1
|
Atia GA, Abdal Dayem A, Taher ES, Alghonemy WY, Cho SG, Aldarmahi AA, Haque MA, Alshambky A, Taymour N, Ibrahim AM, Zaghamir DE, Elmorsy EM, Hetta HF, Mohamed ME, Abass KS, Khanday S, Abdeen A. Urine-derived stem cells: a sustainable resource for advancing personalized medicine and dental regeneration. Front Bioeng Biotechnol 2025; 13:1571066. [PMID: 40357329 PMCID: PMC12066649 DOI: 10.3389/fbioe.2025.1571066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Urine-based therapy, an ancient practice, has been utilized across numerous civilizations to address a wide range of ailments. Urine was considered a priceless resource in numerous traditional therapeutic applications due to its reported medicinal capabilities. While the utilization of urine treatment is contentious and lacks significant support from modern healthcare, the discovery of urine-derived stem cells (UDSCs) has introduced a promising avenue for cell-based therapy. UDSCs offer a noninvasive and easily repeatable collection method, making them a practical and viable option for therapeutic applications. Research has shown that UDSCs contribute to organ preservation by promoting revascularization and decreasing inflammatory reactions in many diseases and conditions. This review will outline the contemporary status of UDSCs research and explore their potential applications in both fundamental science and medical practice.
Collapse
Affiliation(s)
- Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, Seoul, Republic of Korea
| | - Ehab S. Taher
- Department of Basic and Clinical Medical Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Wafaa Y. Alghonemy
- Department of Basic and Clinical Medical Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, Seoul, Republic of Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea
| | - Ahmed A. Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- National Guard- Health Affairs, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Abeer Alshambky
- Molecular Therapeutics Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA, United States
- Department of Biochemistry, Animal Health Research Institute, Cairo, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Donia E. Zaghamir
- College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ekramy M. Elmorsy
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Helal F. Hetta
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed E. Mohamed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Kasim S. Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk, Iraq
| | - Shifan Khanday
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai Medical University, Dubai, United Arab Emirates
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
2
|
Dematteis G, Lecchi G, Boni G, Pendin D, Distasi C, Grilli M, Lim D, Fresu LG, Talmon M. ATM knock out alters calcium signalling and augments contraction in skeletal muscle cells differentiated from human urine-derived stem cells. Cell Death Discov 2025; 11:177. [PMID: 40234386 PMCID: PMC12000312 DOI: 10.1038/s41420-025-02485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare neurodegenerative disorder caused by the deficiency of the serine/threonine kinase ataxia telangiectasia mutated (ATM) protein, whose loss of function leads to altered cell cycle, apoptosis, oxidative stress balance and DNA repair after damage. The clinical manifestations are multisystemic, among them cerebellar degeneration and muscular ataxia. The molecular mechanism by which ATM loss leads to A-T is still uncertain and, currently only symptomatic treatments are available. In this study, we generated a functional skeletal muscle cell model that recapitulates A-T and highlights the role of ATM in calcium signalling and muscle contraction. To this aim, by using CRISPR/Cas9 technology, we knocked out the ATM protein in urine-derived stem cells (USCs) from healthy donors. The resulting USCs-ATM-KO maintained stemness but showed G2/S cell cycle progression and an inability to repair DNA after UV damage. Moreover, they showed increased cytosolic calcium release after ATP stimulation to the detriment of the mitochondria. The alterations of calcium homoeostasis were maintained after differentiation of USCs-ATM-KO into skeletal muscle cells (USC-SkMCs) and correlated with impaired cell contraction. Indeed, USC-SkMCs-ATM-KO contraction kinetics were dramatically accelerated compared to control cells. These results highlight the relevant function of ATM in skeletal muscle, which is not only dependent on a non-functional neuronal communication, paving the way for future studies on a muscular interpretation of A-T ataxia.
Collapse
Grants
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
- C13C22000590006 - ID T4-AN-04 Ministry of Health, Italy | Agenzia Italiana del Farmaco, Ministero della Salute (Italian Medicines Agency)
Collapse
Affiliation(s)
- Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Lecchi
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Boni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Diana Pendin
- Neuroscience Institute, Padua Section, National Research Council, Padua, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale, Novara, Italy.
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
3
|
Mobin A, Hashem Z, Corridon PR. Transforming meat waste into sustainable corneal keratoplasty models. Front Bioeng Biotechnol 2025; 13:1572127. [PMID: 40297283 PMCID: PMC12034655 DOI: 10.3389/fbioe.2025.1572127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
With a rapidly global population, there is a critical need to enhance food production and waste management. This necessity is driving opportunities for sustainable integrated food chains committed to biovalorization and circular bioeconomic practices. One approach that aligns with this vision relies on sustainable tissue engineering, which offers opportunities to leverage food systems in the search for natural biomaterials from agricultural waste. In this perspective, we propose utilizing common meat waste sources, often associated with a high environmental footprint, to develop tissue graft models. These models reduce agricultural waste, decrease the reliance on animal testing, and support both biovalorization and medical innovation. Specifically, we explore a unique approach to generate corneal transplantation models completely from discarded components of the meat food chain, using the eyes and bladders. This strategy involves creating keratoplasty models by reseeding the decellularized extracellular matrix (dECM), encompassing three major corneal regions: the epithelium, stroma, and endothelium. Interestingly, these scaffolds can be recellularized with cellular lineages derived from stem niches harvested from urine. This approach integrates waste management with regenerative medicine, fostering sustainable advancements in tissue engineering.
Collapse
Affiliation(s)
- Ayman Mobin
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zayd Hashem
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Lange-Consiglio A, Tagliasacchi F, Cremonesi F, Gusmara C, Pollera C, Scarpa P, Gaspari G, Riccaboni P. Characterization of Urine-Derived Stromal/Stem Cells from Healthy Dogs and Dogs Affected by Chronic Kidney Disease (CKD). Animals (Basel) 2025; 15:242. [PMID: 39858242 PMCID: PMC11758669 DOI: 10.3390/ani15020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Urine-derived mesenchymal stromal/stem cells (USCs) could be a valuable source of cells in regenerative medicine because urine can be easily collected non-invasively. In this paper, USCs were isolated from both healthy dogs and dogs affected by chronic kidney disease (CKD), and the efficacy of collection methods (spontaneous micturition, bladder catheterization, and cystocentesis) were compared. Isolated cells were cultured in the presence of platelet-rich plasma and studied for their proliferative capacity (growth curve, doubling time, and colony forming unit), differentiation properties, expression of mesenchymal markers, and Klotho protein. Morphologically, all cells were elongated and fibroblast-like. USCs isolated from samples collected by spontaneous micturition and bladder catheterization failed to proliferate, whilst USCs obtained by cystocentesis showed a doubling time of 2.04 days in healthy dogs and 1.7 days in dogs with CKD (p < 0.05). Cells were able to differentiate into osteogenic, chondrogenic, and adipogenic lines, showed positive expression to mesenchymal/stem markers, negative expression to hematopoietic markers, and major histocompatibility complex (MHCII) antigen. Klotho protein expression was confirmed. This study confirmed that USCs from healthy and CKD dogs can act as stem cells, with those from sick dogs having greater proliferative ability with the potential for use as autologous therapies.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Reproduction Laboratory, Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (A.L.-C.); (F.C.)
| | - Filippo Tagliasacchi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (F.T.); (C.G.); (C.P.); (P.S.); (P.R.)
| | - Fausto Cremonesi
- Reproduction Laboratory, Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (A.L.-C.); (F.C.)
| | - Claudia Gusmara
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (F.T.); (C.G.); (C.P.); (P.S.); (P.R.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Claudia Pollera
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (F.T.); (C.G.); (C.P.); (P.S.); (P.R.)
| | - Paola Scarpa
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (F.T.); (C.G.); (C.P.); (P.S.); (P.R.)
| | - Giulia Gaspari
- Reproduction Laboratory, Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (A.L.-C.); (F.C.)
| | - Pietro Riccaboni
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy; (F.T.); (C.G.); (C.P.); (P.S.); (P.R.)
| |
Collapse
|
5
|
Dionne O, Sabatié S, Fortin F, Corbin F, Laurent B. Efficient generation of human induced pluripotent stem cells from urine samples of patients with Fragile X syndrome. Front Cell Dev Biol 2024; 12:1489190. [PMID: 39650724 PMCID: PMC11621072 DOI: 10.3389/fcell.2024.1489190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are a valuable tool for studying human development and diseases. iPSCs can be generated by reprogramming from any somatic cells, however establishing primary cell cultures can involve invasive procedures (e.g., skin biopsy) and be labor-intensive. In this paper, we describe an efficient, reliable, and non-invasive method for cultivating primary urine-derived cells (UDCs) and efficiently reprogram them into iPSCs using a feeder-free and non-integrative system. This approach has several advantages: (i) UDCs collection and culture are non-invasive, straightforward, and do not require medical personnel; (ii) reprogramming UDCs using commercially available Sendai viruses is highly efficient and reliable; and (iii) iPSCs generated from UDCs demonstrate strong differentiation potential. To showcase the effectiveness of this method, we generated iPSC lines from UDCs of three control individuals and three patients with Fragile X syndrome.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Salomé Sabatié
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fléchère Fortin
- Medical Genetics division, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Yang HS, Zheng YX, Bai X, He XY, Wang TH. Application prospects of urine-derived stem cells in neurological and musculoskeletal diseases. World J Orthop 2024; 15:918-931. [PMID: 39473520 DOI: 10.5312/wjo.v15.i10.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Urine-derived stem cells (USCs) are derived from urine and harbor the potential of proliferation and multidirectional differentiation. Moreover, USCs could be reprogrammed into pluripotent stem cells [namely urine-derived induced pluripotent stem cells (UiPSCs)] through transcription factors, such as octamer binding transcription factor 4, sex determining region Y-box 2, kruppel-like factor 4, myelocytomatosis oncogene, and Nanog homeobox and protein lin-28, in which the first four are known as Yamanaka factors. Mounting evidence supports that USCs and UiPSCs possess high potential of neurogenic, myogenic, and osteogenic differentiation, indicating that they may play a crucial role in the treatment of neurological and musculoskeletal diseases. Therefore, we summarized the origin and physiological characteristics of USCs and UiPSCs and their therapeutic application in neurological and musculoskeletal disorders in this review, which not only contributes to deepen our understanding of hallmarks of USCs and UiPSCs but also provides the theoretical basis for the treatment of neurological and musculoskeletal disorders with USCs and UiPSCs.
Collapse
Affiliation(s)
- Hui-Si Yang
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yue-Xiang Zheng
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xue Bai
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiu-Ying He
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ting-Hua Wang
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
7
|
Zhang Y, Xia Y, Zhang R, Zhou X, Jiang J. Urine-Derived Stem Cells Reverse Bleomycin‑Induced Experimental Pulmonary Fibrosis by Inhibition of the TGF-β1-Smad2/3 Pathway. Cytotherapy 2024; 26:1236-1244. [PMID: 38852093 DOI: 10.1016/j.jcyt.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung interstitial lesions with the disease pathophysiology incompletely understood, which is a serious and fatal disorder with limited treatment options. Mesenchymal stem cells (MSCs) have exhibited promising therapeutic capability for IPF. While most types of MSCs are obtained invasively, urine-derived stem cells (USCs) can be gained in a safe, noninvasive, and inexpensive procedure, which are readily available and reported to exhibit no risk of teratoma formation or oncogenic potential in vivo, sounding alternative to other MSCs. This study aims to investigate the therapeutic effect and mechanism of USCs on IPF, using a bleomycin (BLM)-induced IPF model in mice. METHODS Cell surface marker examination by flow cytometry analysis and cell differentiation culture were used to characterize USCs obtained from healthy individuals. BLM was instilled endotracheally in adult C57BL/6 mice, followed by USCs or human bone marrow-derived mesenchymal stem cells (BMSCs) treatment by tail vein injection on day 14. Mice were euthanized on day 14 before administration or day 21 for the evaluation of pulmonary histopathology and hydroxyproline (HYP) content. Inflammatory factors of the lung, including transforming growth factor (TGF)-β1, TNF-α, IL-6, MMP2 were analyzed by quantitative real-time PCR (qRT-PCR). Additionally, immunohistochemistry (IHC) and western blotting (WB) were applied to evaluate the expression of α-SMA and activation of TGF-β1-Smad2/3 in lung. RESULTS USCs highly expressed CD29 and CD90, showing negative expression of hematopoietic stem cell markers (CD45, CD34) and could differentiate into, at least, bone and fat in vitro. In mice challenged with BLM, septal thickening and prominent fibrosis were observed on day 14, with higher HYP content and mRNA levels of TGF-β1, TNF-α and IL-6 exhibited, compared to untreated mice. USCs could migrate to lung and accumulate there in mouse model after intravenous injection. Transplantation of USCs into BLM-induced mice improved their pulmonary histopathology, decreasing Ashcroft score, Szapiel score, HYP content and mRNA levels of TGF-β1 and MMP2 of lung, similar to the effects of BMSCs. IHC and WB further revealed that USCs could inhibit activation of the TGF‑β1-Smad2/3 pathway of lung in vivo. CONCLUSIONS Transplantation of USCs effectively reverses pulmonary fibrotic phenotype in an experimental IPF model, inhibiting the TGF-β1-Smad2/3 pathway, a key driver of fibrosis. These results suggest the therapeutic application of USCs for IPF, instead of other types of MSCs obtained invasively.
Collapse
Affiliation(s)
- Yanju Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Infection Management Office, Affiliated Hospital of Nantong University, Nantong, China; Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Zhou
- Infection Management Office, Affiliated Hospital of Nantong University, Nantong, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Boysen AT, Whitehead B, Revenfeld ALS, Gupta D, Petersen T, Nejsum P. Urine-derived stem cells serve as a robust platform for generating native or engineered extracellular vesicles. Stem Cell Res Ther 2024; 15:288. [PMID: 39256816 PMCID: PMC11389316 DOI: 10.1186/s13287-024-03903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy holds great potential yet efficacy and safety concerns with cell therapy persist. The beneficial effects of MSCs are often attributed to their secretome that includes extracellular vesicles (EVs). EVs carry biologically active molecules, protected by a lipid bilayer. However, several barriers hinder large-scale MSC EV production. A serum-free culturing approach is preferred for producing clinical-grade MSC-derived EVs but this can affect both yield and purity. Consequently, new strategies have been explored, including genetically engineering MSCs to alter EV compositions to enhance potency, increase circulation time or mediate targeting. However, efficient transfection of MSCs is challenging. Typical sources of MSC include adipose tissue and bone marrow, which both require invasive extraction procedures. Here, we investigate the use of urine-derived stem cells (USCs) as a non-invasive and inexhaustible source of MSCs for EV production. METHODS We isolated, expanded, and characterized urine-derived stem cells (USCs) harvested from eight healthy donors at three different time points during the day. We evaluated the number of clones per urination, proliferation capacity and conducted flow cytometry to establish expression of surface markers. EVs were produced in chemically defined media and characterized. PEI/DNA transfection was used to genetically engineer USCs using transposon technology. RESULTS There were no differences between time points for clone number, doubling time or viability. USCs showed immunophenotypic characteristics of MSCs, such as expression of CD73, CD90 and CD105, with no difference at the assessed time points, however, male donors had reduced CD73 + cells. Expanded USCs were incubated without growth factors or serum for 72 h without a loss in viability and EVs were isolated. USCs were transfected with high efficiency and after 10 days of selection, pure engineered cell cultures were established. CONCLUSIONS Isolation and expansion of MSCs from urine is non-invasive, robust, and without apparent sex-related differences. The sampling time point did not affect any measured markers or USC isolation potential. USCs offer an attractive production platform for EVs, both native and engineered.
Collapse
Affiliation(s)
- Anders Toftegaard Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| | - Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Anne Louise S Revenfeld
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
| | - Thor Petersen
- Department of Regional Health Research, Southern Danish University, Sønderborg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
9
|
Alwan A, Khalil F, Bowlby J, Peko G, Estrada EV, Singh S, Deep G, Zhang Y, Farney AC, Opara EC. Effect of controlled release of HGF on extracellular vesicle secretion by urine-derived stem cells. Front Bioeng Biotechnol 2024; 12:1436296. [PMID: 39234273 PMCID: PMC11371732 DOI: 10.3389/fbioe.2024.1436296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction The hepatic growth factor (HGF) stimulates DNA synthesis and cell proliferation and plays a role in tissue protection and regeneration. In this study, we have examined the effect of incubation of HGF with urine-derived stem cells (USCs) on the secretion of small extracellular vesicles (sEV) by the cells. Materials and Methods HGF in the incubation medium was either a bolus administration or a controlled release of an equivalent amount from microbeads within the size range of 50-200 µm made with ultrapurified low-viscosity high-guluronic acid (UP-LVG) alginate. USCs were incubated with or without HGF for 3 days or 7 days before removal of the incubation media, followed by harvesting sEV by the precipitation method. The protein content of isolated sEV was measured by bicinchoninic acid assay (BCA) for these three groups: control (no HGF beads), bolus HGF, and HGF beads. We also performed nanoparticle tracking analysis (NTA), Western blot assay, and ELISA for the HGF content of samples. Results We found a significantly higher concentration of proteins in the HGF microbead group (control release group) compared to the bolus group and the control group after 7 days (p < 0.0017). The NTA data aligned with the BCA; they showed a significantly higher concentration of particles within the size range of sEV (<200 nm) in the group treated with HGF beads compared to the two other groups on day 7 (p < 0.0001). Conclusion We found that administration of HGF to USCs by controlled release of the growth factor significantly enhances the levels of sEV secretion during 7 days of incubation.
Collapse
Affiliation(s)
- Abdelrahman Alwan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fatma Khalil
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Joshua Bowlby
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gabrielle Peko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Exel Valle Estrada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sangeeta Singh
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gagan Deep
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alan C Farney
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
11
|
Yu P, Bosholm CC, Zhu H, Duan Z, Atala A, Zhang Y. Beyond waste: understanding urine's potential in precision medicine. Trends Biotechnol 2024; 42:953-969. [PMID: 38369434 PMCID: PMC11741143 DOI: 10.1016/j.tibtech.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Urine-derived stem cells (USCs) are a promising source of stem cells for cell therapy, renal toxicity drug testing, and renal disease biomarker discovery. Patients' own USCs can be used for precision medicine. In this review we first describe the isolation and characterization of USCs. We then discuss preclinical studies investigating the use of USCs in cell therapy, exploring the utility of USCs and USC-derived induced pluripotent stem cells (u-iPSCs) in drug toxicity testing, and investigating the use of USCs as biomarkers for renal disease diagnosis. Finally, we discuss the challenges of using USCs in these applications and provide insights into future research directions. USCs are a promising tool for advancing renal therapy, drug testing, and biomarker discovery. Further research is needed to explore their potential.
Collapse
Affiliation(s)
- Pengfei Yu
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China; Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol Christine Bosholm
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hainan Zhu
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhongping Duan
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Anthony Atala
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Riquin K, Isidor B, Mercier S, Nizon M, Colin E, Bonneau D, Pasquier L, Odent S, Le Guillou Horn XM, Le Guyader G, Toutain A, Meyer V, Deleuze JF, Pichon O, Doco-Fenzy M, Bézieau S, Cogné B. Integrating RNA-Seq into genome sequencing workflow enhances the analysis of structural variants causing neurodevelopmental disorders. J Med Genet 2023; 61:47-56. [PMID: 37495270 DOI: 10.1136/jmg-2023-109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Molecular diagnosis of neurodevelopmental disorders (NDDs) is mainly based on exome sequencing (ES), with a diagnostic yield of 31% for isolated and 53% for syndromic NDD. As sequencing costs decrease, genome sequencing (GS) is gradually replacing ES for genome-wide molecular testing. As many variants detected by GS only are in deep intronic or non-coding regions, the interpretation of their impact may be difficult. Here, we showed that integrating RNA-Seq into the GS workflow can enhance the analysis of the molecular causes of NDD, especially structural variants (SVs), by providing valuable complementary information such as aberrant splicing, aberrant expression and monoallelic expression. METHODS We performed trio-GS on a cohort of 33 individuals with NDD for whom ES was inconclusive. RNA-Seq on skin fibroblasts was then performed in nine individuals for whom GS was inconclusive and optical genome mapping (OGM) was performed in two individuals with an SV of unknown significance. RESULTS We identified pathogenic or likely pathogenic variants in 16 individuals (48%) and six variants of uncertain significance. RNA-Seq contributed to the interpretation in three individuals, and OGM helped to characterise two SVs. CONCLUSION Our study confirmed that GS significantly improves the diagnostic performance of NDDs. However, most variants detectable by GS alone are structural or located in non-coding regions, which can pose challenges for interpretation. Integration of RNA-Seq data overcame this limitation by confirming the impact of variants at the transcriptional or regulatory level. This result paves the way for new routinely applicable diagnostic protocols.
Collapse
Affiliation(s)
- Kevin Riquin
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
| | - Bertrand Isidor
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Sandra Mercier
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Mathilde Nizon
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Estelle Colin
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | - Dominique Bonneau
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | | | - Sylvie Odent
- Service de Génétique Clinique, ERN ITHACA, Rennes, France
- Institut de Génétique et Développement de Rennes, IGDR UMR 6290 CNRS, INSERM, IGDR Univ Rennes, Rennes, France
| | - Xavier Maximin Le Guillou Horn
- Service de génétique médicale, CHU de Poitiers, Poitiers, France
- LabCom I3M-Dactim mis/LMA CNRS 7348, Université de Poitiers, Poitiers, France
| | | | - Annick Toutain
- UF de Génétique Médicale, Centre Hospitalier Universitaire, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Olivier Pichon
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Martine Doco-Fenzy
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Stéphane Bézieau
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Benjamin Cogné
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| |
Collapse
|
13
|
Kim SH, Lee SH, Jin JA, So HJ, Lee JU, Ji MJ, Kwon EJ, Han PS, Lee HK, Kang TW. In vivo safety and biodistribution profile of Klotho-enhanced human urine-derived stem cells for clinical application. Stem Cell Res Ther 2023; 14:355. [PMID: 38072946 PMCID: PMC10712141 DOI: 10.1186/s13287-023-03595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Urine-derived stem cells (UDSCs) can be easily isolated from urine and possess excellent stem cell characteristics, making them a promising source for cell therapeutics. Due to their kidney origin specificity, UDSCs are considered a superior therapeutic alternative for kidney diseases compared to other stem cells. To enhance the therapeutic potential of UDSCs, we developed a culture method that effectively boosts the expression of Klotho, a kidney-protective therapeutic factor. We also optimized the Good Manufacturing Practice (GMP) system to ensure stable and large-scale production of clinical-grade UDSCs from patient urine. In this study, we evaluated the in vivo safety and distribution of Klotho-enhanced UDSCs after intravenous administration in accordance with Good Laboratory Practice (GLP) regulations. METHODS Mortality and general symptoms were continuously monitored throughout the entire examination period. We evaluated the potential toxicity of UDSCs according to the administration dosage and frequency using clinical pathological and histopathological analyses. We quantitatively assessed the in vivo distribution and retention period of UDSCs in major organs after single and repeated administration using human Alu-based qPCR analysis. We also conducted long-term monitoring for 26 weeks to assess the potential tumorigenicity. RESULTS Klotho-enhanced UDSCs exhibited excellent homing potential, and recovered Klotho expression in injured renal tissue. Toxicologically harmful effects were not observed in all mice after a single administration of UDSCs. It was also verified that repeated administration of UDSCs did not induce significant toxicological or immunological adverse effects in all mice. Single and repeated administrated UDSCs persisted in the blood and major organs for approximately 3 days and cleared in most organs, except the lungs, within 2 weeks. UDSCs that remained in the lungs were cleared out in approximately 4-5 weeks. There were no significant differences according to the variation of sex and administration frequency. The tumors were found in the intravenous administration group but they were confirmed to be non-human origin. Based on these results, it was clarified that UDSCs have no tumorigenic potential. CONCLUSIONS Our results demonstrate that Klotho-enhanced UDSCs can be manufactured as cell therapeutics through an optimized GMP procedure, and they can be safely administered without causing toxicity and tumorigenicity.
Collapse
Affiliation(s)
- Sang-Heon Kim
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Sung-Hoon Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Jeong-Ah Jin
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Hyung-Joon So
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Jae-Ung Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Min-Jae Ji
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | | | | | - Hong-Ki Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea.
- EHLCell Clinic, Seoul, 06029, Republic of Korea.
| | - Tae-Wook Kang
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea.
| |
Collapse
|
14
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Cavaleiro C, Afonso GJM, Oliveira PJ, Valero J, Mota SI, Ferreiro E. Urine-derived stem cells in neurological diseases: current state-of-the-art and future directions. Front Mol Neurosci 2023; 16:1229728. [PMID: 37965041 PMCID: PMC10642248 DOI: 10.3389/fnmol.2023.1229728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Stem cells have potential applications in the field of neurological diseases, as they allow for the development of new biological models. These models can improve our understanding of the underlying pathologies and facilitate the screening of new therapeutics in the context of precision medicine. Stem cells have also been applied in clinical tests to repair tissues and improve functional recovery. Nevertheless, although promising, commonly used stem cells display some limitations that curb the scope of their applications, such as the difficulty of obtention. In that regard, urine-derived cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, their obtaining can be challenging due to the low yield and complexity of the multi-phased and typically expensive differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), included within the population of urine-derived cells, present a mesenchymal-like phenotype and have shown promising properties for similar purposes. Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious for disease modeling, while overcoming some of the shortcomings presented by other stem cells for these purposes. Thus, this review assesses the current state and future perspectives regarding the potential of UDSCs in the ambit of neurological diseases, both for disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Jin Y, Zhao W, Yang M, Fang W, Gao G, Wang Y, Fu Q. Cell-Based Therapy for Urethral Regeneration: A Narrative Review and Future Perspectives. Biomedicines 2023; 11:2366. [PMID: 37760808 PMCID: PMC10525510 DOI: 10.3390/biomedicines11092366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Urethral stricture is a common urological disease that seriously affects quality of life. Urethroplasty with grafts is the primary treatment, but the autografts used in clinical practice have unavoidable disadvantages, which have contributed to the development of urethral tissue engineering. Using various types of seed cells in combination with biomaterials to construct a tissue-engineered urethra provides a new treatment method to repair long-segment urethral strictures. To date, various cell types have been explored and applied in the field of urethral regeneration. However, no optimal strategy for the source, selection, and application conditions of the cells is available. This review systematically summarizes the use of various cell types in urethral regeneration and their characteristics in recent years and discusses possible future directions of cell-based therapies.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 27157, USA
| | - Ming Yang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| |
Collapse
|
17
|
Kenigsberg Z, Welch RC, Bejoy J, Williams FM, Veach RA, Jarrett I, Thompson TK, Wilson MH, Woodard LE. Genome Engineering of Human Urine-Derived Stem Cells to Express Lactoferrin and Deoxyribonuclease. Tissue Eng Part A 2023; 29:372-383. [PMID: 37130035 PMCID: PMC10354709 DOI: 10.1089/ten.tea.2023.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
Urine-derived stem cells (USCs) are adult kidney cells that have been isolated from a urine sample and propagated in tissue culture on gelatin-coated plates. Urine is a practical and completely painless source of cells for gene and cell therapy applications. We have isolated, expanded, and optimized transfection of USCs to develop regenerative therapies based on piggyBac transposon modification. USCs from a healthy donor sample were isolated according to established protocols. Within 2 months, 10 clones had been expanded, analyzed, and frozen. Fluorescence-activated cell sorting analysis of individual clones revealed that all 10 clones expressed characteristic USC markers (97-99% positive for CD44, CD73, CD90, and CD146; negative for CD31, CD34, and CD45). The isolated USCs were successfully differentiated along the osteogenic, adipogenic, and chondrogenic lineages, suggesting multipotent differentiation capacity. Additionally, the USCs were differentiated into podocytes positive for NEPHRIN (NPHS1), podocalyxin, and Wilms tumor 1 (WT1). Transfection of USCs with a strongly expressing Green fluorescent protein plasmid was optimized to achieve 61% efficiency in live cells using several commercially available lipophilic reagents. Transgene promoters were compared in five luciferase-expressing piggyBac transposons by live animal imaging. The CMV promoter produced the highest luciferase signal, followed by EF1-α. Finally, HEK-293 and USCs were transfected with piggyBac transposons expressing lactoferrin and DNase1 for treatment of acute kidney injury associated with rhabdomyolysis. We found that both proteins were expressed in USCs and that lactoferrin was successfully secreted into the cell culture media. In conclusion, USCs represent a clinically relevant cell type that can express nonviral transgenes. Impact statement Acute kidney injury (AKI) affects over 13 million people worldwide each year, with hospitalization rates on the rise. There are no therapies that directly regenerate the kidney after AKI. Each human kidney contains approximately one million nephrons that process ∼100 L of urinary filtrate each day. Thousands of kidney cells become detached and are excreted in the urine. A small percentage of these cells can be clonally derived into urine-derived stem cells. We have optimized methods for genome engineering of adult human urine-derived stem cells for future applications in regenerative approaches to treat kidney injury.
Collapse
Affiliation(s)
- Zara Kenigsberg
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard C. Welch
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julie Bejoy
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Felisha M. Williams
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ruth Ann Veach
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Isria Jarrett
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Trevor K. Thompson
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew H. Wilson
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pharmacology, and Vanderbilt University, Nashville, Tennessee, USA
| | - Lauren E. Woodard
- Division of Nephrology and Hypertension, Department of Medicine, Medical Center North MCN S3223, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Ortac M, Ekerhult TO, Zhao W, Atala A. Tissue Engineering Graft for Urethral Reconstruction: Is It Ready for Clinical Application? Turk J Urol 2023; 49:11-18. [PMID: 37877833 PMCID: PMC10081087 DOI: 10.5152/tud.2023.22226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 10/26/2023]
Abstract
Despite developing surgical techniques in urethral surgery, the outcome and complications are still unsatisfactory. Alternative treatment modality has been coming up, particularly in patients with longer stricture, under revision surgery, and penile stricture. Tissue engineering grafts are a promising approach for substituting urethral reconstruction. Over the decades, numerous preclinical studies have been published to show the efficacy and safety of different origins of materials, the presence of autologous cells (acellular matrices or autologous cell-seeded matrices), and the construction of engineered tissue (patch or tubularized constructs) on animal models. However, the results of these studies have not yet reached the intended level for daily clinical practice. A PubMed database search was performed for articles, using specific keywords, published between 1998 and 2022, with a selection on using tissue-engineered grafts for urethroplasty. Many materials have been used as a graft, such as acellular bladder matrix, small intestinal submucosa, acellular dermal matrix, and polyglycolic acid with or without cells, and were evaluated according to the functional and anatomical outcomes comprising complications. According to current literature, tubularized scaffolds constructed from co-cultured cells have promising results for the future. However, high-quality evidence through randomized controlled studies with larger sample sizes, with a long-term follow-up is required to determine accurate outcomes.
Collapse
Affiliation(s)
- Mazhar Ortac
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
- Department of Urology, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Teresa Olsen Ekerhult
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
- Department of Urology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
20
|
Li J, Zheng S, Ma C, Chen X, Li X, Li S, Wang P, Chen P, Wang Z, Li W, Liu Y. Research progress on exosomes in podocyte injury associated with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1129884. [PMID: 37020588 PMCID: PMC10067864 DOI: 10.3389/fendo.2023.1129884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetic kidney disease (DKD), a common cause of end-stage renal disease, is a serious complication that develops with the progression of chronic diabetes. Its main clinical manifestations are persistent proteinuria and/or a progressive decline in the estimated glomerular filtration rate. Podocytes, terminally differentiated glomerular visceral epithelial cells, constitute the glomerular filtration barrier together with the basement membrane and endothelial cells, and the structural and functional barrier integrity is closely related to proteinuria. In recent years, an increasing number of studies have confirmed that podocyte injury is the central target of the occurrence and development of DKD, and research on exosomes in podocyte injury associated with DKD has also made great progress. The aim of this review is to comprehensively describe the potential diagnostic value of exosomes in podocyte injury associated with DKD, analyze the mechanism by which exosomes realize the communication between podocytes and other types of cells and discuss the possibility of exosomes as targeted therapy drug carriers to provide new targets for and insights into delaying the progression of and treating DKD.
Collapse
Affiliation(s)
- Jiao Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shanshan Zheng
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chaoqun Ma
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shengjie Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ping Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Wenbin Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| | - Yipeng Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| |
Collapse
|
21
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
22
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
23
|
Gerges D, Hevesi Z, Schmidt SH, Kapps S, Pajenda S, Geist B, Schmidt A, Wagner L, Winnicki W. Tubular epithelial progenitors are excreted in urine during recovery from severe acute kidney injury and are able to expand and differentiate in vitro. PeerJ 2022; 10:e14110. [PMID: 36285332 PMCID: PMC9588302 DOI: 10.7717/peerj.14110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
Background Acute kidney injury (AKI) is a serious condition associated with chronic kidney disease, dialysis requirement and a high risk of death. However, there are specialized repair mechanisms for the nephron, and migrated committed progenitor cells are the key players. Previous work has described a positive association between renal recovery and the excretion of tubular progenitor cells in the urine of kidney transplant recipients. The aim of this work was to describe such structures in non-transplanted AKI patients and to focus on their differentiation. Methods Morning urine was obtained from four patients with AKI stage 3 and need for RRT on a consecutive basis. Urine sediment gene expression was performed to assess which part of the tubular or glomerular segment was affected by injury, along with measurement of neprilysin. Urine output and sediment morphology were monitored, viable hyperplastic tubular epithelial clusters were isolated and characterized by antibody or cultured in vitro. These cells were monitored by phase contrast microscopy, gene, and protein expression over 9 days by qPCR and confocal immunofluorescence. Furthermore, UMOD secretion into the supernatant was quantitatively measured. Results Urinary neprilysin decreased rapidly with increasing urinary volume in ischemic, toxic, nephritic, and infection-associated AKI, whereas the decrease in sCr required at least 2 weeks. While urine output increased, dead cells were present in the sediment along with debris followed by hyperplastic agglomerates. Monitoring of urine sediment for tubular cell-specific gene transcript levels NPHS2 (podocyte), AQP1 and AQP6 (proximal tubule), and SLC12A1 (distal tubule) by qPCR revealed different components depending on the cause of AKI. Confocal immunofluorescence staining confirmed the presence of intact nephron-specific epithelial cells, some of which appeared in clusters expressing AQP1 and PAX8 and were 53% positive for the stem cell marker PROM1. Isolated tubule epithelial progenitor cells were grown in vitro, expanded, and reached confluence within 5-7 days, while the expression of AQP1 and UMOD increased, whereas PROM1 and Ki67 decreased. This was accompanied by a change in cell morphology from a disproportionately high nuclear/cytoplasmic ratio at day 2-7 with mitotic figures. In contrast, an apoptotic morphology of approximately 30% was found at day 9 with the appearance of multinucleated cells that were associable with different regions of the nephron tubule by marker proteins. At the same time, UMOD was detected in the culture supernatant. Conclusion During renal recovery, a high replicatory potential of tubular epithelial progenitor cells is found in urine. In vitro expansion and gene expression show differentiation into tubular cells with marker proteins specific for different nephron regions.
Collapse
Affiliation(s)
- Daniela Gerges
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Zsofia Hevesi
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Sophie H. Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Sebastian Kapps
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Sahra Pajenda
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Barbara Geist
- Department of Biochemical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| |
Collapse
|
24
|
Urine-Derived Stem Cells for Epithelial Tissues Reconstruction and Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14081669. [PMID: 36015295 PMCID: PMC9415563 DOI: 10.3390/pharmaceutics14081669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial tissue injury can occur on any surface site of the body, particularly in the skin or urethral mucosa tissue, due to trauma, infection, inflammation, and toxic compounds. Both internal and external body epithelial tissue injuries can significantly affect patients’ quality of life, increase healthcare spending, and increase the global economic burden. Transplantation of epithelial tissue grafts is an effective treatment strategy in clinical settings. Autologous bio-engineered epithelia are common clinical skin substitutes that have the specific advantages of avoiding tissue rejection, obviating ethical concerns, reducing the risk of infection, and decreasing scarring compared to donor grafts. However, epithelial cells are often obtained from the individual’s skin and mucosa through invasive methods, which cause further injury or damage. Urine-derived stem cells (USC) of kidney origin, obtained via non-invasive acquisition, possess high stemness properties, self-renewal ability, trophic effects, multipotent differentiation potential, and immunomodulatory ability. These cells show versatile potential for tissue regeneration, with extensive evidence supporting their use in the repair of epidermal and urothelial injuries. We discuss the collection, isolation, culture, characterization, and differentiation of USC. We also discuss the use of USC for cellular therapies as well as the administration of USC-derived paracrine factors for epidermal and urothelial tissue repair. Specifically, we will discuss 3D constructions involving multiple types of USC-loaded hydrogels and USC-seeded scaffolds for use in cosmetic production testing, drug development, and disease modeling. In conclusion, urine-derived stem cells are a readily accessible autologous stem cell source well-suited for developing personalized medical treatments in epithelial tissue regeneration and drug testing.
Collapse
|
25
|
Ding H, George S, Leng XI, Ihnat M, Ma JX, Jiang G, Margolis D, Dumond J, Zhang Y. Silk fibers assisted long-term 3D culture of human primary urinary stem cells via inhibition of senescence-associated genes: Potential use in the assessment of chronic mitochondrial toxicity. MATERIALS TODAY. ADVANCES 2022; 15:100261. [PMID: 36212078 PMCID: PMC9542430 DOI: 10.1016/j.mtadv.2022.100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite being widely applied in drug development, existing in vitro 2D cell-based models are not suitable to assess chronic mitochondrial toxicity. A novel in vitro assay system mimicking in vivo microenvironment for this purpose is urgently needed. The goal of this study is to establish a 3D cell platform as a reliable, sensitive, cost-efficient, and high-throughput assay to predict drug-induced mitochondrial toxicity. We evaluated a long-term culture of human primary urine-derived stem cells (USC) seeded in 3D silk fiber matrix (3D USC-SFM) and further tested chronic mitochondrial toxicity induced by Zalcitabine (ddC, a nucleoside reverse transcriptase inhibitor) as a test drug, compared to USC grown in spheroids. The numbers of USC remain steady in 3D spheroids for 4 weeks and 3D SFM for 6 weeks. However, the majority (95%) of USC survived in 3D SFM, while cell numbers significantly declined in 3D spheroids at 6 weeks. Highly porous SFM provides large-scale numbers of cells by increasing the yield of USC 125-fold/well, which enables the carrying of sufficient cells for multiple experiments with less labor and lower cost, compared to 3D spheroids. The levels of mtDNA content and mitochondrial superoxide dismutase2 [SOD2] as an oxidative stress biomarker and cell senescence genes (RB and P16, p21) of USC were all stably retained in 3D USC-SFM, while those were significantly increased in spheroids. mtDNA content and mitochondrial mass in both 3D culture models significantly decreased six weeks after treatment of ddC (0.2, 2, and 10 μM), compared to 0.1% DMSO control. Levels of complexes I, II, and III significantly decreased in 3D SFM-USC treated with ddC, compared to only complex I level which declined in spheroids. A dose- and time-dependent chronic MtT displayed in the 3D USC-SFM model, but not in spheroids. Thus, a long-term 3D culture model of human primary USC provides a cost-effective and sensitive approach potential for the assessment of drug-induced chronic mitochondrial toxicity.
Collapse
Affiliation(s)
- Huifen Ding
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sunil George
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Xiaoyan Iris Leng
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Guochun Jiang
- University of North Carolina HIV Cure Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - David Margolis
- University of North Carolina HIV Cure Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Julie Dumond
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
26
|
Molecular Mechanisms and Key Processes in Interstitial, Hemorrhagic and Radiation Cystitis. BIOLOGY 2022; 11:biology11070972. [PMID: 36101353 PMCID: PMC9311586 DOI: 10.3390/biology11070972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Pathologies of the bladder are called cystitis. They cause discomfort for the patient. Due to persistent pain, bleeding, urinary incontinence, and uncontrolled urination, the chronic forms cause considerable degradation to patient quality of life. Currently, there is no curative treatment for the most severe forms. This is both an economic and a societal problem. Although the different forms of cystitis have different causes, they share common mechanisms. We propose to describe in detail the key processes and the associated mechanisms involved in abacterial cystitis. Abstract Cystitis is a bladder disease with a high rate of prevalence in the world population. This report focuses on Interstitial Cystitis (IC), Hemorrhagic Cystitis (HC) and Chronic Radiation Cystitis. These pathologies have different etiologies, but they share common symptoms, for instance, pain, bleeding, and a contracted bladder. Overall, treatments are quite similar for abacterial cystitis, and include bladder epithelium protective or anti-inflammatory agents, alleviating pain and reducing bleeding. This review summarizes the mechanisms that the pathologies have in common, for instance, bladder dysfunction and inflammation. Conversely, some mechanisms have been described as present in only one pathology, such as neural regulation. Based on these specificities, we propose identifying a mechanism that could be common to all the above-mentioned pathologies.
Collapse
|
27
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
28
|
Shi Y, Liu G, Wu R, Mack DL, Sun XS, Maxwell J, Guan X, Atala A, Zhang Y. Differentiation Capacity of Human Urine-Derived Stem Cells to Retain Telomerase Activity. Front Cell Dev Biol 2022; 10:890574. [PMID: 35693947 PMCID: PMC9186504 DOI: 10.3389/fcell.2022.890574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Telomerase activity is essential for the self-renewal and potential of embryonic, induced pluripotent, and cancer stem cells, as well as a few somatic stem cells, such as human urine-derived stem cells (USCs). However, it remains unclear how telomerase activity affects the regeneration potential of somatic stem cells. The objective of this study was to determine the regenerative significance of telomerase activity, particularly to retain cell surface marker expression, multipotent differentiation capability, chromosomal stability, and in vivo tumorigenic transformation, in each clonal population of human primary USCs. In total, 117 USC specimens from 10 healthy male adults (25–57 years of age) were obtained. Polymerase chain reaction amplification of a telomeric repeat was used to detect USCs with positive telomerase activity (USCsTA+). A total of 80 USCsTA+ (70.2%) were identified from 117 USC clones, but they were not detected in the paired normal bladder smooth muscle cell and bone marrow stromal cell specimens. In the 20–40 years age group, approximately 75% of USC clones displayed positive telomerase activity, whereas in the 50 years age group, 59.2% of the USC clones expressed positive telomerase activity. USCsTA+ extended to passage 16, underwent 62.0 ± 4.8 population doublings, produced more cells, and were superior for osteogenic, myogenic, and uroepithelial differentiation compared to USCsTA−. Importantly, USCs displayed normal chromosome and no oncological transformation after being implanted in vivo. Overall, as a safe cell source, telomerase-positive USCs have a robust regenerative potential in cell proliferation and multipotent differentiation capacity.
Collapse
Affiliation(s)
- Yingai Shi
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Jilin, China
| | - Guihua Liu
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Reproductive Medical Center, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongpei Wu
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - David L. Mack
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Department of Rehabilitation Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Xiuzhi Susan Sun
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Bio-Materials and Technology Lab, Grain Science and Industry, Bio and Agricultural Engineering, Kansas State University, Kansas, KS, United States
| | - Joshua Maxwell
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Xuan Guan
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Cardiovascular Disease AdvenHealth Orland, Orland, FL, United States
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- *Correspondence: Yuanyuan Zhang,
| |
Collapse
|
29
|
Ding H, Jambunathan K, Jiang G, Margolis DM, Leng I, Ihnat M, Ma JX, Mirsalis J, Zhang Y. 3D Spheroids of Human Primary Urine-Derived Stem Cells in the Assessment of Drug-Induced Mitochondrial Toxicity. Pharmaceutics 2022; 14:1042. [PMID: 35631624 PMCID: PMC9145543 DOI: 10.3390/pharmaceutics14051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial toxicity (Mito-Tox) risk has increased due to the administration of several classes of drugs, particularly some life-long antiretroviral drugs for HIV+ individuals. However, no suitable in vitro assays are available to test long-term Mito-Tox (≥4 weeks). The goal of this study is to develop a 3D spheroid system of human primary urine-derived stem cells (USC) for the prediction of drug-induced delayed Mito-Tox. The cytotoxicity and Mito-Tox were assessed in 3D USC spheroids 4 weeks after treatment with antiretroviral drugs: zalcitabine (ddC; 0.1, 1 and 10 µM), tenofovir (TFV; 3, 30 and 300 µM) or Raltegravir (RAL; 2, 20 and 200 µM). Rotenone (RTNN, 10 µM) and 0.1% DMSO served as positive and negative controls. Despite only mild cytotoxicity, ddC significantly inhibited the expression of oxidative phosphorylation enzyme Complexes I, III, and IV; and RAL transiently reduced the level of Complex IV. A significant increase in caspase 3 and ROS/RNS level but a decrease in total ATP were observed in USC treated with ddC, TFV, RAL, and RTNN. Levels of mtDNA content and mitochondrial mass were decreased in ddC but minimally or not in TFV- and RAL-treated spheroids. Thus, 3D USC spheroid using antiretroviral drugs as a model offers an alternative platform to assess drug-induced late Mito-Tox.
Collapse
Affiliation(s)
- Huifen Ding
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Kalyani Jambunathan
- SRI Biosciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA; (K.J.); (J.M.)
| | - Guochun Jiang
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (G.J.); (D.M.M.)
| | - David M. Margolis
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (G.J.); (D.M.M.)
| | - Iris Leng
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, USA;
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA;
| | - Jon Mirsalis
- SRI Biosciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA; (K.J.); (J.M.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| |
Collapse
|
30
|
Salemi S, Prange JA, Baumgartner V, Mohr-Haralampieva D, Eberli D. Adult stem cell sources for skeletal and smooth muscle tissue engineering. Stem Cell Res Ther 2022; 13:156. [PMID: 35410452 PMCID: PMC8996587 DOI: 10.1186/s13287-022-02835-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2023] Open
Abstract
INTRODUCTION Tissue engineering is an innovative field with enormous developments in recent years. These advances are not only in the understanding of how stem cells can be isolated, cultured and manipulated but also in their potential for clinical applications. Thus, tissue engineering when applied to skeletal and smooth muscle cells is an area that bears high benefit for patients with muscular diseases or damage. Most of the recent research has been focused on use of adult stem cells. These cells have the ability to rejuvenate and repair damaged tissues and can be derived from different organs and tissue sources. Recently there are several different types of adult stem cells, which have the potential to function as a cell source for tissue engineering of skeletal and smooth muscles. However, to build neo-tissues there are several challenges which have to be addressed, such as the selection of the most suitable stem cell type, isolation techniques, gaining control over its differentiation and proliferation process. CONCLUSION The usage of adult stem cells for muscle engineering applications is promising. Here, we summarize the status of research on the use of adult stem cells for cell transplantation in experimental animals and humans. In particular, the application of skeletal and smooth muscle engineering in pre-clinical and clinical trials will be discussed.
Collapse
Affiliation(s)
- Souzan Salemi
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Jenny A. Prange
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Valentin Baumgartner
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Deana Mohr-Haralampieva
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Daniel Eberli
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| |
Collapse
|
31
|
Namestnikov M, Dekel B. Moving To A New Dimension: 3D Kidney Cultures For Kidney Regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Zhou Q, Cheng Y, Sun F, Shen J, Nasser MI, Zhu P, Zhang X, Li Y, Yin G, Wang Y, Wu X, Zhao M. A Comprehensive Review of the Therapeutic Value of Urine-Derived Stem Cells. Front Genet 2022; 12:781597. [PMID: 35047009 PMCID: PMC8762167 DOI: 10.3389/fgene.2021.781597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Stem cells possess regenerative powers and multidirectional differentiation potential and play an important role in disease treatment and basic medical research. Urine-derived stem cells (USCs) represent a newly discovered type of stem cell with biological characteristics similar to those of mesenchymal stromal cells (MSCs), including their doubling time and immunophenotype. USCs are noninvasive and can be readily obtained from voided urine and steadily cultured. Based on advances in this field, USCs and their secretions have increasingly emerged as ideal sources. USCs may play regulatory roles in the cellular immune system, oxidative stress, revascularization, apoptosis and autophagy. This review summarizes the applications of USCs in tissue regeneration and various disease treatments. Furthermore, by analysing their limitations, we anticipate the development of more feasible therapeutic strategies to promote USC-based individualized treatment.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiyu Cheng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fang Sun
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxiang Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiushan Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
33
|
Huang YZ, He T, Cui J, Jiang YL, Zeng JF, Zhang WQ, Xie HQ. Urine-Derived Stem Cells for Regenerative Medicine: Basic Biology, Applications, and Challenges. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:978-994. [PMID: 35049395 DOI: 10.1089/ten.teb.2021.0142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regenerative medicine based on stem cell research has the potential to provide advanced health care for human beings. Recent studies demonstrate that stem cells in human urine can serve as an excellent source of graft cells for regenerative therapy, mainly due to simple, low-cost, and noninvasive cell isolation. These cells, termed human urine-derived stem cells (USCs), are highly expandable and can differentiate into various cell lineages. They share many biological properties with mesenchymal stem cells, such as potent paracrine effects and immunomodulation ability. The advantage of USCs has motivated researchers to explore their applications in regenerative medicine, including genitourinary regeneration, musculoskeletal repair, skin wound healing, and disease treatment. Although USCs have showed many positive outcomes in preclinical studies, and although the possible applications of USCs for animal therapy have been reported, many issues need to be addressed before clinical translation. This article provides a comprehensive review of USC biology and recent advances in their application for tissue regeneration. Challenges in the clinical translation of USC-based therapy are also discussed. Impact statement Recently, stem cells isolated from urine, referred to as urine-derived stem cells (USCs), have gained much interest in the field of regenerative medicine. Many advantages of human USCs have been found for cell-based therapy: (i) the cell isolation procedure is simple and low cost; (ii) they have remarkable proliferation ability, multidifferentiation potential, and paracrine effects; and (iii) they facilitate tissue regeneration in many animal models. With the hope to facilitate the development of USC-based therapy, we describe the current understanding of USC biology, summarize recent advances in their applications, and discuss future challenges in clinical translation.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tao He
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Breast Surgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jun-Feng Zeng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
34
|
Zhang W, Hu J, Huang Y, Wu C, Xie H. Urine-derived stem cells: applications in skin, bone and articular cartilage repair. BURNS & TRAUMA 2021; 9:tkab039. [PMID: 34859109 PMCID: PMC8633594 DOI: 10.1093/burnst/tkab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/18/2021] [Indexed: 02/05/2023]
Abstract
As an emerging type of adult stem cell featuring non-invasive acquisition, urine-derived stem cells (USCs) have shown great potential for applications in tissue engineering and regenerative medicine. With a growing amount of research on the topic, the effectiveness of USCs in various disease models has been shown and the underlying mechanisms have also been explored, though many aspects still remain unclear. In this review, we aim to provide an up-to-date overview of the biological characteristics of USCs and their applications in skin, bone and articular cartilage repair. In addition to the identification procedure of USCs, we also summarize current knowledge of the underlying repair mechanisms and application modes of USCs. Potential concerns and perspectives have also been summarized.
Collapse
Affiliation(s)
- Wenqian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jungen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yizhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Wu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|
36
|
Li X, Wei Y, Li J, Deng R, Fu Q, Nie W, Zhang H, Wu C, Su X, Wang J, Cao D, Liu X, Liu L, Wang C. Donor HLA genotyping of ex vivo expanded urine cells from kidney transplant recipients. HLA 2021; 98:431-447. [PMID: 34505410 DOI: 10.1111/tan.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
Antibody-mediated rejection (AMR) induced by donor-specific anti-HLA antibodies (DSA) remains a major cause of long-term graft loss after kidney transplantation. Currently, the presence of DSA cannot always be determined at a specific allele level, because existing donor HLA typing is low resolution and often incomplete, lacking HLA-DP, and occasionally HLA-C and HLA-DQ information and historical donor DNA samples are not available for HLA retyping. Here we present a novel, non-invasive technique for obtaining donor DNA from selectively expanded donor cells from urine of renal transplant recipients. Urine-derived cells were successfully expanded ex vivo from 31 of 32 enrolled renal transplant recipients, and with DNA obtained from these cells, donor HLA typing was unambiguously determined for HLA-A, -B, -C, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1 loci by next-generation sequencing. Our results showed 100% concordance of HLA typing data between donor peripheral blood and recipient urine-derived cells. In comparison, HLA typing showed that DNA derived from urine sediments mainly contained recipient-derived DNA. We also present the successful application of our novel technique in a clinical case of AMR in a renal transplant recipient. Urine-derived donor cells can be isolated from kidney transplant recipients and serve as a suitable source of donor material for reliable high-resolution HLA genotyping. Thus, this approach can aid the assessment of DSA specificity to support the diagnosis of AMR as well as the evaluation of treatment efficacy in kidney transplant recipients when complete donor HLA information and donor DNA are unavailable.
Collapse
Affiliation(s)
- Xirui Li
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongcheng Wei
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weijian Nie
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Su
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dajiang Cao
- BFR Clinical Diagnostics Lab, Beijing, China
| | | | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| |
Collapse
|
37
|
Wu R, Soland M, Liu G, Shi Y, Zhang C, Tang Y, Almeida-Porada G, Zhang Y. Functional characterization of the immunomodulatory properties of human urine-derived stem cells. Transl Androl Urol 2021; 10:3566-3578. [PMID: 34733653 PMCID: PMC8511544 DOI: 10.21037/tau-21-506] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Urine-derived stem cells (USCs) have been widely researched as a novel cell source for stem cell therapy, but their immunomodulatory characteristics remain to be investigated. This study aimed to characterize the immunomodulatory properties of human USCs. METHODS Human USCs were isolated from fresh voiding urine samples from healthy male donors and expanded. Their cell surface markers were characterized by flow cytometry analysis and the telomerase activities for several USCs clones were determined. The immunosuppressive potential of USCs was evaluated by the performing the mixed lymphocyte reaction (MLR) [co-culture with peripheral blood mononuclear cells (PBMNCs)] and natural killer cells (NK) cytotoxicity assay. USCs cytokines release profile was determined by using human cytokine proteome array. RESULTS USCs exhibited high cell surface expression of embryonic/mesenchymal stem cells (MSCs) markers CD29, CD44, CD54, CD73, CD90, CD146, and CD166, while lacked expression of hematopoietic stem cell markers CD11, CD14, CD19, CD31, CD34, CD45, B cell marker CD79, and co-stimulatory factors CD80 and CD86, thus, exhibiting the phenotype of MSCs. MLR indicated that USCs significantly inhibited the proliferation of PBMNCs, as compared to that of the human smooth muscle cells (SMCs). In cell cytotoxicity assays, NK cells displayed less cytotoxicity against USCs than against bone marrow mesenchymal stem cells (BMSCs) and SMCs. Furthermore, upon PBMNCs stimulation, USCs secreted higher levels of immunomodulatory cytokines, including IL-6, IL-8, MCP-1, RANTES, GROα, and GM-CSF, compared to those of BMSCs, especially when directly contact mix-culture with PBMNCs. CONCLUSIONS USCs secreted immunoregulatory cytokines and possessed immunomodulatory properties, comparable to those of BMSCs.
Collapse
Affiliation(s)
- Rongpei Wu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Melisa Soland
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Guihua Liu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
- Reproductive Medical Center, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingai Shi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chi Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Tang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| |
Collapse
|
38
|
Rajasingh S, Sigamani V, Selvam V, Gurusamy N, Kirankumar S, Vasanthan J, Rajasingh J. Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells. J Cell Mol Med 2021; 25:8904-8919. [PMID: 34390186 PMCID: PMC8435459 DOI: 10.1111/jcmm.16851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) and their differentiation into mesenchymal stem/stromal cells (iMSCs) have created exciting source of cells for autologous therapy. In this study, we have compared the therapeutic potential of iMSCs generated from urinary epithelial (UE) cells with the available umbilical cord MSCs (UC‐MSCs). For this, adult UE cells were treated with the mRNA of pluripotent genes (OCT4, NANOG, SOX2, KLF4, MYC and LIN28) and a cocktail of miRNAs under specific culture conditions for generating iPSCs. Our non‐viral and mRNA‐based treatment regimen demonstrated a high reprogramming efficiency to about 30% at passage 0. These UE‐iPSCs were successfully differentiated further into ectoderm, endoderm and mesoderm lineage of cells. Moreover, these UE‐iPSCs were subsequently differentiated into iMSCs and were compared with the UC‐MSCs. These iMSCs were capable of differentiating into osteocytes, chondrocytes and adipocytes. Our qRT‐PCR and Western blot data showed that the CD73, CD90 and CD105 gene transcripts and proteins were highly expressed in iMSCs and UC‐MSCs but not in other cells. The comparative qRT‐PCR data showed that the iMSCs maintained their MSC characteristics without any chromosomal abnormalities even at later passages (P15), during which the UC‐MSCs started losing their MSC characteristics. Importantly, the wound‐healing property demonstrated through migration assay was superior in iMSCs when compared to the UC‐MSCs. In this study, we have demonstrated an excellent non‐invasive and pain‐free method of obtaining iMSCs for regenerative therapy. These homogeneous autologous highly proliferative iMSCs may provide an alternative source of cells to UC‐MSCs for treating various diseases.
Collapse
Affiliation(s)
- Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay Selvam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shivaani Kirankumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Jayavardini Vasanthan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
39
|
Ray A, Joshi JM, Sundaravadivelu PK, Raina K, Lenka N, Kaveeshwar V, Thummer RP. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 17:1954-1974. [PMID: 34100193 DOI: 10.1007/s12015-021-10200-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Human induced Pluripotent Stem Cells (iPSCs) have enormous potential in understanding developmental biology, disease modeling, drug discovery, and regenerative medicine. The initial human iPSC studies used fibroblasts as a starting cell source to reprogram them; however, it has been identified to be a less appealing somatic cell source by numerous studies due to various reasons. One of the important criteria to achieve efficient reprogramming is determining an appropriate starting somatic cell type to induce pluripotency since the cellular source has a major influence on the reprogramming efficiency, kinetics, and quality of iPSCs. Therefore, numerous groups have explored various somatic cell sources to identify the promising sources for reprogramming into iPSCs with different reprogramming factor combinations. This review provides an overview of promising easily accessible somatic cell sources isolated in non-invasive or minimally invasive manner such as keratinocytes, urine cells, and peripheral blood mononuclear cells used for the generation of human iPSCs derived from healthy and diseased subjects. Notably, iPSCs generated from one of these cell types derived from the patient will offer ethical and clinical advantages. In addition, these promising somatic cell sources have the potential to efficiently generate bona fide iPSCs with improved reprogramming efficiency and faster kinetics. This knowledge will help in establishing strategies for safe and efficient reprogramming and the generation of patient-specific iPSCs from these cell types.
Collapse
Affiliation(s)
- Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Ganeshkhind, Maharashtra, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
40
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
41
|
Hu C, He Y, Liu D, Zhao L, Fang S, Tan B, Dong S, Wang Y, He T, Bi Y. Hypoxia Preconditioning Promotes the Proliferation and Migration of Human Urine-Derived Stem Cells in Chronically Injured Liver of Mice by Upregulating CXCR4. Stem Cells Dev 2021; 30:526-536. [PMID: 33715421 DOI: 10.1089/scd.2021.0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous studies reported that urine-derived stem cells (USCs) possess a strong self-renewal ability and multidirectional differentiation potential and thus are an ideal candidate cell source for hepatocellular transplantation. USC transplantation may repair the pathological changes of chronic liver injury to a certain extent, and hypoxia pretreatment may improve the recovery efficiency of USCs. Therefore, the present study aimed to investigate the possible mechanism of the improved recovery efficiency of hypoxia-pretreated USCs. A chronic liver injury model was established by intraperitoneal injection of carbon tetrachloride into nude mice. USCs were transplanted via caudal vein injection. Hematoxylin and eosin staining and Masson's staining were performed to determine the pathology of the liver. Immunofluorescence and frozen section biopsy were performed to determine differentiation and cell fusion in vivo. Cell coculture was used to detect cell fusion in vitro. The proliferative ability of USCs was evaluated using cell viability and colony formation assays, and the migratory functions of USCs were evaluated using wound healing and transwell assays. The degeneration of hepatocytes and the level of fibrosis in the hypoxia transplantation group were improved compared with the normoxia transplantation group. It was found that exogenous USCs may be differentiated into functional hepatocytes or fused with hepatocytes in vivo. C-X-C motif chemokine (CXC) ligand 12 (CXCL12) expression levels in liver tissue of the chronic liver injury model were upregulated compared with those in the control group. The expression of CXC receptor 4 (CXCR4) in hypoxia-pretreated USCs was also significantly upregulated. The results suggested that USCs fused with different types of liver cells and that hypoxia treatment promoted the fusion rate in vitro by upregulating CXCR4 signaling. Furthermore, hypoxia pretreatment promoted cell proliferation, migration, and cell fusion by inducing CXCR4 signaling, leading to USC-elicited liver tissue recovery following injury in vivo.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Daijiang Liu
- Department of Gastroenterology, Chongqing University Central Hospital, Chongqing, P.R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Shuyu Fang
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Bin Tan
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Shifang Dong
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Yi Wang
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Department of Pediatric Surgery Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| |
Collapse
|
42
|
Vado Y, Puras G, Rosique M, Martin C, Pedraz JL, Jebari-Benslaiman S, de Pancorbo MM, Zarate J, Perez de Nanclares G. Design and Validation of a Process Based on Cationic Niosomes for Gene Delivery into Novel Urine-Derived Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13050696. [PMID: 34064902 PMCID: PMC8151286 DOI: 10.3390/pharmaceutics13050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are stem cells present in adult tissues. They can be cultured, have great growth capacity, and can differentiate into several cell types. The isolation of urine-derived mesenchymal stem cells (hUSCs) was recently described. hUSCs present additional benefits in the fact that they can be easily obtained noninvasively. Regarding gene delivery, nonviral vectors based on cationic niosomes have been used and are more stable and have lower immunogenicity than viral vectors. However, their transfection efficiency is low and in need of improvement. Methods: We isolated hUSCs from urine, and the cell culture was tested and characterized. Different cationic niosomes were elaborated using reverse-phase evaporation, and they were physicochemically characterized. Then, they were screened into hUSCs for transfection efficiency, and their internalization was evaluated. Results: GPxT-CQ at a lipid/DNA ratio of 5:1 (w/w) had the best transfection efficiency. Intracellular localization studies confirmed that nioplexes entered mainly via caveolae-mediated endocytosis. Conclusions: In conclusion, we established a protocol for hUSC isolation and their transfection with cationic niosomes, which could have relevant clinical applications such as in gene therapy. This methodology could also be used for creating cellular models for studying and validating pathogenic genetic variants, and even for performing functional studies. Our study increases knowledge about the internalization of tested cationic niosomes in these previously unexplored cells.
Collapse
Affiliation(s)
- Yerai Vado
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, BioAraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Araba, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Melania Rosique
- BIOMICs Research Group, Microfluidics Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Araba, Spain; (M.R.); (M.M.d.P.)
| | - Cesar Martin
- Biofisika Institute (UPV/EHU, CSIC), Department Biochemistry and Molecular Biology, University of the Basque Country University (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (C.M.); (S.J.-B.)
| | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC), Department Biochemistry and Molecular Biology, University of the Basque Country University (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (C.M.); (S.J.-B.)
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Microfluidics Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Araba, Spain; (M.R.); (M.M.d.P.)
| | - Jon Zarate
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, BioAraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Araba, Spain
- Correspondence: ; Tel.: +34-945007097
| |
Collapse
|
43
|
Abedini A, Zhu YO, Chatterjee S, Halasz G, Devalaraja-Narashimha K, Shrestha R, S. Balzer M, Park J, Zhou T, Ma Z, Sullivan KM, Hu H, Sheng X, Liu H, Wei Y, Boustany-Kari CM, Patel U, Almaani S, Palmer M, Townsend R, Blady S, Hogan J, Morton L, Susztak K. Urinary Single-Cell Profiling Captures the Cellular Diversity of the Kidney. J Am Soc Nephrol 2021; 32:614-627. [PMID: 33531352 PMCID: PMC7920183 DOI: 10.1681/asn.2020050757] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/24/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microscopic analysis of urine sediment is probably the most commonly used diagnostic procedure in nephrology. The urinary cells, however, have not yet undergone careful unbiased characterization. METHODS Single-cell transcriptomic analysis was performed on 17 urine samples obtained from five subjects at two different occasions, using both spot and 24-hour urine collection. A pooled urine sample from multiple healthy individuals served as a reference control. In total 23,082 cells were analyzed. Urinary cells were compared with human kidney and human bladder datasets to understand similarities and differences among the observed cell types. RESULTS Almost all kidney cell types can be identified in urine, such as podocyte, proximal tubule, loop of Henle, and collecting duct, in addition to macrophages, lymphocytes, and bladder cells. The urinary cell-type composition was subject specific and reasonably stable using different collection methods and over time. Urinary cells clustered with kidney and bladder cells, such as urinary podocytes with kidney podocytes, and principal cells of the kidney and urine, indicating their similarities in gene expression. CONCLUSIONS A reference dataset for cells in human urine was generated. Single-cell transcriptomics enables detection and quantification of almost all types of cells in the kidney and urinary tract.
Collapse
Affiliation(s)
- Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yuan O. Zhu
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Shatakshee Chatterjee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gabor Halasz
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Rojesh Shrestha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael S. Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tong Zhou
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katie Marie Sullivan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yi Wei
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Uptal Patel
- Inflammation and Respiratory Therapeutics, Gilead Sciences Inc., Foster City, California
| | - Salem Almaani
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Raymond Townsend
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shira Blady
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jonathan Hogan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - The TRIDENT Study Investigators,*
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
- Cardiometabolic Disease Research Department, Boehringer Ingelheim, Ridgefield, Connecticut
- Inflammation and Respiratory Therapeutics, Gilead Sciences Inc., Foster City, California
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lori Morton
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
A non-invasive method to generate induced pluripotent stem cells from primate urine. Sci Rep 2021; 11:3516. [PMID: 33568724 PMCID: PMC7876031 DOI: 10.1038/s41598-021-82883-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Comparing the molecular and cellular properties among primates is crucial to better understand human evolution and biology. However, it is difficult or ethically impossible to collect matched tissues from many primates, especially during development. An alternative is to model different cell types and their development using induced pluripotent stem cells (iPSCs). These can be generated from many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-human primates that can be investigated. Here, we report the generation of primate iPSCs from urine samples. We first validate and optimize the procedure using human urine samples and show that suspension- Sendai Virus transduction of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this study introduces a novel and efficient approach to non-invasively generate iPSCs from primate urine. This will extend the zoo of species available for a comparative approach to molecular and cellular phenotypes.
Collapse
|
45
|
Cell preservation methods and its application to studying rare disease. Mol Cell Probes 2021; 56:101694. [PMID: 33429040 DOI: 10.1016/j.mcp.2021.101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
The ability to preserve and transport human cells in a stable medium over long distances is critical to collaborative efforts and the advancement of knowledge in the study of human disease. This is particularly important in the study of rare diseases. Recently, advancements in the understanding of renal ciliopathies has been achieved via the use of patient urine-derived cells (UDCs). However, the traditional method of cryopreservation, although considered as the gold standard, can result in decreased sample viability of many cell types, including UDCs. Delays in transportation can have devastating effects upon the viability of samples, and may even result in complete destruction of cells following evaporation of dry ice or liquid nitrogen, leaving samples in cryoprotective agents, which are cytotoxic at room temperature. The loss of any patient sample in this manner is detrimental to research, however it is even more so when samples are from patients with a rare disease. In order to overcome the associated limitations of traditional practices, new methods of preservation and shipment, including cell encapsulation within hydrogels, and transport in specialised devices are continually being investigated. Here we summarise and compare traditional methods with emerging novel alternatives for the preservation and shipment of cells, and consider the effectiveness of such methods for use with UDCs to further enable the study and understanding of kidney diseases.
Collapse
|
46
|
Burdeyron P, Giraud S, Hauet T, Steichen C. Urine-derived stem/progenitor cells: A focus on their characterization and potential. World J Stem Cells 2020; 12:1080-1096. [PMID: 33178393 PMCID: PMC7596444 DOI: 10.4252/wjsc.v12.i10.1080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the forefront of regenerative and personalized medicine. Among the multiple cell types that have been used for this purpose [including adult stem cells such as mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells (USCs) have aroused interest in the past years. USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation. Importantly, they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure, which is broadly applicable, whereas most adult stem cell types require invasive procedure. Moreover, USCs can be differentiated into renal cell types. This is of high interest for renal cell therapy-based regenerative approaches. This review will firstly describe the isolation and characterization of USCs. We will specifically present USC phenotype, which is not an object of consensus in the literature, as well as detail their differentiation capacity. In the second part of this review, we will present and discuss the main applications of USCs. These include use as a substrate to generate human induced pluripotent stem cells, but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system. Importantly, we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes, which is a strategy being increasingly employed. In the last section, we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.
Collapse
Affiliation(s)
- Perrine Burdeyron
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
| | - Sébastien Giraud
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France.
| |
Collapse
|
47
|
Cheng J, Zhao ZW, Wen JR, Wang L, Huang LW, Yang YL, Zhao FN, Xiao JY, Fang F, Wu J, Miao YL. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J Clin Cases 2020; 8:1400-1413. [PMID: 32368533 PMCID: PMC7190946 DOI: 10.12998/wjcc.v8.i8.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic floor disorders (PFDs) represent a group of common and frequently-occurring diseases that seriously affect the life quality of women, generally including stress urinary incontinence and pelvic organ prolapse. Surgery has been used as a treatment for PFD, but almost 30% of patients require subsequent surgery due to a high incidence of postoperative complications and high recurrence rates. Therefore, investigations of new therapeutic strategies are urgently needed. Stem cells possess strong multi-differentiation, self-renewal, immunomodulation, and angiogenesis abilities and they are able to differentiate into various cell types of pelvic floor tissues and thus provide a potential therapeutic approach for PFD. Recently, various studies using different autologous stem cells have achieved promising results by improving the pelvic ligament and muscle regeneration and conferring the tissue elasticity and strength to the damaged tissue in PFD, as well as reduced inflammatory reactions, collagen deposition, and foreign body reaction. However, with relatively high rates of complications such as bladder stone formation and wound infections, further studies are necessary to investigate the role of stem cells as maintainers of tissue homeostasis and modulators in early interventions including therapies using new stem cell sources, exosomes, and tissue-engineering combined with stem cell-based implants, among others. This review describes the types of stem cells and the possible interaction mechanisms in PFD treatment, with the hope of providing more promising stem cell treatment strategies for PFD in the future.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-Wei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Rui Wen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Lin Yang
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Feng-Nian Zhao
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing-Yue Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Li Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
48
|
Liu G, Wu R, Yang B, Shi Y, Deng C, Atala A, Mou S, Criswell T, Zhang Y. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater 2020; 107:50-64. [PMID: 32044457 DOI: 10.1016/j.actbio.2020.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 01/19/2023]
Abstract
Traditional cell therapy technology relies on the maximum expansion of primary stem cells in vitro, through multiple passages and potential differentiation protocols, in order to generate the abundance of cells needed prior to transplantation in vivo. Implantation of in vitro over-expanded and pre-differentiated cells typically results in poor cell survival and reduced regeneration capacity for tissue repair in vivo. We hypothesized that implantation of primary stem cells, after a short time culture in vitro (passage number ≤p3), in combination with controlled release of relevant growth factors would improve in vivo cell viability, engraftment and tissue regeneration. The goal of this study was to determine whether the release of myogenic growth factors from a heparin-hyaluronic acid gel (hp-HA gel) could enhance in vivo cell survival, in-growth and myogenic differentiation of human urine-derived stem cells (USC) with a corresponding enhancement in graft vascularization, innervation and regenerative properties. Human USC were obtained from healthy adult donors (n = 6), expanded and then mixed with a hp-HA gel containing sets of growth factors known to enhance myogenesis (IGF1, HGF, PDGF-BB), neurogenesis (NGF, FGF) and angiogenesis (VEGF), or a cocktail with a combination of growth factors. Primary cultured USC (p3) mixed with the hp-HA gel and the various combinations of growth factors, were subcutaneously injected into athymic mice. In vivo cell survival, engraftment and functional differentiation within the host tissue were assessed. The implanted grafts containing USC and the growth factor cocktail showed the greatest number of surviving cells as well as increased numbers of cells that expressed myogenic and endothelial cell markers as compared to other groups 4 weeks after implantation. Moreover, the graft with USC and the growth factor cocktail showed increased numbers of blood vessels and infiltrating neurons. Thus, growth factors released in a controlled manner from an hp-HA gel containing USC efficiently improved in vivo cell survival and supported vascularization and myogenic differentiation within the grafts. This study provides evidence for the use of primary USC and growth factors in a hydrogel as a novel mode of cell therapy for the promotion of myogenic differentiation for the treatment of injured muscle tissue. STATEMENT OF SIGNIFICANCE: Cell therapies are a promising treatment option for neuromuscular dysfunction disorders. However, major limitations in cell retention and engraftment after implantation remain a hindrance to the use of stem cell therapy for the treatment of muscle injuries or diseased tissues. Implanted long-term in vitro cultured cells tend to demonstrate low rates of survival and tissue engraftment, lessened paracrine effects, and poor homing and differentiation. Human USC are an easily obtainable stem cell source that possess stem cell characteristics such as a robust proliferative potential, paracrine effects on neighboring cells, and multi-potential differentiation. In this study, we demonstrated that a combination of primary human USC with a cocktail of growth factors combined in a hyaluronic gel was optimal for cell survival and engraftment, including myogenic differentiation potential of USC, angiogenesis and host nerve fiber recruitment in vivo. The present study also demonstrated that the use of primary urine derived stem cells at early passages, without in vitro pre-differentiation, implanted in a hyaluronic-heparin hydrogel containing a cocktail of growth factors, provided an alternative safe site-specific delivery method for cell therapy.
Collapse
Affiliation(s)
- Guihua Liu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongpei Wu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yingai Shi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven Mou
- Anesthesiology-Pediatric ICU Anesthesia at WakeForest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
49
|
Urine-Derived Stem Cells: Applications in Regenerative and Predictive Medicine. Cells 2020; 9:cells9030573. [PMID: 32121221 PMCID: PMC7140531 DOI: 10.3390/cells9030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite being a biological waste, human urine contains a small population of cells with self-renewal capacity and differentiation potential into several cell types. Being derived from the convoluted tubules of nephron, renal pelvis, ureters, bladder and urethra, urine-derived stem cells (UDSC) have a similar phenotype to mesenchymal stroma cells (MSC) and can be reprogrammed into iPSC (induced pluripotent stem cells). Having simple, safer, low-cost and noninvasive collection procedures, the interest in UDSC has been growing in the last decade. With great potential in regenerative medicine applications, UDSC can also be used as biological models for pharmacology and toxicology tests. This review describes UDSC biological characteristics and differentiation potential and their possible use, including the potential of UDSC-derived iPSC to be used in drug discovery and toxicology, as well as in regenerative medicine. Being a new cellular platform amenable to noninvasive collection for disease stratification and personalized therapy could be a future application for UDSC.
Collapse
|
50
|
Abbas TO, Ali TA, Uddin S. Urine as a Main Effector in Urological Tissue Engineering-A Double-Edged Sword. Cells 2020; 9:538. [PMID: 32110928 PMCID: PMC7140397 DOI: 10.3390/cells9030538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
In order to reconstruct injured urinary tract tissues, biodegradable scaffolds with autologous seeded cells are explored in this work. However, when cells are obtained via biopsy from individuals who have damaged organs due to infection, congenital disorders, or cancer, this can result in unhealthy engineered cells and donor site morbidity. Thus, neo-organ construction through an alternative cell source might be useful. Significant advancements in the isolation and utilization of urine-derived stem cells have provided opportunities for this less invasive, limitless, and versatile source of cells to be employed in urologic tissue-engineered replacement. These cells have a high potential to differentiate into urothelial and smooth muscle cells. However, urinary tract reconstruction via tissue engineering is peculiar as it takes place in a milieu of urine that imposes certain risks on the implanted cells and scaffolds as a result of the highly cytotoxic nature of urine and its detrimental effect on both growth and differentiation of these cells. Both of these projections should be tackled thoughtfully when designing a suitable approach for repairing urinary tract defects and applying the needful precautions is vital.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar
- College of Medicine, Qatar University, Doha 2713, Qatar
- Surgery Department, Weill Cornell Medicine—Qatar, Doha 24144, Qatar
| | - Tayyiba A. Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (T.A.A.); (S.U.)
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (T.A.A.); (S.U.)
| |
Collapse
|