1
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Springhetti P, Abdoun K, Clavel MA. Sex Differences in Aortic Stenosis: From the Pathophysiology to the Intervention, Current Challenges, and Future Perspectives. J Clin Med 2024; 13:4237. [PMID: 39064275 PMCID: PMC11278486 DOI: 10.3390/jcm13144237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Calcific aortic stenosis (AS) is a major cause of morbidity and mortality in high-income countries. AS presents sex-specific features impacting pathophysiology, outcomes, and management strategies. In women, AS often manifests with a high valvular fibrotic burden, small valvular annuli, concentric left ventricular (LV) remodeling/hypertrophy, and, frequently, supernormal LV ejection fraction coupled with diastolic dysfunction. Paradoxical low-flow low-gradient AS epitomizes these traits, posing significant challenges post-aortic valve replacement due to limited positive remodeling and significant risk of patient-prosthesis mismatch. Conversely, men present more commonly with LV dilatation and dysfunction, indicating the phenotype of classical low-flow low-gradient AS, i.e., with decreased LV ejection fraction. However, these distinctions have not been fully incorporated into guidelines for AS management. The only treatment for AS is aortic valve replacement; women are frequently referred late, leading to increased heart damage caused by AS. Therefore, it is important to reassess surgical planning and timing to minimize irreversible cardiac damage in women. The integrity and the consideration of sex differences in the management of AS is critical. Further research, including sufficient representation of women, is needed to investigate these differences and to develop individualized, sex-specific management strategies.
Collapse
Affiliation(s)
- Paolo Springhetti
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada; (P.S.); (K.A.)
- Department of Medicine, Division of Cardiology, University of Verona, 37129 Verona, Italy
| | - Kathia Abdoun
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada; (P.S.); (K.A.)
| | - Marie-Annick Clavel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada; (P.S.); (K.A.)
| |
Collapse
|
3
|
Siva Sankari G, James R, Payva F, Sivaramakrishnan V, Vineeth Kumar TV, Kanchi S, Santhy KS. Computational analysis of sodium-dependent phosphate transporter SLC20A1/PiT1 gene identifies missense variations C573F, and T58A as high-risk deleterious SNPs. J Biomol Struct Dyn 2024; 42:4072-4086. [PMID: 37286379 DOI: 10.1080/07391102.2023.2218939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
SLC20A1/PiT1 is a sodium-dependent inorganic phosphate transporter, initially recognized as the retroviral receptor for Gibbon Ape Leukemia Virus in humans. SNPs in SLC20A1 is associated with Combined Pituitary Hormone Deficiency and Sodium Lithium Counter transport. Using in silico techniques, we have screened the nsSNPs for their deleterious effect on the structure and function of SLC20A1. Screening with sequence and structure-based tools on 430 nsSNPs, filtered 17 nsSNPs which are deleterious. To evaluate the role of these SNPs, protein modeling and MD simulations were performed. A comparative analysis of model generated with SWISS-MODEL and AlphaFold shows that many residues are in the disallowed region of Ramachandran plot. Since SWISS-MODEL structure has a 25-residue deletion, the AlphaFold structure was used to perform MD simulation for equilibration and structure refinement. Further, to understand perturbation of energetics, we performed in silico mutagenesis and ΔΔG calculation using FoldX on MD refined structures, which yielded SNPs that are neutral (3), destabilizing (12) and stabilizing (2) on protein structure. Furthermore, to elucidate the impact of SNPs on structure, we performed MD simulations to discern the changes in RMSD, Rg, RMSF and LigPlot of interacting residues. RMSF profiles of representative SNPs revealed that A114V (neutral) and T58A (positive) were more flexible & C573F (negative) was more rigid compared to wild type, which is also reflected in the changes in number of local interacting residues in LigPlot and ΔΔG. Taken together, our results show that SNPs can lead to structural perturbations and impact the function of SLC20A1 with potential implications for disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Siva Sankari
- Centre for Wildlife Studies, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, India
| | - Remya James
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Febby Payva
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | | | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | - K S Santhy
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Wang J, Fang CL, Noller K, Wei Z, Liu G, Shen K, Song K, Cao X, Wan M. Bone-derived PDGF-BB drives brain vascular calcification in male mice. J Clin Invest 2023; 133:e168447. [PMID: 37815871 PMCID: PMC10688993 DOI: 10.1172/jci168447] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRβ (p-PDGFRβ) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRβ/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.
Collapse
Affiliation(s)
- Jiekang Wang
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | | | | | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ke Shen
- Department of Orthopaedic Surgery
| | - Kangping Song
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Xu Cao
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Mei Wan
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| |
Collapse
|
5
|
Correia-Branco A, Mei A, Pillai S, Jayaraman N, Sharma R, Paquette AG, Neradugomma NK, Benson C, Chavkin NW, Mao Q, Wallingford MC. SLC20a1/PiT-1 is required for chorioallantoic placental morphogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e220018. [PMID: 36795703 PMCID: PMC10160536 DOI: 10.1530/vb-22-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/16/2023] [Indexed: 02/17/2023]
Abstract
The placenta mediates the transport of nutrients, such as inorganic phosphate (Pi), between the maternal and fetal circulatory systems. The placenta itself also requires high levels of nutrient uptake as it develops to provide critical support for fetal development. This study aimed to determine placental Pi transport mechanisms using in vitro and in vivo models. We observed that Pi (P33) uptake in BeWo cells is sodium dependent and that SLC20A1/Slc20a1 is the most highly expressed placental sodium-dependent transporter in mouse (microarray), human cell line (RT-PCR) and term placenta (RNA-seq), supporting that normal growth and maintenance of the mouse and human placenta requires SLC20A1/Slc20a1. Slc20a1 wild-type (Slc20a1+/+) and knockout (Slc20a1-/-) mice were produced through timed intercrosses and displayed yolk sac angiogenesis failure as expected at E10.5. E9.5 tissues were analyzed to test whether placental morphogenesis requires Slc20a1. At E9.5, the developing placenta was reduced in size in Slc20a1-/-. Multiple structural abnormalities were also observed in the Slc20a1-/-chorioallantois. We determined that monocarboxylate transporter 1 protein (MCT1+) cells were reduced in developing Slc20a1-/-placenta, confirming that Slc20a1 loss reduced trophoblast syncytiotrophoblast 1 (SynT-I) coverage. Next, we examined the cell type-specific Slc20a1 expression and SynT molecular pathways in silico and identified Notch/Wnt as a pathway of interest that regulates trophoblast differentiation. We further observed that specific trophoblast lineages express Notch/Wnt genes that associate with endothelial cell tip-and-stalk cell markers. In conclusion, our findings support that Slc20a1 mediates the symport of Pi into SynT cells, providing critical support for their differentiation and angiogenic mimicry function at the developing maternal-fetal interface.
Collapse
Affiliation(s)
- Ana Correia-Branco
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ariel Mei
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sreehari Pillai
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nirmala Jayaraman
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Radhika Sharma
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Alison G Paquette
- University of Washington, Department of Pediatrics, Seattle, Washington, USA
| | - Naveen K Neradugomma
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Ciara Benson
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nicholas W Chavkin
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Emri E, Cappa O, Kelly C, Kortvely E, SanGiovanni JP, McKay BS, Bergen AA, Simpson DA, Lengyel I. Zinc Supplementation Induced Transcriptional Changes in Primary Human Retinal Pigment Epithelium: A Single-Cell RNA Sequencing Study to Understand Age-Related Macular Degeneration. Cells 2023; 12:773. [PMID: 36899910 PMCID: PMC10000409 DOI: 10.3390/cells12050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
| | - Oisin Cappa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Caoimhe Kelly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Elod Kortvely
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - John Paul SanGiovanni
- Biosciences Research Laboratories, BIO5 Institute, University of Arizona, 1230 North Cherry Avenue, Tucson, AZ 85724, USA
| | - Brian S. McKay
- Department of Ophthalmology and Vision Science, University of Arizona, 1656 E. Mabel Street, Tucson, AZ 85724, USA
| | - Arthur A. Bergen
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), 1105AZ Amsterdam, The Netherlands
| | - David A. Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| |
Collapse
|
7
|
Iribarren AC, AlBadri A, Wei J, Nelson MD, Li D, Makkar R, Merz CNB. Sex differences in aortic stenosis: Identification of knowledge gaps for sex-specific personalized medicine. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 21:100197. [PMID: 36330169 PMCID: PMC9629620 DOI: 10.1016/j.ahjo.2022.100197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Objectives This review summarizes sex-based differences in aortic stenosis (AS) and identifies knowledge gaps that should be addressed by future studies. Background AS is the most common valvular heart disease in developed countries. Sex-specific differences have not been fully appreciated, as a result of widespread under diagnosis of AS in women. Summary Studies including sex-stratified analyses have shown differences in pathophysiology with less calcification and more fibrosis in women's aortic valve. Women have impaired myocardial perfusion reserve and different compensatory response of the left ventricle (LV) to pressure overload, with concentric remodeling and more diffuse fibrosis, in contrast to men with more focal fibrosis and more dilated/eccentrically remodeled LV. There is sex difference in clinical presentation and anatomical characteristics, with women having more paradoxical low-flow/low-gradient AS, under-diagnosis and severity underestimated, with less referral to aortic valve replacement (AVR) compared to men. The response to therapies is also different: women have more adverse events with surgical AVR and greater survival benefit with transcatheter AVR. After AVR, women would have more favorable LV remodeling, but sex-related differences in changes in myocardial reserve flow need future research. Conclusions Investigation into these described sex-related differences in AS offers potential utility for improving prevention and treatment of AS in women and men. To better understand sex-based differences in pathophysiology, clinical presentation, and response to therapies, sex-specific critical knowledge gaps should be addressed in future research for sex-specific personalized medicine.
Collapse
Affiliation(s)
- Ana C. Iribarren
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| | - Ahmed AlBadri
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| | - Janet Wei
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
- Cedars-Sinai Biomedical Imaging Research Institute, Los Angeles, CA, United States of America
| | - Michael D. Nelson
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| | - Debiao Li
- Cedars-Sinai Biomedical Imaging Research Institute, Los Angeles, CA, United States of America
| | - Raj Makkar
- Cedars-Sinai Cardiovascular Intervention Center, Smidt Heart Institute, Los Angeles, CA, United States of America
| | - C. Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| |
Collapse
|
8
|
Sasakawa Y, Okamoto N, Fujii M, Kato J, Yuzawa Y, Inaguma D. Factors associated with aortic valve stenosis in Japanese patients with end-stage kidney disease. BMC Nephrol 2022; 23:129. [PMID: 35366815 PMCID: PMC8977035 DOI: 10.1186/s12882-022-02758-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aortic valve stenosis (AS) has a high prevalence and poor prognosis in patients who receive maintenance dialysis. However, few large-scale observational studies in Japan have investigated patients with AS who underwent dialysis. In this study, we investigated the prevalence and factors associated with AS in Japanese patients who underwent dialysis. Methods In this cross-sectional analysis, we enrolled patients who underwent dialysis and transthoracic echocardiography between July 1, 2017 and June 30, 2018. Patients with a maximum aortic jet velocity (Vmax) ≥ 2.0 m/s, pressure gradient (PG) between the left ventricle and ascending aorta (mean PG) ≥ 20 mmHg, or aortic valve area (AVA) ≤ 1.0 cm2 were categorized into the AS group (G1). Patients with Vmax ≥ 3.0 m/s, mean PG ≥ 20 mmHg, or AVA ≤ 1.0 cm2 were categorized into the moderate and severe AS groups (G2). We performed multivariate logistic regression analysis and compared G1 and G2 with the non-AS group to determine the risk factors for AS. We also investigated the risk factors for aortic valve calcification, which is a pre-stage for AS. Results Of the 2,786 patients investigated, 555 (20.0%) and 193 (6.9%) were categorized into G1 and G2, respectively. Multivariate logistic regression analysis revealed that age, long-term dialysis, and elevated serum phosphorus levels were associated with AS in both the groups (p < 0.05). These factors were converted into ordinal categories, and a multivariate logistic regression analysis was performed. Patients with serum phosphorus levels measuring 5.0–5.9 mg/dL and > 6.0 mg/dL showed a higher risk of AS than those with serum phosphorus levels measuring < 4.0 mg/dL (odds ratio 2.24, p = 0.01 and odds ratio 2.66, p = 0.005, respectively). Aortic valve calcification was associated with age, long-term dialysis, diabetes mellitus, administration of vitamin D receptor activators, elevated serum calcium levels, and anemia (p < 0.05 for all). Conclusions Patients on dialysis showed a high prevalence of AS, which was associated with age, long-term dialysis, and elevated serum phosphorus levels. Trial registration UMIN000026756, registered on March 29, 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02758-y.
Collapse
|
9
|
Woodward HJ, Zhu D, Hadoke PWF, MacRae VE. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int J Mol Sci 2021; 22:4620. [PMID: 33924852 PMCID: PMC8125640 DOI: 10.3390/ijms22094620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.
Collapse
Affiliation(s)
- Holly J. Woodward
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Patrick W. F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victoria E. MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| |
Collapse
|
10
|
Su H, Fan J, Ma D, Zhu H. Identification and Characterization of Osmoregulation Related MicroRNAs in Gills of Hybrid Tilapia Under Three Types of Osmotic Stress. Front Genet 2021; 12:526277. [PMID: 33889171 PMCID: PMC8056028 DOI: 10.3389/fgene.2021.526277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Researchers have increasingly suggested that microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and protein translation in organs and respond to abiotic and biotic stressors. To understand the function of miRNAs in osmotic stress regulation of the gills of hybrid tilapia (Oreochromis mossambicus ♀ × Oreochromis urolepis hornorum ♂), high-throughput Illumina deep sequencing technology was used to investigate the expression profiles of miRNAs under salinity stress (S, 25‰), alkalinity stress (A, 4‰) and salinity-alkalinity stress (SA, S: 15‰, A: 4‰) challenges. The results showed that 31, 41, and 27 upregulated and 33, 42, and 40 downregulated miRNAs (P < 0.05) were identified in the salt stress, alkali stress, and saline-alkali stress group, respectively, which were compared with those in the control group (C). Fourteen significantly differently expressed miRNAs were selected randomly and then validated by a quantitative polymerase chain reaction. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, genes related to osmoregulation and biosynthesis were enriched in the three types of osmotic stress. In addition, three miRNAs and three predicted target genes were chosen to conduct a quantitative polymerase chain reaction in the hybrid tilapia and its parents during 96-h osmotic stress. Differential expression patterns of miRNAs provided the basis for research data to further investigate the miRNA-modulating networks in osmoregulation of teleost.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
11
|
Zhou C, Shi Z, Ouyang N, Ruan X. Hyperphosphatemia and Cardiovascular Disease. Front Cell Dev Biol 2021; 9:644363. [PMID: 33748139 PMCID: PMC7970112 DOI: 10.3389/fcell.2021.644363] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphatemia or even serum phosphate levels within the “normal laboratory range” are highly associated with increased cardiovascular disease risk and mortality in the general population and patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the development of hypertension, vascular calcification, cardiac valvular calcification, atherosclerosis, left ventricular hypertrophy and myocardial fibrosis by distinct mechanisms. Therefore, phosphate is considered as a promising therapeutic target to improve the cardiovascular outcome in CKD patients. The current therapeutic strategies are based on dietary and pharmacological reduction of serum phosphate levels to prevent hyperphosphatemia in CKD patients. Large randomized clinical trials with hard endpoints are urgently needed to establish a causal relationship between phosphate excess and cardiovascular disease (CVD) and to determine if lowering serum phosphate constitutes an effective intervention for the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengyu Shi
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Ouyang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiongzhong Ruan
- John Moorhead Research Laboratory, Centre for Nephrology, University College London (UCL) Medical School, London, United Kingdom.,Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Human aortic valve interstitial cells obtained from patients with aortic valve stenosis are vascular endothelial growth factor receptor 2 positive and contribute to ectopic calcification. J Pharmacol Sci 2020; 145:213-221. [PMID: 33451756 DOI: 10.1016/j.jphs.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
Since aortic valve stenosis (AVS) is the most frequent and serious valvular heart disease in the elderly, and is accompanied by irreversible valve calcification, medicinal prevention of AVS is important. Although we recently demonstrated that human aortic valve interstitial cells (HAVICs) obtained from patients with AVS were highly sensitive to ectopic calcification stimulation, the cell types contributing to calcification are unknown. We aimed to immunocytochemically characterize HAVICs and identify their contribution to valve calcification. HAVICs were isolated from patients with AVS and cultured on non-coated dishes. Immunocytochemical features and HAVIC differentiation were analyzed in passage 1 (P1). The immunohistochemical features of the calcified aortic valve were analyzed. Most cultured P1 HAVICs were CD73-, CD90-, and CD105-positive, and CD45-and CD34-negative. HAVICs were vascular endothelial growth factor receptor 2 (VEGFR2)-positive; however, approximately half were α-smooth muscle actin (SMA)-positive, colonized, and easily differentiated into osteoblastic cells. Calcified aortic valve immunohistochemistry showed that all cells were positive for VEGFR2 and partly α-SMA. Further, VEGFR2-positive cells were more sensitive to tumor necrosis factor-α-induced ectopic calcification with or without α-SMA positivity. We conclude that HAVICs obtained from patients with AVS are VEGFR2-positive undifferentiated mesenchymal cells and may contribute to aortic valve ectopic calcification.
Collapse
|
13
|
Bonetti A, Allegri L, Baldan F, Contin M, Battistella C, Damante G, Marchini M, Ortolani F. Critical Involvement of Calcium-Dependent Cytosolic Phospholipase A2α in Aortic Valve Interstitial Cell Calcification. Int J Mol Sci 2020; 21:ijms21176398. [PMID: 32899125 PMCID: PMC7503521 DOI: 10.3390/ijms21176398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
The involvement of calcium-dependent cytosolic phospholipase A2α (cPLA2α) in aortic valve calcification is not exhaustively elucidated. Here, cPLA2α expression in aortic valve interstitial cell (AVIC) pro-calcific cultures simulating either metastatic or dystrophic calcification was estimated by qPCR, Western blotting, and counting of cPLA2α-immunoreactive cells, with parallel ultrastructural examination of AVIC calcific degeneration. These evaluations also involved pro-calcific AVIC cultures treated with cPLA2α inhibitor dexamethasone. cPLA2α over-expression resulted for both types of pro-calcific AVIC cultures. Compared to controls, enzyme content was found to increase by up to 300% and 186% in metastatic and dystrophic calcification-like cultures, respectively. Increases in mRNA amounts were also observed, although they were not as striking as those in enzyme content. Moreover, cPLA2α increases were time-dependent and strictly associated with mineralization progression. Conversely, drastically lower levels of enzyme content resulted for the pro-calcific AVIC cultures supplemented with dexamethasone. In particular, cPLA2α amounts were found to decrease by almost 88% and 48% in metastatic and dystrophic calcification-like cultures, respectively, with mRNA amounts showing a similar trend. Interestingly, these drastic decreases in cPLA2α amounts were paralleled by drastic decreases in mineralization degrees, as revealed ultrastructurally. In conclusion, cPLA2α may be regarded as a crucial co-factor contributing to AVIC mineralization in vitro, thus being an attractive potential target for designing novel therapeutic strategies aimed to counteract onset or progression of calcific aortic valve diseases.
Collapse
Affiliation(s)
- Antonella Bonetti
- Department of Medicine, Histology and Electron Microscopy Unit, University of Udine, I-33100 Udine, Italy; (A.B.); (M.C.); (M.M.)
| | - Lorenzo Allegri
- Department of Medicine, Genetics Unit, University of Udine, I-33100 Udine, Italy; (L.A.); (F.B.); (G.D.)
| | - Federica Baldan
- Department of Medicine, Genetics Unit, University of Udine, I-33100 Udine, Italy; (L.A.); (F.B.); (G.D.)
| | - Magali Contin
- Department of Medicine, Histology and Electron Microscopy Unit, University of Udine, I-33100 Udine, Italy; (A.B.); (M.C.); (M.M.)
| | - Claudio Battistella
- Department of Medicine, Statistics Unit, University of Udine, I-33100 Udine, Italy;
| | - Giuseppe Damante
- Department of Medicine, Genetics Unit, University of Udine, I-33100 Udine, Italy; (L.A.); (F.B.); (G.D.)
| | - Maurizio Marchini
- Department of Medicine, Histology and Electron Microscopy Unit, University of Udine, I-33100 Udine, Italy; (A.B.); (M.C.); (M.M.)
| | - Fulvia Ortolani
- Department of Medicine, Histology and Electron Microscopy Unit, University of Udine, I-33100 Udine, Italy; (A.B.); (M.C.); (M.M.)
- Correspondence: ; Tel.: +39-0432-494242; Fax: +39-0432-494201
| |
Collapse
|
14
|
Rieke JM, Zhang R, Braun D, Yilmaz Ö, Japp AS, Lopes FM, Pleschka M, Hilger AC, Schneider S, Newman WG, Beaman GM, Nordenskjöld A, Ebert AK, Promm M, Rösch WH, Stein R, Hirsch K, Schäfer FM, Schmiedeke E, Boemers TM, Lacher M, Kluth D, Gosemann JH, Anderberg M, Barker G, Holmdahl G, Läckgren G, Keene D, Cervellione RM, Giorgio E, Di Grazia M, Feitz WFJ, Marcelis CLM, Van Rooij IALM, Bökenkamp A, Beckers GMA, Keegan CE, Sharma A, Dakal TC, Wittler L, Grote P, Zwink N, Jenetzky E, Brusco A, Thiele H, Ludwig M, Schweizer U, Woolf AS, Odermatt B, Reutter H. SLC20A1 Is Involved in Urinary Tract and Urorectal Development. Front Cell Dev Biol 2020; 8:567. [PMID: 32850778 PMCID: PMC7426641 DOI: 10.3389/fcell.2020.00567] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/15/2020] [Indexed: 02/04/2023] Open
Abstract
Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.
Collapse
Affiliation(s)
- Johanna Magdalena Rieke
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Department of Pediatrics, Children’s Hospital Medical Center, University Hospital Bonn, Bonn, Germany
| | - Rong Zhang
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Doreen Braun
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Öznur Yilmaz
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Anna S. Japp
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
- Institute of Pathology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Filipa M. Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael Pleschka
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alina C. Hilger
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
- Department of Pediatrics, Children’s Hospital Medical Center, University Hospital Bonn, Bonn, Germany
| | - Sophia Schneider
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital Medical Center, University Hospital Bonn, Bonn, Germany
| | - William G. Newman
- Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Glenda M. Beaman
- Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Agneta Nordenskjöld
- Department of Women’s and Children’s Health, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Pediatric Surgery, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Anne-Karoline Ebert
- Department of Urology and Pediatric Urology, University Hospital of Ulm, Ulm, Germany
| | - Martin Promm
- Department of Pediatric Urology, Clinic St. Hedwig, University Medical Center Regensburg, Regensburg, Germany
| | - Wolfgang H. Rösch
- Department of Pediatric Urology, Clinic St. Hedwig, University Medical Center Regensburg, Regensburg, Germany
| | - Raimund Stein
- Medical Faculty Mannheim, Centre for Pediatric, Adolescent and Reconstructive Urology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Karin Hirsch
- Division of Pediatric Urology, Department of Urology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Frank-Mattias Schäfer
- Department of Pediatric Surgery and Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| | - Eberhard Schmiedeke
- Department of Pediatric Surgery and Urology, Center for Child and Youth Health, Klinikum Bremen-Mitte, Bremen, Germany
| | - Thomas M. Boemers
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital of Cologne, Cologne, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Dietrich Kluth
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | | | - Magnus Anderberg
- Department of Pediatric Surgery, Skane University Hospital Lund, Lund, Sweden
| | - Gillian Barker
- Department of Women’s and Children’s Health, Uppsala Academic Children Hospital, Uppsala, Sweden
| | - Gundela Holmdahl
- Department of Pediatric Surgery, Queen Silvias Children’s Hospital, Gothenburg, Sweden
| | - Göran Läckgren
- Pediatric Urology, University Children’s Hospital, Uppsala, Sweden
| | - David Keene
- Pediatric Urology, Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Raimondo M. Cervellione
- Pediatric Urology, Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Massimo Di Grazia
- Pediatric Urology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Wouter F. J. Feitz
- Division of Pediatric Urology, Department of Urology, Radboudumc Amalia Children’s Hospital, Nijmegen, Netherlands
| | - Carlo L. M. Marcelis
- Department of Genetics, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Iris A. L. M. Van Rooij
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arend Bökenkamp
- Emma Children’s Hospital, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Goedele M. A. Beckers
- Department of Urology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Catherine E. Keegan
- Division of Genetics, Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Amit Sharma
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University Udaipur, Udaipur, India
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Nadine Zwink
- Department of Pediatric and Adolescent Psychiatry and Psychotherapy, University Medical Centre, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ekkehart Jenetzky
- Department of Pediatric and Adolescent Psychiatry and Psychotherapy, University Medical Centre, Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute of Integrative Medicine, Witten/Herdecke University, Herdecke, Germany
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Benjamin Odermatt
- Institute for Anatomy and Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute for Neuroanatomy, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital Medical Center, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Ahl PJ, Hopkins RA, Xiang WW, Au B, Kaliaperumal N, Fairhurst AM, Connolly JE. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun Biol 2020; 3:305. [PMID: 32533056 PMCID: PMC7292829 DOI: 10.1038/s42003-020-1027-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
A complex interaction of anabolic and catabolic metabolism underpins the ability of leukocytes to mount an immune response. Their capacity to respond to changing environments by metabolic reprogramming is crucial to effector function. However, current methods lack the ability to interrogate this network of metabolic pathways at single-cell level within a heterogeneous population. We present Met-Flow, a flow cytometry-based method capturing the metabolic state of immune cells by targeting key proteins and rate-limiting enzymes across multiple pathways. We demonstrate the ability to simultaneously measure divergent metabolic profiles and dynamic remodeling in human peripheral blood mononuclear cells. Using Met-Flow, we discovered that glucose restriction and metabolic remodeling drive the expansion of an inflammatory central memory T cell subset. This method captures the complex metabolic state of any cell as it relates to phenotype and function, leading to a greater understanding of the role of metabolic heterogeneity in immune responses.
Collapse
Affiliation(s)
- Patricia J Ahl
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Richard A Hopkins
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
- Tessa Therapeutics Pte Ltd, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| | - Wen Wei Xiang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
- Tessa Therapeutics Pte Ltd, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| | - Bijin Au
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| | - Nivashini Kaliaperumal
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| | - Anna-Marie Fairhurst
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76712, USA.
| |
Collapse
|
16
|
Matilla L, Roncal C, Ibarrola J, Arrieta V, García-Peña A, Fernández-Celis A, Navarro A, Álvarez V, Gainza A, Orbe J, Cachofeiro V, Zalba G, Sádaba R, Rodríguez JA, López-Andrés N. A Role for MMP-10 (Matrix Metalloproteinase-10) in Calcific Aortic Valve Stenosis. Arterioscler Thromb Vasc Biol 2020; 40:1370-1382. [PMID: 32188274 DOI: 10.1161/atvbaha.120.314143] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Aortic valve (AV) calcification plays an important role in the progression of aortic stenosis (AS). MMP-10 (matrix metalloproteinase-10 or stromelysin-2) is involved in vascular calcification in atherosclerosis. We hypothesize that MMP-10 may play a pathophysiological role in calcific AS. Approach and Results: Blood samples (n=112 AS and n=349 controls) and AVs (n=88) from patients undergoing valve replacement were analyzed. Circulating MMP-10 was higher in patients with AS compared with controls (P<0.001) and correlated with TNFα (tumor necrosis factor α; rS=0.451; P<0.0001). MMP-10 was detected by immunochemistry in AVs from patients with AS colocalized with aortic valve interstitial cells markers α-SMA (α-smooth muscle actin) and vimentin and with calcification markers Runx2 (Runt-related transcription factor 2) and SRY (sex-determining region Y)-box 9. MMP-10 expression in AVs was further confirmed by RT-qPCR and western blot. Ex vivo, MMP-10 was elevated in the conditioned media of AVs from patients with AS and associated with interleukin-1β (rS=0.5045, P<0.001) and BMP (bone morphogenetic protein)-2 (rS=0.5003, P<0.01). In vitro, recombinant human MMP-10 induced the overexpression of inflammatory, fibrotic, and osteogenic markers (interleukin-1β, α-SMA, vimentin, collagen, BMP-4, Sox9, OPN [osteopontin], BMP-9, and Smad 1/5/8; P<0.05) and cell mineralization in aortic valve interstitial cells isolated from human AVs, in a mechanism involving Akt (protein kinase B) phosphorylation. These effects were prevented by TIMP-1 (tissue inhibitor of metalloproteinases type 1), a physiological MMP inhibitor, or specifically by an anti-MMP-10 antibody. CONCLUSIONS MMP-10, which is overexpressed in aortic valve from patients with AS, seems to play a central role in calcification in AS through Akt phosphorylation. MMP-10 could be a new therapeutic target for delaying the progression of aortic valve calcification in AS.
Collapse
Affiliation(s)
- Lara Matilla
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA, Pamplona, Spain (C.R., J.O., J.A.R.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.)
| | - Jaime Ibarrola
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Vanessa Arrieta
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Amaia García-Peña
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Amaya Fernández-Celis
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Adela Navarro
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Virginia Álvarez
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Alicia Gainza
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA, Pamplona, Spain (C.R., J.O., J.A.R.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.)
| | - Victoria Cachofeiro
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.).,Departamento de Fisiología, Facultad Medicina, Universidad Complutense, Instituto de Investigacioón Sanitaria Gregorio Maranñoón (IiSGM), Madrid, Spain (V.C.)
| | - Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, IdiSNA, Pamplona, Spain (G.Z.)
| | - Rafael Sádaba
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.)
| | - José A Rodríguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA, Pamplona, Spain (C.R., J.O., J.A.R.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (C.R., J.O., V.C., J.A.R.)
| | - Natalia López-Andrés
- From the Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., J.I., V. Arrieta, A.G.-P., A.F.-C., A.N., V. Álvarez, A.G., R.S., N.L.-A.).,Université de Lorraine, INSERM, Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, France (N.L.-A.)
| |
Collapse
|
17
|
Rogers MA, Aikawa E. Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nat Rev Cardiol 2020; 16:261-274. [PMID: 30531869 DOI: 10.1038/s41569-018-0123-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular calcification is a health disorder with increasing prevalence and high morbidity and mortality. The only available therapeutic options for calcific vascular and valvular heart disease are invasive transcatheter procedures or surgeries that do not fully address the wide spectrum of these conditions; therefore, an urgent need exists for medical options. Cardiovascular calcification is an active process, which provides a potential opportunity for effective therapeutic targeting. Numerous biological processes are involved in calcific disease, including matrix remodelling, transcriptional regulation, mitochondrial dysfunction, oxidative stress, calcium and phosphate signalling, endoplasmic reticulum stress, lipid and mineral metabolism, autophagy, inflammation, apoptosis, loss of mineralization inhibition, impaired mineral resorption, cellular senescence and extracellular vesicles that act as precursors of microcalcification. Advances in molecular imaging and big data technology, including in multiomics and network medicine, and the integration of these approaches are helping to provide a more comprehensive map of human disease. In this Review, we discuss ectopic calcification processes in the cardiovascular system, with an emphasis on emerging mechanistic knowledge obtained through patient data and advances in imaging methods, experimental models and multiomics-generated big data. We also highlight the potential and challenges of artificial intelligence, machine learning and deep learning to integrate imaging and mechanistic data for drug discovery.
Collapse
Affiliation(s)
- Maximillian A Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Hiyamuta H, Tanaka S, Taniguchi M, Tokumoto M, Fujisaki K, Nakano T, Tsuruya K, Kitazono T. The Incidence and Associated Factors of Sudden Death in Patients on Hemodialysis: 10-Year Outcome of the Q-Cohort Study. J Atheroscler Thromb 2019; 27:306-318. [PMID: 31434843 PMCID: PMC7192813 DOI: 10.5551/jat.49833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The incidence of sudden death and its risk factors in patients on hemodialysis remain unclear. This study aimed to clarify the incidence of sudden death and its risk factors in Japanese patients on hemodialysis. Methods: A total of 3505 patients on hemodialysis aged ≥ 18 years were followed for 10 years. Multivariate-adjusted hazard ratio (HR) with 95% confidence interval (95% CI) of each risk factor of sudden death were calculated using a Cox proportional hazards model. Results: During the 10-year follow-up, 1735 patients died, including 227 (13%) sudden deaths. The incidence rate of sudden death was 9.13 per 1000 person-years. In multivariable-adjusted Cox analysis, male sex (HR 1.67; 95% CI 1.20–2.33), age (HR 1.44; 95% CI 1.26–1.65 per 10-year higher), the presence of diabetes (HR 2.45; 95% CI 1.82–3.29), history of cardiovascular disease (HR 1.85; 95% CI 1.38–2.46), cardiothoracic ratio (HR 1.21; 95% CI 1.07–1.39 per 5% higher), serum C-reactive protein (HR 1.11; 95% CI 1.03–1.20 per 1-mg/dL higher), and serum phosphate (HR 1.15; 95% CI 1.03–1.30 per 1-mg/dL higher) were independent predictors of sudden death. A subgroup analysis stratified by sex or age showed that lower serum corrected calcium levels, not using vitamin D receptor activators in women, and a shorter dialysis session length in men or older people (≥ 65 years) increased the risk for sudden death. Conclusions: This study clarified the incidence of sudden death and its specific predictors in Japanese patients on hemodialysis.
Collapse
Affiliation(s)
- Hiroto Hiyamuta
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | | | | | | | - Kiichiro Fujisaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
19
|
Parra-Izquierdo I, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, García-Rodríguez C. Calcification Induced by Type I Interferon in Human Aortic Valve Interstitial Cells Is Larger in Males and Blunted by a Janus Kinase Inhibitor. Arterioscler Thromb Vasc Biol 2019; 38:2148-2159. [PMID: 30026273 DOI: 10.1161/atvbaha.118.311504] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Calcific aortic valve disease is the most prevalent valvulopathy in Western countries. An unanticipated pathogenetic clue involving IFN (interferon) was disclosed by the finding of constitutive type I IFN activity associated with aortic valve calcification in children with the atypical Singleton-Merten syndrome. On this basis, the role of type I IFN on inflammation and calcification in human aortic valve interstitial cells (AVIC) was examined. Approach and Results- IFN-α was weakly proinflammatory but potentiated lipopolysaccharide-mediated activation of NF (nuclear factor)-κB and the ensuing induction of proinflammatory molecules in human AVIC. Stimulation with IFN-α and in combination with lipopolysaccharide promoted osteoblast-like differentiation characterized by increased osteoblastic gene expression, BMP (bone morphogenetic protein)-2 secretion, and ectopic phosphatase activity. Sex differences were observed. Likewise, IFN-α treatment of human AVICs in osteogenic medium resulted in increased formation of calcific nodules. Strikingly, IFN-α-mediated calcification was significantly higher in AVICs from males, and was blocked by tofacitinib, a JAK (Janus kinase) inhibitor, and by a BMP antagonist. A female-specific protective mechanism involving the activation of PI3K-Akt (protein kinase B) pathways and cell survival was disclosed. Females exhibited higher levels of BCL2 in valve cells and tissues and lower annexin V staining on cell stimulation. Conclusions- IFN-α acts as a proinflammatory and pro-osteogenic cytokine in AVICs, its effects being potentiated by lipopolysaccharide. Results also uncovered sex differences with lower responses in female AVICs and sex-specific mechanisms involving apoptosis. Data point to JAK/STAT (signal transducer and activator of transcription) system as a potential therapeutic target for calcific aortic valve disease.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - Irene Castaños-Mollor
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - Javier López
- ICICOR, Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain (J.L., J.A.S.R.).,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (J.L., J.A.S.R., C.G.-R.)
| | - Cristina Gómez
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - J Alberto San Román
- ICICOR, Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain (J.L., J.A.S.R.).,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (J.L., J.A.S.R., C.G.-R.)
| | - Mariano Sánchez Crespo
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - Carmen García-Rodríguez
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.).,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (J.L., J.A.S.R., C.G.-R.)
| |
Collapse
|
20
|
Recent Advances on Relationship Between Inorganic Phosphate and Pathologic Calcification: Is Calcification After Breast Augmentation with Fat Grafting Correlated with Locally Increased Concentration of Inorganic Phosphate? Aesthetic Plast Surg 2019; 43:243-252. [PMID: 30552471 DOI: 10.1007/s00266-018-1285-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/24/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pathologic calcification has frequently occurred after breast augmentation with fat grafting as well as other conditions such as breast cancer, trauma, myocardial infarction, arteriosclerosis and even after reduction mammoplasty. Inorganic phosphate, correlated with fat metabolism, is an important factor that induces pathologic calcification such as vascular calcification. METHODS A literature search was conducted using PubMed with the keywords: calcification, inorganic phosphate, fat. Studies related to the process of pathologic calcification, correlation between inorganic phosphate and pathologic calcification, between inorganic phosphate and fat metabolism in pathologic calcification were collected. RESULTS Various mechanisms were referred to in pathologic calcification among which inorganic phosphate played an important role. Inorganic phosphate could be liberated, under the effect of various enzymes, in the process of fat metabolism. The authors hypothesized that a large-scale necrotizing zone, which could occur in fat grafting with large amounts per cannula, might provide a high-phosphate environment which might contribute to differentiation of surrounding cells such as stem cells or regenerated vessel cells into osteoblast-like cells that induce pathologic calcification. CONCLUSION Inorganic phosphate, which was correlated with fat metabolism, played a significant role in pathologic calcification. We firstly hypothesize that calcification after fat grafting may be related to locally increasing concentrations of phosphate in a necrotizing zone. Further research should be conducted to verify this hypothesis. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
21
|
Hortells L, Sur S, St Hilaire C. Cell Phenotype Transitions in Cardiovascular Calcification. Front Cardiovasc Med 2018; 5:27. [PMID: 29632866 PMCID: PMC5879740 DOI: 10.3389/fcvm.2018.00027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular calcification was originally considered a passive, degenerative process, however with the advance of cellular and molecular biology techniques it is now appreciated that ectopic calcification is an active biological process. Vascular calcification is the most common form of ectopic calcification, and aging as well as specific disease states such as atherosclerosis, diabetes, and genetic mutations, exhibit this pathology. In the vessels and valves, endothelial cells, smooth muscle cells, and fibroblast-like cells contribute to the formation of extracellular calcified nodules. Research suggests that these vascular cells undergo a phenotypic switch whereby they acquire osteoblast-like characteristics, however the mechanisms driving the early aspects of these cell transitions are not fully understood. Osteoblasts are true bone-forming cells and differentiate from their pluripotent precursor, the mesenchymal stem cell (MSC); vascular cells that acquire the ability to calcify share aspects of the transcriptional programs exhibited by MSCs differentiating into osteoblasts. What is unknown is whether a fully-differentiated vascular cell directly acquires the ability to calcify by the upregulation of osteogenic genes or, whether these vascular cells first de-differentiate into an MSC-like state before obtaining a “second hit” that induces them to re-differentiate down an osteogenic lineage. Addressing these questions will enable progress in preventative and regenerative medicine strategies to combat vascular calcification pathologies. In this review, we will summarize what is known about the phenotypic switching of vascular endothelial, smooth muscle, and valvular cells.
Collapse
Affiliation(s)
- Luis Hortells
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Swastika Sur
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Tsang HG, Cui L, Farquharson C, Corcoran BM, Summers KM, Macrae VE. Exploiting novel valve interstitial cell lines to study calcific aortic valve disease. Mol Med Rep 2018; 17:2100-2106. [PMID: 29207136 PMCID: PMC5783449 DOI: 10.3892/mmr.2017.8163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) involves progressive valve leaflet thickening and severe calcification, impairing leaflet motion. The in vitro calcification of primary rat, human, porcine and bovine aortic valve interstitial cells (VICs) is commonly employed to investigate CAVD mechanisms. However, to date, no published studies have utilised cell lines to investigate this process. The present study has therefore generated and evaluated the calcification potential of immortalized cell lines derived from sheep and rat VICs. Immortalised sheep (SAVIC) and rat (RAVIC) cell lines were produced by transduction with a recombinant lentivirus encoding the Simian virus (SV40) large and small T antigens (sheep), or large T antigen only (rat), which expressed markers of VICs (vimentin and α‑smooth muscle actin). Calcification was induced in the presence of calcium (Ca; 2.7 mM) in SAVICs (1.9 fold; P<0.001) and RAVICs (4.6 fold; P<0.01). Furthermore, a synergistic effect of calcium and phosphate was observed (2.7 mM Ca/2.0 mM Pi) on VIC calcification in the two cell lines (P<0.001). Analysis of SAVICs revealed significant increases in the mRNA expression of two key genes associated with vascular calcification in cells cultured under calcifying conditions, runt related transcription factor‑2 (RUNX2;1.3 fold; P<0.05 in 4.5 mM Ca) and sodium‑dependent phosphate transporter‑1 (PiT1; 1.2 fold; P<0.05 in 5.4 mM Ca). A concomitant decrease in the expression of the calcification inhibitor matrix Gla protein (MGP) was noted at 3.6 mM Ca (1.3 fold; P<0.01). Assessment of RAVICs revealed alterations in Runx2, Pit1 and Mgp mRNA expression levels (P<0.01). Furthermore, a significant reduction in calcification was observed in SAVICs following treatment with established calcification inhibitors, pyrophosphate (1.8 fold; P<0.01) and etidronate (3.2 fold; P<0.01). Overall, the present study demonstrated that the use of immortalised sheep and rat VIC cell lines is a convenient and cost effective system to investigate CAVD in vitro, and will make a useful contribution to increasing current understanding of the pathophysiological process.
Collapse
Affiliation(s)
- Hiu-Gwen Tsang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Lin Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Brendan M. Corcoran
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Kim M. Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Vicky E. Macrae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
23
|
Ishikawa M, Matsuzawa A, Itohiya K, Nakamura Y. Phosphate Through the Sodium-Dependent Phosphate Cotransporters, Pit-1 and Pit-2 is the Key Factor of Periodontal Ligament Calcification. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Misao Ishikawa
- Department of Oral Anatomy, School of Dental Medicine, Tsurumi University
- Department of Orthodontics, School of Dental Medicine, Tsurumi University
| | - Ayami Matsuzawa
- Department of Oral Anatomy, School of Dental Medicine, Tsurumi University
| | - Kanako Itohiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University
| |
Collapse
|
24
|
Ha SW, Park J, Habib MM, Beck GR. Nano-Hydroxyapatite Stimulation of Gene Expression Requires Fgf Receptor, Phosphate Transporter, and Erk1/2 Signaling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39185-39196. [PMID: 29045789 DOI: 10.1021/acsami.7b12029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxyapatite (HAp) is critical to health both as the main structural material of the skeleton and storage material of calcium and phosphate. Nanosized HAp (nHAp) is naturally produced by mineralizing cells during bone formation and remodeling and is the main constituent of the skeleton. As such, HAp is currently being investigated as a therapeutic biomaterial for orthopedic and dental purposes. Recent studies have suggested that extracellular nHAp can influence osteoblast lineage commitment and cell function through changes in gene expression; however, the mechanisms remain to be elucidated. Here, the cellular and molecular mechanism by which rod-shaped nHAp (10 × 100 nm) stimulates gene expression in preosteoblast bone marrow stromal cells was investigated. Electron microscopy detected a rapid and stable interaction of nHAp with the cell membrane, which correlated with a strong stimulation of the Erk1/2 signaling pathway. Results also identified the requirement of the Fgf receptor signaling and phosphate-transporters for nHAp regulated gene expression whereas a calcium-sensing receptor inhibitor had no effect. Collectively, the study uncovers novel signaling pathways and cellular events specifically stimulated by and required for the cellular response to free extracellular HAp. The results provide insight into the osteoblastic response to HAp relevant to functional mineralization and pathological calcification and could be used in the development of biomaterials for orthopedic purposes.
Collapse
Affiliation(s)
- Shin-Woo Ha
- Department of Medicine, Division of Endocrinology, Emory University , 101 Woodruff Circle, 1026 WMRB, Atlanta, Georgia 30322, United States
| | - Jonathan Park
- Department of Medicine, Division of Endocrinology, Emory University , 101 Woodruff Circle, 1026 WMRB, Atlanta, Georgia 30322, United States
| | - Mark M Habib
- The Atlanta Department of Veterans Affairs Medical Center , Decatur, Georgia 30033, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center , Decatur, Georgia 30033, United States
- Department of Medicine, Division of Endocrinology, Emory University , 101 Woodruff Circle, 1026 WMRB, Atlanta, Georgia 30322, United States
- The Winship Cancer Institute, Emory University School of Medicine , Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Li SJ, Kao YH, Chung CC, Chen WY, Cheng WL, Chen YJ. Activated p300 acetyltransferase activity modulates aortic valvular calcification with osteogenic transdifferentiation and downregulation of Klotho. Int J Cardiol 2017; 232:271-279. [PMID: 28111052 DOI: 10.1016/j.ijcard.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The calcific aortic valve (AV) disease is a common disease with the unclear mechanism, and optimal pharmacological treatment remains unavailable. Epigenetic modulation by histone acetyltransferase (HAT) plays a critical role in osteogenic transdifferentiation and atherosclerosis. The purposes of this study were to investigate whether HAT contributes to the pathophysiology of AV calcification and assess the therapeutic potential of HAT inhibition. METHODS Porcine valvular interstitial cells (VICs) were treated with osteogenic medium (10ng/mL of tumor necrosis factor-α and 4mmol/L of high phosphate) for 7days. We analyzed the RNA and protein expression of myofibroblastic (α-SMA, vimentin, collagen 1A1, collagen 3, Egr-1, MMP2, MMP9) and osteoblastic markers (osteocalcin and alkaline phosphatase) in VICs, and studied the effects of a p300 inhibitor (C646, 10μmol/L) on calcification (Alizarin Red S staining), osteogenesis, HAT activity, the mitogen-activated protein kinase (MAPK) and Akt pathway, and Klotho expression on VICs. RESULTS Osteogenic medium treated VICs had higher expressions of osteocalcin, alkaline phosphatase and acetylated lysine-9 of histone H3 (ac-H3K9) than control cells. C646 attenuated osteogenesis of VICs with simultaneous inhibition of the HAT activity of p300. There was neither significant increase of p300 protein nor p300 transcript during the osteogenesis process. Additionally, osteogenic medium treated VICs decreased the expression of Klotho, which is attenuated by C646. CONCLUSIONS Activated HAT activity of p300 modulates AV calcification through osteogenic transdifferentiation of VICs with Klotho modulation. P300 inhibition is a potential therapeutic target for AV calcification.
Collapse
Affiliation(s)
- Shao-Jung Li
- Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Cheng-Chih Chung
- Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
26
|
Wang T, He X, Liu X, Liu Y, Zhang W, Huang Q, Liu W, Xiong L, Tan R, Wang H, Zeng H. Weighted Gene Co-expression Network Analysis Identifies FKBP11 as a Key Regulator in Acute Aortic Dissection through a NF-kB Dependent Pathway. Front Physiol 2017; 8:1010. [PMID: 29255427 PMCID: PMC5723018 DOI: 10.3389/fphys.2017.01010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Acute aortic dissection (AAD) is a life-threatening disease. Despite the higher risk of mortality, currently there are no effective therapies that can ameliorate AAD development or progression. Identification of meaningful clusters of co-expressed genes or representative biomarkers for AAD may help to identify new pathomechanisms and foster development of new therapies. To this end, we performed a weighted gene co-expression network analysis (WGCNA) and calculated module-trait correlations based on a public microarray dataset (GSE 52093) and discovered 9 modules were found to be related to AAD. The module which has the strongest positive correlation with AAD was further analyzed and the top 10 hub genes SLC20A1, GINS2, CNN1, FAM198B, MAD2L2, UBE2T, FKBP11, SLMAP, CCDC34, and GALK1 were identified. Furthermore, we validated the data by qRT-PCR in an independent sample set originated from our study center. Overall, the qRT-PCR results were consistent with the results of the microarray analysis. Intriguingly, the highest change was found for FKBP11, a protein belongs to the FKBP family of peptidyl-prolyl cis/trans isomerases, which catalyze the folding of proline-containing polypeptides. In congruent with the gene expression analysis, FKBP11 expression was induced in cultured endothelial cells by angiotensin II treatment and endothelium of the dissected aorta. More importantly we show that FKBP11 provokes inflammation in endothelial cells by interacting with NF-kB p65 subunit, resulting in pro-inflammatory cytokines production. Accordingly, siRNA mediated knockdown of FKBP11 in cultured endothelial cells suppressed angiotensin II induced monocyte transmigration through the endothelial monolayer. Based on these data, we hypothesize that pro-inflammatory cytokines elicited by FKBP11 overexpression in the endothelium under AAD condition could facilitate transendothelial migration of the circulating monocytes into the aorta, where they differentiate into active macrophages and secrete MMPs and other extracellular matrix (ECM) degrading proteins, contributing to sustained inflammation and AAD. Taken together, our data identify important role of FKBP11 which can serve as biomarker and/or therapeutic target for AAD.
Collapse
Affiliation(s)
- Tao Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwei He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xintian Liu
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, China
| | - Yujian Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjun Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luyang Xiong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Tan
- Divison of Cardiology, the Fifth Hospital of Wuhan, Wuhan, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongjie Wang
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hesong Zeng
| |
Collapse
|
27
|
Batla A, Tai XY, Schottlaender L, Erro R, Balint B, Bhatia KP. Deconstructing Fahr's disease/syndrome of brain calcification in the era of new genes. Parkinsonism Relat Disord 2016; 37:1-10. [PMID: 28162874 DOI: 10.1016/j.parkreldis.2016.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION There are now a number genes, known to be associated with familial primary brain calcification (PFBC), causing the so called 'Fahr's' disease or syndrome. These are SCL20A2, PDGFB, PDGFRB and XPR1. In this systematic review, we analyse the clinical and radiological features reported in genetically confirmed cases with PFBC. We have additionally reviewed pseudohypoparathyroidism which is a close differential diagnosis of PFBC in clinical presentation and is also genetically determined. METHODS We performed a Medline search, from 1st Jan 2012 through to 7th November 2016, for publications with confirmed mutations of SCL20A2, PDGFB, PDGFRB, and XPR1 and found twenty papers with 137 eligible cases. A second search was done for publications of cases with Pseudohypoparathyroidism or pseudopseudohypoparathyroidism, and found 18 publications with 20 eligible cases. RESULTS SLC20A2 was the most common gene involved with 75 out of 137 cases included with PFBC (55%) followed by PDGFB (31%) and PDGFRB (11%). Statistically significant correlation was found between the presence of parkinsonism with SLC20A2 mutations, headache in PDGFB and generalised tonic-clonic seizures in patients with pseudohypoparathyroidism. CONCLUSION We combine statistical analysis and clinical inference to suggest a diagnostic algorithm based on the observations in this study to help with investigation of a patient with neurological features and brain calcification.
Collapse
Affiliation(s)
- Amit Batla
- UCL Institute of Neurology, Queen Square, London, UK
| | - Xin You Tai
- UCL Institute of Neurology, Queen Square, London, UK
| | - Lucia Schottlaender
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Robert Erro
- Dipartimento di Scienze Neurologiche e del Movimento, Università di Verona, Verona, Italy
| | - Bettina Balint
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
28
|
[Aortic valve calcification prevalence and association with coronary risk factors and atherosclerosis in Mexican population]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 87:108-115. [PMID: 27389533 DOI: 10.1016/j.acmx.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 11/21/2022] Open
Abstract
OBJETIVE The prevalence of aortic valve calcification (AVC), strongly influenced by ethnicity, is unknown in Mexican population. The aim of this study was to investigate the prevalence of AVC and its associations with cardiovascular risk factors and coronary artery calcification (CAC), in Mexican subjects. METHODS In 1,267 subjects (53% women) without known coronary heart disease, aged 35 to 75 years, AVC and CAC were assessed by multidetector-computed tomography using the Agatston score. Cardiovascular risk factors were documented in all participants. The associations of AVC with CAC and risk factors were assessed by multivariable logistic regression analyses. RESULTS The overall prevalence of AVC and CAC was 19.89% and 26.5%, respectively. AVC and CAC increased with age and were found more frequently in men (25.5% and 37.1%, respectively) than in women (14.9% and 13.0%, respectively). AVC was observed in only 8.5% of subjects without CAC, while those with CAC 1-99, 100-399, and >400 Agatston units had AVC prevalences of 36.8%, 56.8%, and 84.0%, respectively. The multivariable logistic regression analyses, adjusted for age, gender, obesity, physical inactivity, hypertension, dyslipidemia and high insulin levels, showed that the presence of CAC (OR [CI95%]: 3.23 [2.26-4.60]), obesity (1.94 [1.35-2.79]), male gender (1.44 [1.01-2.05]) and age (1.08 [1.03-1.10]), were significant independent predictors of AVC. CONCLUSION Prevalence of AVC is high and significantly associated with atherosclerotic risk factors and CAC in this Mexican population.
Collapse
|
29
|
Kim D, Shim CY, Hong GR, Cho IJ, Chang HJ, Ha JW, Chung N. Effect of End-Stage Renal Disease on Rate of Progression of Aortic Stenosis. Am J Cardiol 2016; 117:1972-7. [PMID: 27138183 DOI: 10.1016/j.amjcard.2016.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
This study aimed to investigate the progression of mild-to-moderate aortic stenosis (AS) in patients with end-stage renal disease (ESRD) and determine its metabolic and hemodynamic contributors and clinical outcomes. A total of 74 patients with ESRD (50 men, age 72 ± 11 years) with mild-to-moderate AS were compared with 79 age- and gender-matched controls with normal kidney function. Clinical, laboratory, and echocardiographic features and clinical outcomes including aortic valve (AV) intervention, hospitalization due to heart failure, and cardiovascular death were analyzed. Patients with ESRD were divided into 2 subgroups according to their rate of AV area changes (group 1 [n = 28], rapid progression; and group 2 [n = 46], slow progression). Progression in the degree of AS was noted in 38% of patients with ESRD and 18% of controls (p <0.01) during comparable echocardiographic follow-up durations (29 ± 15 vs 27 ± 24 months, respectively, p = 0.57). In ESRD, patients in group 1 were older (p <0.01) with higher baseline log parathyroid hormone (p <0.01) and larger stroke volume (p = 0.03) than those in group 2. During clinical follow-up (48 ± 23 months), patients in group 1 showed poorer clinical outcomes than those in group 2 and controls (log-rank p <0.01). Age, left atrial volume index ≥42 ml/m(2), and annual increases of peak pressure gradient across the AV (mm Hg/year) demonstrated additive predictive values for prognosis. AS in ESRD progresses in an accelerated manner along with higher metabolic and hemodynamic loads on AV compared with those with normal kidney function. Accelerated progression of mild-to-moderate AS in ESRD results in poor prognosis.
Collapse
|
30
|
Hutcheson JD, Goettsch C, Rogers MA, Aikawa E. Revisiting cardiovascular calcification: A multifaceted disease requiring a multidisciplinary approach. Semin Cell Dev Biol 2015; 46:68-77. [PMID: 26358815 DOI: 10.1016/j.semcdb.2015.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
The presence of cardiovascular calcification significantly predicts patients' morbidity and mortality. Calcific mineral deposition within the soft cardiovascular tissues disrupts the normal biomechanical function of these tissues, leading to complications such as heart failure, myocardial infarction, and stroke. The realization that calcification results from active cellular processes offers hope that therapeutic intervention may prevent or reverse the disease. To this point, however, no clinically viable therapies have emerged. This may be due to the lack of certainty that remains in the mechanisms by which mineral is deposited in cardiovascular tissues. Gaining new insight into this process requires a multidisciplinary approach. The pathological changes in cell phenotype that lead to the physicochemical deposition of mineral and the resultant effects on tissue biomechanics must all be considered when designing strategies to treat cardiovascular calcification. In this review, we overview the current cardiovascular calcification paradigm and discuss emerging techniques that are providing new insight into the mechanisms of ectopic calcification.
Collapse
Affiliation(s)
- Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Claudia Goettsch
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Maximillian A Rogers
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
31
|
Wong FF, Ho ML, Yamagami M, Lam MT, Grande-Allen KJ, Suh J. Effective Gene Delivery to Valvular Interstitial Cells Using Adeno-Associated Virus Serotypes 2 and 3. Tissue Eng Part C Methods 2015; 21:808-15. [DOI: 10.1089/ten.tec.2014.0493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Fergus F. Wong
- Department of Bioengineering, Rice University, Houston, Texas
| | - Michelle L. Ho
- Department of Bioengineering, Rice University, Houston, Texas
| | - Momona Yamagami
- Department of Bioengineering, Rice University, Houston, Texas
| | - Michael T. Lam
- Department of Bioengineering, Rice University, Houston, Texas
| | | | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
32
|
Shayhidin EE, Forcellini E, Boulanger MC, Mahmut A, Dautrey S, Barbeau X, Lagüe P, Sévigny J, Paquin JF, Mathieu P. Quinazoline-4-piperidine sulfamides are specific inhibitors of human NPP1 and prevent pathological mineralization of valve interstitial cells. Br J Pharmacol 2015; 172:4189-99. [PMID: 26031197 DOI: 10.1111/bph.13204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Ectonucleotide pyrophosphatase/PDE1 (NPP1) is an ectoenzyme, which plays a role in several disorders including calcific aortic valve disease (CAVD). So far, compounds that have been developed as inhibitors of NPP1 lack potency and specificity. Quinazoline-4-piperidine sulfamides (QPS) have been described as potent inhibitors of NPP1. However, their mode of inhibition as well as their selectivity and capacity to modify biological processes have not been investigated. EXPERIMENTAL APPROACH In the present series of experiments, we have evaluated the efficacy of two derivatives, QPS1-2, in inhibiting human NPP1, and we have evaluated the effect of the most potent derivative (QPS1) on other ectonucleotidases as well as on the ability of this compound to prevent phosphate-induced mineralization of human primary aortic valve interstitial cells (VICs). KEY RESULTS The QPS1 derivative is a potent (Ki 59.3 ± 5.4 nM) and selective non-competitive inhibitor of human NPP1. Moreover, QPS1 also significantly inhibited the K121Q NPP1 gene variant (Ki 59.2 ± 14.5 nM), which is prevalent in the general population. QPS1 did not significantly alter the activity of other nucleotide metabolizing ectoenzymes expressed at the cell surface, namely NPP3, NTPDases (1-3), ecto-5'-nucleotidase and ALP. Importantly, QPS1 in the low micromolar range (≤10 μM) prevented phosphate-induced mineralization of VICs and lowered the rise of osteogenic genes as expected for NPP1 inhibition. CONCLUSIONS AND IMPLICATIONS We have provided evidence that QPS1 is a potent and selective non-competitive inhibitor of NPP1 and that it prevented pathological mineralization in a cellular model.
Collapse
Affiliation(s)
- Elnur Elyar Shayhidin
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Université Laval, QC, Canada
| | - Elsa Forcellini
- Canada Research Chair in Organic and Medicinal Chemistry, PROTEO, Department of Chemistry, Université Laval, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Université Laval, QC, Canada
| | - Ablajan Mahmut
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Université Laval, QC, Canada
| | - Sébastien Dautrey
- Canada Research Chair in Organic and Medicinal Chemistry, PROTEO, Department of Chemistry, Université Laval, QC, Canada
| | - Xavier Barbeau
- Department of Biochemistry, PROTEO, Laval University, QC, Canada
| | - Patrick Lagüe
- Department of Biochemistry, PROTEO, Laval University, QC, Canada
| | - Jean Sévigny
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Québec, QC, Canada.,Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Jean-François Paquin
- Canada Research Chair in Organic and Medicinal Chemistry, PROTEO, Department of Chemistry, Université Laval, QC, Canada
| | - Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Université Laval, QC, Canada
| |
Collapse
|
33
|
Mathieu P, Bossé Y, Huggins GS, Della Corte A, Pibarot P, Michelena HI, Limongelli G, Boulanger MC, Evangelista A, Bédard E, Citro R, Body SC, Nemer M, Schoen FJ. The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2015; 1:195-206. [PMID: 27499904 PMCID: PMC4939890 DOI: 10.1002/cjp2.21] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Bicuspid aortic valve is the most prevalent cardiac valvular malformation. It is associated with a high rate of long‐term morbidity including development of calcific aortic valve disease, aortic regurgitation and concomitant thoracic aortic aneurysm and dissection. Recently, basic and translational studies have identified some key processes involved in the development of bicuspid aortic valve and its morbidity. The development of aortic valve disease and thoracic aortic aneurysm and dissection is the result of complex interactions between genotypes, environmental risk factors and specific haemodynamic conditions created by bicuspid aortic valve anatomy. Herein, we review the pathobiology of bicuspid aortic valve with a special emphasis on translational aspects of these basic findings. Important but unresolved problems in the pathology of bicuspid aortic valve and thoracic aortic aneurysm and dissection are discussed, along with the molecular processes involved.
Collapse
Affiliation(s)
- Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Department of Surgery Quebec Heart and Lung Institute/Research Center, Laval University Quebec Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Quebec Heart and Lung Institute/Research Center Laval University Québec Canada
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Center for Translational Genomics, Tufts Medical Center Boston Massachussetts USA
| | - Alessandro Della Corte
- Department of Cardiothoracic Sciences, Cardiac Surgery Second University of Naples 80131 Naples Italy
| | - Philippe Pibarot
- Department of Molecular Medicine, Quebec Heart and Lung Institute/Research Center Laval University Québec Canada
| | - Hector I Michelena
- Division of Cardiovascular Diseases, Mayo Clinic Rochester Minnesota USA
| | - Giuseppe Limongelli
- Department of Cardiology and Cardiothoracic and Respiratory Sciences, Cardiologia SUN, Monaldi Hospital, AO Colli Naples Italy
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Department of Surgery Quebec Heart and Lung Institute/Research Center, Laval University Quebec Canada
| | - Arturo Evangelista
- Department of Cardiology Hospital Universitary Vall d'Hebron Barcelona Spain
| | - Elisabeth Bédard
- Department of Molecular Medicine, Quebec Heart and Lung Institute/Research Center Laval University Québec Canada
| | - Rodolfo Citro
- Heart Department University Hospital "San Giovanni di Dio e Ruggi d'Aragona" Salerno Italy
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine Center for Perioperative Genomics, Brigham and Women's Hospital Boston Massachusetts USA
| | - Mona Nemer
- Laboratory for Cardiac Development and Differentiation University of Ottawa Ontario Canada
| | - Frederick J Schoen
- Department of Pathology Brigham and Women's Hospital, Harvard Medical School USA
| |
Collapse
|
34
|
Innate and Adaptive Immunity in Calcific Aortic Valve Disease. J Immunol Res 2015; 2015:851945. [PMID: 26065007 PMCID: PMC4433691 DOI: 10.1155/2015/851945] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/18/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder. CAVD is a chronic process characterized by a pathologic mineralization of valve leaflets. Ectopic mineralization of the aortic valve involves complex relationships with immunity. Studies have highlighted that both innate and adaptive immunity play a role in the development of CAVD. In this regard, accumulating evidence indicates that fibrocalcific remodelling of the aortic valve is associated with activation of the NF-κB pathway. The expression of TNF-α and IL-6 is increased in human mineralized aortic valves and promotes an osteogenic program as well as the mineralization of valve interstitial cells (VICs), the main cellular component of the aortic valve. Different factors, including oxidized lipid species, activate the innate immune response through the Toll-like receptors. Moreover, VICs express 5-lipoxygenase and therefore produce leukotrienes, which may amplify the inflammatory response in the aortic valve. More recently, studies have emphasized that an adaptive immune response is triggered during CAVD. Herein, we are reviewing the link between the immune response and the development of CAVD and we have tried, whenever possible, to keep a translational approach.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Phosphate homeostasis is tightly controlled by the coordinated activity of bone, kidney, intestine, and parathyroid gland. The renal phosphate transporters have emerged as key regulators of both total body phosphate homeostasis and serum phosphate concentration. This review focuses on the latest updates in phosphate transport and transporters with an emphasis on renal phosphate transporters. RECENT FINDINGS Structure function analysis of type II sodium phosphate cotransporters has revealed motifs with significant similarity to those seen in other sodium-coupled solute transporters, identifying key amino acid residues important for solute binding and transport. Previously unidentified regulators of these transporters have been found, although their physiologic significance and interaction with more traditional regulators have not been established. Type II and type III sodium phosphate cotransporters play critical roles in bone, choroid plexus, and vascular physiology and pathophysiology. SUMMARY Increasing knowledge of structure function relationships for sodium phosphate cotransporters, as well as greater appreciation for the complexity of their regulation and role in renal and nonrenal tissue, brings the promise of newer, more specific treatments for disorders of phosphate homeostasis. VIDEO ABSTRACT http://links.lww.com/CONH/A10.
Collapse
Affiliation(s)
- Eleanor Lederer
- aMedical Services, Robley Rex VA Medical Center bKidney Disease Program, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
36
|
Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res 2015; 333:39-48. [PMID: 25684711 DOI: 10.1016/j.yexcr.2015.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/06/2015] [Accepted: 02/06/2015] [Indexed: 12/26/2022]
Abstract
Vascular calcification (VC) is prevalent in chronic kidney disease and elevated serum inorganic phosphate (Pi) is a recognized risk factor. The type III sodium-dependent phosphate transporter, PiT-1, is required for elevated Pi-induced osteochondrogenic differentiation and matrix mineralization in vascular smooth muscle cells (VSMCs). However, the molecular mechanism(s) by which PiT-1 promotes these processes is unclear. In the present study, we confirmed that the Pi concentration required to induce osteochondrogenic differentiation and matrix mineralization of mouse VSMCs was well above that required for maximal Pi uptake, suggesting a signaling function of PiT-1 that was independent of Pi transport. Elevated Pi-induced signaling via ERK1/2 phosphorylation was abrogated in PiT-1 deficient VSMCs, but could be rescued by wild-type (WT) and a Pi transport-deficient PiT-1 mutant. Furthermore, both WT and transport-deficient PiT-1 mutants promoted osteochondrogenic differentiation as measured by decreased SM22α and increased osteopontin mRNA expression. Finally, compared to vector alone, expression of transport-deficient PiT-1 mutants promoted VSMC matrix mineralization, but not to the extent observed with PiT-1 WT. These data suggest that both Pi uptake-dependent and -independent functions of PiT-1 are important for VSMC processes mediating vascular calcification.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA 98195, USA
| | - Jia Jun Chia
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA 98195, USA
| | - Matthew H Crouthamel
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Yutzey KE, Demer LL, Body SC, Huggins GS, Towler DA, Giachelli CM, Hofmann-Bowman MA, Mortlock DP, Rogers MB, Sadeghi MM, Aikawa E. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol 2014; 34:2387-93. [PMID: 25189570 DOI: 10.1161/atvbaha.114.302523] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcific aortic valve disease (CAVD) is increasingly prevalent worldwide with significant morbidity and mortality. Therapeutic options beyond surgical valve replacement are currently limited. In 2011, the National Heart Lung and Blood Institute assembled a working group on aortic stenosis. This group identified CAVD as an actively regulated disease process in need of further study. As a result, the Alliance of Investigators on CAVD was formed to coordinate and promote CAVD research, with the goals of identifying individuals at risk, developing new therapeutic approaches, and improving diagnostic methods. The group is composed of cardiologists, geneticists, imaging specialists, and basic science researchers. This report reviews the current status of CAVD research and treatment strategies with identification of areas in need of additional investigation for optimal management of this patient population.
Collapse
Affiliation(s)
- Katherine E Yutzey
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Linda L Demer
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Simon C Body
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Gordon S Huggins
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Dwight A Towler
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Cecilia M Giachelli
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Marion A Hofmann-Bowman
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Douglas P Mortlock
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Melissa B Rogers
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Mehran M Sadeghi
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Elena Aikawa
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.).
| |
Collapse
|
38
|
Le Quang K, Bouchareb R, Lachance D, Laplante MA, El Husseini D, Boulanger MC, Fournier D, Fang XP, Avramoglu RK, Pibarot P, Deshaies Y, Sweeney G, Mathieu P, Marette A. Early development of calcific aortic valve disease and left ventricular hypertrophy in a mouse model of combined dyslipidemia and type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2014; 34:2283-91. [PMID: 25231636 DOI: 10.1161/atvbaha.114.304205] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE This study aimed to determine the potential impact of type 2 diabetes mellitus on left ventricular dysfunction and the development of calcified aortic valve disease using a dyslipidemic mouse model prone to developing type 2 diabetes mellitus. APPROACH AND RESULTS When compared with nondiabetic LDLr(-/-)/ApoB(100/100), diabetic LDLr(-/-)/ApoB(100/100)/IGF-II mice exhibited similar dyslipidemia and obesity but developed type 2 diabetes mellitus when fed a high-fat/sucrose/cholesterol diet for 6 months. LDLr(-/-)/ApoB(100/100)/IGF-II mice showed left ventricular hypertrophy versus C57BL6 but not LDLr(-/-)/ApoB(100/100) mice. Transthoracic echocardiography revealed significant reductions in both left ventricular systolic fractional shortening and diastolic function in high-fat/sucrose/cholesterol fed LDLr(-/-)/ApoB(100/100)/IGF-II mice when compared with LDLr(-/-)/ApoB(100/100). Importantly, we found that peak aortic jet velocity was significantly increased in LDLr(-/-)/ApoB(100/100)/IGF-II mice versus LDLr(-/-)/ApoB(100/100) animals on the high-fat/sucrose/cholesterol diet. Microtomography scans and Alizarin red staining indicated calcification in the aortic valves, whereas electron microscopy and energy dispersive x-ray spectroscopy further revealed mineralization of the aortic leaflets and the presence of inflammatory infiltrates in diabetic mice. Studies showed upregulation of hypertrophic genes (anp, bnp, b-mhc) in myocardial tissues and of osteogenic genes (spp1, bglap, runx2) in aortic tissues of diabetic mice. CONCLUSIONS We have established the diabetes mellitus -prone LDLr(-/-)/ApoB(100/100)/IGF-II mouse as a new model of calcified aortic valve disease. Our results are consistent with the growing body of clinical evidence that the dysmetabolic state of type 2 diabetes mellitus contributes to early mineralization of the aortic valve and calcified aortic valve disease pathogenesis.
Collapse
Affiliation(s)
- Khai Le Quang
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Rihab Bouchareb
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Dominic Lachance
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Marc-André Laplante
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Diala El Husseini
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Marie-Chloé Boulanger
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Dominique Fournier
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Xiang Ping Fang
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Rita Kohen Avramoglu
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Philippe Pibarot
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Yves Deshaies
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Gary Sweeney
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - Patrick Mathieu
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.)
| | - André Marette
- From the Heart and Lung Institute, Laval University, Sainte-Foy, Québec, Canada (K.L.Q., R.B., D.L., M.-A.L., D.E.H., M.-C.B., D.F., X.P.F., R.K.A., P.P., Y.D., P.M., A.M.); and Department of Biology, York University, Toronto, Ontario, Canada (X.P.F., G.S.).
| |
Collapse
|
39
|
Mathieu P, Boulanger MC, Bouchareb R. Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert Rev Cardiovasc Ther 2014; 12:851-62. [PMID: 24857537 DOI: 10.1586/14779072.2014.923756] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcific aortic valve disease (CAVD) is a chronic process leading to fibrosis and mineralization of the aortic valve. Investigations in the last several years have emphasized that key underlying molecular processes are involved in the pathogenesis of CAVD. In this regard, the processing of lipids and their retention has been underlined as an important mechanism that triggers inflammation. In turn, inflammation promotes/enhances the mineralization of valve interstitial cells, the main cellular component of the aortic valve. On the other hand, transformation of valve interstitial cells into myofibroblasts and osteoblast-like cells is determined by several signaling pathways having reciprocal cross-talks. In addition, the mineralization of the aortic valve has been shown to rely on ectonucleotidase and purinergic signaling. In this review, the authors have highlighted key molecular underpinnings of CAVD that may have significant relevance for the development of novel pharmaceutical therapies.
Collapse
Affiliation(s)
- Patrick Mathieu
- Department of Surgery, Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Laval University, Quebec, Canada
| | | | | |
Collapse
|
40
|
Dabisch-Ruthe M, Kuzaj P, Götting C, Knabbe C, Hendig D. Pyrophosphates as a major inhibitor of matrix calcification in Pseudoxanthoma elasticum. J Dermatol Sci 2014; 75:109-20. [PMID: 24907773 DOI: 10.1016/j.jdermsci.2014.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a rare hereditary disorder characterized by late onset and progressive calcification of elastic fibers in skin, eyes and the cardiovascular system, exemplifying a model for conditions characterized by soft tissue calcification. OBJECTIVE The aim of our study was to characterize cellular inorganic pyrophosphate (PPi) homeostasis in PXE. METHODS Gene expression of PPi metabolizing enzymes was determined by quantitative real-time PCR after incubation up to 21 days with or without addition of Na2HPO4. Extracellular and cytosolic PPi concentrations were measured by enzyme-linked bioluminescence assay. ALP and ENPP1 activity was determined spectrophotometrically. We further established a human cell culture model suitable for investigating PXE and related disorders without addition of artificial calcification triggers. RESULTS Independently of the experimental conditions, PXE fibroblasts revealed a higher degree of matrix calcification. We observed that matrix calcification was associated with altered gene expression of PPi metabolizing enzymes in PXE fibroblasts. In this context, PXE fibroblasts exhibited significantly higher expression of ALP and OPN and reduced mRNA expression and activity of ENPP1. Here, for the first time cytosolic and extracellular PPi levels were shown to be strongly reduced in PXE fibroblasts. We further showed that PPi concentration in bovine and human sera additives had a strong impact on matrix calcification. In a last experimental line, we demonstrated that addition of PPi analogs reduced matrix calcification of PXE fibroblasts most likely by reducing ALP and OPN mRNA expression, restoring ENPP1 activity and subsequently elevating PPi concentrations. CONCLUSION The results of our study along with recent findings point to the essential role of PPi as the central regulatory metabolites preventing matrix calcification in PXE. But what remains to be determined is the underlying molecular mechanism leading to depletion of PPi in PXE. We further suggest that supplementation of PPi analogs might counteract pathological calcification in PXE and related disorders.
Collapse
Affiliation(s)
- Mareike Dabisch-Ruthe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
41
|
Linefsky JP, O'Brien KD, Sachs M, Katz R, Eng J, Michos ED, Budoff MJ, de Boer I, Kestenbaum B. Serum phosphate is associated with aortic valve calcification in the Multi-ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2014; 233:331-337. [PMID: 24530958 PMCID: PMC3992246 DOI: 10.1016/j.atherosclerosis.2013.12.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/24/2013] [Accepted: 12/30/2013] [Indexed: 01/06/2023]
Abstract
OBJECTIVES This study sought to investigate associations of phosphate metabolism biomarkers with aortic valve calcification (AVC). BACKGROUND Calcific aortic valve disease (CAVD) is a common progressive condition that involves inflammatory and calcification mediators. Currently there are no effective medical treatments, but mineral metabolism pathways may be important in the development and progression of disease. METHODS We examined associations of phosphate metabolism biomarkers, including serum phosphate, urine phosphate, parathyroid hormone (PTH) and serum fibroblast growth factor (FGF)-23, with CT-assessed AVC at study baseline and in short-term follow-up in 6814 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). RESULTS At baseline, AVC prevalence was 13.2%. Higher serum phosphate levels were associated with significantly greater AVC prevalence (relative risk 1.3 per 1 mg/dL increment, 95% confidence incidence: 1.1 to 1.5, p<0.001). Serum FGF-23, serum PTH, and urine phosphate were not associated with prevalent AVC. Average follow-up CT evaluation was 2.4 years (range 0.9-4.9 years) with an AVC incidence of 4.1%. Overall, phosphate metabolism biomarkers were not associated with incident AVC except in the top FGF-23 quartile. CONCLUSIONS Serum phosphate levels are significantly associated with AVC prevalence. Further study of phosphate metabolism as a modifiable risk factor for AVC is warranted.
Collapse
Affiliation(s)
- Jason P Linefsky
- Division of Cardiology, Emory University/Atlanta VA Medical Center, 1639 Pierce Drive, Suite 319, Atlanta, GA 30322, USA.
| | - Kevin D O'Brien
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Michael Sachs
- University of Washington Kidney Research Institute and Division of Nephrology, Seattle, WA, USA
| | - Ronit Katz
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - John Eng
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, CA, USA
| | - Ian de Boer
- University of Washington Kidney Research Institute and Division of Nephrology, Seattle, WA, USA
| | - Bryan Kestenbaum
- University of Washington Kidney Research Institute and Division of Nephrology, Seattle, WA, USA
| |
Collapse
|
42
|
Mathieu P, Boulanger MC. Basic mechanisms of calcific aortic valve disease. Can J Cardiol 2014; 30:982-93. [PMID: 25085215 DOI: 10.1016/j.cjca.2014.03.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder. There is no medical treatment to prevent and/or promote the regression of CAVD. Hence, it is of foremost importance to delineate and understand the key basic underlying mechanisms involved in CAVD. In the past decade our comprehension of the underpinning processes leading to CAVD has expanded at a fast pace. Hence, our understanding of the basic pathobiological processes implicated in CAVD might lead eventually to the development of novel pharmaceutical therapies for CAVD. In this review, we discuss molecular processes that are implicated in fibrosis and mineralization of the aortic valve. Specifically, we address the role of lipid retention, inflammation, phosphate signalling and osteogenic transition in the development of CAVD. Interplays between these different processes and the key regulation pathways are discussed along with their clinical relevance.
Collapse
Affiliation(s)
- Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Québec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Québec, Canada.
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Québec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Québec, Canada
| |
Collapse
|
43
|
El Husseini D, Boulanger MC, Mahmut A, Bouchareb R, Laflamme MH, Fournier D, Pibarot P, Bossé Y, Mathieu P. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease. J Mol Cell Cardiol 2014; 72:146-56. [PMID: 24631773 DOI: 10.1016/j.yjmcc.2014.02.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
Calcific aortic valve disease (CAVD) is a disorder characterized by an abnormal mineralization, which may have intricate links with inflammation. Interleukin-6 (IL-6) and its cognate cytokines are widely expressed and exert pleiotropic effects on different tissues. In this study, we examined the expression of the IL-6 family of cytokines in human CAVD by using a transcriptomic approach and we performed in-depth functional assays with valve interstitial cells (VICs) to unravel the process regulating IL-6 expression and its role during the mineralization of the aortic valve. We documented by both microarray and q-PCR analyses an elevated expression of IL-6 in human CAVD, which was correlated with the remodeling process. IL-6 was highly expressed by VICs. We found that following treatment with a phosphate-containing medium the level of IL-6 expressed by VICs increased by several-fold. Phosphate-induced expression of IL-6 relied on reduced PI3K/Akt signaling downstream of the P2Y2 receptor (P2Y2R). In this regard, we found by using transfection experiments that Akt-1 is a negative regulator of the NF-κB pathway. In addition, by using a siRNA targeting IL-6 we found that phosphate-induced mineralization was largely dependent on IL-6 expression. A transfection of Akt-1 rescued the hypermineralizing phenotype of P2Y2R(-/-) mouse VICS (MVICs). Hence, we documented a novel mechanism whereby P2Y2R and Akt modulate the NF-κB pathway and its downstream target IL-6, which is a strong promoter of the mineralization of VICs.
Collapse
Affiliation(s)
- Diala El Husseini
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Ablajan Mahmut
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Rihab Bouchareb
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Marie-Hélène Laflamme
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Dominique Fournier
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Philippe Pibarot
- Quebec Heart and Lung Institute/Research Center, Laval University, Québec, Canada
| | - Yohan Bossé
- Quebec Heart and Lung Institute/Research Center, Laval University, Québec, Canada; Department of Molecular Medicine, Laval University, Québec, Canada
| | - Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada.
| |
Collapse
|
44
|
Elevated Expression of Lipoprotein-Associated Phospholipase A2 in Calcific Aortic Valve Disease. J Am Coll Cardiol 2014; 63:460-9. [DOI: 10.1016/j.jacc.2013.05.105] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 11/21/2022]
|
45
|
CD34-negative mesenchymal stem-like cells may act as the cellular origin of human aortic valve calcification. Biochem Biophys Res Commun 2013; 440:780-5. [PMID: 24120498 DOI: 10.1016/j.bbrc.2013.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/03/2013] [Indexed: 01/08/2023]
Abstract
Although various osteogenic inducers contribute to the calcification of human aortic valve interstitial cells, the cellular origin of calcification remains unclear. We immunohistochemically investigated the cellular origin of valve calcification using enzymatically isolated cells from both calcified and non-calcified human aortic valve specimens. CD73-, 90-, and 105-positive and CD45-negative mesenchymal stem-like cells (MSLCs) were isolated from both types of valve specimens using fluorescence-activated cell sorting. MSLCs were further sorted into CD34-negative and -positive cells. Compared with CD34-positive cells, CD34-negative MSLCs were significantly more sensitive to high inorganic phosphate (3.2 mM), calcifying easily in response. Furthermore, immunohistochemical staining showed that significantly higher numbers (~7-9-fold) of CD34-negative compared with CD34-positive MSLCs were localized in calcified aortic valve specimens obtained from calcified aortic stenosis patients. These results suggest that CD34-negative MSLCs are responsible for calcification of the aortic valve.
Collapse
|
46
|
Rattazzi M, Bertacco E, Del Vecchio A, Puato M, Faggin E, Pauletto P. Aortic valve calcification in chronic kidney disease. Nephrol Dial Transplant 2013; 28:2968-76. [PMID: 24097800 DOI: 10.1093/ndt/gft310] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several clinical studies reported an increased prevalence and accelerated progression of aortic valve calcification among patients with end-stage renal disease when compared with subjects with normal kidney function. Recently, mechanisms of calcific valve degeneration have been further elucidated and many of the pathways involved could be amplified in patients with decreased renal function. In particular, calcium-phosphate balance, MGP metabolism, OPG/RANK/RANKL triad, fetuin-A mineral complexes and FGF-23/Klotho axis have been shown to be impaired among patients with advanced chronic kidney disease and could play a role during vascular/valve calcification. The scope of the present review is to summarize the clinical data and the pathophysiological mechanisms potentially involved in the link between renal function decline and the progression of aortic valve disease.
Collapse
|
47
|
Kohen Avramoglu R, Laplante MA, Le Quang K, Deshaies Y, Després JP, Larose E, Mathieu P, Poirier P, Pérusse L, Vohl MC, Sweeney G, Ylä-Herttuala S, Laakso M, Uusitupa M, Marette A. The Genetic and Metabolic Determinants of Cardiovascular Complications in Type 2 Diabetes: Recent Insights from Animal Models and Clinical Investigations. Can J Diabetes 2013; 37:351-8. [PMID: 24500564 DOI: 10.1016/j.jcjd.2013.08.262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/19/2023]
|