1
|
Zhang Y, Zhang X, Xu J, Zheng J, Cui Z. Combined effects of low pH stress and bacterial infection on the transcriptional changes of hemocytes in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109995. [PMID: 39481504 DOI: 10.1016/j.fsi.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Water pH is a critical environmental factor for aquaculture. Acidification is a pressing environmental issue that poses significant threats to the aquaculture industry. Since the outbreaks of disease generally accompany with environmental stress, comparative transcriptome analyses were performed to investigate the combined effects of low pH stress and bacterial infection on the transcriptional changes of hemocytes in the economically important crab Eriocheir sinensis. The results revealed that the immune deficiency (IMD) pathway and prophenoloxidase (proPO) system was activated to defense against Vibro parahaemolyticus even when crabs were subjected to low pH stress, whereas low pH stress resulted in the disorder of Toll-like receptor (TLR) pathway upon V. parahaemolyticus infection. Moreover, low pH stress might weaken crabs' defense against V. parahaemolyticus by inhibiting the up-regulation of crustin and suppressing the expression of lysozyme, and disturb the maintaining of protein homeostasis through the transcriptional decrement of a batch of heat shock proteins (HSPs). It is worth noting that both V. parahaemolyticus infection and low pH stress might suppress the energy metabolism in the hemocytes via inhibiting the expression of critical enzymes, dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex and fumarase, in the tricarboxylic acid (TCA) cycle. This study provides novel understandings concerning the transcriptional changes of hemocyte in E. sinensis subjected to a combination of low pH stress and V. parahaemolyticus infection as well as contribute to optimize the management strategies for the prevention and control of diseases in E. sinensis farming.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaoli Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
2
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhong X, Li C, Li Y, Huang Y, Liu J, Jiang A, Chen J, Peng Y. IRAK-M Plays A Role in the Pathology of Amyotrophic Lateral Sclerosis Through Suppressing the Activation of Microglia. Mol Neurobiol 2024; 61:7603-7610. [PMID: 38421467 DOI: 10.1007/s12035-024-04065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Microglial activation plays a crucial role in the disease progression in amyotrophic lateral sclerosis (ALS). Interleukin receptor-associated kinases-M (IRAK-M) is an important negative regulatory factor in the Toll-like receptor 4 (TLR4) pathway during microglia activation, and its mechanism in this process is still unclear. In the present study, we aimed to investigate the dynamic changes of IRAK-M and its protective effects for motor neurons in SOD1-G93A mouse model of ALS. qPCR (Real-time Quantitative PCR Detecting System) were used to examine the mRNA levels of IRAK-M in the spinal cord in both SOD1-G93A mice and their age-matched wild type (WT) littermates at 60, 100 and 140 days of age. We established an adeno-associated virus 9 (AAV9)-based platform by which IRAK-M was targeted mostly to microglial cells to investigate whether this approach could provide a protection in the SOD1-G93A mouse. Compared with age-matched WT mice, IRAK-M mRNA level was elevated at 100 and 140 days in the anterior horn region of spinal cords in the SOD1-G93A mouse. AAV9-IRAK-M treated SOD1-G93A mice showed reduction of IL-1β mRNA levels and significant improvements in the numbers of spinal motor neurons in spinal cord. Mice also showed previously reduction of muscle atrophy. Our data revealed the dynamic changes of IRAK-M during ALS pathological progression and demonstrated that an AAV9-IRAK-M delivery was an effective and translatable therapeutic approach for ALS. These findings may help identify potential molecular targets for ALS therapy.
Collapse
Affiliation(s)
- Xinghua Zhong
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Chuqiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yanran Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yingyi Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jingsi Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Anqi Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jinyu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Weng P, Lan M, Zhang H, Fan H, Wang X, Ran C, Yue Z, Hu J, Xu A, Huang S. Both IRAK3 and IRAK1 Activate the MyD88-TRAF6 Pathway in Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:362-372. [PMID: 38847613 DOI: 10.4049/jimmunol.2400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
IL-1R-associated kinases (IRAKs) are signal transducers of the TLR/IL-1R-MyD88-TRAF6 pathways. Vertebrates possess two IRAK lineages, IRAK1/2/3 and IRAK4. In mammals, IRAK4/IRAK1 and IRAK4/IRAK2 are pathway enhancers, whereas IRAK3 is a repressor. However, in bony fish, IRAK2 is absent, and it remains elusive how fish IRAK1/3/4 functionally differ from their mammalian counterparts. In this study, we explored this using the zebrafish model. First, we showed that in human 293T cells, zebrafish IRAK1 and IRAK4 were components of the Myddosome (MyD88-IRAK4-IRAK1) complex, with IRAK1 serving as a potent pathway enhancer. Then, we discovered two zebrafish IRAK3 variants: one (IRAK3a) contains an N-terminal Death domain, a middle pseudokinase domain, and a C-terminal TRAF6-binding domain, whereas the other (IRAK3b) lost both the kinase and TRAF6-binding domains. This truncation of IRAK3 variants could be a conserved phenomenon in fish, because it is also observed in trout and grass carp. We proceeded to show that zebrafish IRAK3a acts as a pathway enhancer by binding with MyD88 and TRAF6, but its activity is milder than IRAK1, possibly because it has no kinase activity. Zebrafish IRAK3b, however, plays a sheer negative role, apparently because of its lack of kinase and TRAF6-binding domains. Moreover, zebrafish IRAK3a/3b inhibit the activity of IRAK1/4, not by interacting with IRAK1/4 but possibly by competing for MyD88 and TRAF6. Finally, we have verified the essential activities of zebrafish IRAK1/3a/3b/4 in zebrafish cells and embryos. In summary, to our knowledge, our findings provide new insights into the molecular functions of fish IRAKs and the evolution of the IRAK functional modes in vertebrates.
Collapse
Affiliation(s)
- Panwei Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mengjiao Lan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Huiping Fan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Xiao Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Chenrui Ran
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Zirui Yue
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Jiaxuan Hu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
5
|
Chen W, Xie X, Liu C, Liao J, Wei Y, Wu R, Hong J. IRAK1 deficiency potentiates the efficacy of radiotherapy in repressing cervical cancer development. Cell Signal 2024; 119:111192. [PMID: 38685522 DOI: 10.1016/j.cellsig.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/29/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
IRAK1 has been implicated in promoting development of various types of cancers and mediating radioresistance. However, its role in cervical cancer tumorigenesis and radioresistance, as well as the potential underlying mechanisms, remain poorly defined. In this study, we evaluated IRAK1 expression in radiotherapy-treated cervical cancer tissues and found that IRAK1 expression is negatively associated with the efficacy of radiotherapy. Consistently, ionizing radiation (IR)-treated HeLa and SiHa cervical cancer cells express a lower level of IRAK1 than control cells. Depletion of IRAK1 resulted in reduced activation of the NF-κB pathway, decreased cell viability, downregulated colony formation efficiency, cell cycle arrest, increased apoptosis, and impaired migration and invasion in IR-treated cervical cancer cells. Conversely, overexpressing IRAK1 mitigated the anti-cancer effects of IR in cervical cancer cells. Notably, treatment of IRAK1-overexpressing IR-treated HeLa and SiHa cells with the NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) partially counteracted the effects of excessive IRAK1. Furthermore, our study demonstrated that IRAK1 deficiency enhanced the anti-proliferative role of IR treatment in a xenograft mouse model. These collective observations highlight IRAK1's role in mitigating the anti-cancer effects of radiotherapy, partly through the activation of the NF-κB pathway. SUMMARY: IRAK1 enhances cervical cancer resistance to radiotherapy, with IR treatment reducing IRAK1 expression and increasing cancer cell vulnerability and apoptosis.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China; Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China.
| | - Xingyun Xie
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Chengying Liu
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Jingrong Liao
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Yuting Wei
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Rongrong Wu
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Jinsheng Hong
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China; National Regional Medical Center, Binhai Campus, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian, PR China; Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China.
| |
Collapse
|
6
|
Cooray S, Price-Kuehne F, Hong Y, Omoyinmi E, Burleigh A, Gilmour KC, Ahmad B, Choi S, Bahar MW, Torpiano P, Gagunashvili A, Jensen B, Bellos E, Sancho-Shimizu V, Herberg JA, Mankad K, Kumar A, Kaliakatsos M, Worth AJJ, Eleftheriou D, Whittaker E, Brogan PA. Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4. Front Immunol 2023; 14:1231749. [PMID: 37744344 PMCID: PMC10516541 DOI: 10.3389/fimmu.2023.1231749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1β), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon β (IFN-β); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.
Collapse
Affiliation(s)
- Samantha Cooray
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fiona Price-Kuehne
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ying Hong
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ebun Omoyinmi
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alice Burleigh
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London, United Kingdom
| | - Kimberly C. Gilmour
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Mohammad W. Bahar
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Paul Torpiano
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Andrey Gagunashvili
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Barbara Jensen
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evangelos Bellos
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jethro A. Herberg
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Atul Kumar
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen J. J. Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elizabeth Whittaker
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Paul A. Brogan
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
7
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
8
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [DOI: https:/doi.org/10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
|
9
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [PMID: 37172355 DOI: 10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a vital protein involved in Toll-like and interleukin-1 receptor signal transduction. Several studies have reported regarding the crystal structure, dynamic properties, and interactions with inhibitors of the phosphorylated form of IRAK4. However, no dynamic properties of inhibitor-bound unphosphorylated IRAK4 have been previously studied. Herein, we report the intrinsic dynamics of unphosphorylated IRAK4 (uIRAK4) bound to type I and type II inhibitors. The corresponding apo and inhibitor-bound forms of uIRAK4 were subjected to three independent simulations of 500 ns (total 1.5 μs) each, and their trajectories were analyzed. The results indicated that all three systems were relatively stable, except for the type II inhibitor-bound form of uIRAK4, which exhibited less compact folding and higher solvent surface area. The intra-hydrogen bonds corroborated the structural deformation of the type-II inhibitor-bound complex, which could be attributed to the long molecular structure of the type-II inhibitor. Moreover, the type II inhibitor bound to uIRAK4 showed higher binding free energy with uIRAK4 than the type I inhibitor. The free energy landscape analysis showed a reorientation of Phe330 side chain from the DFG motif at different metastable states for all the systems. The intra-residual distance between residues Lys213, Glu233, Tyr262, and Phe330 suggests a functional interplay when the inhibitors are bound to uIRAK4, thereby hinting at their crucial role in the inhibition mechanism. Ultimately, the intrinsic dynamics study observed between type I/II inhibitor-bound forms of uIRAK4 may assist in better understanding the enzyme and designing therapeutic compounds.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
10
|
Yuan Y, Shi Z, Wang Q, Guo M, Yuan L, Zhao Z, Liu S, Wu C, Sun R, Wang B, Ouyang G, Ji W. Molecular characterization and expression analyses of five genes involved in the MyD88-dependent pathway of yellow catfish (Pelteobagrus fulvidraco) responding to challenge of Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108712. [PMID: 37030559 DOI: 10.1016/j.fsi.2023.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/07/2023]
Abstract
MyD88-dependent pathway mediated by Toll-like receptor is one of the vital ways activating immune responses. In order to identify the role of MyD88-dependent signaling pathway in yellow catfish, the Pf_MyD88, Pf_IRAK4, Pf_IRAK1, Pf_TRAF6 and Pf_NFκB1 (p105) (Pf: abbreviation of Pelteobagrus fulvidraco) were cloned and characterized respectively. The Pf_MyD88, Pf_IRAK4, Pf_IRAK1 and Pf_TRAF6 were all highly conserved among species and showed the highest homology to that of Pangasianodon hypophthalmus. Pf_NFκB1 showed the highest homology to that of Ictalurus punetaus. All of the five genes showed similar expression patterns in various tissues, with the highest expression level in the liver. These genes also showed similar expression levels in different embryonic development stages, except Pf_IRAK4. The higher expression level was detected from fertilized eggs to 1 day post hatching (dph), lower expression from 3 dph to 30 dph. After stimulation of inactivated Aeromonas hydrophila, the mRNA expressions of Pf_MyD88, Pf_IRAK4, Pf_IRAK1, Pf_TRAF6 and Pf_NFκB1 were significantly increased at 24 h in the liver, spleen, head kidney and trunk kidney, suggesting that all the five genes were involved in the innate immune response of yellow catfish. These results showed that MyD88-dependent signaling pathway plays important roles for disease defensing in the innate immune response. Meanwhile, inactivated A. hydrophila can cause strong innate immune response, which provides theoretical bases for the application of inactivated vaccines in defense against bacterial diseases of teleost.
Collapse
Affiliation(s)
- Yujie Yuan
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengge Guo
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Le Yuan
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhangchun Zhao
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sixue Liu
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Wu
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Ouyang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Pereira M, Gazzinelli RT. Regulation of innate immune signaling by IRAK proteins. Front Immunol 2023; 14:1133354. [PMID: 36865541 PMCID: PMC9972678 DOI: 10.3389/fimmu.2023.1133354] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) families are of paramount importance in coordinating the early immune response to pathogens. Signaling via most TLRs and IL-1Rs is mediated by the protein myeloid differentiation primary-response protein 88 (MyD88). This signaling adaptor forms the scaffold of the myddosome, a molecular platform that employs IL-1R-associated kinase (IRAK) proteins as main players for transducing signals. These kinases are essential in controlling gene transcription by regulating myddosome assembly, stability, activity and disassembly. Additionally, IRAKs play key roles in other biologically relevant responses such as inflammasome formation and immunometabolism. Here, we summarize some of the key aspects of IRAK biology in innate immunity.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, SP, Brazil,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| |
Collapse
|
12
|
Chen DY, Li BZ, Xu WB, Zhang YM, Li BW, Cheng YX, Xiao Y, Lin CY, Dong WR, Shu MA. The first identification of three AdIRAK2 genes from an evolutionarily important amphibian Andrias davidianus and their involvement in NF-κB activation and inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104585. [PMID: 36368593 DOI: 10.1016/j.dci.2022.104585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Interleukin-1 receptor associated kinases (IRAK) is the most important downstream kinases of TLRs/IL-1R signaling pathway for signal transduction and activation of inflammatory response against pathogen infections. However, the molecular identification and function characterization of IRAK2 homologs in lower vertebrate remains obscure. In this study, three IRAK2 genes (AdIRAK2a, AdIRAKb and AdIRAK2c) and their respective transcripts were identified from the Chinese giant salamander Andrias davidianus. This is the first evidence that three different IRAK2 genes exist in an ancient amphibian species, which has never been reported in other vertebrates. The complete open reading frames (ORFs) of AdIRAK2a, AdIRAK2b and AdIRAK2c were 2112 bp, 1917 bp and 816 bp encoding deduced proteins of 703 amino acids (aa), 628 aa and 271 aa, respectively. All three AdIRAK2 proteins contained two predicted conserved functional domains, including a death domain (DD) and a serine/threonine protein kinases domain (KD). Phylogenetic analysis showed that the three AdIRAK2s clustered together with other known IRAK2 of vertebrates. The three AdIRAK2s were ubiquitously expressed in all tested tissues with a similar tissues distribution pattern. After challenge of Aeromonas hydrophila (A. hydrophila), Staphylococcus aureus (S.aureus), giant salamander iridovirus (GSIV, belonging to the genus Ranavirus in the family Iridoviridae) and polyinosinic:polycytidylic acid (poly(I:C)), the expression levels of all AdIRAK2s in blood were significantly altered, however, they exhibited distinct response patterns. Moreover, the results of over-expression and RNAi of AdIRAK2s implied the involvement of AdIRAK2s in triggering NF-κB-mediated signaling pathways and inflammatory responses. This study might provide a better understanding of the presence and immune regulation function of IRAK2 in amphibians and even in vertebrates.
Collapse
Affiliation(s)
- Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Basith S, Manavalan B, Lee G. Amyotrophic lateral sclerosis disease-related mutations disrupt the dimerization of superoxide dismutase 1 - A comparative molecular dynamics simulation study. Comput Biol Med 2022; 151:106319. [PMID: 36446187 DOI: 10.1016/j.compbiomed.2022.106319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
More than 150 genes are involved in amyotrophic lateral sclerosis (ALS), with superoxide dismutase 1 (SOD1) being one of the most studied. Mutations in SOD1 gene, which encodes the enzyme SOD1 is the second most prevalent and studied cause of familial ALS. SOD1 is a ubiquitous, homodimeric metalloenzyme that forms a critical component of the cellular defense against reactive oxygen species. Several mutations in the SOD1 enzyme cause misfolding, dimerization instability, and increased aggregate formation in ALS. However, there is a lack of information on the dimerization of SOD1 monomers and the mechanistic underpinnings on how the pathogenic mutations disrupt the dimerization mechanism. Here, we presented microsecond-scale molecular dynamics (MD) simulations to unravel how interface-based mutations compromise SOD1 dimerization and provide mechanistic understanding into the corresponding process using WT and three interface-based mutant systems (A4V, T54R, and I113T). Structural stability analysis showed that the mutant systems displayed disparate variations in the catalytic sites which may directly alter the stability and activity of the SOD1 enzyme. Based on the dynamic network analysis and principal component analysis, it has been identified that the mutations weakened the correlated motions along the dimer interface and altered the protein conformational behavior, thus weakening the stability of dimer formation. Moreover, the simulation results identified crucial residues such as G51, D52, G114, I151, and Q153 in establishing the dimerization interaction network, which were weakened or absent in the presence of interfacial mutants. Surface potential analysis on mutant systems also displayed changes in the dimerization potential, thus showing the unfavorable dimer formation. Furthermore, network analysis identified the hotspot residues necessary for SOD1 signal transduction which were surprisingly found in the catalytic sites rather than the anticipated dimerization interface.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
14
|
Comprehensive Pan-Cancer Analysis of IRAK Family Genes Identifies IRAK1 as a Novel Oncogene in Low-Grade Glioma. JOURNAL OF ONCOLOGY 2022; 2022:6497241. [PMID: 35211171 PMCID: PMC8863493 DOI: 10.1155/2022/6497241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/09/2022]
Abstract
Background The interleukin-1 receptor-associated kinases (IRAK) family genes, indispensable mediators of interleukin-1 receptor (IL1R) and Toll-like receptor (TLR)-inflammatory signaling, may be involved in the biological function of human cancers due to the crucial roles of inflammation in tumor development. Though a little research has demonstrated the function of individual IRAK family members in specific tumors, comprehensive analysis is still lacking in pan-cancer. Methods We analyzed the mRNA expression landscape, mutation, and prognosis value of IRAK genes based on The Cancer Genome Atlas (TCGA), cBioPortal, GlioVis, and Rembrandt databases. The correlation between the expression of IRAK genes and tumor microenvironment (TME), Stemness score, and immune subtypes was explored. Western blot, cell proliferation, apoptosis, migration assays, and xenograft models were utilized in this study. Results We found that the expression of IRAK genes extensively changed and was related to patient survival in pan-cancer. Besides, IRAK family genes were correlated with TME, Stemness score, and immune subtypes in most cases. Given that high expression of all IRAK family members predicted poor prognosis in low-grade glioma (LGG), the oncogenic function of the highest expressed IRAK1 in LGG has been confirmed in vitro and in vivo. IRAK1 was uncovered to inhibit cell apoptosis and augment malignancy of LGG in vitro and in vivo. Conclusion These findings revealed the potential targets of IRAK family genes in pan-cancer and provided insights for further investigation of IRAK1 as a novel oncogenic gene in LGG.
Collapse
|
15
|
Zhang YC, Xiao JH, Deng SJ, Yi GL. IRAK-4 in macrophages contributes to inflammatory osteolysis of wear particles around loosened hip implants. Innate Immun 2021; 27:470-482. [PMID: 34139893 PMCID: PMC8504263 DOI: 10.1177/17534259211018740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TLRs recognizing PAMPS play a role in local immunity and participate in implant-associated loosening. TLR-mediated signaling is primarily regulated by IL-1 receptor associated kinase-M (IRAK-M) negatively and IRAK-4 positively. Our previous studies have proved that wear particles promote endotoxin tolerance in macrophages by inducing IRAK-M. However, whether IRAK-4 is involved in inflammatory osteolysis of wear particles basically, and the specific mechanism of IRAK-4 around loosened hip implants, is still unclear. IRAK-4 was studied in the interface membranes from patients in vivo and in particle-stimulated macrophages to clarify its role. Also, IL-1β and TNF-α levels were measured after particle and LPS stimulation in macrophages with or without IRAK-4 silenced by siRNA. Our results showed that the interface membranes around aseptic and septic loosened prosthesis expressed more IRAK-4 compared with membranes from osteoarthritic patients. IRAK-4 in macrophages increased upon particle and LPS stimulation. In the former, IL-1β and TNF-α levels were lower compared with those of LPS stimulation, and IRAK-4 siRNA could suppress production of pro-inflammatory cytokines. These findings suggest that besides IRAK-M, IRAK-4 also plays an important role in the local inflammatory reaction and contributes to prosthesis loosening.
Collapse
Affiliation(s)
- Yang-chun Zhang
- Department of Orthopedics, People’s Hospital of Shenzhen Baoan District, China
- Department of Orthopedics, The First Affiliated Hospital of University of South China, China
| | - Jian-hong Xiao
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, China
| | - Shao-jie Deng
- Department of Orthopedics, People’s Hospital of Shenzhen Baoan District, China
| | - Guo-liang Yi
- Department of Orthopedics, The First Affiliated Hospital of University of South China, China
- Guo-liang Yi, Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China.
| |
Collapse
|
16
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
17
|
Yang YC, Chen SN, Gan Z, Huang L, Nie P. Cloning and functional characterization of IRAK1 from rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103780. [PMID: 32745481 DOI: 10.1016/j.dci.2020.103780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
As a key molecule in innate immune signalling pathway, interleukin (IL)-1 receptor-associated kinase 1 (IRAK1) mediates downstream signalling cascades in immune response. In the present study, an IRAK1 orthologue was characterized from rainbow trout (Oncorhynchus mykiss), with a 2115 bp open reading frame (ORF), encoding a protein of 704 amino acids (aa). Multiple alignments showed that IRAK1 contains highly conserved features among different species, with a conservative N-terminal death domain (DD) and a C-terminal conserved serine/threonine protein kinase (STKc) domain. Expression analysis indicated that IRAK1 was widely expressed in examined organs/tissues, with the highest level observed in muscle and lowest in stomach. In RTG-2 cell line, the induced expression of IRAK1 was observed following the stimulation by the fish bacterial pathogen Flavobacterium columnare. Luciferase activity assays revealed that IRAK1 induced significantly the activity of NF-κB in Human embryonic kidney 293T (HEK293T) cell line; but after co-transfected with rainbow trout IL-1 receptor-associated kinase 4 (IRAK4), the induction was significantly down-regulated when compared with the expression of IRAK1 alone. Co-immunoprecipitation (Co-IP) assays indicated that IRAK1 was associated with rainbow trout myeloid differentiation factor 88 (MyD88), IRAK4 and TNF receptor associated factor 6 (TRAF6) in transfected HEK293T cells, and may form a complex with MyD88, IRAK4 and TRAF6 during the signalling pathway.
Collapse
Affiliation(s)
- Yue Cong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
18
|
Lian S, Zhou Y, Liu Z, Gong A, Cheng L. The differential expression patterns of paralogs in response to stresses indicate expression and sequence divergences. BMC PLANT BIOLOGY 2020; 20:277. [PMID: 32546126 PMCID: PMC7298774 DOI: 10.1186/s12870-020-02460-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/24/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Theoretically, paralogous genes generated through whole genome duplications should share identical expression levels due to their identical sequences and chromatin environments. However, functional divergences and expression differences have arisen due to selective pressures throughout evolution. A comprehensive investigation of the expression patterns of paralogous gene pairs in response to various stresses and a study of correlations between the expression levels and sequence divergences of the paralogs are needed. RESULTS In this study, we analyzed the expression patterns of paralogous genes under different types of stress and investigated the correlations between the expression levels and sequence divergences of the paralogs. We analyzed the differential expression patterns of the paralogs under four different types of stress (drought, cold, infection, and herbivory) and classified them into three main types according to their expression patterns. We then further analyzed the differential expression patterns under various degrees of stress and constructed corresponding co-expression networks of differentially expressed paralogs and transcription factors. Finally, we investigated the correlations between the expression levels and sequence divergences of the paralogs and identified positive correlations between expression level and sequence divergence. With regard to sequence divergence, we identified correlations between selective pressures and phylogenetic relationships. CONCLUSIONS These results shed light on differential expression patterns of paralogs in response to environmental stresses and are helpful for understanding the relationships between expression levels and sequences divergences.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Yongjie Zhou
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Zixiao Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Andong Gong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
19
|
Yan X, Chen S, Huang H, Peng T, Lan M, Yang X, Dong M, Chen S, Xu A, Huang S. Functional Variation of IL-1R-Associated Kinases in the Conserved MyD88-TRAF6 Pathway during Evolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:832-843. [PMID: 31915260 DOI: 10.4049/jimmunol.1900222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
IL-1R-associated kinases (IRAK) are important regulators in the TLR/IL-1R pathways, but their function appears inconsistent between Drosophila, bony fishes, and vertebrates. This causes a difficulty to understand the IRAK functions. As a step to reveal the evolution of IRAKs, in this study, we performed comparative and functional analysis of IRAKs by exploiting the amphioxus, a pivotal taxon connecting invertebrates and vertebrates. Sequence and phylogenetic analysis indicated three major IRAK lineages: IRAK1/2/3 is a vertebrate-specific lineage, IRAK4 is an ancient lineage conserved between invertebrate and vertebrates, and Pelle is another ancient lineage that is preserved in protostomes and invertebrate deuterostomes but lost in vertebrate deuterostomes. Pelle is closer neither to IRAK4 nor to IRAK1/2/3, hence suggesting no clear functional analogs to IRAK1/2/3 in nonvertebrates. Functional analysis showed that both amphioxus IRAK4 and Pelle could suppress NF-κB activation induced by MyD88 and TRAF6, which are unlike mammalian and Drosophila IRAKs, but, surprisingly, similar to bony fish IRAK4. Also unlike Drosophila IRAKs, no interaction was detected between amphioxus IRAK4 and Pelle, although both of them were shown capable of binding MyD88. These findings, together with previous reports, show that unlike other signal transducers in the TLR/IL-1R pathways, such as MyD88 and TRAF6, the functions of IRAKs are highly variable during evolution and very specialized in different major animal taxa. Indeed, we suggest that the functional variability of IRAKs might confer plasticity to the signal transduction of the TLR/IL-1R pathways, which in return helps the species to evolve against the pathogens.
Collapse
Affiliation(s)
- Xinyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Shenghui Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Huiqing Huang
- Guangdong Food and Drug Vocational College, 510520 Guangzhou, China
| | - Ting Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Mengjiao Lan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Xia Yang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Meiling Dong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China;
- School of Life Science, Beijing University of Chinese Medicine, 100029 Beijing, China; and
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| |
Collapse
|
20
|
Han X, Gao F, Lu M, Liu Z, Wang M, Ke X, Yi M, Cao J. Molecular characterization, expression and functional analysis of IRAK1 and IRAK4 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 97:135-145. [PMID: 31846774 DOI: 10.1016/j.fsi.2019.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 are critical signalling mediators and play pivotal roles in the innate immune and inflammatory responses mediated by TLR/IL-1R. In the present study, two IRAK family members, OnIRAK1 and OnIRAK4, were identified in the Nile tilapia Oreochromis niloticus with a conserved N-terminal death domain and a protein kinase domain, similar to those of other fishes and mammals. The gene structures of OnIRAK1 and OnIRAK4 are organized into fifteen exons split by fourteen introns and ten exons split by nine introns. OnIRAK1 and OnIRAK4 were broadly expressed in all of the tissues tested, with the highest expression levels being observed in the blood and the lowest expression levels being observed in the liver. Both genes could be detected from 2 d post-fertilization (dpf) to 8 dpf during embryonic development. Moreover, the expression levels of OnIRAK1 and OnIRAK4 were clearly altered in all five tissues after Streptococcus agalactiae infection in vivo and could be induced by LPS, Poly I: C, S. agalactiae WC1535 and △CPS in Nile tilapia macrophages. The overexpression of OnIRAK1 and OnIRAK4 in 293T cells showed that they were both distributed in the cytoplasm and could significantly increase NF-κB activation. Interestingly, after transfection, OnIRAK1 significantly upregulated OnMyd88-induced NF-κB activation, while OnIRAK4 had no effect on OnMyd88-induced NF-κB activation. Co-immunoprecipitation (Co-IP) assays showed that OnMyd88 did not interact with either OnIRAK1 or OnIRAK4 and that OnIRAK1 did not interact with OnIRAK4. Taken together, these findings suggest that OnIRAK1 and OnIRAK4 could play important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Xueqing Han
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Fengying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China.
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China.
| | - Zhigang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Mengmeng Yi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| |
Collapse
|
21
|
Rebl A, Rebl H, Verleih M, Haupt S, Köbis JM, Goldammer T, Seyfert HM. At Least Two Genes Encode Many Variants of Irak3 in Rainbow Trout, but Neither the Full-Length Factor Nor Its Variants Interfere Directly With the TLR-Mediated Stimulation of Inflammation. Front Immunol 2019; 10:2246. [PMID: 31616422 PMCID: PMC6763605 DOI: 10.3389/fimmu.2019.02246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
The interleukin-1-receptor-associated kinase 3 (IRAK3) is known in mammals as a negative feedback regulator of NF-κB-mediated innate-immune mechanisms. Our RNA-seq experiments revealed a prototypic 1920-nt sequence encoding irak3 from rainbow trout (Oncorhynchus mykiss), as well as 20 variants that vary in length and nucleotide composition. Based on the DNA-sequence information from two closely related irak3 genes from rainbow trout and an irak3-sequence fragment from Atlantic salmon retrieved from public databases, we elucidated the underlying genetic causes for this striking irak3 diversity. Infecting rainbow trout with a lethal dose of Aeromonas salmonicida enhanced the expression of all variants in the liver, head kidney, and peripheral blood leucocytes. We analyzed the functional impact of the full-length factor and selected structural variants by overexpressing them in mammalian HEK-293 cells. The full-length factor enhanced the basal activity of NF-κB, but did not dampen the TLR2-signaling-induced levels of NF-κB activation. Increasing the basal NF-κB-activity through Irak3 apparently does not involve its C-terminal domain. However, more severely truncated factors had only a minor impact on the activity of NF-κB. The TLR2-mediated stimulation did not alter the spatial distribution of Irak3 inside the cells. In salmonid CHSE-214 cells, we observed that the Irak3-splice variant that prominently expresses the C-terminal domain significantly quenched the stimulation-dependent production of interleukin-1β and interleukin-8, but not the production of other immune regulators. We conclude that the different gene and splice variants of Irak3 from trout play distinct roles in the activation of immune-regulatory mechanisms.
Collapse
Affiliation(s)
- Alexander Rebl
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Marieke Verleih
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Stephanie Haupt
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Judith M Köbis
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| |
Collapse
|
22
|
Wu C, Xu X, Zhi X, Jiang Z, Li Y, Xie X, Chen X, Hu C. Identification and functional characterization of IRAK-4 in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2019; 87:438-448. [PMID: 30685465 DOI: 10.1016/j.fsi.2019.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
IL-1R-associated kinase 4 (IRAK4), a central TIR signaling mediator in innate immunity, can initiate a cascade of signaling events and lead to induction of inflammatory target gene expression eventually. In the present study, we cloned and characterized an IRAK4 orthologue from grass carp (Ctenopharyngodon idella). The full length cDNA of CiIRAK4 was 2057 bp with an ORF of 1422 bp encoding a polypeptide of 472 amino acids. Multiple alignments showed that IRAK4s were highly conserved among different species. Phylogenetic tree analysis revealed that CiIRAK4 shared high homologous with zebra fish IRAK4. Expression analysis indicated that CiIRAK4 was widely expressed in all tested tissues. It was significantly up-regulated after treatment with poly I:C, especially obvious in liver and spleen. Also, CiIRAK4 could be induced by poly I:C and LPS in CIK cells. Fluorescence microscopy assays showed that CiIRAK4 localized in the cytoplasm. RNAi-mediated knockdown and overexpression assays indicated that CiIRAK4 might have little effect on NF-kappa B p65 translocation from cytoplasm to nucleus, indicating that CiIRAK4 was dispensable for activation of NF-kappa B p65. In addition, IRAK4 promoted IRF5 nuclear translocation, which has nothing to do with the interaction between IRAK4 and IRF5. It suggested that fish IRAK4 kinase regulated IRF5 activity through indirect ways.
Collapse
Affiliation(s)
- Chuxin Wu
- Yuzhang Normal University, Nanchang, 330103, China
| | - Xiaowen Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaoping Zhi
- Yuzhang Normal University, Nanchang, 330103, China
| | - Zeyin Jiang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yinping Li
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaofen Xie
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xingxing Chen
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
23
|
Qi P, Huang H, Guo B, Liao Z, Liu H, Tang Z, He Y. A novel interleukin-1 receptor-associated kinase-4 from thick shell mussel Mytilus coruscus is involved in inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2019; 84:213-222. [PMID: 30308290 DOI: 10.1016/j.fsi.2018.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Interleukin-1 receptor-associated kinase-4 (IRAK4) is considered as the most upstream kinase of IRAKs and plays a vital role in Toll-like receptor/Interleukin-1 receptor (TLR/IL-1R) signal transduction. In the present study, IRAK4 from thick shell mussel Mytilus coruscus (McIRAK4) was identified and characterized. McIRAK4 showed the most similarity to its counterparts in bivalves. The conserved death domain (DD) and catalytic domain of serine/threonine kinases (STKc) were predicted in all examined IRAK4s. McIRAK4 transcripts were constitutively expressed in all examined tissues with the higher expression level in immune related tissues, and were significantly induced in haemocytes upon lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly I:C) challenge. Further, the expression of McIRAK4 was obviously repressed by dsRNA mediated RNA interference (RNAi), meanwhile the proinflammatory cytokines TNF-alpha and IL17 were down-regulated while the antiinflammatory cytokine TGF-β was up-regulated. Additionally, McIRAK4 showed a global cytoplasmic localization in HEK293T cells through fluorescence microscopy. These results collectively indicated that McIRAK4 is one member of IRAK4 subfamily and might play the potential signal transducer role in inflammatory response. The present study provides supplement for TLR-mediated signaling pathway triggered by pathogenic invasions in thick shell mussel, and contributes to the clarification of the innate immune response in molluscs.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Huanqing Huang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yuehua He
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| |
Collapse
|
24
|
Li YW, Han R, Wang JL, Yang M, Dan XM, Li AX. Molecular identification and functional characterization of IRAK-3 from a teleost fish, the orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2018; 81:383-389. [PMID: 30010020 DOI: 10.1016/j.fsi.2018.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Interleukin-1 receptor-associated kinase-3 (IRAK-3) is a unique IRAK family member, which negatively regulates the TLR-mediated immune response in mammals. However, the function of IRAK-3 remains to be elucidated in fish. In the present study, an IRAK-3 cDNA sequence (EcIRAK-3) with an ORF of 1776 bp encoding 591 amino acids was identified in the orange-spotted grouper (Epinephelus coioides). Sequence analysis indicated that EcIRAK-3 shared the conserved structure characteristics and functional sites of vertebrate IRAK-3, and has a high sequence identity and phylogenetic relationship with that of other fish species. The genomic EcIRAK-3 ORF contained 13 exons and 12 introns, which was similar to that of most other fish species. In healthy grouper, EcIRAK-3 was ubiquitously expressed in seven tested tissues with the highest expression in the gills. Following Cryptocaryon irritans infection, the EcIRAK-3 transcript was up-regulated in the gills during the course of the experiment, but down-regulated in the spleen at an earlier point in time. EcIRAK-3 was localized in both the cytoplasm and nucleus in a condensed form, and its cellular distribution was affected by the death domain and ProST domain. In addition, EcIRAK-3 significantly increased MyD88-mediated NF-κB activity, and its function was ProST domain and kinase domain dependent. Taken together, the results obtained here have contributed to the understanding of the function of IRAK-3 in fish.
Collapse
Affiliation(s)
- Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China; Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Man Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China.
| |
Collapse
|
25
|
Kumar S, Jain S. Immune signalling by supramolecular assemblies. Immunology 2018; 155:435-445. [PMID: 30144032 DOI: 10.1111/imm.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Formation of supramolecular assemblies appears to be a general mechanism in immune signalling pathways. These supramolecular assemblies appear to form through a nucleated polymerization mechanism. This review examines selected immune signalling pathways that involve supramolecular assemblies, describes the concepts of protein polymerization, and discusses how those concepts of protein polymerization implicate new elegant ways for signal amplification, setting threshold and noise reduction in these pathways.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Shweta Jain
- Department of Neurology and Graduate Programs in Neuroscience and Biomedical Sciences, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Humphries JE, Deneckere LE. Characterization of a Toll-like receptor (TLR) signaling pathway in Biomphalaria glabrata and its potential regulation by NF-kappaB. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:118-129. [PMID: 29746981 DOI: 10.1016/j.dci.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 05/16/2023]
|
27
|
Liu J, Yu L, Chen C, Zhou J, Gong X, Li D, Hou D, Song Y, Shao C. The Expression of Dectin-1, Irak1 and Rip2 During the Host Response to Aspergillus fumigatus. Mycopathologia 2017; 183:337-348. [PMID: 29058172 DOI: 10.1007/s11046-017-0210-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/01/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND C-type lectin receptors (CLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) have the ability to recognize Aspergillus fumigatus (A. fumigates) and induce innate immune response. Dectin-1 is a well-described CLR, while interleukin-1 receptor-associated kinase 1 (Irak1) and receptor-interacting protein 2 (Rip2) are pivotal adaptor proteins of TLRs and NLRs signaling pathways, respectively. OBJECTIVES Our primary aim is to elucidate whether Dectin-1 regulates the expression of Irak1 and Rip2, and confirm that CLRs, TLRs, and NLRs pathways act synergistically in response to A. fumigatus infection. METHODS Pulmonary infection mouse models were established. Myeloid cells were differentiated in cell culture and examined by inverted microscopy, flow cytometry, and scanning electron microscopy. The relative mRNA levels were determined by qRT-PCR. The protein expression levels were determined by immunohistochemistry and Western blot. RESULTS The expression of Dectin-1, Irak1, Rip2, and phosphorylation level of nuclear factor (NF)-κB p65 were induced by conidia in immunocompetent mice, while their expression and phosphorylation level were inhibited in immunocompromised mice after the administration of conidia. Conidia increased the expression of Dectin-1, Irak1, and Rip2 in myeloid cells, while Dectin-1 silencing significantly reduced their expression. CONCLUSION Our findings demonstrate that Dectin-1, Irak1, and Rip2 are involved in response to A. fumigatus infection. Dectin-1 modulates the expression of Irak1 and Rip2. Additionally, these three signaling pathways are interconnected, and CLRs pathway plays a dominant role against A. fumigatus invasion.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lin Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xin Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dandan Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dongni Hou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Changzhou Shao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Durai P, Shin HJ, Achek A, Kwon HK, Govindaraj RG, Panneerselvam S, Yesudhas D, Choi J, No KT, Choi S. Toll-like receptor 2 antagonists identified through virtual screening and experimental validation. FEBS J 2017; 284:2264-2283. [PMID: 28570013 DOI: 10.1111/febs.14124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
Toll-like receptor 2 (TLR2) antagonists are key therapeutic targets because they inhibit several inflammatory diseases caused by surplus TLR2 activation. In this study, we identified two novel nonpeptide TLR2 antagonists, C11 and C13, through pharmacophore-based virtual screening. At 10 μm, the level of interleukin (IL)-8 inhibition by C13 and C11 in human embryonic kidney TLR2 overexpressing cells was comparable to the commercially available TLR2 inhibitor CU-CPT22. In addition, C11 and C13 acted in mouse macrophage-like RAW 264.7 cells as TLR2-specific inhibitors and did not suppress the tumor necrosis factor-α induction by TLR3 and TLR4 activators. Moreover, the two identified compounds bound directly to the human recombinant TLR2 ectodomain, during surface plasmon resonance analysis, and did not affect cell viability in a 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay. In total, two virtually screened molecules, C11 and C13, were experimentally proven to be effective as TLR2 antagonists, and thus will provide new insights into the structure of TLR2 antagonists, and pave the way for the development of TLR2-targeted drug molecules.
Collapse
Affiliation(s)
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | | | - Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Jiwon Choi
- Bioinformatics and Molecular Design Research Center, Seoul, Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center, Seoul, Korea.,Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
29
|
Zou PF, Huang XN, Yao CL, Sun QX, Li Y, Zhu Q, Yu ZX, Fan ZJ. Cloning and functional characterization of IRAK4 in large yellow croaker (Larimichthys crocea) that associates with MyD88 but impairs NF-κB activation. FISH & SHELLFISH IMMUNOLOGY 2017; 63:452-464. [PMID: 27989863 DOI: 10.1016/j.fsi.2016.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
As crucial signaling transducer in Toll-like receptor (TLR) and interleukin (IL)-1 receptor (IL-1R) signaling pathway, IL-1R-associated kinase 4 (IRAK4) mediates downstream signaling cascades and plays important roles in innate and adaptive immune responses. In the present study, an IRAK4 orthologue was characterized from large yellow croaker (Larimichthys crocea), named Lc-IRAK4, with a conservative N-terminal death domain and a C-terminal protein kinase domain. The genome of Lc-IRAK4 is structured into eleven exons and ten introns. Expression analysis indicated that Lc-IRAK4 was widely expressed in tested tissues, with the highest level in liver and weakest in muscle. Additionally, in the spleen, liver tissues and blood, it could be induced by poly I:C and LPS stimulation, but not be induced by Vibrio parahemolyticus infection. Fluorescence microscopy assays revealed that Lc-IRAK4 localized in the cytoplasm in HEK 293T cells. It was also determined that Lc-IRAK4 could interact with MyD88, whereas MyD88-mediated NF-κB activation was significantly impaired when co-transfected the two in HEK 293T cells. These findings collectively indicated that although Lc-IRAK4 was evolutionarily conserved in vertebrates, the exact function especially the signaling transduction mediated by IRAK4 in fish immune response was different from that in mammals, which impaired MyD88-mediated NF-κB activation.
Collapse
Affiliation(s)
- Peng Fei Zou
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Xue Na Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Cui Luan Yao
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China.
| | - Qing Xue Sun
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- School of Environmental Science and Engineering, Xiamen University, Tan Kah Kee College, Zhangzhou, Fujian Province, 363105, China; Key Laboratory of Estuarine Ecological Security and Environmental Health, Zhangzhou, Fujian Province, 363105, China
| | - Qian Zhu
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Zhen Xing Yu
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| | - Ze Jun Fan
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province, 361021, China
| |
Collapse
|
30
|
Della Mina E, Borghesi A, Zhou H, Bougarn S, Boughorbel S, Israel L, Meloni I, Chrabieh M, Ling Y, Itan Y, Renieri A, Mazzucchelli I, Basso S, Pavone P, Falsaperla R, Ciccone R, Cerbo RM, Stronati M, Picard C, Zuffardi O, Abel L, Chaussabel D, Marr N, Li X, Casanova JL, Puel A. Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc Natl Acad Sci U S A 2017; 114:E514-E523. [PMID: 28069966 PMCID: PMC5278481 DOI: 10.1073/pnas.1620139114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM2CSK4, LTA, FSL-1), TLR1/2 (PAM3CSK4), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1β. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1β. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.
Collapse
Affiliation(s)
- Erika Della Mina
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Hospital Foundation, 27100 Pavia, Italy
- Laboratory of Neonatal Immunology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | | | | | - Laura Israel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Ilaria Meloni
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Yun Ling
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Medical Genetics, University Hospital of Siena, 53100 Siena, Italy
| | - Iolanda Mazzucchelli
- Laboratory of Neonatal Immunology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Basso
- Laboratory of Transplant Immunology/Cell Factory, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Piero Pavone
- General Paediatrics Operative Unit, Vittorio Emanuele University Hospital, University of Catania, 95100 Catania, Italy
| | - Raffaele Falsaperla
- General Paediatrics Operative Unit, Vittorio Emanuele University Hospital, University of Catania, 95100 Catania, Italy
| | - Roberto Ciccone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Rosa Maria Cerbo
- Neonatal Intensive Care Unit, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Mauro Stronati
- Neonatal Intensive Care Unit, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Hospital Foundation, 27100 Pavia, Italy
- Laboratory of Neonatal Immunology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, 75015 Paris, France
- Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, 75015 Paris, France
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | | | - Nico Marr
- Sidra Medical and Research Center, Doha, Qatar
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France;
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10065
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France;
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| |
Collapse
|
31
|
Wu C, Chen Y, Wang F, Chen C, Zhang S, Li C, Li W, Wu S, Xue L. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila. PLoS Genet 2015; 11:e1005589. [PMID: 26474173 PMCID: PMC4608839 DOI: 10.1371/journal.pgen.1005589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yujun Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Feng Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Changyan Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Shiping Zhang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chaojie Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Wenzhe Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
32
|
Huang Y, Chen YH, Zhang YZ, Feng JL, Zhao LL, Zhu HX, Wang W, Ren Q. Identification, characterization, and functional studies of a Pelle gene in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2015; 45:704-716. [PMID: 26026692 DOI: 10.1016/j.fsi.2015.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/10/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
The toll-like receptor/NF-κB signaling pathways play an important role in the innate immune system. In the present study, one Pelle gene (named EsPelle) was identified for the first time from the Chinese mitten crab Eriocheir sinensis. The full-length cDNA of EsPelle is 3797 bp with a 3156 bp-long open reading frame that encodes a 1051 amino acid protein. EsPelle protein contains a death domain at the N-terminal and a serine/threonine kinase domain at the C-terminal. A neighbor joining phylogenetic tree showed that the EsPelle protein, which is closest to those of Scylla paramamosain Pelle and Litopenaeus vannamei Pelle, was clustered to a group of crustacean Pelle proteins. EsPelle was expressed in all tested tissues of normal crabs, and its expression was regulated in hemocytes and hepatopancreas of crabs challenged with lipopolysaccharide, peptidoglycan, Staphyloccocus aureus, Vibrio parahaemolyticus, and Aeromonas hydrophila. Overexpression of EsPelle in Drosophila Schneider 2 cells could upregulate the expression of Drosophila antimicrobial peptides, namely, metchnikowin (Mtk), attacinA (Atta), drosomycin (Drs), and cecropinA (CecA). Moreover, EsPelle silencing by siRNA reduced the transcription of anti-lipopolysaccharide factor 1 and 2, crustin 2, and lysozyme in crabs challenged with V. parahaemolyticus. From the results, we speculated that EsPelle was involved in innate immune defense against V. parahaemolyticus in E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Zhou Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Jin-Ling Feng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Ling-Ling Zhao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Huan-Xi Zhu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| |
Collapse
|
33
|
Abstract
OBJECTIVE Major depressive disorder (MDD) is a common mood disorder associated with several psychophysiological changes like disturbances of sleep, appetite, or sexual desire, and it affects the patients' life seriously. We aimed to explore a genetic method to investigate the mechanism of MDD. METHODS The mRNA expression profile (GSE53987) of MDD was downloaded from Gene Expression Omnibus database, including 105 samples of three brain regions in post-mortem tissue suffered from MDD and unaffected controls. Differentially expressed genes (DEGs) in MDD were identified using the Limma package in R. Gene Ontology functions and Kyoto Enrichment of Genes and Genomes pathways of the selected DEGs were enriched using Database for Annotation, Visualization and Integrated Discovery. Protein-protein interactive network of DEGs was constructed using the Cytoscape software. RESULTS Totally, 241 DEGs in MDD-hip group, 218 DEGs in MDD-pfc group, and 327 DEGs in MDD-str group were identified. Also, different kinds of biological processes of DEGs in each group were enriched. Besides, glycan biosynthesis of DEGs in MDD-str group, RIG-I-like receptor signaling and pyrimidine metabolism of DEGs in the MDD-hip group were enriched, respectively. Moreover, several DEGs like PTK2, TDG and CETN2 in MDD-str group, DCT, AR and GNRHR in MDD-pfc group, and AKT1 and IRAK1 in MDD-hip group were selected from PPI network. CONCLUSION Our data suggests that the brain striatum tissue may be greatly affected by MDD, and DEGs like PTK2, GALNT2 and GALNT2 in striatum, AR in prefrontal cortex and IRAK1 and IL12A in hippocampus may provide novel therapeutic basis for MDD treatment.
Collapse
Affiliation(s)
- Lishu Gao
- Department of Clinical Psychology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, PR China
| | - Yue Gao
- Department of Gerontology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, PR China
| | - Enping Xu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jian Xie
- Department of Clinical Psychology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
34
|
Umasuthan N, Bathige SDNK, Whang I, Lim BS, Choi CY, Lee J. Insights into molecular profiles and genomic evolution of an IRAK4 homolog from rock bream (Oplegnathus fasciatus): immunogen- and pathogen-induced transcriptional expression. FISH & SHELLFISH IMMUNOLOGY 2015; 43:436-448. [PMID: 25555811 DOI: 10.1016/j.fsi.2014.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
As a pivotal signaling mediator of toll-like receptor (TLR) and interleukin (IL)-1 receptor (IL-1R) signaling cascades, the IL-1R-associated kinase 4 (IRAK4) is engaged in the activation of host immunity. This study investigates the molecular and expressional profiles of an IRAK4-like homolog from Oplegnathus fasciatus (OfIRAK4). The OfIRAK4 gene (8.2 kb) was structured with eleven exons and ten introns. A putative coding sequence (1395bp) was translated to the OfIRAK protein of 464 amino acids. The deduced OfIRAK4 protein featured a bipartite domain structure composed of a death domain (DD) and a kinase domain (PKc). Teleost IRAK4 appears to be distinct and divergent from that of tetrapods in terms of its exon-intron structure and evolutionary relatedness. Analysis of the sequence upstream of translation initiation site revealed the presence of putative regulatory elements, including NF-κB-binding sites, which are possibly involved in transcriptional control of OfIRAK4. Quantitative real-time PCR (qPCR) was employed to assess the transcriptional expression of OfIRAK4 in different juvenile tissues and post-injection of different immunogens and pathogens. Ubiquitous basal mRNA expression was widely detected with highest level in liver. In vivo flagellin (FLA) challenge significantly intensified its mRNA levels in intestine, liver and head kidney indicating its role in FLA-induced signaling. Meanwhile, up-regulated expression was also determined in liver and head kidney of animals challenged with potent immunogens (LPS and poly I:C) and pathogens (Edwardsiella tarda and Streptococcus iniae and rock bream iridovirus (RBIV)). Taken together, these data implicate that OfIRAK4 might be engaged in antibacterial and antiviral immunity in rock bream.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bong-Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
35
|
Huang Y, Chen YH, Wang Z, Wang W, Ren Q. Novel myeloid differentiation factor 88, EsMyD88, exhibits EsTube-binding activity in Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:298-308. [PMID: 25150191 DOI: 10.1016/j.dci.2014.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter protein that participates in the activation of the Toll-like receptor/interleukin-1 receptor-mediated signaling pathway. In the present study, a new MyD88 gene (named EsMyD88) was identified in the Chinese mitten crab Eriocheir sinensis. The cDNA of EsMyD88 was 2210 bp long with a 1416 bp open reading frame that encoded a protein with 472 amino acids. Predicted EsMyD88 protein had a death domain at the N-terminal and a TIR domain at the C-terminal. BLASTP and phylogenetic analysis results showed that EsMyD88 was clustered in one group together with other crustaceans MyD88 (SpMyD88, FcMyD88, LvMyD88, and LvMyD88-1). EsMyD88 was detected in all the examined tissues of healthy crabs, and was mainly expressed in the hemocytes and nerves. When normal crabs were challenged with lipopolysaccharide, peptidoglycan, Staphylococcus aureus, Vibrio parahaemolyticus, or Aeromonas hydrophila, the expression levels of EsMyD88 significantly increased either in the hepatopancreas or hemocytes. Results of the pull-down assay showed that EsMyD88 could bind to downstream cytosolic adaptor EsTube. Overexpression of EsMyD88 protein in Drosophila Schneider 2 cells led to the activation of antimicrobial peptide genes. RNA interference assay showed that EsMyD88 is involved in regulating the transcription of ALF1 and ALF2, Cru1 and Cru2, and Lys in crab challenged with V. parahaemolyticus. All the results mentioned earlier indicated that EsMyD88 gene has a key function in antibacterial innate immune defense.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Zheng Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
36
|
Structural dynamic analysis of apo and ATP-bound IRAK4 kinase. Sci Rep 2014; 4:5748. [PMID: 25034608 PMCID: PMC4103033 DOI: 10.1038/srep05748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAKs) are Ser/Thr protein kinases that play an important role as signaling mediators in the signal transduction facilitated by the Toll-like receptor (TLR) and interleukin-1 receptor families. Among IRAK family members, IRAK4 is one of the drug targets for diseases related to the TLR and IL-1R signaling pathways. Experimental evidence suggests that the IRAK4 kinase domain is phosphorylated in its activation loop at T342, T345, and S346 in the fully activated state. However, the molecular interactions of subdomains within the active and inactive IRAK4 kinase domain are poorly understood. Hence, we employed a long-range molecular dynamics (MD) simulation to compare apo IRAK4 kinase domains (phosphorylated and unphosphorylated) and ATP-bound phosphorylated IRAK4 kinase domains. The MD results strongly suggested that lobe uncoupling occurs in apo unphosphorylated IRAK4 kinase via the disruption of the R334/T345 and R310/T345 interaction. In addition, apo unphosphorylated trajectory result in high mobility, particularly in the N lobe, activation segment, helix αG, and its adjoining loops. The Asp-Phe-Gly (DFG) and His-Arg-Asp (HRD) conserved kinase motif analysis showed the importance of these motifs in IRAK4 kinase activation. This study provides important information on the structural dynamics of IRAK4 kinase, which will aid in inhibitor development.
Collapse
|
37
|
Yesudhas D, Gosu V, Anwar MA, Choi S. Multiple roles of toll-like receptor 4 in colorectal cancer. Front Immunol 2014; 5:334. [PMID: 25076949 PMCID: PMC4097957 DOI: 10.3389/fimmu.2014.00334] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor (TLR) signaling has been implicated in the inflammatory responses in intestinal epithelial cells (IECs). Such inflammatory signals mediate complex interactions between commensal bacteria and TLRs and are required for IEC proliferation, immune response, repair, and homeostasis. The upregulation of certain TLRs in colorectal cancer (CRC) tissues suggests that TLRs may play an essential role in the prognosis of chronic and inflammatory diseases that ultimately culminate in CRC. Here, we provide a comprehensive review of the literature on the involvement of the TLR pathway in the initiation, progression, and metastasis of CRC, as well as inherited genetic variation and epigenetic regulation. The differential expression of TLRs in epithelial cells has also been discussed. In particular, we emphasize the physiological role of TLR4 in CRC development and pathogenesis, and propose novel and promising approaches for CRC therapeutics with the aid of TLR ligands.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Vijayakumar Gosu
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| |
Collapse
|
38
|
Jiang D, Li D, Cao L, Wang L, Zhu S, Xu T, Wang C, Pan D. Positive feedback regulation of proliferation in vascular smooth muscle cells stimulated by lipopolysaccharide is mediated through the TLR 4/Rac1/Akt pathway. PLoS One 2014; 9:e92398. [PMID: 24667766 PMCID: PMC3965409 DOI: 10.1371/journal.pone.0092398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/22/2014] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptor 4 (TLR4) are important in inflammation and regulating vascular smooth muscle cells (VSMCs) proliferation, which are related to atherosclerosis and restenosis. We have investigated the mechanisms involved in Lipopolysaccharide (LPS)-induced proliferation of VSMCs. Stimulation of rat aortic VSMCs with LPS significantly increases the proliferation of VSMCs. This effect is regulated by Rac1 (Ras-related C3 botulinum toxin substrate l), which mediates the activation of phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling pathways. Inhibition of Rac1 activity by NSC23766 is associated with inhibition of Akt activity. Treatment with NSC23766 or LY294002 significantly decreases LPS-induced TLR4 protein and mRNA expression. The data show that positive feedback regulation of proliferation in VSMCs is mediated through the TLR4/Rac1/Akt pathway.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Female
- Immunoprecipitation
- Lipopolysaccharides/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Dehua Jiang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (DL); (CW)
| | - Lijuan Cao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Lele Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shasha Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tongda Xu
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Cheng Wang
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (DL); (CW)
| | - Defeng Pan
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
39
|
Yu AQ, Jin XK, Wu MH, Guo XN, Li S, He L, Li WW, Wang Q. Identification and characterization of Tube in the Chinese mitten crab Eriocheir sinensis. Gene 2014; 541:41-50. [PMID: 24630961 DOI: 10.1016/j.gene.2014.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 01/22/2023]
Abstract
As a key component of the Toll signaling pathway, Tube plays central roles in many biological activities, such as survival, development and innate immunity. Tube has been found in shrimps, but has not yet been reported in the crustacean, Eriocheir sinensis. In this study, we cloned the full-length cDNA of the adaptor Tube for the first time from E. sinensis and designated the gene as EsTube. The full-length cDNA of EsTube was 2247-bp with a 1539-bp open reading frame (ORF) encoding a 512-amino acid protein. The protein contained a 116-residue death domain (DD) at its N-terminus and a 272-residue serine/threonine-protein kinase domain (S_TKc) at its C-terminus. Phylogenetic analysis clustered EsTube initially in one group with other invertebrate Tube and Tube-like proteins, and then with the vertebrate IRAK-4 proteins, finally with other invertebrate Pelle proteins. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis results showed that EsTube was highly expressed in the ovary and testis, and moderately expressed in the thoracic ganglia and stomach. EsTube was expressed at all selected stages and was highly expressed in the spermatid stage (October, testis) and the stage III-2 (November, ovary). EsTube was differentially induced after injection of lipopolysaccharides (LPS), peptidoglycan (PG) or zymosan (β-1,3-glucan). Our study indicated that EsTube might possess multiple functions in immunity and development in E. sinensis.
Collapse
Affiliation(s)
- Ai-Qing Yu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, China
| | - Min-Hao Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- School of Life Science, East China Normal University, Shanghai, China.
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
40
|
Li C, Chen Y, Weng S, Li S, Zuo H, Yu X, Li H, He J, Xu X. Presence of Tube isoforms in Litopenaeus vannamei suggests various regulatory patterns of signal transduction in invertebrate NF-κB pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:174-185. [PMID: 24012725 DOI: 10.1016/j.dci.2013.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
The toll-like receptor (TLR)/NF-κB signaling pathways play critical roles in the innate immune system. The intracellular signal transduction of most TLR pathways in invertebrate cells is triggered by formation of a heterotrimeric complex composed of MyD88, Tube and Pelle. In this study, we identified a Litopenaeus vannamei Pelle (LvPelle) and an isoform of L. vannamei Tube (LvTube) designated as LvTube-1. The interactions among LvPelle, LvTube/LvTube-1 and LvMyD88/LvMyD88-1 were elucidated and their functions during pathogen infections were investigated. Knockdowns of LvPelle and LvTube/LvTube-1 using RNAi strategy led to higher mortalities of shrimps during Vibrio parahemolyticus infection, and could reduce the genome copy number of white spot syndrome virus (WSSV) in the infected muscle tissue but did not affect the mortality caused by WSSV infection. The effects of LvPelle and LvTube/LvTube-1 on promoters containing NF-κB binding motifs were analyzed by dual-luciferase reporter assays and the results demonstrated that LvTube-1 could activate the NF-κB activity to significantly higher level than LvTube did. Moreover, tissue distributions of LvTube and LvTube-1 mRNAs and their expression profiles during pathogen and immune stimulant challenges were different, indicating that they could play different roles in immune responses. This is the first report of Tube isoforms in invertebrates. Together with our previous study on LvMyD88 isoforms, our results suggest that various isoforms of adaptor components may be involved in various regulatory patterns of signal transduction in invertebrate TLR/NF-κB pathway and this could be a strategy adopted by invertebrates to modulate immune responses.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brietzke A, Goldammer T, Rebl H, Korytář T, Köllner B, Yang W, Rebl A, Seyfert HM. Characterization of the interleukin 1 receptor-associated kinase 4 (IRAK4)-encoding gene in salmonid fish: the functional copy is rearranged in Oncorhynchus mykiss and that factor can impair TLR signaling in mammalian cells. FISH & SHELLFISH IMMUNOLOGY 2014; 36:206-214. [PMID: 24239597 DOI: 10.1016/j.fsi.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
The interleukin 1 receptor-associated kinase 4 (IRAK4) is an essential factor for TLR-mediated activation of the host's immune functions subsequent to pathogen contact. We have characterized the respective cDNA and gene sequences from three salmonid species, salmon, rainbow trout and maraena whitefish. The gene from salmon is structured into eleven exons, as is the mammalian homologue, while exons have been fused in the genes from the two other salmonid species. Rainbow trout expresses also a pseudogene at low levels. Its basic structure resembles more closely the primordial gene than the functional copy does. The N-terminal death domain and the C-terminal protein kinase domain of the factors are better conserved throughout evolution than the linker domain. The deduced amino acid sequences of the factors from all three species group together in an evolutionary tree of IRAK4 factors. Scrutinizing expression and function of IRAK4 from rainbow trout, we found its highest expression in head kidney and spleen and lowest expression in muscle tissue. Infecting fish with Aeromonas salmonicida did not modulate its expression during 72 h of observation. Expression of a GFP-tagged trout IRAK4 revealed, expectedly, its cytoplasmic localization in human HEK-293 cells. However, this factor significantly quenched in a dose-dependent fashion not only the pathogen-induced stimulation of NF-κB factors in the HEK-293 reconstitution system of TLR2 signaling, but also the basal NF-κB levels in unstimulated control cells. Our data unexpectedly imply that IRAK4 is involved in establishing threshold levels of active NF-κB in resting cells.
Collapse
Affiliation(s)
- Andreas Brietzke
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henrike Rebl
- Rostock University Medical Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Bernd Köllner
- Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Wei Yang
- Department of Anesthesiology, Duke University Medical Center, PO Box 3094, Durham, NC 27710, USA
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
42
|
Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson's Disease? Front Cell Neurosci 2013; 7:53. [PMID: 23641196 PMCID: PMC3638129 DOI: 10.3389/fncel.2013.00053] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation has received increased attention as a target for putative neuroprotective therapies in Parkinson’s Disease (PD). Two prototypic pro-inflammatory cytokines interleukin-1β (IL-1) and tumor necrosis factor-α (TNF) have been implicated as main effectors of the functional consequences of neuroinflammation on neurodegeneration in PD models. In this review, we describe that the functional interaction between these cytokines in the brain differs from the periphery (e.g., their expression is not induced by each other) and present data showing predominantly a toxic effect of these cytokines when expressed at high doses and for a sustained period of time in the substantia nigra pars compacta (SN). In addition, we highlight opposite evidence showing protective effects of these two main cytokines when conditions of duration, amount of expression or state of activation of the target or neighboring cells are changed. Furthermore, we discuss these results in the frame of previous disappointing results from anti-TNF-α clinical trials against Multiple Sclerosis, another neurodegenerative disease with a clear neuroinflammatory component. In conclusion, we hypothesize that the available evidence suggests that the duration and dose of IL-1β or TNF-α expression is crucial to predict their functional effect on the SN. Since these parameters are not amenable for measurement in the SN of PD patients, we call for an in-depth analysis to identify downstream mediators that could be common to the toxic (and not the protective) effects of these cytokines in the SN. This strategy could spare the possible neuroprotective effect of these cytokines operative in the patient at the time of treatment, increasing the probability of efficacy in a clinical setting. Alternatively, receptor-specific agonists or antagonists could also provide a way to circumvent undesired effects of general anti-inflammatory or specific anti-IL-1β or TNF-α therapies against PD.
Collapse
Affiliation(s)
- María C Leal
- Institute Leloir Fundation - IIBBA-CONICET Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Ligoxygakis P. Genetics of Immune Recognition and Response in Drosophila host defense. ADVANCES IN GENETICS 2013; 83:71-97. [DOI: 10.1016/b978-0-12-407675-4.00002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|