1
|
Afrose D, Alfonso-Sánchez S, McClements L. Targeting oxidative stress in preeclampsia. Hypertens Pregnancy 2025; 44:2445556. [PMID: 39726411 DOI: 10.1080/10641955.2024.2445556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Preeclampsia is a complex condition characterized by elevated blood pressure and organ damage involving kidneys or liver, resulting in significant morbidity and mortality for both the mother and the fetus. Increasing evidence suggests that oxidative stress, often caused by mitochondrial dysfunction within fetal trophoblast cells may play a major role in the development and progression of preeclampsia. Oxidative stress occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defenses, which can lead to placental cellular damage and endothelial cell dysfunction. Targeting oxidative stress appears to be a promising therapeutic approach that has the potential to improve both short- and long-term maternal and fetal outcomes, thus reducing the global burden of preeclampsia. The purpose of this review is to provide a comprehensive account of the mechanisms of oxidative stress in preeclampsia. Furthermore, it also examines potential interventions for reducing oxidative stress in preeclampsia, including natural antioxidant supplements, lifestyle modifications, mitochondrial targeting antioxidants, and pharmacological agents.A better understanding of the mechanism of action of proposed therapeutic strategies targeting oxidative stress is essential for the identification of companion biomarkers and personalized medicine approaches for the development of effective treatments of preeclampsia.
Collapse
Affiliation(s)
- Dinara Afrose
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sofía Alfonso-Sánchez
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Ghorbanpour S, Cartland SP, Chen H, Seth S, Ecker RC, Richards C, Aksentijevic D, Padula MP, Cole L, Warkiani ME, Kavurma MM, McClements L. The FKBPL-based therapeutic peptide, AD-01, protects the endothelium from hypoxia-induced damage by stabilising hypoxia inducible factor-α and inflammation. J Transl Med 2025; 23:309. [PMID: 40069829 PMCID: PMC11895374 DOI: 10.1186/s12967-025-06118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Endothelial dysfunction is a hallmark feature of cardiovascular disease (CVD), yet the underlying mechanisms are still poorly understood. This has impeded the development of effective therapies, particularly for peripheral artery disease. FK506-binding protein like (FKBPL) and its therapeutic peptide mimetic, AD-01, are crucial negative regulators of angiogenesis, however their roles in CVD are unknown. In this study, we aimed to elucidate the FKBPL-mediated mechanisms involved in regulating endothelial dysfunction induced by hypoxia or inflammation, and to determine whether AD-01 can effectively restore endothelial function under these conditions. METHODS Hindlimb ischemia was induced in mice by ligating the proximal and distal ends of the right femoral artery, and, after three days, the gastrocnemius muscle was collected for immunofluorescence staining, and RNA extraction. A 3D in vitro microfluidics model was developed to determine the endothelial cell migration and impact of FKBPL following treatments with: (i) 24 µM FKBPL targeted siRNA, (ii) 1 mM hypoxia inducible factor (HIF-1)α activator (DMOG), (iii) 50% (v/v) macrophage conditioned media (MCM), ± 100 nM AD-01. Unbiased, untargeted proteomic analysis was conducted via LC-MS/MS to identify protein targets of AD-01. RESULTS FKBPL expression is substantially downregulated in mice after hindlimb ischemia (p < 0.05, protein; p < 0.001, mRNA), correlating with increased neovascularization and altered vascular adhesion molecule expression. In our real-time advanced 3D microfluidics model, hypoxia suppressed FKBPL (p < 0.05) and VE-cadherin (p < 0.001) expression, leading to increased endothelial cell number and migration (p < 0.001), which was restored by AD-01 treatment (p < 0.01). Under inflammatory conditions, FKBPL (p < 0.01) and HIF-1α (p < 0.05) expression was elevated, correlating with increased endothelial cell migration (p < 0.05). Unlike hypoxia, AD-01 did not influence endothelial cell migration under inflammatory conditions, but normalized FKBPL (p < 0.001), HIF-1α (p < 0.05) and CD31 (P < 0.05), expression, in 3D microfluidic cell culture. Proteomic analysis revealed that AD-01 treatment in hypoxia enhanced the abundance of tissue remodelling and vascular integrity proteins including collagen alpha-1(XIX) chain and junctional cadherin associated-5 (JCAD) proteins. CONCLUSIONS FKBPL represents an important novel mechanism in hypoxia and inflammation-induced angiogenesis. The FKBPL-based therapeutic peptide, AD-01, could be a viable treatment option for CVD-related endothelial cell dysfunction.
Collapse
Affiliation(s)
- Sahar Ghorbanpour
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Siân Peta Cartland
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Hao Chen
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sanchit Seth
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- TissueGnostics Australia Pty Ltd, Brisbane, Australia
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Rupert C Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- TissueGnostics Australia Pty Ltd, Brisbane, Australia
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Claire Richards
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Dunja Aksentijevic
- Centre for Biochemical Pharmacology, School of Medicine and Dentistry, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - Matthew P Padula
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Louise Cole
- The Australian Institute for Microbiology and Infection (AIMI), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Lana McClements
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Yu M, Liu J, Zhou W, Gu X, Yu S. MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival. Sci Rep 2025; 15:7433. [PMID: 40032983 PMCID: PMC11876340 DOI: 10.1038/s41598-025-90128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene expression and clinicopathological data, was downloaded from online database. Kaplan-Meier survival curves, univariate and multivariate COX analyses, and time-dependent receiver operating characteristic were used to assess the prognostic value of CD44. Following the screening of radiomic features using repeat least absolute shrinkage and selection operator, two radiomics models were constructed utilizing logistic regression and support vector machine for validation purposes. The results indicated that CD44 protein levels were higher in HGG compared to normal brain tissues, and CD44 expression emerged as an independent biomarker of diminished overall survival (OS) in patients with HGG. Moreover, two predictive models based on seven radiomic features were built to predict CD44 expression levels in HGG, achieving areas under the curves (AUC) of 0.809 and 0.806, respectively. Calibration and decision curve analysis validated the fitness of the models. Notably, patients with high radiomic scores presented worse OS (p < 0.001). In summary, our results indicated that the radiomics models effectively differentiate CD44 expression level and OS in patients with HGG.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Department of Medical Affairs, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Jinliang Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Wen Zhou
- Department of Pain Management, Dalian Municipal Central Hospital, Dalian, 116033, People's Republic of China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| | - Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
4
|
Afrose D, Johansen MD, Nikolic V, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, Hansbro PM, McClements L. Evaluating oxidative stress targeting treatments in in vitro models of placental stress relevant to preeclampsia. Front Cell Dev Biol 2025; 13:1539496. [PMID: 40109359 PMCID: PMC11920713 DOI: 10.3389/fcell.2025.1539496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 03/22/2025] Open
Abstract
Background Preeclampsia is a complex pregnancy disorder characterized by the new onset of hypertension and organ dysfunction, often leading to significant maternal and fetal morbidity and mortality. Placental dysfunction is a hallmark feature of preeclampsia, which is often caused by inappropriate trophoblast cell function in association with oxidative stress, inflammation and/or pathological hypoxia. This study explores the role of oxidative stress in trophoblast cell-based models mimicking the preeclamptic placenta and evaluates potential therapeutic strategies targeting these mechanisms. Methods Uric acid (UA) and malondialdehyde (MDA) concentrations were measured in human plasma from women with preeclampsia (n = 24) or normotensive controls (n = 14) using colorimetric assays. Custom-made first trimester trophoblast cell line, ACH-3P, was exposed to various preeclampsia-like stimuli including hypoxia mimetic (dimethyloxalylglycine or DMOG, 1 mM), inflammation (tumour necrosis factor or TNF-α, 10 ng/mL) or mitochondria dysfunction agent, (Rhodamine-6G or Rho-6G, 1 μg/mL), ± aspirin (0.5 mM), metformin (0.5 mM), AD-01 (100 nM) or resveratrol (15 µM), for 48 h. Following treatments, UA/MDA, proliferation (MTT), wound scratch and cytometric bead, assays, were performed. Results Overall, MDA plasma concentration was increased in the preeclampsia group compared to healthy controls (p < 0.001) whereas UA showed a trend towards an increase (p = 0.06); when adjusted for differences in gestational age at blood sampling, MDA remained (p < 0.001) whereas UA became (p = 0.03) significantly correlated with preeclampsia. Our 2D first trimester trophoblast cell-based in vitro model of placental stress as observed in preeclampsia, mimicked the increase in UA concentration following treatment with DMOG (p < 0.0001), TNF-α (p < 0.05) or Rho-6G (p < 0.001) whereas MDA cell concentration increased only in the presence of DMOG (p < 0.0001) or Rho-6G (p < 0.001). Metformin was able to abrogate DMOG- (p < 0.01), Rho-6G- (p < 0.0001) or TNF-α- (p < 0.01) induced increase in UA, or DMOG- (p < 0.0001) or TNF-α- (p < 0.05)induced increase in MDA. AD-01 abrogated UA or MDA increase in the presence of TNF-α (p < 0.001) or Rho-6G (p < 0.001)/DMOG (p < 0.0001), respectively. The preeclampsia-like stimuli also mimicked adverse impact on trophoblast cell proliferation, migration and inflammation, most of which were restored with either aspirin, metformin, resveratrol, or AD-01 (p < 0.05). Conclusion Our 2D in vitro models recapitulate the response of the first trimester trophoblast cells to preeclampsia-like stresses, modelling inappropriate placental development, and demonstrate therapeutic potential of repurposed treatments.
Collapse
Affiliation(s)
- Dinara Afrose
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Matt D Johansen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Valentina Nikolic
- Department of Pharmacology with Toxicology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- Department of Gynaecology and Obstetrics, Clinical Centre Nis, Nis, Serbia
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Philip M Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Resolving the current controversy of use and reuse of housekeeping proteins in ageing research: Focus on saving people's tax dollars. Ageing Res Rev 2024; 100:102437. [PMID: 39067773 PMCID: PMC11384260 DOI: 10.1016/j.arr.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The use of housekeeping genes and proteins to normalize mRNA and protein levels in biomedical research has faced growing scrutiny. Researchers encounter challenges in determining the optimal frequency for running housekeeping proteins such as β-actin, Tubulin, and GAPDH for nuclear-encoded proteins, and Porin, HSP60, and TOM20 for mitochondrial proteins alongside experimental proteins. The regulation of these proteins varies with age, gender, disease progression, epitope nature, gel running conditions, and their reported sizes can differ among antibody suppliers. Additionally, anonymous readers have raised concerns about peer-reviewed and published articles, creating confusion and concern within the research and academic institutions. To clarify these matters, this minireview discusses the role of reference housekeeping proteins in Western blot analysis and outlines key considerations for their use as normalization controls. Instead of Western blotting of housekeeping proteins, staining of total proteins, using Amido Black and Coomassie Blue can be visualized the total protein content on a membrane. The reducing repeated Western blotting analysis of housekeeping proteins, will save resources, time and efforts and in turn increase the number of competitive grants from NIH and funding agencies. We also discussed the use of dot blots over traditional Western blots, when protein levels are low in rare tissues/specimens and cell lines. We sincerely hope that the facts, figures, and discussions presented in this article will clarify the current controversy regarding housekeeping protein(s) use, reuse, and functional aspects of housekeeping proteins. The contents presented in our article will be useful to students, scholars and researchers of all levels in cell biology, protein chemistry and mitochondrial research.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
6
|
Lin JJ, Chen R, Yang LY, Gong M, Du MY, Mu SQ, Jiang ZA, Li HH, Yang Y, Wang XH, Wang SF, Liu KX, Cao SH, Wang ZY, Zhao AQ, Yang SY, Li C, Sun SG. Hsa_circ_0001402 alleviates vascular neointimal hyperplasia through a miR-183-5p-dependent regulation of vascular smooth muscle cell proliferation, migration, and autophagy. J Adv Res 2024; 60:93-110. [PMID: 37499939 PMCID: PMC11156604 DOI: 10.1016/j.jare.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.
Collapse
Affiliation(s)
- Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xing-Hui Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
7
|
Masoumeh Ghorbanpour S, Wen S, Kaitu'u-Lino TJ, Hannan NJ, Jin D, McClements L. Quantitative Point of Care Tests for Timely Diagnosis of Early-Onset Preeclampsia with High Sensitivity and Specificity. Angew Chem Int Ed Engl 2023; 62:e202301193. [PMID: 37055349 DOI: 10.1002/anie.202301193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023]
Abstract
Preeclampsia is a heterogeneous and multiorgan cardiovascular disorder of pregnancy. Here, we report the development of a novel strip-based lateral flow assay (LFA) using lanthanide-doped upconversion nanoparticles conjugated to antibodies targeting two different biomarkers for detection of preeclampsia. We first measured circulating plasma FKBPL and CD44 protein concentrations from individuals with early-onset preeclampsia (EOPE), using ELISA. We confirmed that the CD44/FKBPL ratio is reduced in EOPE with a good diagnostic potential. Using our rapid LFA prototypes, we achieved an improved lower limit of detection: 10 pg ml-1 for FKBPL and 15 pg ml-1 for CD44, which is more than one order lower than the standard ELISA method. Using clinical samples, a cut-off value of 1.24 for CD44/FKBPL ratio provided positive predictive value of 100 % and the negative predictive value of 91 %. Our LFA shows promise as a rapid and highly sensitive point-of-care test for preeclampsia.
Collapse
Affiliation(s)
- Sahar Masoumeh Ghorbanpour
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Department of Obstetrics & Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Australia
| | - Natalie J Hannan
- Department of Obstetrics & Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lana McClements
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
8
|
Abu-Ghazaleh N, Brennecke S, Murthi P, Karanam V. Association of Vascular Endothelial Growth Factors (VEGFs) with Recurrent Miscarriage: A Systematic Review of the Literature. Int J Mol Sci 2023; 24:ijms24119449. [PMID: 37298399 DOI: 10.3390/ijms24119449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Recurrent miscarriage (RM) can be defined as two or more consecutive miscarriages before 20 weeks' gestation. Vascular endothelial growth factors (VEGFs) play an important role in endometrial angiogenesis and decidualization, prerequisites for successful pregnancy outcomes. We conducted a systematic review of the published literature investigating the role of VEGFs in RM. In particular, we explored the methodological inconsistencies between the published reports on this topic. To our knowledge, this is the first systematic literature review to examine the role of VEGFs in RM. Our systematic search followed PRISMA guidelines. Three databases, Medline (Ovid), PubMed, and Embase, were searched. Assessment-bias analyses were conducted using the Joanna Bigger Institute critical appraisal method for case-control studies. Thirteen papers were included in the final analyses. These studies included 677 cases with RM and 724 controls. Endometrial levels of VEGFs were consistently lower in RM cases compared to controls. There were no consistent significant findings with respect to VEGFs levels in decidua, fetoplacental tissues, and serum when RM cases were compared to controls. The interpretation of studies that explored the relationship between VEGFs and RM is hampered by inconsistencies in defining clinical, sampling, and analytical variables. To clarify the association between VEGF and RM in future studies, researchers ideally should use similarly defined clinical groups, similar samples collected in the same way, and laboratory analyses undertaken using the same methods.
Collapse
Affiliation(s)
- Nadine Abu-Ghazaleh
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Shaun Brennecke
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Padma Murthi
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Vijaya Karanam
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
FK506-Binding Protein like (FKBPL) Has an Important Role in Heart Failure with Preserved Ejection Fraction Pathogenesis with Potential Diagnostic Utility. Biomolecules 2023; 13:biom13020395. [PMID: 36830764 PMCID: PMC9953548 DOI: 10.3390/biom13020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Heart failure (HF) is the leading cause of hospitalisations worldwide, with only 35% of patients surviving the first 5 years after diagnosis. The pathogenesis of HF with preserved ejection fraction (HFpEF) is still unclear, impeding the implementation of effective treatments. FK506-binding protein like (FKBPL) and its therapeutic peptide mimetic, AD-01, are critical mediators of angiogenesis and inflammation. Thus, in this study, we investigated-for the first time-FKBPL's role in the pathogenesis and as a biomarker of HFpEF. In vitro models of cardiac hypertrophy following exposure to a hypertensive stimulus, angiotensin-II (Ang-II, 100 nM), and/or AD-01 (100 nM), for 24 and 48 h were employed as well as human plasma samples from people with different forms of HFpEF and controls. Whilst the FKBPL peptide mimetic, AD-01, induced cardiomyocyte hypertrophy in a similar manner to Ang-II (p < 0.0001), when AD-01 and Ang-II were combined together, this process was abrogated (p < 0.01-0.0001). This mechanism appears to involve a negative feedback loop related to FKBPL (p < 0.05). In human plasma samples, FKBPL concentration was increased in HFpEF compared to controls (p < 0.01); however, similar to NT-proBNP and Gal-3, it was unable to stratify between different forms of HFpEF: acute HFpEF, chronic HFpEF and hypertrophic cardiomyopathy (HCM). FKBPL may be explored for its biomarker and therapeutic target potential in HFpEF.
Collapse
|
10
|
Ghorbanpour SM, Richards C, Pienaar D, Sesperez K, Aboulkheyr Es H, Nikolic VN, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, Alqudah A, Cole L, Gorrie C, McGrath K, Kavurma MM, Ebrahimi Warkiani M, McClements L. A placenta-on-a-chip model to determine the regulation of FKBPL and galectin-3 in preeclampsia. Cell Mol Life Sci 2023; 80:44. [PMID: 36652019 PMCID: PMC9849194 DOI: 10.1007/s00018-022-04648-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 01/19/2023]
Abstract
Preeclampsia is a pregnancy-specific cardiovascular disorder, involving significant maternal endothelial dysfunction. Although inappropriate placentation due to aberrant angiogenesis, inflammation and shallow trophoblast invasion are the root causes of preeclampsia, pathogenic mechanisms are poorly understood, particularly in early pregnancy. Here, we first confirm the abnormal expression of important vascular and inflammatory proteins, FK506-binding protein-like (FKBPL) and galectin-3 (Gal-3), in human plasma and placental tissues from women with preeclampsia and normotensive controls. We then employ a three-dimensional microfluidic placental model incorporating human umbilical vein endothelial cells (HUVECs) and a first trimester trophoblast cell line (ACH-3P) to investigate FKBPL and Gal-3 signaling in inflammatory conditions. In human samples, both circulating (n = 17 controls; n = 30 preeclampsia) and placental (n ≥ 6) FKBPL and Gal-3 levels were increased in preeclampsia compared to controls (plasma: FKBPL, p < 0.0001; Gal-3, p < 0.01; placenta: FKBPL, p < 0.05; Gal-3, p < 0.01), indicative of vascular dysfunction in preeclampsia. In our placenta-on-a-chip model, we show that endothelial cells are critical for trophoblast-mediated migration and that trophoblasts effectively remodel endothelial vascular networks. Inflammatory cytokine tumour necrosis factor-α (10 ng/mL) modulates both FKBPL and Gal-3 signaling in conjunction with trophoblast migration and impairs vascular network formation (p < 0.005). Our placenta-on-a-chip recapitulates aspects of inappropriate placental development and vascular dysfunction in preeclampsia.
Collapse
Affiliation(s)
- Sahar Masoumeh Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Claire Richards
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Dillan Pienaar
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Hamidreza Aboulkheyr Es
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Valentina N Nikolic
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Niš, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- Department of Internal Medicine-Gynaecology, Faculty of Medicine, University of Nis, Niš, Serbia
- Department of Gynaecology and Obstetrics, Clinical Centre Nis, Niš, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Louise Cole
- Australian Institute of Microbiology and Infection, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute,The University of Sydney, Sydney, NSW, Australia
| | - Majid Ebrahimi Warkiani
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
12
|
A first-in-human Phase I dose-escalation trial of the novel therapeutic peptide, ALM201, demonstrates a favourable safety profile in unselected patients with ovarian cancer and other advanced solid tumours. Br J Cancer 2022; 127:92-101. [PMID: 35568736 PMCID: PMC9276671 DOI: 10.1038/s41416-022-01780-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 01/04/2023] Open
Abstract
Background We aimed to assess the safety, tolerability and pharmacokinetics of a novel anti-angiogenic peptide. Methods We used an open-label, multicentre, dose-escalation Phase I trial design in patients with solid tumours. ALM201 was administered subcutaneously once daily for 5 days every week in unselected patients with solid tumours. Results Twenty (8 male, 12 female) patients with various solid tumours were treated (18 evaluable for toxicity) over eight planned dose levels (10–300 mg). ALM201 was well-tolerated at all dose levels without CTCAE grade 4 toxicities. Adverse events were predominantly grades 1–2, most commonly, localised injection-site reactions (44.4%), vomiting (11%), fatigue (16.7%), arthralgia (5.6%) and headache (11%). Thrombosis occurred in two patients at the 100 mg and 10 mg dose levels. The MTD was not reached, and a recommended Phase II dose (RP2D) based on feasibility was declared. Plasma exposure increased with dose (less than dose-proportional at the two highest dose levels). No peptide accumulation was evident. The median treatment duration was 11.1 (range 3–18) weeks. Four of 18 evaluable patients (22%) had stable disease. Conclusions Doses up to 300 mg of ALM201 subcutaneously are feasible and well-tolerated. Further investigation of this agent in selected tumour types/settings would benefit from patient-selection biomarkers.
Collapse
|
13
|
Richards C, Sesperez K, Chhor M, Ghorbanpour S, Rennie C, Ming CLC, Evenhuis C, Nikolic V, Orlic NK, Mikovic Z, Stefanovic M, Cakic Z, McGrath K, Gentile C, Bubb K, McClements L. Characterisation of cardiac health in the reduced uterine perfusion pressure model and a 3D cardiac spheroid model, of preeclampsia. Biol Sex Differ 2021; 12:31. [PMID: 33879252 PMCID: PMC8056582 DOI: 10.1186/s13293-021-00376-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background Preeclampsia is a dangerous cardiovascular disorder of pregnancy that leads to an increased risk of future cardiovascular and metabolic disorders. Much of the pathogenesis and mechanisms involved in cardiac health in preeclampsia are unknown. A novel anti-angiogenic protein, FKBPL, is emerging as having a potential role in both preeclampsia and cardiovascular disease (CVD). Therefore, in this study we aimed to characterise cardiac health and FKBPL regulation in the rat reduced uterine perfusion pressure (RUPP) and a 3D cardiac spheroid model of preeclampsia. Methods The RUPP model was induced in pregnant rats and histological analysis performed on the heart, kidney, liver and placenta (n ≥ 6). Picrosirius red staining was performed to quantify collagen I and III deposition in rat hearts, placentae and livers as an indicator of fibrosis. RT-qPCR was used to determine changes in Fkbpl, Icam1, Vcam1, Flt1 and Vegfa mRNA in hearts and/or placentae and ELISA to evaluate cardiac brain natriuretic peptide (BNP45) and FKBPL secretion. Immunofluorescent staining was also conducted to analyse the expression of cardiac FKBPL. Cardiac spheroids were generated using human cardiac fibroblasts and human coronary artery endothelial cells and treated with patient plasma from normotensive controls, early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE); n = 3. FKBPL and CD31 expression was quantified by immunofluorescent labelling. Results The RUPP procedure induced significant increases in blood pressure (p < 0.001), collagen deposition (p < 0.001) and cardiac BNP45 (p < 0.05). It also induced a significant increase in cardiac FKBPL mRNA (p < 0.05) and protein expression (p < 0.01). RUPP placentae also exhibited increased collagen deposition and decreased Flt1 mRNA expression (p < 0.05). RUPP kidneys revealed an increase in average glomerular size (p < 0.05). Cardiac spheroids showed a significant increase in FKBPL expression when treated with LOPE plasma (p < 0.05) and a trend towards increased FKBPL expression following treatment with EOPE plasma (p = 0.06). Conclusions The rat RUPP model induced cardiac, renal and placental features reflective of preeclampsia. FKBPL was increased in the hearts of RUPP rats and cardiac spheroids treated with plasma from women with preeclampsia, perhaps reflective of restricted angiogenesis and inflammation in this disorder. Elucidation of these novel FKBPL mechanisms in cardiac health in preeclampsia could be key in preventing future CVD. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-021-00376-1.
Collapse
Affiliation(s)
- Claire Richards
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael Chhor
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sahar Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Chris Evenhuis
- The iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Valentina Nikolic
- Department of Pharmacology and Toxicology & Department of Internal Medicine - Gynaecology, Medical Faculty, University of Nis, Nis, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- Department of Pharmacology and Toxicology & Department of Internal Medicine - Gynaecology, Medical Faculty, University of Nis, Nis, Serbia.,Department of Gynaecology and Obstetrics, Clinical Centre Nis, Nis, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia.,The Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Kristen Bubb
- The Kolling Institute, University of Sydney, Sydney, NSW, Australia.,Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Todd N, McNally R, Alqudah A, Jerotic D, Suvakov S, Obradovic D, Hoch D, Hombrebueno JR, Campos GL, Watson CJ, Gojnic-Dugalic M, Simic TP, Krasnodembskaya A, Desoye G, Eastwood KA, Hunter AJ, Holmes VA, McCance DR, Young IS, Grieve DJ, Kenny LC, Garovic VD, Robson T, McClements L. Role of A Novel Angiogenesis FKBPL-CD44 Pathway in Preeclampsia Risk Stratification and Mesenchymal Stem Cell Treatment. J Clin Endocrinol Metab 2021; 106:26-41. [PMID: 32617576 PMCID: PMC7765643 DOI: 10.1210/clinem/dgaa403] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Preeclampsia is a leading cardiovascular complication in pregnancy lacking effective diagnostic and treatment strategies. OBJECTIVE To investigate the diagnostic and therapeutic target potential of the angiogenesis proteins, FK506-binding protein like (FKBPL) and CD44. DESIGN AND INTERVENTION FKBPL and CD44 plasma concentration or placental expression were determined in women pre- or postdiagnosis of preeclampsia. Trophoblast and endothelial cell function was assessed following mesenchymal stem cell (MSC) treatment and in the context of FKBPL signaling. SETTINGS AND PARTICIPANTS Human samples prediagnosis (15 and 20 weeks of gestation; n ≥ 57), or postdiagnosis (n = 18 for plasma; n = 4 for placenta) of preeclampsia were used to determine FKBPL and CD44 levels, compared to healthy controls. Trophoblast or endothelial cells were exposed to low/high oxygen, and treated with MSC-conditioned media (MSC-CM) or a FKBPL overexpression plasmid. MAIN OUTCOME MEASURES Preeclampsia risk stratification and diagnostic potential of FKBPL and CD44 were investigated. MSC treatment effects and FKBPL-CD44 signaling in trophoblast and endothelial cells were assessed. RESULTS The CD44/FKBPL ratio was reduced in placenta and plasma following clinical diagnosis of preeclampsia. At 20 weeks of gestation, a high plasma CD44/FKBPL ratio was independently associated with the 2.3-fold increased risk of preeclampsia (odds ratio = 2.3, 95% confidence interval [CI] 1.03-5.23, P = 0.04). In combination with high mean arterial blood pressure (>82.5 mmHg), the risk further increased to 3.9-fold (95% CI 1.30-11.84, P = 0.016). Both hypoxia and MSC-based therapy inhibited FKBPL-CD44 signaling, enhancing cell angiogenesis. CONCLUSIONS The FKBPL-CD44 pathway appears to have a central role in the pathogenesis of preeclampsia, showing promising utilities for early diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Naomi Todd
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Ross McNally
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Abdelrahim Alqudah
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- The School of Pharmacy, The Hashemite University, Amman, Jordan
| | | | - Sonja Suvakov
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, US
| | | | - Denise Hoch
- Department of Gynaecology and Obstetrics, Medical University Graz, Graz, Austria
| | - Jose R Hombrebueno
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Guillermo Lopez Campos
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Chris J Watson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | | | | | - Anna Krasnodembskaya
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Gernot Desoye
- Department of Gynaecology and Obstetrics, Medical University Graz, Graz, Austria
| | - Kelly-Ann Eastwood
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Alyson J Hunter
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Valerie A Holmes
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - David R McCance
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Ian S Young
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - David J Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Louise C Kenny
- The Irish Centre for Foetal and Neonatal Translational Research (INFANT) and Department of Obstetrics and Gynaecology, University College Cork, Cork, Republic of Ireland
- Department of Women’s and Children’s Health, Institute of Translational Research, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Vesna D Garovic
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, US
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland (RCSI), Dublin, Republic of Ireland
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
- Correspondence and Reprint Requests: Lana McClements, School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, NSW, 2007, Australia. E-mail:
| |
Collapse
|
15
|
Alqudah A, Eastwood KA, Jerotic D, Todd N, Hoch D, McNally R, Obradovic D, Dugalic S, Hunter AJ, Holmes VA, McCance DR, Young IS, Watson CJ, Robson T, Desoye G, Grieve DJ, McClements L. FKBPL and SIRT-1 Are Downregulated by Diabetes in Pregnancy Impacting on Angiogenesis and Endothelial Function. Front Endocrinol (Lausanne) 2021; 12:650328. [PMID: 34149611 PMCID: PMC8206806 DOI: 10.3389/fendo.2021.650328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes in pregnancy is associated with adverse pregnancy outcomes including preterm birth. Although the mechanisms leading to these pregnancy complications are still poorly understood, aberrant angiogenesis and endothelial dysfunction play a key role. FKBPL and SIRT-1 are critical regulators of angiogenesis, however, their roles in pregnancies affected by diabetes have not been examined before in detail. Hence, this study aimed to investigate the role of FKBPL and SIRT-1 in pre-gestational (type 1 diabetes mellitus, T1D) and gestational diabetes mellitus (GDM). Placental protein expression of important angiogenesis proteins, FKBPL, SIRT-1, PlGF and VEGF-R1, was determined from pregnant women with GDM or T1D, and in the first trimester trophoblast cells exposed to high glucose (25 mM) and varying oxygen concentrations [21%, 6.5%, 2.5% (ACH-3Ps)]. Endothelial cell function was assessed in high glucose conditions (30 mM) and following FKBPL overexpression. Placental FKBPL protein expression was downregulated in T1D (FKBPL; p<0.05) whereas PlGF/VEGF-R1 were upregulated (p<0.05); correlations adjusted for gestational age were also significant. In the presence of GDM, only SIRT-1 was significantly downregulated (p<0.05) even when adjusted for gestational age (r=-0.92, p=0.001). Both FKBPL and SIRT-1 protein expression was reduced in ACH-3P cells in high glucose conditions associated with 6.5%/2.5% oxygen concentrations compared to experimental normoxia (21%; p<0.05). FKBPL overexpression in endothelial cells (HUVECs) exacerbated reduction in tubule formation compared to empty vector control, in high glucose conditions (junctions; p<0.01, branches; p<0.05). In conclusion, FKBPL and/or SIRT-1 downregulation in response to diabetic pregnancies may have a key role in the development of vascular dysfunction and associated complications affected by impaired placental angiogenesis.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Kelly-Ann Eastwood
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | | | - Naomi Todd
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Denise Hoch
- Department of Gynaecology and Obstetrics, Medical University of Graz, Graz, Austria
| | - Ross McNally
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | | | - Stefan Dugalic
- Clinic of Obstetrics and Gynecology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Alyson J. Hunter
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | - Valerie A. Holmes
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - David R. McCance
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | - Ian S. Young
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | - Chris J. Watson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gernot Desoye
- Department of Gynaecology and Obstetrics, Medical University of Graz, Graz, Austria
| | - David J. Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Lana McClements,
| |
Collapse
|
16
|
Januszewski AS, Watson CJ, O'Neill V, McDonald K, Ledwidge M, Robson T, Jenkins AJ, Keech AC, McClements L. FKBPL is associated with metabolic parameters and is a novel determinant of cardiovascular disease. Sci Rep 2020; 10:21655. [PMID: 33303872 PMCID: PMC7730138 DOI: 10.1038/s41598-020-78676-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). As disturbed angiogenesis and endothelial dysfunction are strongly implicated in T2D and CVD, we aimed to investigate the association between a novel anti-angiogenic protein, FK506-binding protein like (FKBPL), and these diseases. Plasma FKBPL was quantified by ELISA cross-sectionally in 353 adults, consisting of 234 T2D and 119 non-diabetic subjects with/without CVD, matched for age, BMI and gender. FKBPL levels were higher in T2D (adjusted mean: 2.03 ng/ml ± 0.90 SD) vs. non-diabetic subjects (adjusted mean: 1.79 ng/ml ± 0.89 SD, p = 0.02), but only after adjustment for CVD status. In T2D, FKBPL was negatively correlated with fasting blood glucose, HbA1c and diastolic blood pressure (DBP), and positively correlated with age, known diabetes duration, waist/hip ratio, urinary albumin/creatinine ratio (ACR) and fasting C-peptide. FKBPL plasma concentrations were increased in the presence of CVD, but only in the non-diabetic group (CVD: 2.02 ng/ml ± 0.75 SD vs. no CVD: 1.68 ng/ml ± 0.79 SD, p = 0.02). In non-diabetic subjects, FKBPL was positively correlated with an established biomarker for CVD, B-type Natriuretic Peptide (BNP), and echocardiographic parameters of diastolic dysfunction. FKBPL was a determinant of CVD in the non-diabetic group in addition to age, gender, total-cholesterol and systolic blood pressure (SBP). FKBPL may be a useful anti-angiogenic biomarker in CVD in the absence of diabetes and could represent a novel CVD mechanism.
Collapse
Affiliation(s)
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Vikki O'Neill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Kenneth McDonald
- STOP-HF Unit, St. Vincent's University Hospital, Dublin 4, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mark Ledwidge
- STOP-HF Unit, St. Vincent's University Hospital, Dublin 4, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Anthony C Keech
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Lana McClements
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK.
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
FKBPL-based peptide, ALM201, targets angiogenesis and cancer stem cells in ovarian cancer. Br J Cancer 2019; 122:361-371. [PMID: 31772325 PMCID: PMC7000737 DOI: 10.1038/s41416-019-0649-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced solid tumours. Methods In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation, growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA). Results ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased progression-free interval, supporting the protective role of FKBPL in HGSOC. Conclusion FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.
Collapse
|
18
|
Swaminathan S, Cranston AN, Clyne AM. A Three-Dimensional In Vitro Coculture Model to Quantify Breast Epithelial Cell Adhesion to Endothelial Cells. Tissue Eng Part C Methods 2019; 25:609-618. [PMID: 31441384 PMCID: PMC7718851 DOI: 10.1089/ten.tec.2019.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) in vitro culture models better recapitulate the tissue microenvironment, and therefore may provide a better platform to evaluate therapeutic effects on adhesive cell-cell interactions. The objective of this study was to determine if AD-01, a peptide derivative of FK506-binding protein like that is reported to bind to the adhesion receptor CD44, would induce a greater reduction in breast epithelial spheroid adhesion to endothelial tube-like networks in our 3D coculture model system compared to two-dimensional (2D) culture. MCF10A, MCF10A-NeuN, MDA-MB-231, and MCF7 breast epithelial cells were pretreated with AD-01 either as single cells or as spheroids. Breast epithelial cell adhesion to 2D tissue culture substrates was first measured, followed by spheroid formation (breast cell-cell adhesion) and spheroid adhesion to Matrigel or endothelial networks. Finally, CD44 expression was quantified in breast epithelial cells in 2D and 3D culture. Our results show that AD-01 had the largest effect on spheroid formation, specifically in breast cancer cell lines. AD-01 also inhibited breast cancer spheroid adhesion to and migration along endothelial networks. The different breast epithelial cell lines expressed more CD44 when cultured as 3D spheroids, but this did not universally translate into higher protein levels. This study shows that 3D coculture models can enable unique insights into cell adhesion, migration, and cell-cell interactions, thereby enhancing understanding of basic biological mechanisms. Furthermore, such 3D coculture systems may also represent a more relevant testing platform for understanding the mechanism-of-action of new therapeutic agents. Impact Statement Cell adhesion is inherently different in two dimensional (2D) compared to three dimensional (3D) culture; yet, most adhesion assays in academia and industry are still conducted in 2D because few simple, yet effective, adhesion models exist in 3D. Recently we developed a 3D in vitro coculture model to examine breast epithelial spheroid interactions with endothelial tubes. We now show that this 3D coculture model can effectively be used to interrogate and quantify drug-induced differences in breast epithelial cell adhesion that are unique to 3D cocultures. This 3D coculture adhesion model can furthermore be modified for use with other cell types to better predict drug effects on cell-vasculature adhesion.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | - Aaron N. Cranston
- Centre for Precision Therapeutics, Health Sciences Building, Almac Discovery Ltd., Belfast, United Kingdom
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
19
|
McClements L, Annett S, Yakkundi A, O’Rourke M, Valentine A, Moustafa N, Alqudah A, Simões BM, Furlong F, Short A, McIntosh SA, McCarthy HO, Clarke RB, Robson T. FKBPL and its peptide derivatives inhibit endocrine therapy resistant cancer stem cells and breast cancer metastasis by downregulating DLL4 and Notch4. BMC Cancer 2019; 19:351. [PMID: 30975104 PMCID: PMC6460676 DOI: 10.1186/s12885-019-5500-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Optimising breast cancer treatment remains a challenge. Resistance to therapy is a major problem in both ER- and ER+ breast cancer. Tumour recurrence after chemotherapy and/or targeted therapy leads to more aggressive tumours with enhanced metastatic ability. Self-renewing cancer stem cells (CSCs) have been implicated in treatment resistance, recurrence and the development of metastatic disease. METHODS In this study, we utilised in vitro, in vivo and ex vivo breast cancer models using ER+ MCF-7 and ER- MDA-MB-231 cells, as well as solid and metastatic breast cancer patient samples, to interrogate the effects of FKBPL and its peptide therapeutics on metastasis, endocrine therapy resistant CSCs and DLL4 and Notch4 expression. The effects of FKBPL overexpression or peptide treatment were assessed using a t-test or one-way ANOVA with Dunnett's multiple comparison test. RESULTS We demonstrated that FKBPL overexpression or treatment with FKBPL-based therapeutics (AD-01, pre-clinical peptide /ALM201, clinical peptide) inhibit i) CSCs in both ER+ and ER- breast cancer, ii) cancer metastasis in a triple negative breast cancer metastasis model and iii) endocrine therapy resistant CSCs in ER+ breast cancer, via modulation of the DLL4 and Notch4 protein and/or mRNA expression. AD-01 was effective at reducing triple negative MDA-MB-231 breast cancer cell migration (n ≥ 3, p < 0.05) and invasion (n ≥ 3, p < 0.001) and this was translated in vivo where AD-01 inhibited breast cancer metastasis in MDA-MB-231-lucD3H1 in vivo model (p < 0.05). In ER+ MCF-7 cells and primary breast tumour samples, we demonstrated that ALM201 inhibits endocrine therapy resistant mammospheres, representative of CSC content (n ≥ 3, p < 0.05). Whilst an in vivo limiting dilution assay, using SCID mice, demonstrated that ALM201 alone or in combination with tamoxifen was very effective at delaying tumour recurrence by 12 (p < 0.05) or 21 days (p < 0.001), respectively, by reducing the number of CSCs. The potential mechanism of action, in addition to CD44, involves downregulation of DLL4 and Notch4. CONCLUSION This study demonstrates, for the first time, the pre-clinical activity of novel systemic anti-cancer therapeutic peptides, ALM201 and AD-01, in the metastatic setting, and highlights their impact on endocrine therapy resistant CSCs; both areas of unmet clinical need.
Collapse
Affiliation(s)
- Lana McClements
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
- The School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Stephanie Annett
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
- Department of Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, RCSI, Dublin, Ireland
| | - Anita Yakkundi
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Martin O’Rourke
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
- Charles River Labs, 8-9 Spire Green Centre, Essex, Harlow, CM19 5TR UK
| | - Andrea Valentine
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
- Charles River Labs, 8-9 Spire Green Centre, Essex, Harlow, CM19 5TR UK
| | | | - Abdelrahim Alqudah
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
- School of Pharmacy, Hashemite University, Amman, Jordan
| | - Bruno M. Simões
- Manchester Breast Centre, Division of Cancer Sciences, University of Manchester, Oglesby Cancer Research Building, Manchester, UK
| | - Fiona Furlong
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Amy Short
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Stuart A. McIntosh
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast and Breast Surgery Department, Belfast City Hospital, Belfast, UK
| | | | - Robert B. Clarke
- Manchester Breast Centre, Division of Cancer Sciences, University of Manchester, Oglesby Cancer Research Building, Manchester, UK
| | - Tracy Robson
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
- Department of Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, RCSI, Dublin, Ireland
| |
Collapse
|
20
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
21
|
Agoglia AE, Holstein SE, Small AT, Spanos M, Burrus BM, Hodge CW. Comparison of the adolescent and adult mouse prefrontal cortex proteome. PLoS One 2017; 12:e0178391. [PMID: 28570644 PMCID: PMC5453624 DOI: 10.1371/journal.pone.0178391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/14/2017] [Indexed: 12/28/2022] Open
Abstract
Adolescence is a developmental period characterized by unique behavioral phenotypes (increased novelty seeking, risk taking, sociability and impulsivity) and increased risk for destructive behaviors, impaired decision making and psychiatric illness. Adaptive and maladaptive adolescent traits have been associated with development of the medial prefrontal cortex (mPFC), a brain region that mediates regulatory control of behavior. However, the molecular changes that underlie brain development and behavioral vulnerability have not been fully characterized. Using high-throughput 2D DIGE spot profiling with identification by MALDI-TOF mass spectrometry, we identified 62 spots in the PFC that exhibited age-dependent differences in expression. Identified proteins were associated with diverse cellular functions, including intracellular signaling, synaptic plasticity, cellular organization and metabolism. Separate Western blot analyses confirmed age-related changes in DPYSL2, DNM1, STXBP1 and CFL1 in the mPFC and expanded these findings to the dorsal striatum, nucleus accumbens, motor cortex, amygdala and ventral tegmental area. Ingenuity Pathway Analysis (IPA) identified functional interaction networks enriched with proteins identified in the proteomics screen, linking age-related alterations in protein expression to cellular assembly and development, cell signaling and behavior, and psychiatric illness. These results provide insight into potential molecular components of adolescent cortical development, implicating structural processes that begin during embryonic development as well as plastic adaptations in signaling that may work in concert to bring the cortex, and other brain regions, into maturity.
Collapse
Affiliation(s)
- Abigail E. Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah E. Holstein
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amanda T. Small
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marina Spanos
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brainard M. Burrus
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Nelson L, McKeen HD, Marshall A, Mulrane L, Starczynski J, Storr SJ, Lanigan F, Byrne C, Arthur K, Hegarty S, Ali AA, Furlong F, McCarthy HO, Ellis IO, Green AR, Rakha E, Young L, Kunkler I, Thomas J, Jack W, Cameron D, Jirström K, Yakkundi A, McClements L, Martin SG, Gallagher WM, Dunn J, Bartlett J, O'Connor D, Robson T. FKBPL: a marker of good prognosis in breast cancer. Oncotarget 2016; 6:12209-23. [PMID: 25906750 PMCID: PMC4494933 DOI: 10.18632/oncotarget.3528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
FK506-binding protein-like (FKBPL) has established roles as an anti-tumor protein, with a therapeutic peptide based on this protein, ALM201, shortly entering phase I/II clinical trials. Here, we evaluated FKBPL's prognostic ability in primary breast cancer tissue, represented on tissue microarrays (TMA) from 3277 women recruited into five independent retrospective studies, using immunohistochemistry (IHC). In a meta-analysis, FKBPL levels were a significant predictor of BCSS; low FKBPL levels indicated poorer breast cancer specific survival (BCSS) (hazard ratio (HR) = 1.30, 95% confidence interval (CI) 1.14–1.49, p < 0.001). The prognostic impact of FKBPL remained significant after adjusting for other known prognostic factors (HR = 1.25, 95% CI 1.07–1.45, p = 0.004). For the sub-groups of 2365 estrogen receptor (ER) positive patients and 1649 tamoxifen treated patients, FKBPL was significantly associated with BCSS (HR = 1.34, 95% CI 1.13–1.58, p < 0.001, and HR = 1.25, 95% CI 1.04–1.49, p = 0.02, respectively). A univariate analysis revealed that FKBPL was also a significant predictor of relapse free interval (RFI) within the ER positive patient group, but it was only borderline significant within the smaller tamoxifen treated patient group (HR = 1.32 95% CI 1.05–1.65, p = 0.02 and HR = 1.23 95% CI 0.99–1.54, p = 0.06, respectively). The data suggests a role for FKBPL as a prognostic factor for BCSS, with the potential to be routinely evaluated within the clinic.
Collapse
Affiliation(s)
- Laura Nelson
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Hayley D McKeen
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Andrea Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
| | | | | | - Sarah J Storr
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Fiona Lanigan
- Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Ken Arthur
- Northern Ireland Molecular Pathology Laboratory, CCRCB, Queens University Belfast, Belfast, United Kingdom
| | - Shauna Hegarty
- Department of Pathology, Royal Group of Hospitals, Grosvenor Road, Belfast, United Kingdom
| | | | - Fiona Furlong
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Emad Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Leonie Young
- Royal College of Surgeons Ireland, Dublin, Ireland
| | - Ian Kunkler
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Thomas
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - Wilma Jack
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - David Cameron
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karin Jirström
- Department of Clinical Sciences, Lund University, Sweden
| | - Anita Yakkundi
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lana McClements
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Stewart G Martin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Janet Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
| | - John Bartlett
- Ontario Institute for Cancer Research, Toronto, Canada.,Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Darran O'Connor
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
23
|
Bennett R, Yakkundi A, McKeen HD, McClements L, McKeogh TJ, McCrudden CM, Arthur K, Robson T, McCarthy HO. RALA-mediated delivery of FKBPL nucleic acid therapeutics. Nanomedicine (Lond) 2015; 10:2989-3001. [PMID: 26419658 DOI: 10.2217/nnm.15.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS RALA is a novel 30 mer bioinspired amphipathic peptide that is showing promise for gene delivery. Here, we used RALA to deliver the FK506-binding protein like - FKBPL gene (pFKBPL) - a novel member of the immunophilin protein family. FKBPL is a secreted protein, with overexpression shown to inhibit angiogenesis, tumor growth and stemness, through a variety of intra- and extracellular signaling mechanisms. We also elucidated proangiogenic activity and stemness after utilizing RALA to deliver siRNA (siFKBPL). MATERIALS & METHODS The RALA/pFKBPL and RALA/siFKBPL nanoparticles were characterized in terms of size, charge, stability and toxicity. Overexpression and knockdown of FKBPL was assessed in vitro and in vivo. RESULTS RALA delivered both pFKBPL and siFKBPL with less cytotoxicity than commercially available counterparts. In vivo, RALA/pFKBPL delivery retarded tumor growth, and prolonged survival with an associated decrease in angiogenesis, while RALA/siFKBPL had no effect on tumor growth rate or survival, but resulted in an increase in angiogenesis and stemness. CONCLUSION RALA is an effective delivery system for both FKBPL DNA and RNAi and highlights an alternative therapeutic approach to harnessing FKBPL's antiangiogenic and antistemness activity.
Collapse
Affiliation(s)
- Rachel Bennett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Anita Yakkundi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Hayley D McKeen
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Lana McClements
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Thomas J McKeogh
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Kenneth Arthur
- Northern Ireland Molecular Pathology Laboratory, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tracy Robson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
24
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
25
|
RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:669-80. [PMID: 25791356 DOI: 10.1007/s00417-015-2985-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/21/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness in the working-age populations of developed countries, and effective treatments and prevention measures have long been the foci of study. Patients with DR invariably demonstrate impairments of the retinal microvascular endothelium. Many observational and preclinical studies have shown that angiogenesis and apoptosis play crucial roles in the pathogenesis of DR. Increasing evidence suggests that in DR, the small guanosine-5'-triphosphate-binding protein RhoA activates its downstream targets mammalian Diaphanous homolog 1 (mDia-1) and profilin-1, thus affecting important cellular functions, including cell morphology, motility, secretion, proliferation, and gene expression. However, the specific underlying mechanism of disease remains unclear. CONCLUSION This review focuses on the RhoA/mDia-1/profilin-1 signaling pathway that specifically triggers endothelial dysfunction in diabetic patients. Recently, RhoA and profilin-1 signaling has attracted a great deal of attention in the context of diabetes-related research. However, the precise molecular mechanism by which the RhoA/mDia-1/profilin-1 pathway is involved in progression of microvascular endothelial dysfunction (MVED) during DR has not been determined. This review briefly describes each feature of the cascade before exploring the most recent findings on how the pathway may trigger endothelial dysfunction in DR. When the underlying mechanisms are understood, novel therapies seeking to restore the endothelial homeostasis comprised in DR will become possible.
Collapse
|
26
|
Yakkundi A, Bennett R, Hernández-Negrete I, Delalande JM, Hanna M, Lyubomska O, Arthur K, Short A, McKeen H, Nelson L, McCrudden CM, McNally R, McClements L, McCarthy HO, Burns AJ, Bicknell R, Kissenpfennig A, Robson T. FKBPL is a critical antiangiogenic regulator of developmental and pathological angiogenesis. Arterioscler Thromb Vasc Biol 2015; 35:845-54. [PMID: 25767277 PMCID: PMC4415967 DOI: 10.1161/atvbaha.114.304539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models. APPROACH AND RESULTS FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL's critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl(+/-) mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish. CONCLUSIONS FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes.
Collapse
Affiliation(s)
- Anita Yakkundi
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Rachel Bennett
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Ivette Hernández-Negrete
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Jean-Marie Delalande
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Mary Hanna
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Oksana Lyubomska
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Kenneth Arthur
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Amy Short
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Hayley McKeen
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Laura Nelson
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Cian M McCrudden
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Ross McNally
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Lana McClements
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Helen O McCarthy
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Alan J Burns
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Roy Bicknell
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Adrien Kissenpfennig
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.)
| | - Tracy Robson
- From the McClay Research Centre for Pharmaceutical Sciences, School of Pharmacy (A.Y., R.B., M.H., O.L., A.S., H.M., L.N., C.M.M., R.M., L.M., H.O.M., T.R.), Centre for Infection and Immunity (M.H., O.L., A.K.), and Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology (K.A.), School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK; School of Immunity and Infection and Cancer Studies, Institute for Biomedical Research, University of Birmingham, Birmingham, UK (I.H.-N., R.B.); Centre for Digestive Diseases, Queen Mary, University of London, Barts and The London School of Medicine and Dentistry, London, UK (J.-M.D.); and Birth Defects Research Centre, UCL Institute of Child Health, London, UK (J.-M.D., A.J.B.).
| |
Collapse
|
27
|
Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem 2015; 78:35-68. [PMID: 25487015 DOI: 10.1007/978-3-319-11731-7_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hsp90 functionally interacts with a broad array of client proteins, but in every case examined Hsp90 is accompanied by one or more co-chaperones. One class of co-chaperone contains a tetratricopeptide repeat domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is now clear that the client protein influences, and is influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Naihsuan C Guy
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 79968, El Paso, TX, USA,
| | | | | | | | | |
Collapse
|
28
|
Mazaira GI, Lagadari M, Erlejman AG, Galigniana MD. The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- G. I. Mazaira
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Lagadari
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - A. G. Erlejman
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. D. Galigniana
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
29
|
Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules 2014; 19:17464-77. [PMID: 25356567 PMCID: PMC6271931 DOI: 10.3390/molecules191117464] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of cancer cells in tumors or established cancer cell lines that can initiate and sustain the growth of tumors in vivo. Cancer stem cells can be enriched in serum-free, suspended cultures that allow the formation of tumorspheres over several days to weeks. Brefeldin A (BFA) is a mycotoxin that induces endoplasmic reticulum (ER) stress in eukaryotic cells. We found that BFA, at sub-microgram per milliliter concentrations, preferentially induced cell death in MDA-MB-231 suspension cultures (EC50: 0.016 µg/mL) compared to adhesion cultures. BFA also effectively inhibited clonogenic activity and the migration and matrix metalloproteinases-9 (MMP-9) activity of MDA-MB-231 cells. Western blotting analysis indicated that the effects of BFA may be mediated by the down-regulation of breast CSC marker CD44 and anti-apoptotic proteins Bcl-2 and Mcl-1, as well as the reversal of epithelial-mesenchymal transition. Furthermore, BFA also displayed selective cytotoxicity toward suspended MDA-MB-468 cells, and suppressed tumorsphere formation in T47D and MDA-MB-453 cells, suggesting that BFA may be effective against breast cancer cells of various phenotypes.
Collapse
|
30
|
McClements L, Yakkundi A, Papaspyropoulos A, Harrison H, Ablett MP, Jithesh PV, McKeen HD, Bennett R, Donley C, Kissenpfennig A, McIntosh S, McCarthy HO, O'Neill E, Clarke RB, Robson T. Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway. Clin Cancer Res 2013; 19:3881-93. [PMID: 23741069 DOI: 10.1158/1078-0432.ccr-13-0595] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE FK506-binding protein like (FKBPL) and its peptide derivative, AD-01, have already shown tumor growth inhibition and CD44-dependent antiangiogenic activity. Here, we explore the ability of AD-01 to target CD44-positive breast cancer stem cells (BCSC). EXPERIMENTAL DESIGN Mammosphere assays and flow cytometry were used to analyze the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anticancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples, and xenografts. Delays in tumor initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays, quantitative PCR (qPCR), and immunofluorescence. RESULTS AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere-forming efficiency and ESA(+)/CD44(+)/CD24(-) or aldehyde dehydrogenase (ALDH)(+) cell subpopulations in vitro and tumor initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism seems to be due to AD-01-mediated BCSC differentiation shown by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4, and Sox2, were also significantly reduced. Furthermore, we showed additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy-induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signaling. CONCLUSIONS AD-01 has dual antiangiogenic and anti-BCSC activity, which will be advantageous as this agent enters clinical trial.
Collapse
Affiliation(s)
- Lana McClements
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|