sublineage from 20 isolates found in the Tochigi province, (Japan), that we designate as asia ancestral 5 (AAnc5). These isolates harbour a number of specific criteria (42 SNPs) and their intra-cluster pairwise distance suggests historical and not epidemiological transmission. These isolates harbour a mutation in rpoC , and do not fulfil, any of the modern Beijing lineage criteria, nor any of the other ancestral Beijing lineages described so far. Asia ancestral 5 isolates do not possess mutT2 58 and ogt 12 characteristics of modern Beijing , but possess ancestral Beijing SNPs characteristics. By looking into the literature, we found a reference isolate ID381, described in Kobe and Osaka belonging to the ‘G3’ group, sharing 36 out of the 42 specific SNPs found in AAnc5. We also assessed the intermediate position of the asia ancestral 4 (AAnc4) sublineage recently described in Thailand and propose an improved classification of the L2 that now includes AAnc4 and AAnc5. By increasing the recruitment into TB-Annotator to around 3000 genomes (including 642 belonging to L2), we confirmed our results and discovered additional historical ancestral L2 branches that remain to be investigated in more detail. We also present, in addition, some anthropological and historical data from Chinese and Japan history of tuberculosis, as well as from Korea, that could support our results on L2 evolution. This study shows that the reconstruction of the early history of tuberculosis in Asia is likely to reveal complex patterns since its emergence.
Collapse
Affiliation(s)
- Christophe Guyeux
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000Besançon, France
| | - Gaetan Senelle
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000Besançon, France
| | - Guislaine Refrégier
- Université Paris-Saclay, Saint-Aubin, France
- Université Paris-Saclay, CNRS, AgroParisTech, UMR ESE, 91405, Orsay, France
| | | | - Emmanuelle Cambau
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
- AP-HP, GHU Nord, service de mycobactériologie spécialisée et de référence, Laboratoire associé du Centre National de Référence des mycobactéries et résistance des mycobactéries aux antituberculeux (CNR-MyRMA), Paris, France
| | - Christophe Sola
- Université Paris-Saclay, Saint-Aubin, France
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
| |
Collapse
|
9
|
Rudeeaneksin J, Phetsuksiri B, Nakajima C, Bunchoo S, Suthum K, Tipkrua N, Fukushima Y, Suzuki Y. Drug-resistant Mycobacterium tuberculosis and its genotypes isolated from an outbreak in western Thailand. Trans R Soc Trop Med Hyg 2021; 115:886-895. [PMID: 33320938 DOI: 10.1093/trstmh/traa148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Multidrug-resistant TB (MDR-TB) outbreaks have occurred in the Thamaka district, Kanchanaburi province in Thailand. METHODS Seventy-two isolates, which included 7% mono-, 30.6% MDR and extensively drug-resistant TB (XDR-TB), were genotyped by spoligotyping, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) and single nucleotide polymorphism genotyping, and their drug resistance was analysed. RESULTS The spoligotyping results showed that Beijing spoligo-international type (SIT)1 was predominant (n=38; 52.8%) while the remaining were non-Beijing sublineages (n=34). The MIRU-VNTR analysis showed that Beijing isolates, most of which belonged to the modern type (n=37), formed 5 clusters and 13 individual patterns. In katG, only mutation Ser315Thr was identified. In rpoB, Ser531Leu was predominant, except for His526Arg and Leu533Pro, which were found in two isolates. A cluster of 14 Beijing strains contained these common mutations and shared the MIRU-VNTR genotype with isolates in the Thamaka district that had spread previously. Two U SIT523 isolates contained the mutations A1400G in rrs and Asp94Gly in gyrA genes, indicating a spread of XDR-TB. CONCLUSIONS Most mutations were associated with drug resistance and the specific MDR Beijing and XDR-TB in U SIT523 isolates remain. This genotyping is a key tool for tracking TB transmission in the Thamaka district of Thailand.
Collapse
Affiliation(s)
- Janisara Rudeeaneksin
- National Insti tute of Health, Department of Medical Sciences, Nonthaburi Province, Thailand
| | - Benjawan Phetsuksiri
- National Insti tute of Health, Department of Medical Sciences, Nonthaburi Province, Thailand
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,International Collaboration Unit, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Supranee Bunchoo
- National Insti tute of Health, Department of Medical Sciences, Nonthaburi Province, Thailand
| | - Krairerk Suthum
- The Office of Disease Prevention and Control 5thRatchaburi, Department of Disease Control, Thailand
| | - Nattakan Tipkrua
- The Office of Disease Prevention and Control 5thRatchaburi, Department of Disease Control, Thailand
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,International Collaboration Unit, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| |
Collapse
|
10
|
Yoshida S, Iwamoto T, Arikawa K, Sekizuka T, Kuroda M, Inoue Y, Mitarai S, Tsuji T, Tsuyuguchi K, Suzuki K. Bacterial population kinetics in heteroresistant Mycobacterium tuberculosis harbouring rare resistance-conferring mutations in gyrA and rpoB imply an epistatic interaction of mutations in a pre-XDR-TB patient. J Antimicrob Chemother 2021; 75:1722-1725. [PMID: 32303065 DOI: 10.1093/jac/dkaa109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Bacterial population kinetics of strains harbouring drug resistance-conferring mutations within a patient often show cryptic resistance in clinical practice. We report a case that showed emergence and dominance of Mycobacterium tuberculosis with uncommon rpoB and gyrA mutations, followed by an rpoC compensatory mutation, during treatment. METHODS A pre-XDR-TB patient showed heteroresistance to rifampicin and levofloxacin during treatment as a result of intermittent self-cessation. WGS was applied to investigate intra-host strain composition using five pairs of isolates from sputum samples. RESULTS The subclone in this study possessed rare mutations conferring resistance to rifampicin (rpoB V170F) and levofloxacin (gyrA S91P) and it rapidly outcompeted other subclones during treatment that included levofloxacin but not rifampicin (<7 days). The high-probability compensatory mutation rpoC V483A also emerged and became dominant subsequent to the rpoB V170F mutation. CONCLUSIONS To the best of our knowledge, this is the first case showing the emergence of such a rare variant that dominated the population within a patient during treatment of TB.
Collapse
Affiliation(s)
- Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Taisuke Tsuji
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kazunari Tsuyuguchi
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| | - Katsuhiro Suzuki
- Department of Internal Medicine, National Hospital Organization Kinki-chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
| |
Collapse
|
11
|
Santos-Lazaro D, Gavilan RG, Solari L, Vigo AN, Puyen ZM. Whole genome analysis of extensively drug resistant Mycobacterium tuberculosis strains in Peru. Sci Rep 2021; 11:9493. [PMID: 33947918 PMCID: PMC8097007 DOI: 10.1038/s41598-021-88603-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/14/2021] [Indexed: 02/02/2023] Open
Abstract
Peru has the highest burden of multidrug-resistant tuberculosis in the Americas region. Since 1999, the annual number of extensively drug-resistant tuberculosis (XDR-TB) Peruvian cases has been increasing, becoming a public health challenge. The objective of this study was to perform genomic characterization of Mycobacterium tuberculosis strains obtained from Peruvian patients with XDR-TB diagnosed from 2011 to 2015 in Peru. Whole genome sequencing (WGS) was performed on 68 XDR-TB strains from different regions of Peru. 58 (85.3%) strains came from the most populated districts of Lima and Callao. Concerning the lineages, 62 (91.2%) strains belonged to the Euro-American Lineage, while the remaining 6 (8.8%) strains belonged to the East-Asian Lineage. Most strains (90%) had high-confidence resistance mutations according to pre-established WHO-confident grading system. Discordant results between microbiological and molecular methodologies were caused by mutations outside the hotspot regions analysed by commercial molecular assays (rpoB I491F and inhA S94A). Cluster analysis using a cut-off ≤ 10 SNPs revealed that only 23 (34%) strains evidenced recent transmission links. This study highlights the relevance and utility of WGS as a high-resolution approach to predict drug resistance, analyse transmission of strains between groups, and determine evolutionary patterns of circulating XDR-TB strains in the country.
Collapse
Affiliation(s)
| | - Ronnie G. Gavilan
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru ,grid.441740.20000 0004 0542 2122Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Lely Solari
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru
| | - Aiko N. Vigo
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru
| | - Zully M. Puyen
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru ,grid.441917.e0000 0001 2196 144XEscuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| |
Collapse
|
12
|
Huang CC, Chu AL, Becerra MC, Galea JT, Calderón R, Contreras C, Yataco R, Zhang Z, Lecca L, Murray MB. Mycobacterium tuberculosis Beijing Lineage and Risk for Tuberculosis in Child Household Contacts, Peru. Emerg Infect Dis 2021; 26:568-578. [PMID: 32091363 PMCID: PMC7045848 DOI: 10.3201/eid2603.191314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Few studies have prospectively compared the relative transmissibility and propensity to cause disease of Mycobacterium tuberculosis Beijing strains with other human-adapted strains of the M. tuberculosis complex. We assessed the effect of Beijing strains on the risk for M. tuberculosis infection and disease progression in 9,151 household contacts of 2,223 culture-positive pulmonary tuberculosis (TB) patients in Lima, Peru. Child contacts exposed to Beijing strains were more likely than child contacts exposed to non-Beijing strains to be infected at baseline, by 12 months of follow-up, and during follow-up. We noted an increased but nonsignificant tendency for child contacts to develop TB. Beijing strains were not associated with TB in adult contacts. These findings suggest that Beijing strains are more transmissible in children than are non-Beijing strains.
Collapse
|
13
|
Aiewsakun P, Prombutara P, Siregar TAP, Laopanupong T, Kanjanasirirat P, Khumpanied T, Borwornpinyo S, Tong-Ngam P, Tubsuwan A, Srilohasin P, Chaiprasert A, Ruangchai W, Palittapongarnpim P, Prammananan T, VanderVen BC, Ponpuak M. Transcriptional response to the host cell environment of a multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Sci Rep 2021; 11:3199. [PMID: 33542438 PMCID: PMC7862621 DOI: 10.1038/s41598-021-82905-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated “MKR superspreader”, and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR’s intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pirut Tong-Ngam
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Prapaporn Srilohasin
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Therdsak Prammananan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand. .,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Acosta F, Norman A, Sambrano D, Batista V, Mokrousov I, Shitikov E, Jurado J, Mayrena M, Luque O, Garay M, Solís L, Muñoz P, Folkvardsen DB, Lillebaek T, Pérez-Lago L, Goodridge A, García de Viedma D. Probable long-term prevalence for a predominant Mycobacterium tuberculosis clone of a Beijing genotype in Colon, Panama. Transbound Emerg Dis 2020; 68:2229-2238. [PMID: 33048439 DOI: 10.1111/tbed.13875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022]
Abstract
Beijing genotype Mycobacterium tuberculosis strains associate with increased virulence, resistance and/or higher transmission rates. This study describes a specific Beijing strain predominantly identified in the Panamanian province of Colon with one of the highest incidences of tuberculosis in the country. Retrospective mycobacterial interspersed repetitive unit/variable number of tandem repeats analysis of 42 isolates collected between January and August 2018 allowed to identify a cluster (Beijing A) with 17 (40.5%) Beijing isolates. Subsequent prospective strain-specific PCR-based surveillance from September 2019 to March 2020 confirmed the predominance of the Beijing A strain (44.1%) in this province. Whole-genome sequencing revealed higher-than-expected diversity within the cluster, suggesting long-term prevalence of this strain and low number of cases caused by recent transmission. The Beijing A strain belongs to the Asian African 3 (Bmyc13, L2.2.5) branch of the modern Beijing sublineage, with their closest isolates corresponding to cases from Vietnam, probably introduced in Panama between 2000 and 2012.
Collapse
Affiliation(s)
- Fermin Acosta
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Dilcia Sambrano
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Victoria Batista
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Egor Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | | | - Odemaris Luque
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panama
| | - Maybis Garay
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Laura Solís
- Programa de Control de Tuberculosis, Ministerio de Salud, Colón, Panama
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Dorte B Folkvardsen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.,Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laura Pérez-Lago
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Amador Goodridge
- Unidad de Investigaciones de Biomarcadores de Tuberculosis, Centro de Biología Celular y Molecular de Enfermedades-Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panama, Panama
| | - Darío García de Viedma
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Spain
| |
Collapse
|
15
|
Peters JS, Ismail N, Dippenaar A, Ma S, Sherman DR, Warren RM, Kana BD. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu Rev Genet 2020; 54:511-537. [PMID: 32926793 DOI: 10.1146/annurev-genet-022820-085940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, Mycobacterium tuberculosis, has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of M. tuberculosis isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| | - Nabila Ismail
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; , .,Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2000, Belgium;
| | - Shuyi Ma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Robin M Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Bavesh D Kana
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| |
Collapse
|
16
|
Nieto Ramirez LM, Ferro BE, Diaz G, Anthony RM, de Beer J, van Soolingen D. Genetic profiling of Mycobacterium tuberculosis revealed "modern" Beijing strains linked to MDR-TB from Southwestern Colombia. PLoS One 2020; 15:e0224908. [PMID: 32330146 PMCID: PMC7182180 DOI: 10.1371/journal.pone.0224908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
Beijing strains of Mycobacterium tuberculosis (lineage 2) have been associated with drug-resistance and transmission of tuberculosis worldwide. Most of the Beijing strains identified in the Colombian Pacific coast have exhibited a multidrug resistant (MDR) phenotype. We sought to evaluate the clonality and sublineage of Beijing strains circulating in Southwestern Colombia. Thirty-seven Beijing strains were identified through spoligotyping out of 311 clinical isolates collected in 9 years from 2002-2010. Further analysis by MIRU-VNTR 24 loci was conducted for the Beijing strains. For sublineage classification, deletions of RD105, RD207, and RD131 and point mutations at fbpB, mutT2, and acs were evaluated. Drug-resistance associated mutations to first- and second-line anti-TB drugs were also evaluated. Additionally, two Beijing strains were Illumina-whole genome sequenced (one MDR and one drug-susceptible). Among the 37 Beijing strains characterized, 36 belonged to the SIT190 type from which 28 were MDR, four pre-extensively drug resistant (XDR) TB, and four XDR-TB. The remaining strain was SIT1 and drug susceptible. MIRU-VNTR analysis allowed the identification of three Beijing clusters and two unique strains. Beijing strains were confirmed as "modern" sublineage. The mutations rpoB S531L and katG S315T were the most common among MDR strains. Moreover, the two strains evaluated by whole genome sequencing (WGS) shared most of the genetic features with the sublineage 2.2.1 "modern" Beijing previously characterized from Asian strains. WGS analysis of the MDR strain revealed the presence of eight SNPs previously reported in other MDR "Beijing-like" strains from Colombia. The presence of "modern" Beijing strains in Southwestern Colombia, most of them with MDR phenotype, suggests a different origin of this M. tuberculosis sublineage compared to other Beijing strains found in neighboring South American countries. This work may serve as a genetic baseline to study the evolution and spread of M. tuberculosis Beijing strains in Colombia, which play an important role in the propagation of MDR-TB.
Collapse
Affiliation(s)
| | - Beatriz E. Ferro
- Departamento de Salud Pública y Medicina Comunitaria, Universidad Icesi, Cali, Colombia
| | - Gustavo Diaz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Richard M. Anthony
- Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jessica de Beer
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick van Soolingen
- Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Garzon-Chavez D, Garcia-Bereguiain MA, Mora-Pinargote C, Granda-Pardo JC, Leon-Benitez M, Franco-Sotomayor G, Trueba G, de Waard JH. Population structure and genetic diversity of Mycobacterium tuberculosis in Ecuador. Sci Rep 2020; 10:6237. [PMID: 32277077 PMCID: PMC7148308 DOI: 10.1038/s41598-020-62824-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis (TB) is a significant public health problem in Ecuador with an incidence of 43 per 100,000 inhabitants and an estimated multidrug-resistant-TB prevalence in all TB cases of 9%. Genotyping of Mycobacterium tuberculosis (MTBC) is important to understand regional transmission dynamics. This study aims to describe the main MTBC lineages and sublineages circulating in the country. A representative sample of 373 MTBC strains from 22 provinces of Ecuador, with data comprising geographic origin and drug susceptibility, were genotyped using 24 loci-MIRU-VNTR. For strains with an ambiguous sublineage designation, the lineage was confirmed by Regions of Difference analysis or by Whole Genome Sequencing. We show that lineage 4 is predominant in Ecuador (98.3% of the strains). Only 4 strains belong to lineages 2-sublineage Beijing and two strains to lineage 3-sublineage Delhi. Lineage 4 strains included sublineages LAM (45.7%), Haarlem (31.8%), S (13.1%), X (4.6%), Ghana (0.6%) and NEW (0.3%). The LAM sublineage showed the strongest association with antibiotic resistance. The X and S sublineages were found predominantly in the Coastal and the Andean regions respectively and the reason for the high prevalence of these strains in Ecuador should be addressed in future studies. Our database constitutes a tool for MIRU-VNTR pattern comparison of M. tuberculosis isolates for national and international epidemiologic studies and phylogenetic purposes.
Collapse
Affiliation(s)
- Daniel Garzon-Chavez
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
| | - Miguel Angel Garcia-Bereguiain
- One Health Research Group. Universidad de las Américas, Quito, Ecuador.
- Laboratorio para Investigaciones Biomédicas. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador.
| | - Carlos Mora-Pinargote
- Laboratorio para Investigaciones Biomédicas. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | | | - Margarita Leon-Benitez
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
| | - Greta Franco-Sotomayor
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
- Facultad de Ciencias Médicas. Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Jacobus H de Waard
- One Health Research Group. Universidad de las Américas, Quito, Ecuador.
- Departamento de Tuberculosis, Servicio Autónomo Instituto de Biomedicina "Dr. Jacinto Convit", Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
18
|
A tuberculosis outbreak at an insecure, temporary housing facility, manga café, Tokyo, Japan, 2016-2017. Epidemiol Infect 2020; 147:e222. [PMID: 31364585 PMCID: PMC6625208 DOI: 10.1017/s0950268819001092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In November 2016, a woman in her 30s who stayed at an insecure, temporary housing facility, a manga café in Tokyo, Japan, for a year was diagnosed with sputum smear-positive tuberculosis (TB). Since the café had 31 staff members and provided with accommodation to many people, the local health office initiated a contact investigation. This study aims to characterise the cases found in the outbreak. A TB case was defined as a person tested bacteriologically positive for TB, or was determined to have TB by a physician. A latent TB infection case was defined as a person tested positive by interferon-γ release assay. From January 2016 through November 2017, there were 31 staff members at the manga café, of which, six developed TB disease (one smear-negative, culture-positive and five smear- and culture-negative) in addition to seven LTBI. Another long-term customer was found having sputum smear-positive TB. Variable numbers tandem repeat (VNTR) test revealed that the index patient and the long-term customer had the identical type of VNTR; however, one staff member had a different VNTR. Local health authorities should intensify screening long-term customers of such facilities for TB regularly as well as once a TB outbreak occurs.
Collapse
|
19
|
Takahashi G, Kobayashi H, Saito Y, Ohsawa S, Suzuki K, Ishihara S, Hisada T. Bacteriologically Determined De Novo Tuberculosis during Tumor Necrosis Factor-α Inhibitor Therapy. Intern Med 2019; 58:3593-3596. [PMID: 31434822 PMCID: PMC6949445 DOI: 10.2169/internalmedicine.3054-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A 58-year-old man with Crohn's disease received adalimumab for 13 months after screening results for tuberculosis were found to be negative. He was diagnosed with de novo mediastinal lymph-node tuberculosis, which was proved to be bacteriologically identical to that of an individual with smear positive lung tuberculosis by a variable number of tandem repeat analyses. After initiating anti-tuberculosis therapy, the patient developed immune reconstitution syndrome, which was improved by the re-administration of adalimumab. Even in countries with an intermediate tuberculosis burden, including Japan, we need to be alert for de novo tuberculosis as well as its reactivation during tumor necrosis factor-α inhibitor therapy.
Collapse
Affiliation(s)
- Gen Takahashi
- Department of Internal Medicine, Isesaki Municipal Hospital, Japan
| | | | - Yasuyuki Saito
- Department of Internal Medicine, Isesaki Municipal Hospital, Japan
| | - Sho Ohsawa
- Department of Internal Medicine, Isesaki Municipal Hospital, Japan
| | - Kuniaki Suzuki
- Department of Internal Medicine, Isesaki Municipal Hospital, Japan
| | | | - Takeshi Hisada
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Japan
| |
Collapse
|
20
|
Mora-Pinargote C, Garzon-Chavez D, Franco-Sotomayor G, Leon-Benitez M, Granda-Pardo JC, Trueba G, de Waard JH, Garcia-Bereguiain MA. Country-wide rapid screening for the Mycobacterium tuberculosis Beijing sublineage in Ecuador using a single-nucleotide polymorphism-polymerase chain reaction method. Int J Mycobacteriol 2019; 8:366-370. [PMID: 31793507 DOI: 10.4103/ijmy.ijmy_132_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Strains of the Beijing sublineage of Mycobacterium tuberculosis have caused large outbreaks of tuberculosis, often involving multidrug resistance strains and this genetically highly conserved family of strains predominates in some geographic areas. For most of the countries of Latin America, no country-wide studies about the prevalence of the Beijing lineage are available. Methods In this study, we determine the prevalence of the Beijing sublineage in Ecuador, using a large nation-wide sample of 991 isolates from the years 2014-2016 and with the strains, in case-related-proportional representation, emerging from most of the provinces of the country. The isolates were genotyped with asinglenucleotidespecific polymorphism (SNP) polymerase chain reaction for the Beijing sublineage. SNPpositive strains were confirmed as belonging to this lineage with 24 mycobacterial interspersed repetitive unitvariable number of tandem repeat and DNA sequencing. Results We identified only four Beijing isolates in this collection of 991 strains and calculated a prevalence rate of 0.43%. Conclusions Our study shows a limited dissemination of the Beijing strains in the Ecuadorian population. This in contrast with the neighbor countries of Peru and Colombia were locally a prevalence of up to 16% has been reported.
Collapse
Affiliation(s)
- Carlos Mora-Pinargote
- Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador
| | | | - Greta Franco-Sotomayor
- Instituto Nacional de Salud Publica e Investigacion "Leopoldo Izquieta Perez", Guayaquil, Ecuador; Facultad de Ciencias de la Salud, Universidad Catolica Santiago de Guayaquil, Guayaquil, Venezuela
| | - Margarita Leon-Benitez
- Instituto Nacional de Salud Publica e Investigacion "Leopoldo Izquieta Perez", Guayaquil, Ecuador
| | - Juan Carlos Granda-Pardo
- Instituto Nacional de Salud Publica e Investigacion "Leopoldo Izquieta Perez", Guayaquil, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jacobus Henri de Waard
- One Health Research Group, Universidad de las Americas, Quito; Laboratorio de Tuberculosis, Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas, Venezuela
| | - Miguel Angel Garcia-Bereguiain
- Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador; One Health Research Group, Universidad de las Americas, Quito, Venezuela
| |
Collapse
|
21
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
22
|
Somphavong S, Berland JL, Gauthier M, Vu TT, Nguyen QH, Iem V, Vongvichit P, Inthavong D, Akkhavong V, Chanthavilay P, Soundala S, Keovichit I, Paranhos-Baccalà G, Paboriboune P, Nguyen TVA, Bañuls AL. First insights into the genetic characteristics and drug resistance of Mycobacterium tuberculosis population collected during the first national tuberculosis prevalence survey of Lao PDR (2010-2011). BMC Infect Dis 2019; 19:851. [PMID: 31615439 PMCID: PMC6794770 DOI: 10.1186/s12879-019-4435-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Background In Lao People’s Democratic Republic (PDR), tuberculosis (TB) prevalence was estimated at 540/100,000 in 2011. Nevertheless, little is known about the genetic characteristics and anti-TB drug resistance of the Mycobacterium tuberculosis population. The main objective of this work was to study the genetic characteristics and drug resistance of M. tuberculosis population collected during the first National TB Prevalence Survey (TBPS) of Lao PDR (2010–2011). Methods Two hundred and twenty two isolates collected during TBPS (2010–2011) were analyzed with the GenoType MTBDRplus test for M. tuberculosis identification and drug resistance detection. Then, 206 of the 222 isolates were characterized by spoligotyping and MIRU-VNTR typing. Results Among the 222 M. tuberculosis isolates, 11 were mono-resistant to isoniazid and 2 were resistant to isoniazid and rifampicin (MDR-TB), using the GenoType MTBDRplus test. Among the 202 genetically characterized isolates, the East African-Indian (EAI) family was predominant (76.7%) followed by the Beijing (14.4%) and T (5.5%) families. EAI isolates came from all the country provinces, whereas Beijing isolates were found mainly in the northern and central provinces. A higher proportion of Beijing isolates was observed in people younger than 35 years compared to EAI. Moreover, the percentage of drug resistance was higher among Beijing (17.2%) than EAI (5.2%) isolates, and the two MDR-TB isolates belonged to the Beijing family. Combined analysis of the MIRU-VNTR and spoligotyping results (n = 202 isolates) revealed an estimated clustering rate of 11% and the occurrence of mini-outbreaks of drug-resistant TB caused by Beijing genotypes. Conclusions The EAI family, the ancient and endemic family in Asia, is predominant in Lao PDR whereas the prevalence of Beijing, the most harmful M. tuberculosis family for humans, is still low, differently from neighboring countries. However, its association with drug resistance, its presence in young patients and its potential association with recent transmission suggest that the Beijing family could change TB epidemiological pattern in Lao PDR. Therefore, efficient TB control and surveillance systems must be maintained and reinforced to prevent the emergence of highly transmissible and drug-resistant strains in Lao PDR, as observed in neighboring countries. Electronic supplementary material The online version of this article (10.1186/s12879-019-4435-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silaphet Somphavong
- Centre d'Infectiologie Lao-Christophe Mérieux, Vientiane, Lao PDR. .,MIVEGEC (IRD-CNRS-Université de Montpellier), Centre IRD, Montpellier, France. .,LMI "Drug Resistance in South East Asia, DRISA", Hanoi, Vietnam.
| | - Jean-Luc Berland
- Laboratoire des Pathogènes Émergents, Fondation Mérieux, Lyon, France
| | - Marie Gauthier
- Laboratoire des Pathogènes Émergents, Fondation Mérieux, Lyon, France
| | - Thi Thuong Vu
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Quang Huy Nguyen
- LMI "Drug Resistance in South East Asia, DRISA", Hanoi, Vietnam.,Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Academy of Science and Technology, Hanoi, Vietnam
| | - Vibol Iem
- National reference laboratory for tuberculosis, Vientiane, Lao PDR
| | | | - Donekham Inthavong
- National reference laboratory for tuberculosis, Vientiane, Lao PDR.,National Tuberculosis Control Program, Vientiane, Lao PDR
| | | | | | | | | | | | | | - Thi Van Anh Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Anne-Laure Bañuls
- MIVEGEC (IRD-CNRS-Université de Montpellier), Centre IRD, Montpellier, France.,LMI "Drug Resistance in South East Asia, DRISA", Hanoi, Vietnam
| |
Collapse
|
23
|
Bui DP, Oren E, Roe DJ, Brown HE, Harris RB, Knight GM, Gilman RH, Grandjean L. A Case-Control Study to Identify Community Venues Associated with Genetically-clustered, Multidrug-resistant Tuberculosis Disease in Lima, Peru. Clin Infect Dis 2019; 68:1547-1555. [PMID: 30239609 PMCID: PMC7181380 DOI: 10.1093/cid/ciy746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The majority of tuberculosis transmission occurs in community settings. Our primary aim in this study was to assess the association between exposure to community venues and multidrug-resistant (MDR) tuberculosis. Our secondary aim was to describe the social networks of MDR tuberculosis cases and controls. METHODS We recruited laboratory-confirmed MDR tuberculosis cases and community controls that were matched on age and sex. Whole-genome sequencing was used to identify genetically clustered cases. Venue tracing interviews (nonblinded) were conducted to enumerate community venues frequented by participants. Logistic regression was used to assess the association between MDR tuberculosis and person-time spent in community venues. A location-based social network was constructed, with respondents connected if they reported frequenting the same venue, and an exponential random graph model (ERGM) was fitted to model the network. RESULTS We enrolled 59 cases and 65 controls. Participants reported 729 unique venues. The mean number of venues reported was similar in both groups (P = .92). Person-time in healthcare venues (adjusted odds ratio [aOR] = 1.67, P = .01), schools (aOR = 1.53, P < .01), and transportation venues (aOR = 1.25, P = .03) was associated with MDR tuberculosis. Healthcare venues, markets, cinemas, and transportation venues were commonly shared among clustered cases. The ERGM indicated significant community segregation between cases and controls. Case networks were more densely connected. CONCLUSIONS Exposure to healthcare venues, schools, and transportation venues was associated with MDR tuberculosis. Intervention across the segregated network of case venues may be necessary to effectively stem transmission.
Collapse
Affiliation(s)
- David P Bui
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson
| | - Eyal Oren
- School of Public Health, San Diego State University, California
| | - Denise J Roe
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson
| | - Heidi E Brown
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson
| | - Robin B Harris
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson
| | - Gwenan M Knight
- London School of Hygiene and Tropical Medicine, United Kingdom
| | - Robert H Gilman
- Universidad Peruana Cayetano Heredia, Lima, Peru
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Louis Grandjean
- London School of Hygiene and Tropical Medicine, United Kingdom
- Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
24
|
Garzon-Chavez D, Zurita J, Mora-Pinargote C, Franco-Sotomayor G, Leon-Benitez M, Granda-Pardo JC, Trueba G, Garcia-Bereguiain MA, de Waard JH. Prevalence, Drug Resistance, and Genotypic Diversity of the Mycobacterium tuberculosis Beijing Family in Ecuador. Microb Drug Resist 2019; 25:931-937. [PMID: 30883259 DOI: 10.1089/mdr.2018.0429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Beijing family, the most successful Mycobacterium tuberculosis lineage, is considered hypervirulent, associated with clustering and has a strong association with multidrug-resistant tuberculosis. The Beijing strains have spread worldwide and also to Latin America. Genotyping of a countrywide collection of 380 M. tuberculosis strains from Ecuador, with 24-loci mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR), revealed only six Beijing strains, but four of these were MDR-TB. There was no clustering as all six strains had very distinct MIRU-VNTR profiles that have not been reported in the rest of Latin America. Although active transmission for Beijing has been described for the neighboring countries Peru and Colombia, there is no evidence that Beijing strains in Ecuador are more frequently transmitted than other strains. Moreover, the low prevalence (1.6%) of the Beijing sublineage in Ecuador challenges the concept of hyperadaptability and transmissibility of the Beijing strains in our country.
Collapse
Affiliation(s)
- Daniel Garzon-Chavez
- 1 Instituto de Microbiología and Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jeannete Zurita
- 2 Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,3 Zurita & Zurita Laboratorios, Unidad de Investigaciones en Biomedicina, Quito, Ecuador
| | - Carlos Mora-Pinargote
- 4 Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador
| | - Greta Franco-Sotomayor
- 5 Instituto de Salud Pública e Investigacion Leopoldo Izquieta Perez, Guayaquil, Ecuador
| | - Margarita Leon-Benitez
- 5 Instituto de Salud Pública e Investigacion Leopoldo Izquieta Perez, Guayaquil, Ecuador
| | | | - Gabriel Trueba
- 1 Instituto de Microbiología and Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Miguel Angel Garcia-Bereguiain
- 4 Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador.,6 One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.,7 Escuela de Ciencias Biologicas e Ingeniería, Universidad Yachay Tech, Urcuqui, Ecuador
| | - Jacobus H de Waard
- 6 One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.,7 Escuela de Ciencias Biologicas e Ingeniería, Universidad Yachay Tech, Urcuqui, Ecuador.,8 Laboratorio de Tuberculosis, Instituto de Biomedicina, Hospital Vargas, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
25
|
Couvin D, David A, Zozio T, Rastogi N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. INFECTION GENETICS AND EVOLUTION 2018; 72:31-43. [PMID: 30593925 DOI: 10.1016/j.meegid.2018.12.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 02/01/2023]
Abstract
In order to provide a global overview of genotypic, epidemiologic, demographic, phylogeographical, and drug resistance characteristics related to the prevailing tuberculosis (TB) epidemic, we hereby report an update of the 6th version of the international genotyping database SITVIT2. We also make all the available information accessible through a dedicated website (available at http://www.pasteur-guadeloupe.fr:8081/SITVIT2). Thanks to the public release of SITVIT2 which is currently the largest international multimarker genotyping database with a compilation of 111,635 clinical isolates from 169 countries of patient origin (131 countries of isolation, representing 1032 cities), our major aim is to highlight macro- and micro-geographical cleavages and phylogeographical specificities of circulating Mycobacterium tuberculosis complex (MTBC) clones worldwide. For this purpose, we retained strains typed by the most commonly used PCR-based methodology for TB genotyping, i.e., spoligotyping based on the polymorphism of the direct repeat (DR) locus, 5-loci Exact Tandem Repeats (ETRs), and MIRU-VNTR minisatellites used in 12-, 15-, or 24-loci formats. We describe the SITVIT2 database and integrated online applications that permit to interrogate the database using easy drop-down menus to draw maps, graphics and tables versus a long list of parameters and variables available for individual clinical isolates (year and place of isolation, origin, sex, and age of patient, drug-resistance, etc.). Available tools further allow to generate phylogenetical snapshot of circulating strains as Lineage-specific WebLogos, as well as minimum spanning trees of their genotypes in conjunction with their geographical distribution, drug-resistance, demographic, and epidemiologic characteristics instantaneously; whereas online statistical analyses let a user to pinpoint phylogeographical specificities of circulating MTBC lineages and conclude on actual demographic trends. Available associated information on gender (n = 18,944), age (n = 16,968), drug resistance (n = 19,606), and HIV serology (n = 2673), allowed to draw some important conclusions on TB geo-epidemiology; e.g. a positive correlation exists between certain Mycobacterium tuberculosis lineages (such as CAS and Beijing) and drug resistance (p-value<.001), while other lineages (such as LAM, X, and BOV) are more frequently associated with HIV-positive serology (p-value<.001). Besides, availability of information on the year of isolation of strains (range 1759-2012), also allowed to make tentative correlations between drug resistance information and lineages - portraying probable evolution trends over time and space. To conclude, the present approach of geographical mapping of predominant clinical isolates of tubercle bacilli causing the bulk of the disease both at country and regional level in conjunction with epidemiologic and demographic characteristics allows to shed new light on TB geo-epidemiology in relation with the continued waves of peopling and human migration.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| | - Audrey David
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| |
Collapse
|
26
|
Ferreira LM, Sáfadi T, Ferreira JL. Wavelet-domain elastic net for clustering on genomes strains. Genet Mol Biol 2018; 41:884-892. [PMID: 30508009 PMCID: PMC6415607 DOI: 10.1590/1678-4685-gmb-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022] Open
Abstract
We propose to evaluate genome similarity by combining discrete non-decimated
wavelet transform (NDWT) and elastic net. The wavelets represent a signal with
levels of detail, that is, hidden components are detected by means of the
decomposition of this signal, where each level provides a different
characteristic. The main feature of the elastic net is the grouping of
correlated variables where the number of predictors is greater than the number
of observations. The combination of these two methodologies applied in the
clustering analysis of the Mycobacterium tuberculosis genome
strains proved very effective, being able to identify clusters at each level of
decomposition.
Collapse
Affiliation(s)
- Leila Maria Ferreira
- Programa de Pós-Graduação em Estatística e Experimentação Agropecuária, Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Thelma Sáfadi
- Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Juliano Lino Ferreira
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Pecuária Sul. Bagé, RS, Brazil
| |
Collapse
|
27
|
Yamamoto K, Takeuchi S, Seto J, Shimouchi A, Komukai J, Hase A, Nakamura H, Umeda K, Hirai Y, Matsumoto K, Ogasawara J, Wada T, Yamamoto T. Longitudinal genotyping surveillance of Mycobacterium tuberculosis in an area with high tuberculosis incidence shows high transmission rate of the modern Beijing subfamily in Japan. INFECTION GENETICS AND EVOLUTION 2018; 72:25-30. [PMID: 30261265 DOI: 10.1016/j.meegid.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is a severe and wide-spread infectious disease worldwide. The modern Beijing subfamily, one lineage of M. tuberculosis, reportedly has high pathogenicity and transmissibility. This study used a molecular epidemiological approach to investigate the transmissibility of the modern Beijing subfamily in the Airin area of Osaka City, Japan. During 2006-2016, we collected 596 M. tuberculosis clinical isolates in the Airin area, Osaka city, Japan. We analyzed the 24-locus variable number of tandem repeats typing optimized for the Beijing family of isolates, M. tuberculosis lineage, and patient epidemiological data. The proportion of the modern Beijing subfamily was significantly higher not only than previously obtained data for the Airin area: it was also higher than the nationwide in Japan. The rate of recent clusters, defined as a variable number of tandem repeats profile identified within two years, of the modern Beijing subfamily was significantly higher than that the rate of recent clusters of the ancient Beijing subfamily. Results suggest that TB control measures formulated with attention to the modern Beijing subfamily might be an important benchmark to understanding recent TB transmission in the area.
Collapse
Affiliation(s)
- Kaori Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Shouhei Takeuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, 1-1-1 Manabino, Nagayo, Nishisonogi, Nagasaki 851-2195, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Akira Shimouchi
- Nishinari Ward Office, 1-15-17 Taishi-cho, Nishinari-ku, Osaka 557-0002, Japan
| | - Jun Komukai
- Osaka City Public Health Center, 1-27-1000 Asahimachi, Abeno-ku, Osaka 545-0051, Japan
| | - Atsushi Hase
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Hiromi Nakamura
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Kaoru Umeda
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Yuki Hirai
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Kenji Matsumoto
- Osaka City Public Health Center, 1-27-1000 Asahimachi, Abeno-ku, Osaka 545-0051, Japan
| | - Jun Ogasawara
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Taro Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
28
|
Kimura M, Araoka H, Baba H, Okada C, Murase Y, Takaki A, Mitarai S, Yoneyama A. First case of sexually transmitted asymptomatic female genital tuberculosis from spousal epididymal tuberculosis diagnosed by active screening. Int J Infect Dis 2018; 73:60-62. [PMID: 29879525 DOI: 10.1016/j.ijid.2018.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis screening was performed for a healthy asymptomatic woman to determine whether she had been infected with active genital tuberculosis via sexual intercourse with her husband who had epididymal tuberculosis. Vaginal swab culture yielded Mycobacterium tuberculosis. Furthermore, whole genome sequencing revealed that the two causative isolates were genetically identical. This appears to be the first report on the sexual transmission of genital tuberculosis from a man to an asymptomatic woman, detected by active screening for genital tuberculosis and molecular analysis, including whole genome sequencing. Active screening for genital tuberculosis in the female partner should be considered soon after diagnosis of male genital tuberculosis, even when the female partner is asymptomatic.
Collapse
Affiliation(s)
- Muneyoshi Kimura
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan.
| | - Hideki Araoka
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan; Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Hiromi Baba
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| | - Chikako Okada
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Akiko Yoneyama
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Seto J, Wada T, Suzuki Y, Ikeda T, Mizuta K, Yamamoto T, Ahiko T. Mycobacterium tuberculosis Transmission among Elderly Persons, Yamagata Prefecture, Japan, 2009-2015. Emerg Infect Dis 2018; 23:448-455. [PMID: 28221133 PMCID: PMC5382749 DOI: 10.3201/eid2303.161571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In many countries with low to moderate tuberculosis (TB) incidence, cases have shifted to elderly persons. It is unclear, however, whether these cases are associated with recent Mycobacterium tuberculosis transmission or represent reactivation of past disease. During 2009–2015, we performed a population-based TB investigation in Yamagata Prefecture, Japan, using in-depth contact tracing and 24-loci variable-number tandem-repeat typing optimized for Beijing family M. tuberculosis strains. We analyzed 494 strains, of which 387 (78.3%) were derived from elderly patients. Recent transmission with an epidemiologic link was confirmed in 22 clusters (70 cases). In 17 (77.3%) clusters, the source patient was elderly; 11 (64.7%) of the 17 clusters occurred in a hospital or nursing home. In this setting, the increase in TB cases was associated with M. tuberculosis transmissions from elderly persons. Prevention of transmission in places where elderly persons gather will be an effective strategy for decreasing TB incidence among predominantly elderly populations.
Collapse
|
30
|
Prediction of Local Transmission of Mycobacterium tuberculosis Isolates of a Predominantly Beijing Lineage by Use of a Variable-Number Tandem-Repeat Typing Method Incorporating a Consensus Set of Hypervariable Loci. J Clin Microbiol 2017; 56:JCM.01016-17. [PMID: 29046413 DOI: 10.1128/jcm.01016-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Strain genotyping based on the variable-number tandem repeat (VNTR) is widely applied for identifying the transmission of Mycobacterium tuberculosis A consensus set of four hypervariable loci (1982, 3232, 3820, and 4120) has been proposed to improve the discrimination of Beijing lineage strains. Herein, we evaluated the utility of these four hypervariable loci for tracing local tuberculosis transmission in 981 cases over a 14-month period in Japan (2010 to 2011). We used six different VNTR systems, with or without the four hypervariable loci. Patient ages and weighted standard distances (a measure of the dispersion of genotype-clustered cases) were used as proxies for estimating local tuberculosis transmission. The highest levels of isolate discrimination were achieved with VNTR systems that incorporated the four hypervariable loci (i.e., the Japan Anti-Tuberculosis Association [JATA]18-VNTR, mycobacterial interspersed repetitive unit [MIRU]28-VNTR, and 24Beijing-VNTR). The clustering rates by JATA12-VNTR, MIRU15-VNTR, JATA15-VNTR, JATA18-VNTR, MIRU28-VNTR, and 24Beijing-VNTR systems were 52.2%, 51.0%, 39.0%, 24.1%, 23.1%, and 22.0%, respectively. As the discriminative power increased, the median weighted standard distances of the clusters tended to decrease (from 311 to 80 km, P < 0.001, Jonckheere-Terpstra trend test). Concurrently, the median ages of patients in the clusters tended to decrease (from 68 to 60 years, P < 0.001, Jonckheere-Terpstra trend test). These findings suggest that strain typing using the four hypervariable loci improves the prediction of active local tuberculosis transmission. The four-locus set can therefore contribute to the targeted control of tuberculosis in settings with high prevalence of Beijing lineage strains.
Collapse
|
31
|
Tarazona D, Jaramillo L, Borda V, Levano K, Galarza M, Guio H. A Genomic Signature for Genotyping Mycobacterium tuberculosis. Bioinformation 2017; 13:224-230. [PMID: 28943727 PMCID: PMC5602289 DOI: 10.6026/97320630013224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/13/2017] [Accepted: 07/23/2017] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), has a vast diversity of genotypes including Beijing, CAS,
EAI, Haarlem, LAM, X, Ural, T, AFRI1 and AFRI2. However, genotyping can be expensive, time consuming and in some cases, results
may vary depending on methodology used. Here, we proposed a new set of 10 SNPs using a total of 249 MTB genomes, and selected
by first the inclusion/ exclusion (IE) criteria using spoligotyping and phylogenies, followed by the selection of the nonsynonymous
SNPs present in the most conserved cluster of orthologous groups (COG) of each genotype of MTB. Genotype assignment of the new
set of 10 SNPs was validated using an additional of 34 MTB genomes and results showed 100% correlation with their known
genotypes. Our set of 10 SNPs have not been previously reported and cover the MTB genotypes that are prevalent worldwide. This set
of SNPs could be used for molecular epidemiology with drug resistant markers.
Collapse
Affiliation(s)
- David Tarazona
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Luis Jaramillo
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Victor Borda
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Kelly Levano
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Marco Galarza
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Heinner Guio
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| |
Collapse
|
32
|
Mycobacterium tuberculosis genotypes and predominant clones among the multidrug-resistant isolates in Spain 1998-2005. INFECTION GENETICS AND EVOLUTION 2017; 55:117-126. [PMID: 28789982 DOI: 10.1016/j.meegid.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022]
Abstract
Although the incidence of tuberculosis (TB) is gradually decreasing in Spain, there is an increase in the proportion of foreign-born cases. This changing scenario is slowly shifting the local TB epidemiology from endemic to imported cases with an increased risk for multidrug-resistant (MDR) and extensively drug resistant (XDR) strains of Mycobacterium tuberculosis complex. MDR/XDR strains from Spain (n=366 MTBC isolates, 1 strain per patient) isolated between 1998 and 2005 were retained for this retrospective analysis. All strains were analyzed by spoligotyping, while 12-loci MIRU-VNTR data were available for 106 isolates from 2003 to 2005. Demographic, phylogenetic, and epidemiologic analyses using anonymized data were collected and analyzed using the SITVIT2 database. Our study provides with a first snapshot of genetic diversity of MDR/XDR-TB in several autonomous regions of Spain. It highlights significantly more of SIT1/Beijing and SIT66/BOV MDR isolates (5.7% and 7.38% respectively) and increasingly more foreign-born cases from Eastern Europe. Future studies should focus on shared genotypes between Spanish and foreign-born patients to decipher the modes of transmission and risk factors involved, and decipher the proportion of imported cases of active disease versus cases of reactivation of latent TB infection among foreign-born individuals.
Collapse
|
33
|
Pan XL, Zhang CL, Nakajima C, Fu J, Shao CX, Zhao LN, Cui JY, Jiao N, Fan CL, Suzuki Y, Hattori T, Li D, Ling H. A quantitative and efficient approach to select MIRU-VNTR loci based on accumulation of the percentage differences of strains for discriminating divergent Mycobacterium tuberculosis sublineages. Emerg Microbes Infect 2017; 6:e68. [PMID: 28745309 PMCID: PMC5567172 DOI: 10.1038/emi.2017.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Although several optimal mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) loci have been suggested for genotyping homogenous Mycobacterium tuberculosis, including the Beijing genotype, a more efficient and convenient selection strategy for identifying optimal VNTR loci is needed. Here 281 M. tuberculosis isolates were analyzed. Beijing genotype and non-Beijing genotypes were identified, as well as Beijing sublineages, according to single nucleotide polymorphisms. A total of 22 MIRU-VNTR loci were used for genotyping. To efficiently select optimal MIRU-VNTR loci, we established accumulations of percentage differences (APDs) between the strains among the different genotypes. In addition, we constructed a minimum spanning tree for clustering analysis of the VNTR profiles. Our findings showed that eight MIRU-VNTR loci displayed disparities in h values of ≥0.2 between the Beijing genotype and non-Beijing genotype isolates. To efficiently discriminate Beijing and non-Beijing genotypes, an optimal VNTR set was established by adding loci with APDs ranging from 87.2% to 58.8%, resulting in the construction of a nine-locus set. We also found that QUB11a is a powerful locus for separating ST10s (including ST10, STF and STCH1) and ST22s (including ST22 and ST8) strains, whereas a combination of QUB11a, QUB4156, QUB18, Mtub21 and QUB26 could efficiently discriminate Beijing sublineages. Our findings suggested that two nine-locus sets were not only efficient for distinguishing the Beijing genotype from non-Beijing genotype strains, but were also suitable for sublineage genotyping with different discriminatory powers. These results indicate that APD represents a quantitative and efficient approach for selecting MIRU-VNTR loci to discriminate between divergent M. tuberculosis sublineages.
Collapse
Affiliation(s)
- Xin-Ling Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Chun-Lei Zhang
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150026, China
| | - Chang-Xia Shao
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Li-Na Zhao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Jia-Yi Cui
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Na Jiao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chang-Long Fan
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Toshio Hattori
- Graduate School of Health Science Studies, Kibi International University, Takahashi 7168508, Japan
| | - Di Li
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Hong Ling
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| |
Collapse
|
34
|
Zheng C, Reynaud Y, Zhao C, Zozio T, Li S, Luo D, Sun Q, Rastogi N. New Mycobacterium tuberculosis Beijing clonal complexes in China revealed by phylogenetic and Bayesian population structure analyses of 24-loci MIRU-VNTRs. Sci Rep 2017; 7:6065. [PMID: 28729708 PMCID: PMC5519585 DOI: 10.1038/s41598-017-06346-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Beijing lineage of Mycobacterium tuberculosis constitutes the most predominant lineage in East Asia. Beijing epidemiology, evolutionary history, genetics are studied in details for years revealing probable origin from China followed by worldwide expansion, partially linked to higher mutation rate, hypervirulence, drug-resistance, and association with cases of mixed infections. Considering huge amount of data available for 24-loci Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats, we performed detailed phylogenetic and Bayesian population structure analyses of Beijing lineage strains in mainland China and Taiwan using available 24-loci MIRU-VNTR data extracted from publications or the SITVIT2 database (n = 1490). Results on genetic structuration were compared to previously published data. A total of three new Beijing clonal complexes tentatively named BSP1, BPS2 and BSP3 were revealed with surprising phylogeographical specificities to previously unstudied regions in Sichuan, Chongqing and Taiwan, proving the need for continued investigations with extended datasets. Such geographical restriction could correspond to local adaptation of these “ecological specialist” Beijing isolates to local human host populations in contrast with “generalist pathogens” able to adapt to several human populations and to spread worldwide.
Collapse
Affiliation(s)
- Chao Zheng
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China.,WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France.
| | - Changsong Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France
| | - Song Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Dongxia Luo
- Public Health Clinical Center of Chengdu, Chengdu, Sichuan, 610000, PR China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France.
| |
Collapse
|
35
|
[Identification of the Mycobacterium tuberculosis Beijing lineage in Ecuador]. BIOMEDICA 2017; 37:233-237. [PMID: 28527287 DOI: 10.7705/biomedica.v37i3.3450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Mycobacterium tuberculosis Beijing lineage isolates are considered to be especially virulent, transmissible and prone to acquire resistances. Beijing strains have been reported worldwide, but studies in Latin America are still scarce. The only multinational study performed in the region indicated a heterogeneous distribution for this lineage, which was absent in Chile, Colombia and Ecuador, although further studies found the lineage in Chile and Colombia. OBJECTIVE To search for the presence of the Beijing lineage in Ecuador, the only country in the region where it remains unreported. MATERIALS AND METHODS We obtained a convenience sample (2006-2012) from two hospitals covering different populations. The isolates were genotyped using 24-MIRU-VNTR. Lineages were assigned by comparing their patterns to those in the MIRU-VNTRplus platform. Isolates belonging to the Beijing lineage were confirmed by allele-specific PCR. RESULTS We identified the first Beijing isolate in Ecuador in an unexpected epidemiological scenario: A patient was infected in the Andean region, in a population with low mobility and far from the borders of the neighboring countries where Beijing strains had been previously reported. CONCLUSION This is the first report of the presence of the Beijing lineage in Ecuador in an unusual epidemiological context that deserves special attention.
Collapse
|
36
|
Seto J, Wada T, Suzuki Y, Ikeda T, Mizuta K, Mitarai S, Ahiko T. Convenient PCR method for variable-number tandem-repeat typing of Mycobacterium tuberculosis clinical isolates. J Microbiol Methods 2017; 139:12-14. [PMID: 28438643 DOI: 10.1016/j.mimet.2017.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
Variable-number tandem-repeat typing for Mycobacterium tuberculosis clinical isolates contributes to evidence-based tuberculosis control. However, cumbersome PCR procedures for the typing have disturbed routine analyses. We proposed a convenient PCR method for the typing using a PCR master mix that provides rapidity and long-term stability of the frozen PCR cocktail.
Collapse
Affiliation(s)
- Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan.
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yu Suzuki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Tadayuki Ahiko
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| |
Collapse
|
37
|
Meng X, Ji C, Su C, Shen D, Li Y, Dong P, Yuan D, Yang M, Bai S, Meng D, Fan Z, Yang Y, Yu P, Zhu T. Synthesis and immunogenicity of PG-tb1 monovalent glycoconjugate. Eur J Med Chem 2017; 134:140-146. [PMID: 28411454 DOI: 10.1016/j.ejmech.2017.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 01/25/2023]
Abstract
A PG-tb1 hapten from the West Beijing strains of Mycobacterium tuberculosis cell wall has been efficiently synthesized and conjugated to CRM197 in a simple way as linker-equipped carbohydrate by applying squaric acid chemistry for an original neoglycoprotein, creating a potent T-dependent conjugate vaccine. The intermediate monoester can be easily purified and the degree of incorporation can be monitored by MALDI-TOF mass spectrometry. After administered systemically in mice without any adjuvant, the conjugate induced high antigen-specific IgG levels in serum. Furthermore, following the third immunization, significant antibody titers frequently exceeding 0.8 million were observed in the sera of mice vaccinated with PG-CRM197 conjugate which showed the potential for preparation of TB vaccine.
Collapse
Affiliation(s)
- Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanming Ji
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao Su
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Di Shen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaxin Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peijie Dong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ding Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengya Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Song Bai
- Affiliated Hospital of Logistic University of Chinese People's Armed Police Force (PAPF), Tianjin 300162, China
| | - Demei Meng
- Key Laboratory of Food Nutrition and Safety of Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenchuan Fan
- Key Laboratory of Food Nutrition and Safety of Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin Enterprise Key Laboratory of Respiratory Bacterial Recombination and Conjugated Vaccine, Tianjin 300457, China.
| |
Collapse
|
38
|
Dudley MZ, Sheen P, Gilman RH, Ticona E, Friedland JS, Kirwan DE, Caviedes L, Rodriguez R, Cabrera LZ, Coronel J, Grandjean L, Moore DAJ, Evans CA, Huaroto L, Chávez-Pérez V, Zimic M. Detecting Mutations in the Mycobacterium tuberculosis Pyrazinamidase Gene pncA to Improve Infection Control and Decrease Drug Resistance Rates in Human Immunodeficiency Virus Coinfection. Am J Trop Med Hyg 2016; 95:1239-1246. [PMID: 27928075 PMCID: PMC5154434 DOI: 10.4269/ajtmh.15-0711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/24/2016] [Indexed: 11/07/2022] Open
Abstract
Hospital infection control measures are crucial to tuberculosis (TB) control strategies within settings caring for human immunodeficiency virus (HIV)-positive patients, as these patients are at heightened risk of developing TB. Pyrazinamide (PZA) is a potent drug that effectively sterilizes persistent Mycobacterium tuberculosis bacilli. However, PZA resistance associated with mutations in the nicotinamidase/pyrazinamidase coding gene, pncA, is increasing. A total of 794 patient isolates obtained from four sites in Lima, Peru, underwent spoligotyping and drug resistance testing. In one of these sites, the HIV unit of Hospital Dos de Mayo (HDM), an isolation ward for HIV/TB coinfected patients opened during the study as an infection control intervention: circulating genotypes and drug resistance pre- and postintervention were compared. All other sites cared for HIV-negative outpatients: genotypes and drug resistance rates from these sites were compared with those from HDM. HDM patients showed high concordance between multidrug resistance, PZA resistance according to the Wayne method, the two most common genotypes (spoligotype international type [SIT] 42 of the Latino American-Mediterranean (LAM)-9 clade and SIT 53 of the T1 clade), and the two most common pncA mutations (G145A and A403C). These associations were absent among community isolates. The infection control intervention was associated with 58-92% reductions in TB caused by SIT 42 or SIT 53 genotypes (odds ratio [OR] = 0.420, P = 0.003); multidrug-resistant TB (OR = 0.349, P < 0.001); and PZA-resistant TB (OR = 0.076, P < 0.001). In conclusion, pncA mutation typing, with resistance testing and spoligotyping, was useful in identifying a nosocomial TB outbreak and demonstrating its resolution after implementation of infection control measures.
Collapse
Affiliation(s)
- Matthew Z. Dudley
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociación Benéfica Proyectos en Informatica, Salud, Medicina, y Agricultura (PRISMA), Lima, Peru
| | - Eduardo Ticona
- Hospital Nacional Dos de Mayo, Lima, Peru
- Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Jon S. Friedland
- Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, Imperial College London, London, United Kingdom
| | - Daniela E. Kirwan
- Department of Medical Microbiology, St. George's Hospital, London, United Kingdom
- Infections Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Luz Caviedes
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Lilia Z. Cabrera
- Asociación Benéfica Proyectos en Informatica, Salud, Medicina, y Agricultura (PRISMA), Lima, Peru
| | - Jorge Coronel
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Louis Grandjean
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, Imperial College London, London, United Kingdom
| | - David A. J. Moore
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociación Benéfica Proyectos en Informatica, Salud, Medicina, y Agricultura (PRISMA), Lima, Peru
- TB Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlton A. Evans
- Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, Imperial College London, London, United Kingdom
- Innovation For Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luz Huaroto
- Hospital Nacional Dos de Mayo, Lima, Peru
- Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Víctor Chávez-Pérez
- Hospital Nacional Dos de Mayo, Lima, Peru
- Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Investigación en Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
39
|
Garzelli C, Lari N, Rindi L. Genomic diversity of Mycobacterium tuberculosis Beijing strains isolated in Tuscany, Italy, based on large sequence deletions, SNPs in putative DNA repair genes and MIRU-VNTR polymorphisms. Tuberculosis (Edinb) 2016; 97:147-53. [DOI: 10.1016/j.tube.2015.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/28/2022]
|
40
|
Whole genome sequencing identifies circulating Beijing-lineage Mycobacterium tuberculosis strains in Guatemala and an associated urban outbreak. Tuberculosis (Edinb) 2015; 95:810-816. [PMID: 26542222 PMCID: PMC4672993 DOI: 10.1016/j.tube.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/22/2015] [Accepted: 09/05/2015] [Indexed: 12/15/2022]
Abstract
Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City.
Collapse
|
41
|
Seto J, Wada T, Iwamoto T, Tamaru A, Maeda S, Yamamoto K, Hase A, Murakami K, Maeda E, Oishi A, Migita Y, Yamamoto T, Ahiko T. Phylogenetic assignment of Mycobacterium tuberculosis Beijing clinical isolates in Japan by maximum a posteriori estimation. INFECTION GENETICS AND EVOLUTION 2015. [PMID: 26220897 DOI: 10.1016/j.meegid.2015.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intra-species phylogeny of Mycobacterium tuberculosis has been regarded as a clue to estimate its potential risk to develop drug-resistance and various epidemiological tendencies. Genotypic characterization of variable number of tandem repeats (VNTR), a standard tool to ascertain transmission routes, has been improving as a public health effort, but determining phylogenetic information from those efforts alone is difficult. We present a platform based on maximum a posteriori (MAP) estimation to estimate phylogenetic information for M. tuberculosis clinical isolates from individual profiles of VNTR types. This study used 1245 M. tuberculosis clinical isolates obtained throughout Japan for construction of an MAP estimation formula. Two MAP estimation formulae, classification of Beijing family and other lineages, and classification of five Beijing sublineages (ST11/26, STK, ST3, and ST25/19 belonging to the ancient Beijing subfamily and modern Beijing subfamily), were created based on 24 loci VNTR (24Beijing-VNTR) profiles and phylogenetic information of the isolates. Recursive estimation based on the formulae showed high concordance with their authentic phylogeny by multi-locus sequence typing (MLST) of the isolates. The formulae might further support phylogenetic estimation of the Beijing lineage M. tuberculosis from the VNTR genotype with various geographic backgrounds. These results suggest that MAP estimation can function as a reliable probabilistic process to append phylogenetic information to VNTR genotypes of M. tuberculosis independently, which might improve the usage of genotyping data for control, understanding, prevention, and treatment of TB.
Collapse
Affiliation(s)
- Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan.
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, 4-6 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Aki Tamaru
- Department of Microbiology, Osaka Prefectural Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Shinji Maeda
- School of Pharmacy, Hokkaido Pharmaceutical University, 7-15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8590, Japan
| | - Kaori Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan; Department of International Health, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Atsushi Hase
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Koichi Murakami
- Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Eriko Maeda
- Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Akira Oishi
- Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Yuji Migita
- Department of Microbiology, Nagasaki Prefectural Institute for Environmental Research and Public Health, 2-1306-11 Ikeda, Ohmura, Nagasaki 856-0026, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of International Health, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tadayuki Ahiko
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| |
Collapse
|
42
|
Yokoyama E, Hachisu Y, Iwamoto T, Nakanishi N, Arikawa K, Wada T, Seto J, Kishida K. Comparative analysis of Mycobacterium tuberculosis Beijing strains isolated in three remote areas of Japan. INFECTION GENETICS AND EVOLUTION 2015; 34:444-9. [PMID: 26096775 DOI: 10.1016/j.meegid.2015.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/04/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
A quantitative and qualitative comparison was carried out of Mycobacterium tuberculosis Beijing strains isolated in three remote areas of Japan. A total of 452 strains from Chiba Prefecture, 75 from Yamagata Prefecture, and 315 from Kobe City were analyzed for 24 loci by variable number of tandem repeats typing (24(Beijing)-VNTR). All strains were classified in six Beijing subgroups (B(SUB)), B1 to B5 and T, based on a minimum spanning tree reconstructed using data of a standard set of 15 VNTR loci. No significant difference was found in the distribution of strains in the B(SUB) in the three areas, with one exception due to a B5 outbreak in Yamagata, indicating no significant quantitative difference in the B(SUB) in the three areas (P<0.01, Chi-square test). In addition, when strains in each B(SUB) isolated in the three areas were mixed and standardized index of association (I(A)(s)) and variance (Φ(PT)) values were calculated, no significant qualitative difference in the B(SUB) in the three areas was found. These results suggested that the B(SUB) diverged prior to the introduction of M. tuberculosis Beijing strains into Japan. Differences in the distribution of strains in each B(SUB) between Japan and continental Asian countries suggested there had been genetic drift in the continental Asian countries in which B4 had been dominant.
Collapse
Affiliation(s)
- Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan.
| | - Yushi Hachisu
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Tomotada Iwamoto
- Department of Infectious Disease, Kobe Institute of Health, Hyogo, Japan
| | - Noriko Nakanishi
- Department of Infectious Disease, Kobe Institute of Health, Hyogo, Japan
| | - Kentaro Arikawa
- Department of Infectious Disease, Kobe Institute of Health, Hyogo, Japan
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Kazunori Kishida
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| |
Collapse
|
43
|
Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A 2015; 112:8136-41. [PMID: 26080405 DOI: 10.1073/pnas.1424063112] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Beijing family is the most successful genotype of Mycobacterium tuberculosis and responsible for more than a quarter of the global tuberculosis epidemic. As the predominant genotype in East Asia, the Beijing family has been emerging in various areas of the world and is often associated with disease outbreaks and antibiotic resistance. Revealing the origin and historical dissemination of this strain family is important for understanding its current global success. Here we characterized the global diversity of this family based on whole-genome sequences of 358 Beijing strains. We show that the Beijing strains endemic in East Asia are genetically diverse, whereas the globally emerging strains mostly belong to a more homogenous subtype known as "modern" Beijing. Phylogeographic and coalescent analyses indicate that the Beijing family most likely emerged around 30,000 y ago in southern East Asia, and accompanied the early colonization by modern humans in this area. By combining the genomic data and genotyping result of 1,793 strains from across China, we found the "modern" Beijing sublineage experienced massive expansions in northern China during the Neolithic era and subsequently spread to other regions following the migration of Han Chinese. Our results support a parallel evolution of the Beijing family and modern humans in East Asia. The dominance of the "modern" Beijing sublineage in East Asia and its recent global emergence are most likely driven by its hypervirulence, which might reflect adaption to increased human population densities linked to the agricultural transition in northern China.
Collapse
|
44
|
Puerto G, Erazo L, Wintaco M, Castro C, Ribón W, Guerrero MI. Mycobacterium tuberculosis Genotypes Determined by Spoligotyping to Be Circulating in Colombia between 1999 and 2012 and Their Possible Associations with Transmission and Susceptibility to First-Line Drugs. PLoS One 2015; 10:e0124308. [PMID: 26066494 PMCID: PMC4465906 DOI: 10.1371/journal.pone.0124308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/11/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Tuberculosis (TB) remains a primary public health problem worldwide. The number of multidrug-resistant tuberculosis (MDR TB) cases has increased in recent years in Colombia. Knowledge of M. tuberculosis genotypes defined by spoligotyping can help determine the circulation of genotypes that must be controlled to prevent the spread of TB. OBJECTIVE To describe the genotypes of M. tuberculosis using spoligotyping in resistant and drug-sensitive isolates and their possible associations with susceptibility to first-line drugs. METHODS An analytical observational study was conducted that included 741 isolates of M. tuberculosis from patients. The isolates originated from 31 departments and were obtained by systematic surveillance between 1999 and 2012. RESULTS In total 61.94% of the isolates were resistant to 1 or more drugs, and 147 isolates were MDR. In total, 170 genotypes were found in the population structure of Colombian M. tuberculosis isolates. The isolates were mainly represented by four families: LAM (39.9%), Haarlem (19%), Orphan (17%) and T (9%). The SIT42 (LAM 9) was the most common genotype and contained 24.7% of the isolates, followed by the genotypes SIT62 (Haarlem1), SIT53 (T1), and SIT50 (H3). A high clustering of isolates was evident with 79.8% of the isolates classified into 32 groups. The Beijing family was associated with resistant isolates, whereas the Haarlem and T families were associated with sensitive isolates. The Haarlem family was also associated with grouped isolates (p = 0.031). CONCLUSIONS A high proportion (approximately 80%) of isolates was found in clusters; these clusters were not associated with resistance to first-line drugs. The Beijing family was associated with drug resistance, whereas the T and Haarlem families were associated with susceptibility in the Colombian isolates studied.
Collapse
Affiliation(s)
- Gloria Puerto
- Dirección de Investigación en Salud Pública, Grupo de Micobacterias, Instituto Nacional de Salud, Bogotá, Colombia
| | - Lina Erazo
- Dirección de Investigación en Salud Pública, Grupo de Micobacterias, Instituto Nacional de Salud, Bogotá, Colombia
| | - Maira Wintaco
- Dirección de Investigación en Salud Pública, Grupo de Micobacterias, Instituto Nacional de Salud, Bogotá, Colombia
| | - Claudia Castro
- Dirección de Investigación en Salud Pública, Grupo de Micobacterias, Instituto Nacional de Salud, Bogotá, Colombia
| | - Wellman Ribón
- Dirección de Investigación en Salud Pública, Grupo de Micobacterias, Instituto Nacional de Salud, Bogotá, Colombia
| | - Martha Inírida Guerrero
- Dirección de Investigación en Salud Pública, Grupo de Micobacterias, Instituto Nacional de Salud, Bogotá, Colombia
| |
Collapse
|
45
|
Couvin D, Rastogi N. Tuberculosis – A global emergency: Tools and methods to monitor, understand, and control the epidemic with specific example of the Beijing lineage. Tuberculosis (Edinb) 2015; 95 Suppl 1:S177-89. [DOI: 10.1016/j.tube.2015.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Grandjean L, Iwamoto T, Lithgow A, Gilman RH, Arikawa K, Nakanishi N, Martin L, Castillo E, Alarcon V, Coronel J, Solano W, Aminian M, Guezala C, Rastogi N, Couvin D, Sheen P, Zimic M, Moore DAJ. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru. PLoS One 2015; 10:e0126271. [PMID: 25984723 PMCID: PMC4435908 DOI: 10.1371/journal.pone.0126271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/31/2015] [Indexed: 02/02/2023] Open
Abstract
Background The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis. Methods To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census. Results The Latin American Mediterranean (LAM) clade (OR 2.4, p<0.001) was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively). Conclusions Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs.
Collapse
Affiliation(s)
- Louis Grandjean
- Wellcome Centre for Clinical Tropical Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, United Kingdom
- London School of Hygiene and Tropical Medicine, TB Centre and Department of Clinical Research, Keppel St., London, United Kingdom
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
- * E-mail:
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | - Anna Lithgow
- London School of Hygiene and Tropical Medicine, TB Centre and Department of Clinical Research, Keppel St., London, United Kingdom
| | - Robert H Gilman
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | - Laura Martin
- Wellcome Centre for Clinical Tropical Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, United Kingdom
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | | | | | - Jorge Coronel
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Walter Solano
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Minoo Aminian
- TB-Insight Research Group, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | | | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Patricia Sheen
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - David AJ Moore
- London School of Hygiene and Tropical Medicine, TB Centre and Department of Clinical Research, Keppel St., London, United Kingdom
- Laboratorio de Investigacion y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| |
Collapse
|
47
|
Hang NT, Maeda S, Keicho N, Thuong PH, Endo H. Sublineages of Mycobacterium tuberculosis Beijing genotype strains and unfavorable outcomes of anti-tuberculosis treatment. Tuberculosis (Edinb) 2015; 95:336-42. [DOI: 10.1016/j.tube.2015.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 12/20/2022]
|
48
|
Regmi SM, Chaiprasert A, Kulawonganunchai S, Tongsima S, Coker OO, Prammananan T, Viratyosin W, Thaipisuttikul I. Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand. Mol Genet Genomics 2015; 290:1933-41. [DOI: 10.1007/s00438-015-1048-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
|
49
|
Predominant Mycobacterium tuberculosis Families and High Rates of Recent Transmission among New Cases Are Not Associated with Primary Multidrug Resistance in Lima, Peru. J Clin Microbiol 2015; 53:1854-63. [PMID: 25809979 DOI: 10.1128/jcm.03585-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/20/2015] [Indexed: 11/20/2022] Open
Abstract
Sputum samples from new tuberculosis (TB) cases were collected over 2 years as part of a prospective study in the northeastern part of Lima, Peru. To measure the contribution of recent transmission to the high rates of multidrug resistance (MDR) in this area, Mycobacterium tuberculosis complex (MTBc) isolates were tested for drug susceptibility to first-line drugs and were genotyped by spoligotyping and 15-locus mycobacterial interspersed repetitive-unit (MIRU-15)-variable-number tandem repeat (VNTR) analysis. MDR was found in 6.8% of 844 isolates, of which 593 (70.3%) were identified as belonging to a known MTBc lineage, whereas 198 isolates (23.5%) could not be assigned to these lineages and 12 (1.4%) represented mixed infections. Lineage 4 accounted for 54.9% (n = 463) of the isolates, most of which belonged to the Haarlem family (n = 279). MIRU-15 analysis grouped 551/791 isolates (69.7%) in 102 clusters, with sizes ranging from 2 to 46 strains. The overall high clustering rate suggests a high level of recent transmission in this population, especially among younger patients (odds ratio [OR], 1.6; P = 0.01). Haarlem strains were more prone to cluster, compared to the other families taken together (OR, 2.0; P < 0.0001), while Beijing (OR, 0.6; P = 0.006) and LAM (OR, 0.7; P = 0.07) strains clustered less. Whereas streptomycin-resistant strains were more commonly found in clusters (OR, 1.8; P = 0.03), clustering rates did not differ between MDR and non-MDR strains (OR, 1.8; P = 0.1). Furthermore, only 16/51 MDR strains clustered with other MDR strains, suggesting that patients with primary MDR infections acquired the infections mostly from index cases outside the study population, such as retreated cases.
Collapse
|
50
|
Wada T, Iwamoto T, Tamaru A, Seto J, Ahiko T, Yamamoto K, Hase A, Maeda S, Yamamoto T. Clonality and micro-diversity of a nationwide spreading genotype of Mycobacterium tuberculosis in Japan. PLoS One 2015; 10:e0118495. [PMID: 25734518 PMCID: PMC4348518 DOI: 10.1371/journal.pone.0118495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis transmission routes can be estimated from genotypic analysis of clinical isolates from patients. In Japan, still a middle-incidence country of TB, a unique genotype strain designated as ‘M-strain’ has been isolated nationwide recently. To ascertain the history of the wide spread of the strain, 10 clinical isolates from different areas were subjected to genome-wide analysis based on deep sequencers. Results show that all isolates possessed common mutations to those of referential strains. The greatest number of accumulated single nucleotide variants (SNVs) from the oldest coalescence was 13 nucleotides, indicating high clonality of these isolates. When an SNV common to the isolates was used as a surrogate marker of the clone, authentic clonal isolates with variation in a reliable subset of variable number of tandem repeat (VNTR) genotyping method can be selected successfully from clinical isolates populations of M. tuberculosis. When the authentic clones can also be assigned to sub-clonal groups by SNVs derived from the genomic comparison, they are classifiable into three sub-clonal groups with a bias of geographical origins. Feedback from genomic analysis of clinical isolates of M. tuberculosis to genotypic markers will be an efficient strategy for the big data in various settings for public health actions against TB.
Collapse
Affiliation(s)
- Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail:
| | - Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan
| | - Aki Tamaru
- Department of Microbiology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Tadayuki Ahiko
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Kaori Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Atushi Hase
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Shinji Maeda
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Tokyo, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|