1
|
Cedzyński M, Świerzko AS. Collectins and ficolins in neonatal health and disease. Front Immunol 2023; 14:1328658. [PMID: 38193083 PMCID: PMC10773719 DOI: 10.3389/fimmu.2023.1328658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The immune system starts to develop early in embryogenesis. However, at birth it is still immature and associated with high susceptibility to infection. Adaptation to extrauterine conditions requires a balance between colonization with normal flora and protection from pathogens. Infections, oxidative stress and invasive therapeutic procedures may lead to transient organ dysfunction or permanent damage and perhaps even death. Newborns are primarily protected by innate immune mechanisms. Collectins (mannose-binding lectin, collectin-10, collectin-11, collectin-12, surfactant protein A, surfactant protein D) and ficolins (ficolin-1, ficolin-2, ficolin-3) are oligomeric, collagen-related defence lectins, involved in innate immune response. In this review, we discuss the structure, specificity, genetics and role of collectins and ficolins in neonatal health and disease. Their clinical associations (protective or pathogenic influence) depend on a variety of variables, including genetic polymorphisms, gestational age, method of delivery, and maternal/environmental microflora.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | | |
Collapse
|
2
|
Smolnikova MV, Tereshchenko SY. Proteins of the lectin pathway of the complement system activation: immunobiological functions, genetics and involvement in the pathogenesis of human diseases. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022; 12:209-221. [DOI: 10.15789/2220-7619-pot-1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The complement system is the most ancient components in the innate immunity, mainly functioning to primarily eliminate bacterial agents intravascularly. Moreover, the complement complex proteins play a role as a bridge between the systems of innate and adaptive immunity providing adequate conditions for maturation and differentiation of B- and T-lymphocytes. The complement system consists of plasma proteins and membrane receptors. Plasma proteins interact with each other via the three described cascade pathways lectin (which is most ancient phylogenetically), alternative and classical. Lectins are proteins comprising a separate superfamily of pattern-recognizing receptors able to sense molecules of oligo- and polysaccharide nature and induce their aggregation. Among all the lectins, ficolins (FCN) (common domain fibrinogen) and collectins (common domain collagen) mannose-binding lectin (MBL), hepatic and renal collectins have exert unique functions by complexing with carbohydrate components of microbial wall. Formation of a compound complex microbial wall polysaccharides + collectin/ficolin + specific mannose-binding lectin-associated serine proteases (MARP) results in the complement system activation, inflammatory reaction and bacterium elimination. Such scenario is proceeded along the lectin pathway compared to the two other pathways called classical and alternative. Examining a role of the complement system and congenital protein defects in the pathogenesis of various diseases is of topical interest because inborn deficiency of the complement components comprises at least 5% out of total primary immunodeficiency rate, whereas the aspects of their prevalence and pathogenesis remain unexplored. Relevance of investigating the complement system components for diverse populations is tremendous, taking into consideration accumulated evidence regarding an important role of the lectin pathway in viral infections. Lectins, the main proteins in the lectin pathway of the complement activation, are encoded by polymorphic genes, wherein single nucleotide polymorphisms (SNPs) result in altered protein conformation and expression, which, in turn, affects functionality and potential to respond to a pathogen. The distribution of the lectin polymorphic gene frequencies and their haplotypes displays extremely marked population differences. According to analyzing available data, population SNP frequencies including those associated with inborn deficiencies for components of the lectin pathway have been currently scarce or unexplored. hence, here we review major lectins and their functions, their functionally significant SNPs in diverse populations and their pathogenetic importance for host defense functions.
Collapse
|
3
|
Olszowski T, Milona M, Janiszewska-Olszowska J, Safranow K, Uzar I, Walczak A, Sikora M, Chlubek D, Adler G. FCN1 polymorphisms are not the markers of dental caries susceptibility in Polish children: A case-control study. Oral Dis 2022; 28:771-776. [PMID: 33600013 DOI: 10.1111/odi.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine the association of four FCN1 SNPs: -542G>A (rs10120023), -144C>A (rs10117466), +6658C>T (rs148649884), and +7895A>G (rs150625869) with dental caries in Polish children. SUBJECTS AND METHODS The study group consisted of 261 15-year-old Polish teenagers: 82 children with "higher" caries experience (having Decayed Missing Filled Teeth, DMFT >5) and 179 children with "lower" caries experience (having DMFT ≤5). Moreover, in additional comparison, a group of 229 children with caries experience (DMFT ≥1) was compared to a caries-free (DMFT =0) group of 32 children. Extraction of genomic DNA was performed from buccal swabs, and genotyping was performed by Real-Time PCR. RESULTS FCN1 SNPs +6658C>T and +7895A>G appeared to be monomorphic in our sample. The genotype, allele, or haplotype distributions in FCN1 SNPs -542G>A and -144C>A in children with "higher" caries experience did not differ significantly from those in "lower" caries experience group. Similar results with no significant differences were demonstrated for subjects with DMFT ≥1 compared to subjects with DMFT =0. CONCLUSION FCN1 SNPs are not the markers of dental caries susceptibility in Polish children.
Collapse
Affiliation(s)
- Tomasz Olszowski
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Szczecin, Poland
| | - Marta Milona
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Izabela Uzar
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, Szczecin, Poland
| | - Alicja Walczak
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Sikora
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Kielce, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Grażyna Adler
- Department of Studies in Antropogenetics and Biogerontology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Tsakanova G, Stepanyan A, Steffensen R, Soghoyan A, Jensenius JC, Arakelyan A. Pattern Recognition Molecules of Lectin Complement Pathway in Ischemic Stroke. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1347-1368. [PMID: 34707385 PMCID: PMC8544564 DOI: 10.2147/pgpm.s326242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Purpose The current study aimed to investigate in an Armenian population the levels of pattern recognition molecules (PRMs) of lectin complement pathway (LCP), MBL (mannan-binding lectin) and M-ficolin in plasma in ischemic stroke (IS), and the possible association of 11 single nucleotide polymorphisms (SNPs) in MBL2, FCN1 and FCN2 genes. Patients and Methods A total of 122 patients with IS and 150 control subjects were included in this study. Immunofluorometric assays (TRIFMAs) and real-time polymerase chain reactions with TaqMan probes were conducted. Results According to the results, the levels of M-ficolin in IS patients are significantly higher than in control subjects, and the MBL2 rs11003125 and rs12780112 SNPs, as well as MBL2 rs12780112*T and FCN1 rs10120023*T minor alleles (MAs) are negatively associated with the risk of IS. Further, MBL2 rs11003125 and rs1800450 SNPs and the carriage of their MAs, as well as FCN1 rs2989727 SNP and the carriage of FCN1 rs10120023*T MA significantly alter plasma MBL and M-ficolin levels in IS patients, respectively. Five common haplotypes in MBL2 gene and three common haplotypes in FCN1 and FCN2 genes were revealed, among which CGTC was negatively associated with IS and decreasing MBL plasma levels in IS. Conclusion In conclusion, we suggest that LCP PRMs are associated with the risk of developing IS, and may also participate in pathological events leading to post-ischemic brain damage. This study emphasizes the important contribution of alterations of LCP PRMs on genomic and proteomic levels to the pathomechanisms of ischemic stroke, at least in an Armenian population.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia.,CANDLE Synchrotron Research Institute, Yerevan, Armenia
| | - Ani Stepanyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Armine Soghoyan
- "Surb Grigor Lusavorich" Medical Center CJSC, Yerevan, Armenia
| | | | | |
Collapse
|
5
|
Gomaa MH, Khidr EG, Elshafei A, Hamza HS, Fattouh AM, El-Husseiny AA, Aglan A, Eldeib MG. The clinical value of ficolin-3 gene polymorphism in rheumatic heart disease. An Egyptian adolescents study. BMC Res Notes 2021; 14:36. [PMID: 33499929 PMCID: PMC7836457 DOI: 10.1186/s13104-021-05450-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Ficolin-3 is one of the innate immunity molecules that was thought to play a pivotal role in Streptococcus pyogenes autoimmunity and its complications; rheumatic fever (RF) and rheumatic heart disease (RHD). We aimed to disclose if there is an association between ficolin-3 (FCN3) gene polymorphisms (rs4494157 and rs10794501) and RF with or without RHD for the first time in Egyptian adolescents. RESULTS Serum ficolin-3 level was significantly elevated in patients suffering from RF with and without RHD in comparison with control. Regarding FCN3 gene (rs4494157) polymorphism, a significant correlation was found between the A allele and the susceptibility to RF with or without RHD (OR = 2.93, P = 0.0002 and OR = 2.23, P = 0.008 respectively). Besides, AA homozygous genotype showed a significant association with RHD risk (OR = 3.47, P = 0.026). Patients carrying the A allele (CA + AA) had significantly higher serum ficolin-3 than those carrying the CC genotype (P ˂ 0.0001). While the frequency of (rs10794501) polymorphism revealed no significant differences between the controls and RF patients with or without RHD (OR = 1.43, P = 0.261 and OR = 1.48, P = 0.208 respectively).
Collapse
Affiliation(s)
- Maher H Gomaa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Emad Gamil Khidr
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Ahmed Elshafei
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hala S Hamza
- Department of Pediatrics, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Aya M Fattouh
- Department of Pediatrics, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Aglan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Gomaa Eldeib
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Pieczarka C, Andrade FA, Catarino SJ, Lidani KCF, Bavia L, Tizzot R, Skare T, de Messias-Reason IJ. Ficolin-1 and ficolin-3 polymorphisms and susceptibility to rheumatoid arthritis. Autoimmunity 2020; 53:400-407. [PMID: 32820945 DOI: 10.1080/08916934.2020.1809654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 10/23/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, which compromises the synovial membrane resulting in chronic inflammation. Ficolins are key proteins of the lectin pathway of complement able to recognize pathogen-associated molecular patterns, apoptotic cells, and cellular debris mediating the clearance by phagocytes. High ficolin-1 and ficolin-3 levels have been observed in RA patients, however, the influence of polymorphisms in the FCN1 gene in RA is not completely established, while no study evaluated FCN3 gene polymorphisms in RA to date. We investigated the influence of FCN1 and FCN3 gene polymorphisms in the susceptibility and clinical presentation of RA. A total of 148 patients with RA and up to 160 controls from Southern Brazil were genotyped by sequence-specific PCR (PCR-SSP) for five FCN1 promoter polymorphisms (rs2989727, rs10120023, rs17039495, rs10117466, and rs10858293) and three FCN3 gene variants (rs532781899, rs28362807, and rs4494157). The FCN1 g.-542GG (rs10120023) genotype and g.-542G allele, were associated with increased susceptibility to RA (p = .025, OR = 1.69 [1.07-2.69]; p = .041, OR = 1.47 [1.02-2.12], respectively) and related to decreased FCN1 gene expression in whole blood (p < .00001), according to gene expression databases. In addition, the FCN1 AAGAG haplotype was more prevalent in rheumatoid factor seronegative in comparison to seropositive patients (p = .006, OR = 0.042 [0.002-0.80]). There was no association of FCN3 polymorphisms with the susceptibility or clinical characteristics of RA. Our results indicate that the FCN1 rs10120023 [g.-542G>A] polymorphism in the promoter region might contribute to RA susceptibility, probably by impacting FCN1 gene expression.
Collapse
Affiliation(s)
- Cristhine Pieczarka
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Sandra Jeremias Catarino
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Regina Tizzot
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thelma Skare
- Rheumatology Unit, Evangelical Mackenzie Hospital, Curitiba, Brazil
| | | |
Collapse
|
7
|
Świerzko AS, Cedzyński M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front Immunol 2020; 11:585243. [PMID: 33193407 PMCID: PMC7609860 DOI: 10.3389/fimmu.2020.585243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lung diseases are among the leading causes of morbidity and mortality. Complement activation may prevent a variety of respiratory infections, but on the other hand, could exacerbate tissue damage or contribute to adverse side effects. In this review, the associations of factors specific for complement activation via the lectin pathway (LP) with infections of the respiratory system, from birth to adulthood, are discussed. The most extensive data concern mannose-binding lectin (MBL) which together with other collectins (collectin-10, collectin-11) and the ficolins (ficolin-1, ficolin-2, ficolin-3) belong to pattern-recognition molecules (PRM) specific for the LP. Those PRM form complexes with MBL-associated serine proteases (MASP-1, MASP-2, MASP-3) and related non-enzymatic factors (MAp19, MAp44). Beside diseases affecting humanity for centuries like tuberculosis or neonatal pneumonia, some recently published data concerning COVID-19 are summarized.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
8
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
9
|
Sokołowska A, Świerzko AS, Gajek G, Gołos A, Michalski M, Nowicki M, Szala-Poździej A, Wolska-Washer A, Brzezińska O, Wierzbowska A, Jamroziak K, Kowalski ML, Thiel S, Matsushita M, Jensenius JC, Cedzyński M. Associations of ficolins and mannose-binding lectin with acute myeloid leukaemia in adults. Sci Rep 2020; 10:10561. [PMID: 32601370 PMCID: PMC7324623 DOI: 10.1038/s41598-020-67516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated clinical associations of ficolins and mannose-binding lectin (MBL) in 157 patients suffering from acute myeloid leukaemia (AML). Concentrations of ficolin-1, ficolin-2, ficolin-3 and MBL (before chemotherapy) in serum were determined as were selected polymorphisms of the corresponding genes (FCN1, FCN2, FCN3 and MBL2). The control group (C) consisted of 267 healthy unrelated individuals. Median level of ficolin-1 in patients was lower (p < 0.000001) while median levels of ficolin-2, ficolin-3 and MBL were higher (p < 0.000001, p < 0.000001 and p = 0.0016, respectively) compared with controls. These findings were generally associated with AML itself, however the highest MBL levels predicted higher risk of severe hospital infections (accompanied with bacteremia and/or fungaemia) (p = 0.012) while the lowest ficolin-1 concentrations tended to be associated with prolonged (> 7 days) fever (p = 0.026). Genotyping indicated an association of G/G homozygosity (corresponding to FCN1 gene - 542 G > A polymorphism) with malignancy [p = 0.004, OR = 2.95, 95% CI (1.41-6.16)]. Based on ROC analysis, ficolin-1, -2 and -3 may be considered candidate supplementary biomarkers of AML. Their high potential to differentiate between patients from non-malignant controls but also from persons suffering from other haematological cancers (multiple myeloma and lymphoma) was demonstrated.
Collapse
Affiliation(s)
- Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Copernicus Memorial Hospital in Łódź Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Lodz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
- Department of Rheumatology, Medical University of Łódź, Pieniny 30, 92-003, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland.
| |
Collapse
|
10
|
Sokołowska A, Świerzko AS, Szala-Poździej A, Augustynowicz-Kopeć E, Kozińska M, Niemiec T, Błachnio M, Borkowska-Tatar D, Jensenius JC, Thiel S, Dziadek J, Cedzyński M. Selected factors of the innate immunity in Polish patients suffering from pulmonary tuberculosis. Immunobiology 2020; 225:151905. [PMID: 32007302 DOI: 10.1016/j.imbio.2020.151905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/01/2023]
Abstract
We conducted a prospective study of 453 Polish patients suffering from pulmonary tuberculosis and 267 healthy controls. Selected polymorphisms of the genes encoding for collectins, ficolins and MBL-associated serine protease 2 were investigated as were serum concentrations of mannose-binding lectin, surfactant protein D, ficolin-1 and ficolin-3. The number of MBL2 gene exon 1 variant allele carriers was significantly higher in patients, compared with controls. The homozygosity for SFTPA2 +26 C > A SNP variant allele occurred less commonly within TB, while homozygosity for the FCN1 -542 G > A major allele was less frequent within the control group. Two patients were found MASP-2-deficient. Serum concentrations of MBL, SP-D and ficolin-1 were higher amongst patients while the converse was found for ficolin-3. Ficolin-1 had high specificity to differentiate between individuals with tuberculosis and healthy persons and therefore may be considered potential disease marker.
Collapse
Affiliation(s)
- Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | | | - Monika Kozińska
- Institute of Tuberculosis and Lung Diseases, Plocka 26, 01-138, Warsaw, Poland
| | - Tomasz Niemiec
- The Voivodeship Hospital of Lung Diseases in Jaroszowiec, Kolejowa 1a, 32-312, Jaroszowiec, Poland
| | - Maria Błachnio
- Masovian Center of Lung Diseases and Tuberculosis Treatment, Narutowicza 80, 05-400, Otwock, Poland
| | | | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Jarosław Dziadek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland.
| |
Collapse
|
11
|
Elkoumi MA, Abdellatif SH, Mohamed FY, Sherif AH, Elashkar SSA, Saleh RM, Boraey NF, Abdelaal NM, Akeel NE, Elhewala AA, Mosbah AA, Zakaria MT, Soliman MM, Salah A, Sedky YM, Sobieh AA, Mashali MH, Waked NM, Elshreif AM, Hafez SF, Hashem MIA, Shehab MM, Soliman AA, Emam AA, Ahmed AAA, Fahim MS, Elshehawy NA, Abdel-Aziz MM, Abdou AM, El-Shehawy AA, Youssef MAA, Fahmy DS, Malek MM, Osman SF, Ibrahim MAM, Alanwar MI, Zeidan NMS. Ficolin-1 gene (FCN1) -144 C/A polymorphism is associated with adverse outcome of severe pneumonia in the under-five Egyptian children: A multicenter study. Pediatr Pulmonol 2020; 55:1175-1183. [PMID: 32142211 DOI: 10.1002/ppul.24719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pneumonia is the foremost cause of child death worldwide. M-ficolin is encoded by the FCN1 gene and represents a novel link between innate and adaptive immunity. OBJECTIVES To investigate the FCN1 -144 C/A (rs10117466) polymorphism as a potential marker for pneumonia severity and adverse outcome namely complications or mortality in the under-five Egyptian children. METHODS This was a prospective multicenter study that included 620 children hospitalized with World Health Organization-defined severe pneumonia and 620 matched healthy control children. Polymorphism rs10117466 of the FCN1 gene promoter was analyzed by PCR-SSP, while serum M-ficolin levels were assessed by ELISA. RESULTS The FCN1 A/A genotype and A allele at the -144 position were more frequently observed in patients compared to the control children (43.4% vs 27.6%; odds ratio [OR]: 1.62; [95% confidence interval {CI}: 1.18-2.2]; for the A/A genotype) and (60.8% vs 52.5%; OR: 1.4; [95% CI: 1.19-1.65]; for the A allele); P < .01. The FCN1 -144 A/A homozygous patients had significantly higher serum M-ficolin concentrations (mean: 1844 ± 396 ng/mL) compared with those carrying the C/C or C/A genotype (mean: 857 ± 278 and 1073 ± 323 ng/mL, respectively; P = .002). FCN1 -144 A/A genotype was an independent risk factor for adverse outcomes in children with severe pneumonia (adjusted OR = 4.85, [95% CI: 2.96-10.25]; P = .01). CONCLUSION The FCN1 A/A genotype at the -144 position was associated with high M-ficolin serum levels and possibly contributes to enhanced inflammatory response resulting in the adverse outcome of pneumonia in the under-five Egyptian children.
Collapse
Affiliation(s)
- Mohamed A Elkoumi
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sawsan H Abdellatif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Faisal Y Mohamed
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed H Sherif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa S A Elashkar
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab M Saleh
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa F Boraey
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - NourEldin M Abdelaal
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nagwa E Akeel
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elhewala
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira A Mosbah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mervat T Zakaria
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohammed M Soliman
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Salah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yasser M Sedky
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Alaa A Sobieh
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed H Mashali
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nevin M Waked
- Department of Pediatrics, Faculty of Medicine, October 6 University, Cairo, Egypt
| | - Anas M Elshreif
- Department of Pediatrics, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Sahbaa F Hafez
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Shehab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed S Fahim
- Department of Anathesia, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Naglaa A Elshehawy
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Marwa M Abdel-Aziz
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Adel M Abdou
- Department of Clinical pathology, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Ahmed A El-Shehawy
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Manal A A Youssef
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia S Fahmy
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai M Malek
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherif F Osman
- Department of Radiology, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| | - Mohamed A M Ibrahim
- Department of Clinical pathology, Faculty of Medicine, Sohag University, Egypt
| | - Mohamed I Alanwar
- Department of Cardiothoracic surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nancy M S Zeidan
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Świerzko AS, Michalski M, Sokołowska A, Nowicki M, Szala-Poździej A, Eppa Ł, Mitrus I, Szmigielska-Kapłon A, Sobczyk-Kruszelnicka M, Michalak K, Gołos A, Wierzbowska A, Giebel S, Jamroziak K, Kowalski ML, Brzezińska O, Thiel S, Matsushita M, Jensenius JC, Gajek G, Cedzyński M. Associations of Ficolins With Hematological Malignancies in Patients Receiving High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantations. Front Immunol 2020; 10:3097. [PMID: 32047495 PMCID: PMC6997528 DOI: 10.3389/fimmu.2019.03097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
A prospective study of 312 patients [194 with multiple myeloma (MM) and 118 with lymphomas (LYMPH)] receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HSCT) was conducted. Ficolins are innate immune defense factors, able to distinguish between "self" "abnormal self," and "non-self" and contribute to the elimination of the last two by direct opsonization and/or initiation of complement activation via the lectin pathway. Concentrations of ficolin-1, ficolin-2, and ficolin-3 in serially taken serum samples were determined as were the polymorphisms of the corresponding (FCN1, FCN2, and FCN3) genes. Serum samples were collected before conditioning chemotherapy, before HSCT, and once weekly post-HSCT (four to five samples in total); some patients were also sampled at 1 and/or 3 months post-transplantation. The control group (C) consisted of 267 healthy unrelated individuals. Median ficolin-1 and ficolin-2 (but not ficolin-3) levels in MM patients' sera taken before chemotherapy were lower (and correspondingly frequencies of the lowest concentrations were higher) compared with controls. That appeared to be associated with the malignant disease itself rather than with post-HSCT complications (febrile neutropenia, infections accompanied, or not with bacteremia). Higher frequencies of the FCN1 genotype G/A-C/C-G/G (corresponding to polymorphisms at positions -542, -144, and +6658, respectively) and FCN2 gene heterozygosity for the -857 C>A polymorphism were found among patients diagnosed with MM compared with the C group. Furthermore, FCN2 G/G homozygosity (-557 A>G) was found more frequently and heterozygosity G/T at +6424 less frequently among LYMPH patients than among the healthy subjects. Heterozygosity for +1637delC mutation of the FCN3 gene was more common among patients diagnosed with lymphomas who experienced hospital infections. Although no evidence for an association of low ficolin-1 or ficolin-2 with infections during neutropenia following chemotherapy before HSCT was found, we observed a possible protective effect of ficolins during follow-up.
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital, Łódz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Łukasz Eppa
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Iwona Mitrus
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Michalak
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
- Department of Rheumatology, Medical University of Łódz, Łódz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | | | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| |
Collapse
|
13
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
14
|
Catarino SJ, Andrade FA, Boldt ABW, Guilherme L, Messias-Reason IJ. Sickening or Healing the Heart? The Association of Ficolin-1 and Rheumatic Fever. Front Immunol 2018; 9:3009. [PMID: 30619357 PMCID: PMC6305461 DOI: 10.3389/fimmu.2018.03009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
Rheumatic fever (RF) and its subsequent progression to rheumatic heart disease (RHD) are chronic inflammatory disorders prevalent in children and adolescents in underdeveloped countries, and a contributing factor for high morbidity and mortality rates worldwide. Their primary cause is oropharynx infection by Streptococcus pyogenes, whose acetylated residues are recognized by ficolin-1. This is the only membrane-bound, as well as soluble activator molecule of the complement lectin pathway (LP). Although LP genetic polymorphisms are associated with RF, FCN1 gene's role remains unknown. To understand this role, we haplotyped five FCN1 promoter polymorphisms by sequence-specific amplification in 193 patients (138 with RHD and 55, RF only) and 193 controls, measuring ficolin-1 serum concentrations in 78 patients and 86 controls, using enzyme-linked immunosorbent assay (ELISA). Patients presented lower ficolin-1 serum levels (p < 0.0001), but did not differ according to cardiac commitment. Control's genotype distribution was in the Hardy-Weinberg equilibrium. Four alleles (rs2989727: c.-1981A, rs10120023: c.-542A, rs10117466: c.-144A, and rs10858293: c.33T), all associated with increased FCN1 gene expression in whole blood or adipose subcutaneous tissue (p = 0.000001), were also associated with increased protection against the disease. They occur within the *3C2 haplotype, associated with an increased protection against RF (OR = 0.41, p < 0.0001) and with higher ficolin-1 levels in patient serum (p = 0.03). In addition, major alleles of these same polymorphisms comprehend the most primitive *1 haplotype, associated with increased susceptibility to RF (OR = 1.76, p < 0.0001). Nevertheless, instead of having a clear-cut protective role, the minor c.-1981A and c.-144A alleles were also associated with additive susceptibility to valvar stenosis and mitral insufficiency (OR = 3.75, p = 0.009 and OR = 3.37, p = 0.027, respectively). All associations were independent of age, sex or ethnicity. Thus, minor FCN1 promoter variants may play a protective role against RF, by encouraging bacteria elimination as well as increasing gene expression and protein levels. On the other hand, they may also predispose the patients to RHD symptoms, by probably contributing to chronic inflammation and tissue injury, thus emphasizing the dual importance of ficolin-1 in both conditions.
Collapse
Affiliation(s)
- Sandra Jeremias Catarino
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- Human Molecular Genetics Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Iara Jose Messias-Reason
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
15
|
Tizzot MR, Lidani KCF, Andrade FA, Mendes HW, Beltrame MH, Reiche E, Thiel S, Jensenius JC, de Messias-Reason IJ. Ficolin-1 and Ficolin-3 Plasma Levels Are Altered in HIV and HIV/HCV Coinfected Patients From Southern Brazil. Front Immunol 2018; 9:2292. [PMID: 30349535 PMCID: PMC6187973 DOI: 10.3389/fimmu.2018.02292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a key component of the innate immune system, participating in the surveillance against infectious agents. Once activated by one of the three different pathways, complement mediates cell lysis, opsonization, signalizes pathogens for phagocytosis and induces the adaptive immune response. The lectin pathway is constituted by several soluble and membrane bound proteins, called pattern recognition molecules (PRM), including mannose binding lectin (MBL), Ficolins-1, -2, and -3, and Collectin 11. These PRMs act on complement activation as recognition molecules of pathogen-associated molecular patterns (PAMPs) such as N-acetylated, found in glycoproteins of viral envelopes. In this study, Ficolin-1 and Ficolin-3 plasma levels were evaluated in 178 HIV patients (93 HIV; 85 HIV/HCV) and 85 controls from southern Brazil. Demographic and clinical-laboratory findings were obtained during medical interview and from medical records. All parameters were assessed by logistic regression, adjusted for age, ancestry, and sex. Significantly lower levels of Ficolin-1 were observed in HIV/HCV coinfected when compared to HIV patients (p = 0.005, median = 516 vs. 667 ng/ul, respectively) and to controls (p < 0.0001, 1186 ng/ul). Ficolin-1 levels were lower in males than in females among HIV patients (p = 0.03) and controls (p = 0.0003), but no association of Ficolin-1 levels with AIDS was observed. On the other hand, Ficolin-3 levels were significantly lower in controls when compared to HIV (p < 0.0001, medians 18,240 vs. 44,030 ng/ml, respectively) and HIV/HCV coinfected (p < 0.0001, 40,351 ng/ml) patients. There was no correlation between Ficolin-1 and Ficolin-3 levels and age, HIV viral load or opportunistic infections. However, Ficolin-3 showed a positive correlation with T CD4 cell counts in HIV monoinfected patients (p = 0.007). We provide here the first assessment of Ficolin-1 and-3 levels in HIV and HIV/HCV coinfected patients, which indicates a distinct role for these pattern recognition molecules in both viral infections.
Collapse
Affiliation(s)
- Maria Regina Tizzot
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Hellen Weinschutz Mendes
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Edna Reiche
- Clinic Hospital, Estate University of Londrina, Londrina, Brazil
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Iara J. de Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
16
|
Llull L, Thiel S, Amaro S, Cervera Á, Planas AM, Chamorro Á. Ficolin-1 Levels in Patients Developing Vasospasm and Cerebral Ischemia After Spontaneous Subarachnoid Hemorrhage. Mol Neurobiol 2017; 54:6572-6580. [PMID: 27734336 DOI: 10.1007/s12035-016-0180-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022]
Abstract
Activation of the inflammatory generating complement system might play a pathogenic role in spontaneous subarachnoid hemorrhage (SAH). We studied whether plasma and cerebrospinal fluid (CSF) levels of complement proteins were associated with angiographic vasospasm and cerebral ischemic lesions after SAH. Ficolin-1 (M-ficolin), ficolin-3 (H-ficolin), mannose-binding lectin (MBL), MBL-associated serine protease 2 (MASP-2), MASP-3, and MAp44 were analyzed in plasma of 45 SAH patients at 24 h after bleeding. Additionally, ficolin-1 levels were measured in cerebrospinal fluid (CSF) samples obtained 24 h after bleeding in 19 patients with external ventricular drainage placement. Angiographic vasospasm was identified using transcranial Doppler or angio-CT and considered symptomatic when new focal deficits or ischemic lesions appeared in follow-up neuroimaging. Functional outcome was assessed using modified Rankin scale (mRS) at 90 days. Higher plasma ficolin-1 levels (ng/ml) at 24 h were associated with poor Hunt and Hess (HH) grade at admission (mean 1158 (SD 360) vs 1654 (871), p = 0.004) and were higher in patients developing angiographic vasospasm (1119.44 (374) vs 1514 (755), p = 0.025) and cerebral ischemia (1067 (325) vs 1610 (766), p = 0.003). In multivariate models adjusted for confounders, higher ficolin-1 remained associated with brain ischemic lesions (OR per 100 ng/ml 1.34, 95 %CI 1.04-1.73, p = 0.026) and vasospasm (OR per 100 ng/ml of increase 1.26, 95 %CI 1.02-1.56, p = 0.031). Patients with angiographic vasospasm and cerebral ischemic lesions had non-significantly lower ficolin-1 concentration in the CSF. Plasma ficolin-1 emerged as a marker of clinical severity and brain ischemia after SAH. Larger studies will be required to establish the therapeutic implications of this finding.
Collapse
Affiliation(s)
- Laura Llull
- Neurology Service, Hospital Clinic, Comprehensive Stroke Center, Villarroel 170, 08036, Barcelona, Spain.
| | - Steffen Thiel
- Department of Biomedicine, Health Aarhus University, Aarhus, Denmark
| | - Sergio Amaro
- Neurology Service, Hospital Clinic, Comprehensive Stroke Center, Villarroel 170, 08036, Barcelona, Spain
| | - Álvaro Cervera
- Neurosciences Department, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Ángel Chamorro
- Neurology Service, Hospital Clinic, Comprehensive Stroke Center, Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
17
|
Świerzko AS, Szala-Poździej A, Kilpatrick DC, Sobociński M, Chojnacka K, Sokołowska A, Michalski M, Mazerant K, Jensenius JC, Matsushita M, Krajewski WR, Szczapa J, Bąk-Romaniszyn L, Zeman K, Cedzyński M. Components of the lectin pathway of complement activation in paediatric patients of intensive care units. Immunobiology 2016; 221:657-69. [PMID: 26850322 DOI: 10.1016/j.imbio.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 11/18/2022]
Abstract
Infections are a major cause of childhood mortality. We investigated components of the lectin pathway of complement activation in the context of sepsis at both genetic and protein levels in neonates, infants and older children. Major components of the lectin pathway and two genes for Toll-like receptors were studied in 87 neonates with confirmed sepsis and compared with 40 babies with infections who did not develop sepsis (disease controls) and 273 infection-free neonatal controls. A second cohort comprised 47 older children with sepsis and 87 controls. Low MBL-conferring genotypes (LXA/O+O/O) were more frequent in sepsis patients than in healthy controls but no significant differences in the frequency of SNPs of other lectin pathway genes (FCN1, FCN2, FCN3, MASP1/3, MASP2) or TLR receptor genes (TLR2, TLR4) were found. One case of primary MASP-2 deficiency was found among healthy pre-terms and one neonate suffering from SIRS was heterozygous for the rare FCN1 gene mutation, +6658 G>A. Generally, sepsis was associated with low serum MBL and low ficolin-2 concentrations on admission. Among neonates, ficolin-1 and MASP-2 levels were elevated in sepsis relative to healthy, but not disease, controls. Unlike neonates, ficolin-3 and MASP-2 levels were lower in older patients than in healthy controls while no difference was found for ficolin-1. With the possible exception of MBL, inherited lectin pathway insufficiencies do not seem to predispose to sepsis, rather changes in protein concentrations reflect alterations in disease course.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - David C Kilpatrick
- Scottish National Blood Transfusion Service, National Science Laboratory, Ellen's Glen Road, Edinburgh, EH17 7QT Scotland, UK
| | - Michał Sobociński
- Department of Anesthesiology and Intensive Therapy, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Karolina Chojnacka
- Department of Newborns Infectious Diseases, Poznan University of Medical Sciences, Polna 33, 60-533 Poznan, Poland
| | - Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Karolina Mazerant
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Vennellyst Boulevard 4, Aarhus DK-8000, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Wojciech R Krajewski
- Department of Anesthesiology and Intensive Therapy, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Jerzy Szczapa
- Department of Newborns Infectious Diseases, Poznan University of Medical Sciences, Polna 33, 60-533 Poznan, Poland
| | - Leokadia Bąk-Romaniszyn
- Department of Nutrition in Digestive Tract Diseases, Medical University of Lodz, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Krzysztof Zeman
- Department of Paediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
18
|
Zuliani-Alvarez L, Midwood KS. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:273-285. [PMID: 26005593 DOI: 10.1089/wound.2014.0599] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
20
|
Human lectins and their roles in viral infections. Molecules 2015; 20:2229-71. [PMID: 25642836 PMCID: PMC6272597 DOI: 10.3390/molecules20022229] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
Collapse
|
21
|
Ammitzbøll CG, Steffensen R, Bøgsted M, Hørslev-Petersen K, Hetland ML, Junker P, Johansen JS, Pødenphant J, Østergaard M, Ellingsen T, Stengaard-Pedersen K. CRP genotype and haplotype associations with serum C-reactive protein level and DAS28 in untreated early rheumatoid arthritis patients. Arthritis Res Ther 2014; 16:475. [PMID: 25359432 PMCID: PMC4247621 DOI: 10.1186/s13075-014-0475-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Single-nucleotide polymorphisms (SNPs) in the CRP gene are implicated in the regulation of the constitutional C-reactive protein (CRP) expression and its response to proinflammatory stimuli. Previous reports suggest that these effects may have an impact on clinical decision-making tools based on CRP, such as the Disease Activity Score in 28 joints (DAS28). We aimed to investigate the possible association between seven CRP SNPs, their haplotypes and the serum levels of CRP, as well as DAS28 scores, in two cohorts of untreated active early rheumatoid arthritis (RA) patients followed during their initial treatment. METHODS Overall, 315 patients with RA from two randomized controlled trials (the CIMESTRA and OPERA trials) who were naïve to disease-modifying antirheumatic drugs and steroids with disease durations less than 6 months were included. Seven CRP SNPs were investigated: rs11265257, rs1130864, rs1205, rs1800947, rs2808632, rs3093077 and rs876538. The genotype and haplotype associations with CRP and DAS28 levels were evaluated using linear regression analysis adjusted for age, sex and treatment. RESULTS The minor allele of rs1205 C > T was associated with decreased CRP levels at baseline (P = 0.03), with the TT genotype having a 50% reduction in CRP from 16.7 to 8.4 mg/L (P = 0.005) compared to homozygosity of the major allele, but no association was observed at year 1 (P = 0.38). The common H2 haplotype, characterized by the T allele of rs1205, was associated with a 26% reduction in CRP at baseline (P = 0.043), although no effect was observed at year 1 (P = 0.466). No other SNP or haplotype was associated with CRP at baseline or at year 1 (P ≥ 0.09). We observed no associations between SNPs or haplotypes and DAS28 scores at baseline or at year 1 (P ≥ 0.10). CONCLUSION CRP genotype and haplotype were only marginally associated with serum CRP levels and had no association with the DAS28 score. This study shows that DAS28, the core parameter for inflammatory activity in RA, can be used for clinical decision-making without adjustment for CRP gene variants. TRIAL REGISTRATION The OPERA study is registered at Clinicaltrials.gov (NCT00660647). The CIMESTRA study is not listed in a clinical trials registry, because patients were included between October 1999 and October 2002.
Collapse
Affiliation(s)
- Christian Gytz Ammitzbøll
- />Department of Rheumatology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
- />Department of Medicine, Randers Regional Hospital, Skovlyvej 1, 8930 Randers, Denmark
| | - Rudi Steffensen
- />Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32, 9000 Aalborg, Denmark
| | - Martin Bøgsted
- />Department of Haematology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
- />Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, 9220 Aalborg, Denmark
| | - Kim Hørslev-Petersen
- />King Christian 10th Hospital for Rheumatic Diseases, Toldbodgade 3, 6300 Gråsten, Denmark
- />South Jutland Hospital, Institute of Regional Health Services Research, University of Southern Denmark, Winsløwparken 19, Odense M, Denmark
| | - Merete L Hetland
- />Copenhagen Center for Arthritis Research, Glostrup Hospital, Glostrup, Nordre Ringvej 57, 2600 Copenhagen, Denmark
- />Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Junker
- />Department of Rheumatology C, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Julia S Johansen
- />Department of Medicine and Oncology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
- />Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Jan Pødenphant
- />Copenhagen University at Gentofte, Niels Andersens Vej 65, 2900 Hellerup, Denmark
| | - Mikkel Østergaard
- />Copenhagen Center for Arthritis Research, Glostrup Hospital, Glostrup, Nordre Ringvej 57, 2600 Copenhagen, Denmark
- />Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Torkell Ellingsen
- />Department of Rheumatology C, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- />Department of Medicine, Silkeborg Regional Hospital, Falkevej 3, 8600 Silkeborg, Denmark
| | | |
Collapse
|
22
|
Beltrame MH, Catarino SJ, Goeldner I, Boldt ABW, de Messias-Reason IJ. The lectin pathway of complement and rheumatic heart disease. Front Pediatr 2014; 2:148. [PMID: 25654073 PMCID: PMC4300866 DOI: 10.3389/fped.2014.00148] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever.
Collapse
Affiliation(s)
- Marcia Holsbach Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | - Sandra Jeremias Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | | | | |
Collapse
|
23
|
Gytz Ammitzbøll C, Steffensen R, Jørgen Nielsen H, Thiel S, Stengaard-Pedersen K, Bøgsted M, Jensenius JC. Polymorphisms in the MASP1 gene are associated with serum levels of MASP-1, MASP-3, and MAp44. PLoS One 2013; 8:e73317. [PMID: 24023860 PMCID: PMC3759447 DOI: 10.1371/journal.pone.0073317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION MASP-1 is the first protein in the activation of the lectin pathway and MASP-1 is, like its isoforms MASP-3 and MAp44, encoded by the MASP1 gene. Our aim was to explore associations between polymorphisms in MASP1 and corresponding concentrations of MASP-1, MASP-3, and MAp44 in plasma as well as the genetic contribution to the equilibrium between the three proteins. METHODS Fifteen SNPs were genotyped in the MASP1 gene in 350 blood donors. Corresponding plasma concentrations of MASP-1, MASP-3, and MAp44 were measured. RESULTS A total of 10 different SNPs showed associations with the concentration of one or some of the three proteins (rs113938200, rs190590338, rs35089177, rs3774275, rs67143992, rs698090, rs72549154, rs72549254, rs75284004, rs7625133), and several of these were in strong linkage. SNPs located in the mutually exclusive splice region had opposite effects on the protein concentrations. Being e.g. homozygote for the minor allele of rs3774275 was associated with an increase in median concentration of 13% in MASP-1(P=0.03), 29% in MAp44 (P<0.001), and a decrease in MASP-3 of 26% (P<0.001) compared to homozygosis for the major allele. Heterozygosis of rs113938200 (p.Asn368Asp in MAp44) was associated with a reduced MAp44 concentration of 61% (P=0.005). Rs190590338 located in the promoter region was associated in the heterozygote form with an increased MASP-1 concentration of 35% (P = 0.002). A multivariate linear regression model including sex, age, M- and H-ficolin, MBL, and the 15 SNPs explained 20-48% of the variation in the concentration of the three proteins and the SNPs investigated contributed with the most explanatory power (12-23%). DISCUSSION The present study described 10 SNPs, which were associated with the concentration of one or some of the three proteins originating from the MASP1 gene and in a multivariate model it was shown that the SNPs contributed with the most explanatory power to the protein concentrations.
Collapse
Affiliation(s)
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aarhus, Denmark
- Department of Mathematical Sciences, Aalborg University, Aarhus, Denmark
| | | |
Collapse
|