1
|
Smirnov VM, Lasseaux E, Michaud V, Courdier C, Meunier I, Arveiler B, Defoort-Dhellemmes S. Crossed VEP asymmetry in a patient with AHR-linked infantile nystagmus and foveal hypoplasia. Doc Ophthalmol 2024; 149:47-52. [PMID: 38922562 DOI: 10.1007/s10633-024-09979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Infantile nystagmus and foveal hypoplasia associated with AHR gene defects is a newly recognized and rare disorder. Our aim was to present a patient with a novel biallelic AHR pathogenic variant with electrophysiological evidence of chiasmal misrouting. MATERIALS AND METHODS Complete ocular examination, fundus imaging, visual evoked potentials (VEP) and full-field electroretinography were performed at initial presentation. Genetic testing was performed by whole exome sequencing. RESULTS Female patient of 6 years old presented a reduced best corrected visual acuity, an infantile nystagmus and a grade III typical foveal hypoplasia without ocular hypopigmentation. A crossed asymmetry was discovered on pattern onset/offset VEP. Genetic testing put in evidence a novel homozygous variant in AHR: c.2242del, p. (Gln748Lysfs*5). During 11-years follow-up period, BCVA gradually improved. There was no evidence of retinal degeneration. CONCLUSION AHR gene defects could be associated with infantile nystagmus, foveal hypoplasia and chiasmal misrouting.
Collapse
Affiliation(s)
- Vasily M Smirnov
- Service d'Exploration de la Vision et de Neuro-Ophtalmologie, Hôpital Roger Salengro, CHU de Lille, 59000, Lille, France.
- Inserm, U1172-LilNCog-Lille Neuroscience & Cognition, CHU Lille, Univ. Lille, 59045, Lille, France.
| | - Eulalie Lasseaux
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
- Inserm U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Cécile Courdier
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, Sensgene Care Network, ERN-EYE Network, Montpellier University Hospital, University of Montpellier, 34295, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, 34295, Montpellier, France
| | - Benoit Arveiler
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
- Inserm U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Sabine Defoort-Dhellemmes
- Service d'Exploration de la Vision et de Neuro-Ophtalmologie, Hôpital Roger Salengro, CHU de Lille, 59000, Lille, France
| |
Collapse
|
2
|
Silverberg JI, Boguniewicz M, Quintana FJ, Clark RA, Gross L, Hirano I, Tallman AM, Brown PM, Fredericks D, Rubenstein DS, McHale KA. Tapinarof validates the aryl hydrocarbon receptor as a therapeutic target: A clinical review. J Allergy Clin Immunol 2024; 154:1-10. [PMID: 38154665 DOI: 10.1016/j.jaci.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that has wide-ranging roles, including regulation of inflammation and homeostasis. AhR is not a cell surface receptor; rather, it exists in a cytoplasmic complex that responds to a wide variety of structurally dissimilar endogenous, microbial, and environmental ligands. The ubiquitous expression of AhR, its ability to be activated by a wide range of ligands, and its capacity to act as a master regulator for gene expression and homeostasis make it a promising new therapeutic target. Clinical trials of tapinarof cream have now validated AhR agonism as a therapeutic approach that can deliver significant efficacy for treating inflammatory skin diseases, including psoriasis and atopic dermatitis. Tapinarof 1% cream is a first-in-class, nonsteroidal, topical, AhR agonist with a pharmacokinetic profile that results in localized exposure at sites of disease, avoiding systemic safety concerns, drug interactions, or off-target effects. Psoriasis and atopic dermatitis both involve epidermal inflammation, cellular immune responses, dysregulation of skin barrier protein expression, and oxidative stress. On the basis of the clinical effectiveness of tapinarof cream for treating inflammatory skin diseases, we review how targeting AhR may offer a significant opportunity in other conditions that share key aspects of pathogenesis, including asthma, inflammatory bowel disease, eosinophilic esophagitis, ophthalmic, and nervous system diseases.
Collapse
Affiliation(s)
| | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | | | - Lara Gross
- Dallas Allergy and Asthma Center, and the Allergy and Immunology Division, Baylor University Medical Center, Dallas, Tex
| | - Ikuo Hirano
- Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | | | | | | | | |
Collapse
|
3
|
Patil NY, Friedman JE, Joshi AD. Role of Hepatic Aryl Hydrocarbon Receptor in Non-Alcoholic Fatty Liver Disease. RECEPTORS (BASEL, SWITZERLAND) 2023; 2:1-15. [PMID: 37284280 PMCID: PMC10240927 DOI: 10.3390/receptors2010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerous nuclear receptors including farnesoid X receptor, liver X receptor, peroxisome proliferator-activated receptors, pregnane X receptor, hepatic nuclear factors have been extensively studied within the context of non-alcoholic fatty liver disease (NAFLD). Following the first description of the Aryl hydrocarbon Receptor (AhR) in the 1970s and decades of research which unveiled its role in toxicity and pathophysiological processes, the functional significance of AhR in NAFLD has not been completely decoded. Recently, multiple research groups have utilized a plethora of in vitro and in vivo models that mimic NAFLD pathology to investigate the functional significance of AhR in fatty liver disease. This review provides a comprehensive account of studies describing both the beneficial and possible detrimental role of AhR in NAFLD. A plausible reconciliation for the paradox indicating AhR as a 'double-edged sword' in NAFLD is discussed. Finally, understanding AhR ligands and their signaling in NAFLD will facilitate us to probe AhR as a potential drug target to design innovative therapeutics against NAFLD in the near future.
Collapse
Affiliation(s)
- Nikhil Y. Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Aditya D. Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
4
|
Silva-Parra J, Sandu C, Felder-Schmittbuhl MP, Hernández-Kelly LC, Ortega A. Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotox Res 2023; 41:103-117. [PMID: 36607593 DOI: 10.1007/s12640-022-00623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain. Glutamatergic signaling is involved in most of the central nervous system functions. Its main components, namely receptors, ion channels, and transporters, are tightly regulated at the transcriptional, translational, and post-translational levels through a diverse array of extracellular signals, such as food, light, and neuroactive molecules. An exquisite and well-coordinated glial/neuronal bidirectional communication is required for proper excitatory amino acid signal transactions. Biochemical shuttles such as the glutamate/glutamine and the astrocyte-neuronal lactate represent the fundamental involvement of glial cells in glutamatergic transmission. In fact, the disruption of any of these coordinated biochemical intercellular cascades leads to an excitotoxic insult that underlies some aspects of most of the neurodegenerative diseases characterized thus far. In this contribution, we provide a comprehensive summary of the involvement of the Aryl hydrocarbon receptor, a ligand-dependent transcription factor in the gene expression regulation of glial glutamate transporters. These receptors might serve as potential targets for the development of novel strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México.
| |
Collapse
|
5
|
Imran SJ, Vagaska B, Kriska J, Anderova M, Bortolozzi M, Gerosa G, Ferretti P, Vrzal R. Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals (Basel) 2022; 15:ph15070828. [PMID: 35890127 PMCID: PMC9321538 DOI: 10.3390/ph15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.
Collapse
Affiliation(s)
- Saima Jalil Imran
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| | - Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy;
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| |
Collapse
|
6
|
Larigot L, Bui LC, de Bouvier M, Pierre O, Pinon G, Fiocca J, Ozeir M, Tourette C, Ottolenghi C, Imbeaud S, Pontoizeau C, Blaise BJ, Chevallier A, Tomkiewicz C, Legrand B, Elena-Herrmann B, Néri C, Brinkmann V, Nioche P, Barouki R, Ventura N, Dairou J, Coumoul X. Identification of Modulators of the C. elegans Aryl Hydrocarbon Receptor and Characterization of Transcriptomic and Metabolic AhR-1 Profiles. Antioxidants (Basel) 2022; 11:antiox11051030. [PMID: 35624894 PMCID: PMC9137885 DOI: 10.3390/antiox11051030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023] Open
Abstract
The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- CNRS UMR 8601, Metabolism, Pharmacochemistry and Neurochemistry, Université Paris Cité, 75006 Paris, France
| | - Linh-Chi Bui
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Unité de biologie fonctionnelle et adaptative, UMR 8251, CNRS, Université Paris Cité, 75013 Paris, France
| | - Marine de Bouvier
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Ophélie Pierre
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Laboratoire Interactions Epithéliums-Neurones (LIEN), Université de Brest, EA4685, 29200 Brest, France
| | - Grégory Pinon
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Justine Fiocca
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Mohammad Ozeir
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Cendrine Tourette
- Centre Paul Broca, INSERM U894 Neuronal Cell Biology & Pathology & EA Université Paris Cité, 75014 Paris, France;
| | - Chris Ottolenghi
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 75015 Paris, France;
| | - Sandrine Imbeaud
- Gif/Orsay DNA MicroArray Platform, 91190 Gif sur Yvette, France;
| | - Clément Pontoizeau
- AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 75015 Paris, France;
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
| | - Benjamin J. Blaise
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
| | - Aline Chevallier
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Béatrice Legrand
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Bénédicte Elena-Herrmann
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
- Institute for Advanced Biosciences, Univ. Grenoble Alpes, CNRS, INSERM, 38000 Grenoble, France
| | - Christian Néri
- CNRS UMR 8256, Inserm ERL U1164, Sorbonne Université, 75005 Paris, France;
| | - Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (N.V.)
- Leibniz Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Pierre Nioche
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (N.V.)
- Leibniz Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Julien Dairou
- CNRS UMR 8601, Metabolism, Pharmacochemistry and Neurochemistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (J.D.); (X.C.); Tel.: +33-1-42-86-91-21 (J.D.); +33-1-42-86-33-59 (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Correspondence: (J.D.); (X.C.); Tel.: +33-1-42-86-91-21 (J.D.); +33-1-42-86-33-59 (X.C.)
| |
Collapse
|
7
|
Thomas MG, Papageorgiou E, Kuht HJ, Gottlob I. Normal and abnormal foveal development. Br J Ophthalmol 2022; 106:593-599. [PMID: 33148537 DOI: 10.1136/bjophthalmol-2020-316348] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 01/06/2023]
Abstract
Normal foveal development begins in utero at midgestation with centrifugal displacement of inner retinal layers (IRLs) from the location of the incipient fovea. The outer retinal changes such as increase in cone cell bodies, cone elongation and packing mainly occur after birth and continue until 13 years of age. The maturity of the fovea can be assessed invivo using optical coherence tomography, which in normal development would show a well-developed foveal pit, extrusion of IRLs, thickened outer nuclear layer and long outer segments. Developmental abnormalities of various degrees can result in foveal hypoplasia (FH). This is a characteristic feature for example in albinism, aniridia, prematurity, foveal hypoplasia with optic nerve decussation defects with or without anterior segment dysgenesis without albinism (FHONDA) and optic nerve hypoplasia. In achromatopsia, there is disruption of the outer retinal layers with atypical FH. Similarly, in retinal dystrophies, there is abnormal lamination of the IRLs sometimes with persistent IRLs. Morphology of FH provides clues to diagnoses, and grading correlates to visual acuity. The outer segment thickness is a surrogate marker for cone density and in foveal hypoplasia this correlates strongly with visual acuity. In preverbal children grading FH can help predict future visual acuity.
Collapse
Affiliation(s)
- Mervyn G Thomas
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Larissa, Greece
| | - Helen J Kuht
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Irene Gottlob
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Hammond CL, Roztocil E, Gupta V, Feldon SE, Woeller CF. More than Meets the Eye: The Aryl Hydrocarbon Receptor is an Environmental Sensor, Physiological Regulator and a Therapeutic Target in Ocular Disease. FRONTIERS IN TOXICOLOGY 2022; 4:791082. [PMID: 35295218 PMCID: PMC8915869 DOI: 10.3389/ftox.2022.791082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor originally identified as an environmental sensor of xenobiotic chemicals. However, studies have revealed that the AHR regulates crucial aspects of cell growth and metabolism, development and the immune system. The importance of the AHR and AHR signaling in eye development, toxicology and disease is now being uncovered. The AHR is expressed in many ocular tissues including the retina, choroid, cornea and the orbit. A significant role for the AHR in age-related macular degeneration (AMD), autoimmune uveitis, and other ocular diseases has been identified. Ligands for the AHR are structurally diverse organic molecules from exogenous and endogenous sources. Natural AHR ligands include metabolites of tryptophan and byproducts of the microbiome. Xenobiotic AHR ligands include persistent environmental pollutants such as dioxins, benzo (a) pyrene [B (a) P] and polychlorinated biphenyls (PCBs). Pharmaceutical agents including the proton pump inhibitors, esomeprazole and lansoprazole, and the immunosuppressive drug, leflunomide, activate the AHR. In this review, we highlight the role of the AHR in the eye and discuss how AHR signaling is involved in responding to endogenous and environmental stimuli. We also present the emerging concept that the AHR is a promising therapeutic target for eye disease.
Collapse
Affiliation(s)
| | | | | | | | - Collynn F. Woeller
- Flaum Eye Institute, Rochester, NY, United States
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- *Correspondence: Collynn F. Woeller,
| |
Collapse
|
9
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
10
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
11
|
Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annu Rev Pharmacol Toxicol 2021; 62:383-404. [PMID: 34499523 DOI: 10.1146/annurev-pharmtox-052220-115707] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Louise Benoit
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Meriem Koual
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| |
Collapse
|
12
|
Esteban J, Sánchez-Pérez I, Hamscher G, Miettinen HM, Korkalainen M, Viluksela M, Pohjanvirta R, Håkansson H. Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. Reprod Toxicol 2021; 101:33-49. [PMID: 33607186 DOI: 10.1016/j.reprotox.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 μg/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.
Collapse
Affiliation(s)
- Javier Esteban
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Ismael Sánchez-Pérez
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.
| | - Hanna M Miettinen
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Matti Viluksela
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Mustialankatu 1, FI-00790 Helsinki, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
14
|
Teino I, Matvere A, Pook M, Varik I, Pajusaar L, Uudeküll K, Vaher H, Trei A, Kristjuhan A, Org T, Maimets T. Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation. Int J Mol Sci 2020; 21:E9052. [PMID: 33260776 PMCID: PMC7731104 DOI: 10.3390/ijms21239052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.
Collapse
Affiliation(s)
- Indrek Teino
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Antti Matvere
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Martin Pook
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Inge Varik
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Laura Pajusaar
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Keyt Uudeküll
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Helen Vaher
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Annika Trei
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Arnold Kristjuhan
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Tõnis Org
- Chair of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Toivo Maimets
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| |
Collapse
|
15
|
Borovok N, Weiss C, Sharkia R, Reichenstein M, Wissinger B, Azem A, Mahajnah M. Gene and Protein Expression in Subjects With a Nystagmus-Associated AHR Mutation. Front Genet 2020; 11:582796. [PMID: 33193710 PMCID: PMC7542227 DOI: 10.3389/fgene.2020.582796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
Recently, a consanguineous family was identified in Israel with three children affected by Infantile Nystagmus and Foveal Hypoplasia, following an autosomal recessive mode of inheritance. A homozygous stop mutation c.1861C > T; p.Q621∗ in the aryl hydrocarbon receptor (AHR) gene (AHR; MIM 600253) was identified that co-segregated with the disease in the larger family. AHR is the first gene to be identified causing an autosomal recessive Infantile Nystagmus-related disease in humans. The goal of this study is to delineate the molecular basis of this newly discovered human genetic disorder associated with a rare AHR gene mutation. The gene and protein expression levels of AHR and selected AHR targets from leukocyte cultures of healthy subjects and the patients were analyzed. We observed significant variation between mRNA and protein expression of CYP1A1, CYP1B1, and TiPARP under rest and AHR-induced conditions. The CYP1A1 enzymatic activity in induced leukocytes also differs significantly between the patients and healthy volunteers. Intriguingly, the heterozygous subjects demonstrate CYP1A1 and TiPARP gene and protein expression similar to homozygous patients. In contrast, CYP1B1 inducibility and expression vary between hetero- and homozygous subjects. Similarity and differences in gene and protein expression between heterozygotes and homozygous patients can give us a hint as to which metabolic pathway/s might be involved in the Nystagmus etiology. Thus, we have a unique human model for AHR deficiency that will allow us the opportunity to study the biochemical basis of this rare human mutation, as well as the involvement of AHR in other physiological processes.
Collapse
Affiliation(s)
- Natalia Borovok
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Celeste Weiss
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Rajech Sharkia
- Triangle Research and Development Center, Kafr Qara, Israel.,Beit Berl College, Beit Berl, Israel
| | - Michal Reichenstein
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Bernd Wissinger
- Institute for Ophthalmic Research Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Abdussalam Azem
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Mahajnah
- Hillel Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
17
|
Safe S, Jin UH, Park H, Chapkin RS, Jayaraman A. Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). Int J Mol Sci 2020; 21:6654. [PMID: 32932962 PMCID: PMC7555580 DOI: 10.3390/ijms21186654] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) was first identified as the intracellular protein that bound and mediated the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and dioxin-like compounds (DLCs). Subsequent studies show that the AhR plays an important role in maintaining cellular homeostasis and in pathophysiology, and there is increasing evidence that the AhR is an important drug target. The AhR binds structurally diverse compounds, including pharmaceuticals, phytochemicals and endogenous biochemicals, some of which may serve as endogenous ligands. Classification of DLCs and non-DLCs based on their persistence (metabolism), toxicities, binding to wild-type/mutant AhR and structural similarities have been reported. This review provides data suggesting that ligands for the AhR are selective AhR modulators (SAhRMs) that exhibit tissue/cell-specific AhR agonist and antagonist activities, and that their functional diversity is similar to selective receptor modulators that target steroid hormone and other nuclear receptors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Un-ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Hyejin Park
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Robert S. Chapkin
- Departments of Nutrition and Food Science and Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
18
|
Safe S, Jayaraman A, Chapkin RS. Ah receptor ligands and their impacts on gut resilience: structure-activity effects. Crit Rev Toxicol 2020; 50:463-473. [PMID: 32597352 PMCID: PMC7773274 DOI: 10.1080/10408444.2020.1773759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and structurally related halogenated aromatics modulate gene expression and induce biochemical and toxic responses that are mediated by initial binding to the aryl hydrocarbon receptor (AhR). The AhR also binds structurally diverse compound including pharmaceuticals, endogenous biochemicals, health-promoting phytochemicals, and microbial metabolites. Many of these AhR ligands do not induce TCDD-like toxic responses and some AhR ligands such as microbial metabolites of tryptophan play a role in maintaining gut health and protecting against intestinal inflammation and cancer. Many AhR ligands exhibit tissue- and response-specific AhR agonist or antagonist activities, and act as selective AhR modulators (SAhRMs) and this SAhRM-like activity has also been observed in AhR-ligand-mediated effects in the intestine. This review summarizes studies showing that several AhR ligands including phytochemicals and TCDD protect against dextran sodium sulfate-induced intestinal inflammation. In contrast, AhR ligands such as oxazole compounds enhance intestinal inflammation suggesting that AhR-mediated gut health can be enhanced or decreased by selective AhR modulators and this needs to be considered in development of AhR ligands for therapeutic applications in treating intestinal inflammation.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Mayer AK, Mahajnah M, Thomas MG, Cohen Y, Habib A, Schulze M, Maconachie GDE, AlMoallem B, De Baere E, Lorenz B, Traboulsi EI, Kohl S, Azem A, Bauer P, Gottlob I, Sharkia R, Wissinger B. Homozygous stop mutation in AHR causes autosomal recessive foveal hypoplasia and infantile nystagmus. Brain 2020; 142:1528-1534. [PMID: 31009037 DOI: 10.1093/brain/awz098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
Herein we present a consanguineous family with three children affected by foveal hypoplasia with infantile nystagmus, following an autosomal recessive mode of inheritance. The patients showed normal electroretinography responses, no signs of albinism, and no anterior segment or brain abnormalities. Upon whole exome sequencing, we identified a homozygous mutation (c.1861C>T;p.Q621*) in the aryl hydrocarbon receptor (AHR) gene that perfectly co-segregated with the disease in the larger family. AHR is a ligand-activated transcription factor that has been intensively studied in xenobiotic-induced toxicity. Further, it has been shown to play a physiological role under normal cellular conditions, such as in immunity, inflammatory response and neurogenesis. Notably, knockout of the Ahr gene in mouse impairs optic nerve myelin sheath formation and results in oculomotor deficits sharing many features with our patients: the eye movement disorder in Ahr-/- mice appears early in development and presents as conjugate horizontal pendular nystagmus. We therefore propose AHR to be a novel disease gene for a new, recessively inherited disorder in humans, characterized by infantile nystagmus and foveal hypoplasia.
Collapse
Affiliation(s)
- Anja K Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Muhammad Mahajnah
- Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mervyn G Thomas
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Yuval Cohen
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Ophthalmology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Adib Habib
- Pediatric Department, St. Vincent French Hospital, Nazareth, Israel
| | - Martin Schulze
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Gail D E Maconachie
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Basamat AlMoallem
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, King Abdul-Aziz University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Birgit Lorenz
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Irene Gottlob
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari', Israel.,Beit-Berl Academic College, Beit-Berl, Israel
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
20
|
Mayer AK, Balousha G, Sharkia R, Mahajnah M, Ayesh S, Schulze M, Buchert R, Zobor D, Azem A, Schöls L, Bauer P, Wissinger B. Unraveling the genetic cause of hereditary ophthalmic disorders in Arab societies from Israel and the Palestinian Authority. Eur J Hum Genet 2020; 28:742-753. [PMID: 31896775 DOI: 10.1038/s41431-019-0566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 11/09/2022] Open
Abstract
Visual impairment due to inherited ophthalmic disorders is amongst the most common disabilities observed in populations practicing consanguineous marriages. Here we investigated the molecular genetic basis of an unselected broad range of ophthalmic disorders in 20 consanguineous families from Arab villages of Israel and the Palestinian Authority. Most patients had little or very poor prior clinical workup and were recruited in a field study. Homozygosity mapping followed by candidate gene sequencing applying conventional Sanger sequencing or targeted next generation sequencing was performed in six families. In the remaining 14 families, one affected subject per family was chosen for whole exome sequencing. We discovered likely disease-causing variants, all homozygous, in 19 of 20 independent families (95%) including a previously reported novel disease gene for congenital nystagmus associated with foveal hypoplasia. Moreover, we found a family in which disease-causing variants for two collagenopathies - Stickler and Knobloch syndrome - segregate within a large sibship. Nine of the 19 distinct variants observed in this study were novel. Our study demonstrated a very high molecular diagnostic yield for a highly diverse spectrum of rare ophthalmic disorders in Arab patients from Israel and the Palestinian Authority, even with very limited prior clinical investigation. We conclude that 'genetic testing first' may be an economic way to direct clinical care and to support proper genetic counseling and risk assessment in these families.
Collapse
Affiliation(s)
- Anja K Mayer
- Institute for Ophthalmic Research, Molecular Genetics Laboratory, Tuebingen, Germany.,Praxis fuer Humangenetik Tuebingen, Tuebingen, Germany
| | - Ghassan Balousha
- Department of Pathology and Histology, Al-Quds University, Eastern Jerusalem, Palestinian Authority, Jerusalem, Israel
| | - Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari', Israel.,Beit-Berl Academic College, Beit-Berl, Israel
| | - Muhammad Mahajnah
- Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Suhail Ayesh
- Molecular Genetic Laboratory, Al-Makassed Islamic Charitable Society Hospital, Jerusalem, Israel
| | - Martin Schulze
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Praxis fuer Humangenetik Tuebingen, Tuebingen, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ditta Zobor
- University Eye Hospital, University of Tuebingen, Tuebingen, Germany
| | - Abdussalam Azem
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ludger Schöls
- Hertie Institute for Brain Research, University of Tuebingen, Tuebingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Molecular Genetics Laboratory, Tuebingen, Germany.
| |
Collapse
|
21
|
Wu PY, Chuang PY, Chang GD, Chan YY, Tsai TC, Wang BJ, Lin KH, Hsu WM, Liao YF, Lee H. Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. ACS Chem Neurosci 2019; 10:4031-4042. [PMID: 31404492 DOI: 10.1021/acschemneuro.9b00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) signaling has been suggested to play roles in various physiological functions independent of its xenobiotic activity, including cell cycle regulation, immune response, and embryonic development. Several endogenous ligands were also identified by high-throughput screening techniques. However, the mechanism by which these molecules mediate AHR signaling in certain functions is still elusive. In this study, we investigated the possible pathway through which AHR and its endogenous ligands regulate neural development. We first identified two neuroactive steroids, 3α,5α-tetrahydrocorticosterone and 3α,5β-tetrahydrocorticosterone (5α- and 5β-THB), as novel AHR endogenous ligands through the use of an ultrasensitive dioxin-like compound bioassay and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS). We then treated zebrafish embryos with 5α- and 5β-THB, which enhance the expression of neurogenesis marker HuC. Furthermore, 5α- and 5β-THB both enhanced the expression of myelinating glial cell markers, sex determining region Y-box 10 (Sox10), and myelin-associated proteins myelin basic protein (Mbp) and improved the mobility of zebrafish larvae via the Ahr2 pathway. These results indicated that AHR mediates zebrafish neurogenesis and gliogenesis, especially the differentiation of oligodendrocyte or Schwann cells. Additionally, we showed that these molecules may induce neuroblastoma (NB) cell differentiation suggesting therapeutic potential of 5α- and 5β-THB in NB treatment. In summary, our results reveal that 5α- and 5β-THB are endogenous ligands of AHR and have therapeutic potential for NB treatment. By the interaction with THB, AHR signaling regulates various aspects of neural development.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Yun Chuang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Science, National Taiwan University, Taipei 106, Taiwan
| | - Ya-Yun Chan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Ching Tsai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor and the Maintenance of Lung Health. Int J Mol Sci 2018; 19:E3882. [PMID: 30563036 PMCID: PMC6320801 DOI: 10.3390/ijms19123882] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Much of what is known about the Aryl Hydrocarbon Receptor (AhR) centers on its ability to mediate the deleterious effects of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). However, the AhR is both ubiquitously-expressed and evolutionarily-conserved, suggesting that it evolved for purposes beyond strictly mediating responses to man-made environmental toxicants. There is growing evidence that the AhR is required for the maintenance of health, as it is implicated in physiological processes such as xenobiotic metabolism, organ development and immunity. Dysregulation of AhR expression and activity is also associated with a variety of disease states, particularly those at barrier organs such as the skin, gut and lungs. The lungs are particularly vulnerable to inhaled toxicants such as cigarette smoke. However, the role of the AhR in diseases such as chronic obstructive pulmonary disease (COPD)-a respiratory illness caused predominately by cigarette smoking-and lung cancer remains largely unexplored. This review will discuss the growing body of literature that provides evidence that the AhR protects the lungs against the damaging effects of cigarette smoke.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
23
|
Safe S, Han H, Goldsby J, Mohankumar K, Chapkin RS. Aryl Hydrocarbon Receptor (AhR) Ligands as Selective AhR Modulators: Genomic Studies. CURRENT OPINION IN TOXICOLOGY 2018; 11-12:10-20. [PMID: 31453421 PMCID: PMC6709982 DOI: 10.1016/j.cotox.2018.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) binds structurally diverse ligands that vary from the environmental toxicant 2,3,7,8-tetrachlorodibenzo-B-dioxin (TCDD) to AhR- active pharmaceuticals and health-promoting phytochemicals. There are remarkable differences in the toxicity of TCDD and related halogenated aromatics (HAs) vs. health promoting AhR ligands, and genomic analysis shows that even among the toxic HAs, there are differences in their regulation of genes and pathways. Thus, like ligands for other receptors, AhR ligands are selective AhR modulators (SAhRMs) which exhibit variable tissue-, organ- and species-specific genomic and functional activities.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology
| | - Huajun Han
- Department of Biochemistry & Biophysics
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | - Jennifer Goldsby
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | | | - Robert S. Chapkin
- Department of Biochemistry & Biophysics
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
25
|
Kajta M, Wnuk A, Rzemieniec J, Lason W, Mackowiak M, Chwastek E, Staniszewska M, Nehring I, Wojtowicz AK. Triclocarban Disrupts the Epigenetic Status of Neuronal Cells and Induces AHR/CAR-Mediated Apoptosis. Mol Neurobiol 2018; 56:3113-3131. [PMID: 30097849 PMCID: PMC6476872 DOI: 10.1007/s12035-018-1285-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Triclocarban is a phenyl ether that has recently been classified as a contaminant of emerging concern. Evidence shows that triclocarban is present in human tissues, but little is known about the impact of triclocarban on the nervous system, particularly at early developmental stages. This study demonstrated that triclocarban that was used at environmentally relevant concentrations induced apoptosis in mouse embryonic neurons, inhibited sumoylation, and changed the epigenetic status, as evidenced by impaired activities of HDAC, sirtuins, and DNMT, global DNA hypomethylation, and alterations of methylation levels of bax, bcl2, Ahr, and Car genes. The use of selective antagonists and specific siRNAs, which was followed by the co-localization of aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR) in mouse neurons, points to the involvement of AHR and CAR in triclocarban-induced neurotoxicity. A 24-h treatment with triclocarban enhanced protein levels of the receptors which was paralleled by Car hypomethylation and Ahr hypermethylation. Car hypomethylation is in line with global DNA hypomethylation and explains the increased mRNA and protein levels of CAR in response to triclocarban. Ahr hypermethylation could reflect reduced Ahr mRNA expression and corresponds to lowered protein levels after 3- and 6-h exposures to triclocarban that is likely related to proteasomal degradation of activated AHR. We hypothesize that the triclocarban-induced apoptosis in mouse neurons and the disruption of epigenetic status involve both AHR- and CAR-mediated effects, which may substantiate a fetal basis of the adult onset of neurological diseases; however, the expression of the receptors is regulated in different ways.
Collapse
Affiliation(s)
- M Kajta
- Institute of Pharmacology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| | - A Wnuk
- Institute of Pharmacology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - J Rzemieniec
- Institute of Pharmacology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - W Lason
- Institute of Pharmacology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - M Mackowiak
- Institute of Pharmacology, Department of Pharmacology, Laboratory of Brain Biostructure, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - E Chwastek
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, Gronostajowa Street 9, 30-387, Krakow, Poland
| | - M Staniszewska
- Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - I Nehring
- Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - A K Wojtowicz
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture, Redzina Street 1B, 30-248, Krakow, Poland
| |
Collapse
|
26
|
Juricek L, Carcaud J, Pelhaitre A, Riday TT, Chevallier A, Lanzini J, Auzeil N, Laprévote O, Dumont F, Jacques S, Letourneur F, Massaad C, Agulhon C, Barouki R, Beraneck M, Coumoul X. AhR-deficiency as a cause of demyelinating disease and inflammation. Sci Rep 2017; 7:9794. [PMID: 28851966 PMCID: PMC5575046 DOI: 10.1038/s41598-017-09621-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022] Open
Abstract
The Aryl hydrocarbon Receptor(AhR) is among the most important receptors which bind pollutants; however it also regulates signaling pathways independently of such exposure. We previously demonstrated that AhR is expressed during development of the central nervous system(CNS) and that its deletion leads to the occurrence of a congenital nystagmus. Objectives of the present study are to decipher the origin of these deficits, and to identify the role of the AhR in the development of the CNS. We show that the AhR-knockout phenotype develops during early infancy together with deficits in visual-information-processing which are associated with an altered optic nerve myelin sheath, which exhibits modifications in its lipid composition and in the expression of myelin-associated-glycoprotein(MAG), a cell adhesion molecule involved in myelin-maintenance and glia-axon interaction. In addition, we show that the expression of pro-inflammatory cytokines is increased in the impaired optic nerve and confirm that inflammation is causally related with an AhR-dependent decreased expression of MAG. Overall, our findings demonstrate the role of the AhR as a physiological regulator of myelination and inflammatory processes in the developing CNS. It identifies a mechanism by which environmental pollutants might influence CNS myelination and suggest AhR as a relevant drug target for demyelinating diseases.
Collapse
Affiliation(s)
- Ludmila Juricek
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Julie Carcaud
- CNRS UMR8119, Centre de Neurophysique, Physiologie, Pathologie, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Alice Pelhaitre
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Thorfinn T Riday
- CNRS FR 3636, Glia-Glia and Glia-Neuron Interactions Group, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Aline Chevallier
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Justine Lanzini
- CNRS UMR8638 Chimie Organique, Médicinale et Extractive et Toxicologie Expérimentale, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Nicolas Auzeil
- CNRS UMR8638 Chimie Organique, Médicinale et Extractive et Toxicologie Expérimentale, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Olivier Laprévote
- CNRS UMR8638 Chimie Organique, Médicinale et Extractive et Toxicologie Expérimentale, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Florent Dumont
- Plate-Forme Séquençage et Génomique, Institut Cochin, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Sebastien Jacques
- Plate-Forme Séquençage et Génomique, Institut Cochin, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Frank Letourneur
- Plate-Forme Séquençage et Génomique, Institut Cochin, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Charbel Massaad
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Cendra Agulhon
- CNRS FR 3636, Glia-Glia and Glia-Neuron Interactions Group, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Mathieu Beraneck
- CNRS UMR8119, Centre de Neurophysique, Physiologie, Pathologie, Paris, France.,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire, Paris, France. .,Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France.
| |
Collapse
|
27
|
Jin HL, Jeong KW. Regulation of aryl hydrocarbon receptor-mediated transcription in human retinal pigmented epithelial cells. Biochem Biophys Res Commun 2016; 472:366-72. [PMID: 26966070 DOI: 10.1016/j.bbrc.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with pleiotropic effects in normal physiology or vascular development, xenobiotic metabolism, and cancer. A previous study has reported that BRG1, a component of the SWI/SNF complex, is a coactivator for AHR and is recruited to the promoter region of the CYP1A1 gene in mouse hepatocytes. Recent data suggest that AHR is also expressed in human retinal pigment epithelial cells (ARPE-19), which play a crucial role in retinal physiology and the visual cycle. Multiple studies have shown that the AHR plays an important role in the pathogenesis of retinal diseases including age-related macular degeneration. However, the mechanism of AHR transcriptional activation in retinal pigment cells has not been reported. Here, we demonstrate that the AHR signaling pathway is active in ARPE-19 cells, as in hepatocytes, but with different target gene specificity. We also found that chromatin remodeling by the BRG1-containing SWI/SNF complex is required for the AHR-mediated expression of target genes in ARPE-19 cells. We identified a novel enhancer region (-12 kb) of the CYP1A1 gene in ARPE-19 cells, to which both AHR and BRG1 are recruited in a ligand-dependent manner. BRG1 is associated with the AHR in ARPE-19 cells, and the C-terminal activation domain of the AHR directly interacts with BRG1. Furthermore, depletion of BRG1 caused a reduction in chromatin accessibility at the CYP1A1 enhancer. These results suggest that ARPE-19 cells possess an AHR-mediated transcription pathway with different target gene specificity, and that BRG1 is required for AHR-mediated transcription in ARPE-19 cells.
Collapse
Affiliation(s)
- Hong Lan Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea.
| |
Collapse
|
28
|
Imran S, Ferretti P, Vrzal R. Different regulation of aryl hydrocarbon receptor-regulated genes in response to dioxin in undifferentiated and neuronally differentiated human neuroblastoma SH-SY5Y cells. Toxicol Mech Methods 2015; 25:689-97. [DOI: 10.3109/15376516.2015.1070227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Saima Imran
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic and
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, London, UK
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic and
| |
Collapse
|
29
|
Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse. PLoS One 2015; 10:e0131921. [PMID: 26148200 PMCID: PMC4493046 DOI: 10.1371/journal.pone.0131921] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Damage to the eye from blast exposure can occur as a result of the overpressure air-wave (primary injury), flying debris (secondary injury), blunt force trauma (tertiary injury), and/or chemical/thermal burns (quaternary injury). In this study, we investigated damage in the contralateral eye after a blast directed at the ipsilateral eye in the C57Bl/6J and DBA/2J mouse. Assessments of ocular health (gross pathology, electroretinogram recordings, optokinetic tracking, optical coherence tomography and histology) were performed at 3, 7, 14 and 28 days post-trauma. Olfactory epithelium and optic nerves were also examined. Anterior pathologies were more common in the DBA/2J than in the C57Bl/6 and could be prevented with non-medicated viscous eye drops. Visual acuity decreased over time in both strains, but was more rapid and severe in the DBA/2J. Retinal cell death was present in approximately 10% of the retina at 7 and 28 days post-blast in both strains. Approximately 60% of the cell death occurred in photoreceptors. Increased oxidative stress and microglial reactivity was detected in both strains, beginning at 3 days post-injury. However, there was no sign of injury to the olfactory epithelium or optic nerve in either strain. Although our model directs an overpressure air-wave at the left eye in a restrained and otherwise protected mouse, retinal damage was detected in the contralateral eye. The lack of damage to the olfactory epithelium and optic nerve, as well as the different timing of cell death as compared to the blast-exposed eye, suggests that the injuries were due to physical contact between the contralateral eye and the housing chamber of the blast device and not propagation of the blast wave through the head. Thus we describe a model of mild blunt eye trauma.
Collapse
|
30
|
Mongan M, Meng Q, Wang J, Kao WWY, Puga A, Xia Y. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis. J Biol Chem 2015; 290:19770-9. [PMID: 26109068 DOI: 10.1074/jbc.m115.665729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1(+/-) embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure.
Collapse
Affiliation(s)
| | | | | | - Winston W-Y Kao
- Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056
| | - Alvaro Puga
- From the Departments of Environmental Health and
| | - Ying Xia
- From the Departments of Environmental Health and Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056
| |
Collapse
|
31
|
Sun RX, Chong LC, Simmons TT, Houlahan KE, Prokopec SD, Watson JD, Moffat ID, Lensu S, Lindén J, P'ng C, Okey AB, Pohjanvirta R, Boutros PC. Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity. BMC Genomics 2014; 15:1053. [PMID: 25467400 PMCID: PMC4301818 DOI: 10.1186/1471-2164-15-1053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/19/2014] [Indexed: 12/04/2022] Open
Abstract
Background Research on the aryl hydrocarbon receptor (AHR) has largely focused on variations in toxic outcomes resulting from its activation by halogenated aromatic hydrocarbons. But the AHR also plays key roles in regulating pathways critical for development, and after decades of research the mechanisms underlying physiological regulation by the AHR remain poorly characterized. Previous studies identified several core genes that respond to xenobiotic AHR ligands across a broad range of species and tissues. However, only limited inferences have been made regarding its role in regulating constitutive gene activity, i.e. in the absence of exogenous ligands. To address this, we profiled transcriptomic variations between AHR-active and AHR-less-active animals in the absence of an exogenous agonist across five tissues, three of which came from rats (hypothalamus, white adipose and liver) and two of which came from mice (kidney and liver). Because AHR status alone has been shown sufficient to alter transcriptomic responses, we reason that by contrasting profiles amongst AHR-variant animals, we may elucidate effects of the AHR on constitutive mRNA abundances. Results We found significantly more overlap in constitutive mRNA abundances amongst tissues within the same species than from tissues between species and identified 13 genes (Agt, Car3, Creg1, Ctsc, E2f6, Enpp1, Gatm, Gstm4, Kcnj8, Me1, Pdk1, Slc35a3, and Sqrdl) that are affected by AHR-status in four of five tissues. One gene, Creg1, was significantly up-regulated in all AHR-less-active animals. We also find greater overlap between tissues at the pathway level than at the gene level, suggesting coherency to the AHR signalling response within these processes. Analysis of regulatory motifs suggests that the AHR mostly mediates transcriptional regulation via direct binding to response elements. Conclusions These findings, though preliminary, present a platform for further evaluating the role of the AHR in regulation of constitutive mRNA levels and physiologic function. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1053) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
32
|
Li KL, Lu TM, Yu JK. Genome-wide survey and expression analysis of the bHLH-PAS genes in the amphioxus Branchiostoma floridae reveal both conserved and diverged expression patterns between cephalochordates and vertebrates. EvoDevo 2014; 5:20. [PMID: 24959341 PMCID: PMC4066832 DOI: 10.1186/2041-9139-5-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023] Open
Abstract
Background The bHLH-PAS transcription factors are found in both protostomes and deuterostomes. They are involved in many developmental and physiological processes, including regional differentiation of the central nervous system, tube-formation, hypoxia signaling, aromatic hydrocarbon sensing, and circadian rhythm regulation. To understand the evolution of these genes in chordates, we analyzed the bHLH-PAS genes of the basal chordate amphioxus (Branchiostoma floridae). Results From the amphioxus draft genome database, we identified ten bHLH-PAS genes, nine of which could be assigned to known orthologous families. The tenth bHLH-PAS gene could not be assigned confidently to any known bHLH family; however, phylogenetic analysis clustered this gene with arthropod Met family genes and two spiralian bHLH-PAS-containing sequences, suggesting that they may share the same ancestry. We examined temporal and spatial expression patterns of these bHLH-PAS genes in developing amphioxus embryos. We found that BfArnt, BfNcoa, BfSim, and BfHifα were expressed in the central nervous system in patterns similar to those of their vertebrate homologs, suggesting that their functions may be conserved. By contrast, the amphioxus BfAhr and BfNpas4 had expression patterns distinct from those in vertebrates. These results imply that there were changes in gene regulation after the divergence of cephalochordates and vertebrates. Conclusions We have identified ten bHLH-PAS genes from the amphioxus genome and determined the embryonic expression profiles for these genes. In addition to the nine currently recognized bHLH-PAS families, our survey suggests that the BfbHLHPAS-orphan gene along with arthropod Met genes and the newly identified spiralian bHLH-PAS-containing sequences represent an ancient group of genes that were lost in the vertebrate lineage. In a comparison with the expression patterns of the vertebrate bHLH-PAS paralogs, which are the result of whole-genome duplication, we found that although several members seem to retain conserved expression patterns during chordate evolution, many duplicated paralogs may have undergone subfunctionalization and neofunctionalization in the vertebrate lineage. In addition, our survey of amphioxus bHLH-PAS gene models from genome browser with experimentally verified cDNA sequences calls into question the accuracy of the current in silico gene annotation of the B. floridae genome.
Collapse
Affiliation(s)
- Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan ; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan ; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
33
|
Aluru N, Jenny MJ, Hahn ME. Knockdown of a zebrafish aryl hydrocarbon receptor repressor (AHRRa) affects expression of genes related to photoreceptor development and hematopoiesis. Toxicol Sci 2014; 139:381-95. [PMID: 24675095 DOI: 10.1093/toxsci/kfu052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aryl hydrocarbon receptor repressor (AHRR) is a transcriptional repressor of aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF) and is regulated by an AHR-dependent mechanism. Zebrafish (Danio rerio) possess two AHRR paralogs; AHRRa regulates constitutive AHR signaling during development, whereas AHRRb regulates polyaromatic hydrocarbon-induced gene expression. However, little is known about the endogenous roles and targets of AHRRs. The objective of this study was to elucidate the role of AHRRs during zebrafish development using a loss-of-function approach followed by gene expression analysis. Zebrafish embryos were microinjected with morpholino oligonucleotides against AHRRa or AHRRb to knockdown AHRR protein expression. At 72 h postfertilization (hpf), microarray analysis revealed that the expression of 279 and 116 genes was altered by knockdown of AHRRa and AHRRb, respectively. In AHRRa-morphant embryos, 97 genes were up-regulated and 182 genes were down-regulated. Among the down-regulated genes were several related to photoreceptor function, including cone-specific genes such as several opsins (opn1sw1, opn1sw2, opn1mw1, and opn1lw2), phosphodiesterases (pde6H and pde6C), retinol binding protein (rbp4l), phosducin, and arrestins. Down-regulation was confirmed by RT-PCR and with samples from an independent experiment. The four genes tested (opn1sw1, pde6H, pde6C, and arr3b) were not inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin. AHRRa knockdown also caused up-regulation of embryonic hemoglobin (hbbe3), suggesting a role for AHRR in regulating hematopoiesis. Knockdown of AHRRb caused up-regulation of 31 genes and down-regulation of 85 genes, without enrichment for any specific biological process. Overall, these results suggest that AHRRs may have important roles in development, in addition to their roles in regulating xenobiotic signaling.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | | | | |
Collapse
|
34
|
Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proc Natl Acad Sci U S A 2013; 110:E4069-78. [PMID: 24106308 DOI: 10.1073/pnas.1307574110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a nuclear receptor that regulates xenobiotic metabolism and detoxification. Herein, we report a previously undescribed role for the AhR signaling pathway as an essential defense mechanism in the pathogenesis of early dry age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. We found that AhR activity and protein levels in human retinal pigment epithelial (RPE) cells, cells vulnerable in AMD, decrease with age. This finding is significant given that age is the most established risk factor for development of AMD. Moreover, AhR(-/-) mice exhibit decreased visual function and develop dry AMD-like pathology, including disrupted RPE cell tight junctions, accumulation of RPE cell lipofuscin, basal laminar and linear-like deposit material, Bruch's membrane thickening, and progressive RPE and choroidal atrophy. High-serum low-density lipoprotein levels were also observed in AhR(-/-) mice. In its oxidized form, this lipoprotein can stimulate increased secretion of extracellular matrix molecules commonly found in deposits from RPE cells, in an AhR-dependent manner. This study demonstrates the importance of cellular clearance via the AhR signaling pathway in dry AMD pathogenesis, implicating AhR as a potential target, and the mouse model as a useful platform for validating future therapies.
Collapse
|
35
|
Safe S, Lee SO, Jin UH. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 2013; 135:1-16. [PMID: 23771949 PMCID: PMC3748760 DOI: 10.1093/toxsci/kft128] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | | | |
Collapse
|
36
|
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
37
|
Romand R, Krezel W, Beraneck M, Cammas L, Fraulob V, Messaddeq N, Kessler P, Hashino E, Dollé P. Retinoic acid deficiency impairs the vestibular function. J Neurosci 2013; 33:5856-66. [PMID: 23536097 PMCID: PMC6705067 DOI: 10.1523/jneurosci.4618-12.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/28/2013] [Accepted: 02/21/2013] [Indexed: 11/21/2022] Open
Abstract
The retinaldehyde dehydrogenase 3 (Raldh3) gene encodes a major retinoic acid synthesizing enzyme and is highly expressed in the inner ear during embryogenesis. We found that mice deficient in Raldh3 bear severe impairment in vestibular functions. These mutant mice exhibited spontaneous circling/tilted behaviors and performed poorly in several vestibular-motor function tests. In addition, video-oculography revealed a complete loss of the maculo-ocular reflex and a significant reduction in the horizontal angular vestibulo-ocular reflex, indicating that detection of both linear acceleration and angular rotation were compromised in the mutants. Consistent with these behavioral and functional deficiencies, morphological anomalies, characterized by a smaller vestibular organ with thinner semicircular canals and a significant reduction in the number of otoconia in the saccule and the utricle, were consistently observed in the Raldh3 mutants. The loss of otoconia in the mutants may be attributed, at least in part, to significantly reduced expression of Otop1, which encodes a protein known to be involved in calcium regulation in the otolithic organs. Our data thus reveal a previously unrecognized role of Raldh3 in structural and functional development of the vestibular end organs.
Collapse
MESH Headings
- Aldehyde Dehydrogenase 1 Family
- Analysis of Variance
- Animals
- Behavioral Symptoms/etiology
- Behavioral Symptoms/genetics
- Embryo, Mammalian
- Eye Movements/drug effects
- Eye Movements/genetics
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Imaging, Three-Dimensional
- Isoenzymes/deficiency
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Motor Activity/drug effects
- Motor Activity/genetics
- Mutation/genetics
- Otolithic Membrane/pathology
- Pregnancy
- Prenatal Exposure Delayed Effects/physiopathology
- Reflex, Vestibulo-Ocular/drug effects
- Reflex, Vestibulo-Ocular/genetics
- Retinal Dehydrogenase/deficiency
- Swimming
- Tretinoin/pharmacology
- Vestibular Function Tests
- Vestibule, Labyrinth/physiopathology
- Vestibule, Labyrinth/ultrastructure
- Video Recording
- Vitamin A Deficiency/etiology
- Vitamin A Deficiency/pathology
- Walking/physiology
Collapse
Affiliation(s)
- Raymond Romand
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), BP 10142, Illkirch F-67404, France.
| | | | | | | | | | | | | | | | | |
Collapse
|