1
|
Budeus B, Álvaro-Benito M, Crivello P. HLA-DM and HLA-DO interplay for the peptide editing of HLA class II in healthy tissues and leukemia. Best Pract Res Clin Haematol 2024; 37:101561. [PMID: 39098801 DOI: 10.1016/j.beha.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
HLA class II antigen presentation is modulated by the activity of the peptide editor HLA-DM and its antagonist HLA-DO, with their interplay controlling the peptide repertoires presented by normal and malignant cells. The role of these molecules in allogeneic hematopoietic cell transplantation (alloHCT) is poorly investigated. Balanced expression of HLA-DM and HLA-DO can influence the presentation of leukemia-associated antigens and peptides targeted by alloreactive T cells, therefore affecting both anti-leukemia immunity and the potential onset of Graft versus Host Disease. We leveraged on a large collection of bulk and single cell RNA sequencing data, available at different repositories, to comprehensively review the level and distribution of HLA-DM and HLA-DO in different cell types and tissues of the human body. The resulting expression atlas will help future investigations aiming to dissect the dual role of HLA class II peptide editing in alloHCT, and their potential impact on its clinical outcome.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| | - Miguel Álvaro-Benito
- School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute, Madrid, Spain; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
| |
Collapse
|
2
|
Sticht J, Álvaro-Benito M, Konigorski S. Type 1 Diabetes and the HLA Region: Genetic Association Besides Classical HLA Class II Genes. Front Genet 2021; 12:683946. [PMID: 34220961 PMCID: PMC8248358 DOI: 10.3389/fgene.2021.683946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with rising incidence in high-income countries. Genetic and environmental predisposing factors contribute to the etiology of the disease, although their interaction is not sufficiently understood to allow for preventive action. Strongest known associations with genetic variation map to classical HLA class II genes. Because of its genetic complexity, the HLA region has been under-represented in genome-wide association studies, having potentially hindered the identification of relevant associations underlying the etiology of the disease. Here, we performed a comprehensive HLA-wide genetic association analysis of type 1 diabetes including multi-allelic and rare variants. We used high-density whole-exome sequencing data of the HLA region in the large UK Biobank dataset to apply gene-based association tests with a carefully defined type 1 diabetes phenotype (97 cases and 48,700 controls). Exon-based and single-variant association tests were used to complement the analysis. We replicated the known association of type 1 diabetes with the classical HLA-DQ gene. Tailoring the analysis toward rare variants, we additionally identified the lysine methyl transferase EHMT2 as associated. Deeper insight into genetic variation associated with disease as presented and discussed in detail here can help unraveling mechanistic details of the etiology of type 1 diabetes. More specifically, we hypothesize that genetic variation in EHMT2 could impact autoimmunity in type 1 diabetes development.
Collapse
Affiliation(s)
- Jana Sticht
- Digital Health and Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany.,Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stefan Konigorski
- Digital Health and Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
| |
Collapse
|
3
|
Álvaro-Benito M, Freund C. Revisiting nonclassical HLA II functions in antigen presentation: Peptide editing and its modulation. HLA 2020; 96:415-429. [PMID: 32767512 DOI: 10.1111/tan.14007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
The nonclassical major histocompatibility complex of class II molecules (ncMHCII) HLA-DM (DM) and HLA-DO (DO) feature essential functions for the selection of the peptides that are displayed by classical MHCII proteins (MHCII) for CD4+ Th cell surveillance. Thus, although the binding groove of classical MHCII dictates the main features of the peptides displayed, ncMHCII function defines the preferential loading of peptides from specific cellular compartments and the extent to which they are presented. DM acts as a chaperone for classical MHCII molecules facilitating peptide exchange and thereby favoring the binding of peptide-MHCII complexes of high kinetic stability mostly in late endosomal compartments. DO on the other hand binds to DM blocking its peptide-editing function in B cells and thymic epithelial cells, limiting DM activity in these cellular subsets. DM and DO distinct expression patterns therefore define specific antigen presentation profiles that select unique peptide pools for each set of antigen presenting cell. We have come a long way understanding the mechanistic underpinnings of such distinct editing profiles and start to grasp the implications for ncMHCII biological function. DM acts as filter for the selection of immunodominant, pathogen-derived epitopes while DO blocks DM activity under certain physiological conditions to promote tolerance to self. Interestingly, recent findings have shown that the unexplored and neglected ncMHCII genetic diversity modulates retroviral infection in mouse, and affects human ncMHCII function. This review aims at highlighting the importance of ncMHCII function for CD4+ Th cell responses while integrating and evaluating what could be the impact of distinct editing profiles because of natural genetic variations.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Freund C, Höfer T. A Missing Switch in Peptide Exchange for MHC Class II Molecules. Front Immunol 2019; 10:2513. [PMID: 31708929 PMCID: PMC6820466 DOI: 10.3389/fimmu.2019.02513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
5
|
Anczurowski M, Sugata K, Matsunaga Y, Yamashita Y, Wang CH, Guo T, Murata K, Saijo H, Kagoya Y, Saso K, Butler MO, Hirano N. Chaperones of the class I peptide-loading complex facilitate the constitutive presentation of endogenous antigens on HLA-DP84GGPM87. J Autoimmun 2019; 102:114-125. [DOI: 10.1016/j.jaut.2019.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/27/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
|
6
|
Mulas C, Kalkan T, von Meyenn F, Leitch HG, Nichols J, Smith A. Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development 2019; 146:dev173146. [PMID: 30914406 PMCID: PMC6451320 DOI: 10.1242/dev.173146] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/19/2019] [Indexed: 02/02/2023]
Abstract
The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes, epigenetic aberrations and genetic abnormalities. Here, we provide detailed methodologies for derivation, propagation, genetic modification and primary differentiation of ES cells in 2i or 2i+LIF media without serum or undefined serum substitutes. Implemented diligently, these procedures minimise variability and deviation, thereby improving the efficiency, reproducibility and biological validity of ES cell experimentation.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Tüzer Kalkan
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ferdinand von Meyenn
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
7
|
GSK3 inhibition, but not epigenetic remodeling, mediates efficient derivation of germline embryonic stem cells from nonobese diabetic mice. Stem Cell Res 2018; 31:5-10. [DOI: 10.1016/j.scr.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
|
8
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Wang J, Song D, Liu Y, Lu G, Yang S, Liu L, Gao Z, Ma L, Guo Z, Zhang C, Wang H, Yang B. HLA-DMB restricts human T-cell leukemia virus type-1 (HTLV-1) protein expression via regulation of ATG7 acetylation. Sci Rep 2017; 7:14416. [PMID: 29089548 PMCID: PMC5663917 DOI: 10.1038/s41598-017-14882-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
The roles of autophagy in viral infection are complicated. While autophagy has been shown to function in host antiviral defense by eliminating intracellular viruses and regulating adaptive immunity, several viruses have evolved molecular mechanisms to get benefits from it. The deltaretrovirus human T-cell leukemia virus type-1 (HTLV-1) has been reported to profit its replication from enhancing autophagosome accumulation. Here, we reported that HLA-DMB (generally referred to here as DMB), the beta chain of the non-classical MHC-II protein HLA-DM, had strong expression in HTLV-1-transformed T-cell lines and could be induced in Hela, PMA-differentiated THP1 (PMA-THP1) or primary human monocytes by HTLV-1 infection. Immunoblot and real-time PCR assays demonstrated that overexpression of DMB decreased HTLV-1 protein expression while the knockdown of DMB increased HTLV-1 protein expression. Immunoblot and confocal microscopy assays indicated that overexpression of DMB decreased HTLV-1 induced autophagosome accumulation while the knockdown of DMB yielded the opposite effects. Coimmunoprecipitation and immunoprecipitation experiments suggested DMB interacted with autophagy-related gene (ATG) 7 and increased the acetylation of ATG7. Taken together, these results suggested DMB modulated HTLV-1 protein expression through regulation of autophagosome accumulation and our findings suggested a new mechanism by which the host cells defended against HTLV-1 infection.
Collapse
Affiliation(s)
- Jie Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Xinxiang assegai medical laboratory institute, Xinxiang, 453003, China
| | - Di Song
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Xinxiang assegai medical laboratory institute, Xinxiang, 453003, China
| | - Yanzi Liu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Guangjian Lu
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan Province, China
| | - Shuai Yang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Lu Liu
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhitao Gao
- Department of Immunology/Department of Bio-therapeutic, Institute of Basic Medicine, School of Life Sciences, PLA Medical School, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lingling Ma
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhixiang Guo
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Chenguang Zhang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Hui Wang
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| | - Bo Yang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
- Henan Key Laboratory of immunology and targeted drugs, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
- Xinxiang assegai medical laboratory institute, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Zhou Z, Reyes-Vargas E, Escobar H, Rudd B, Rockwood AL, Delgado JC, He X, Jensen PE. Type 1 diabetes associated HLA-DQ2 and DQ8 molecules are relatively resistant to HLA-DM mediated release of invariant chain-derived CLIP peptides. Eur J Immunol 2016; 46:834-45. [PMID: 26707565 DOI: 10.1002/eji.201545942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/25/2015] [Accepted: 12/23/2015] [Indexed: 01/22/2023]
Abstract
HLA-DM is essential for editing peptides bound to MHC class II, thus influencing the repertoire of peptides mediating selection and activation of CD4(+) T cells. Individuals expressing HLA-DQ2 or DQ8, and DQ2/8 trans-dimers, have elevated risk for type 1 diabetes (T1D). Cells coexpressing DM with these DQ molecules were observed to express elevated levels of CLIP (Class II associated invariant chain peptide). Relative resistance to DM-mediated editing of CLIP was further confirmed by HPLC-MS/MS analysis of eluted peptides, which also demonstrated peptides from known T1D-associated autoantigens, including a shared epitope from ZnT8 that is presented by all four major T1D-susceptible DQ molecules. Assays with purified recombinant soluble proteins confirmed that DQ2-CLIP complexes are highly resistant to DM editing, whereas DQ8-CLIP is partially sensitive to DM, but with an apparent reduction in catalytic potency. DM sensitivity was enhanced in mutant DQ8 molecules with disruption of hydrogen bonds that stabilize DQ8 near the DM-binding region. Our findings show that T1D-susceptible DQ2 and DQ8 share significant resistance to DM editing, compared with control DQ molecules. The relative resistance of the T1D-susceptible DQ molecules to DM editing and preferential presentation of T1D-associated autoantigenic peptides may contribute to the pathogenesis of T1D.
Collapse
Affiliation(s)
- Zemin Zhou
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | | | - Brant Rudd
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Alan L Rockwood
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Julio C Delgado
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Peter E Jensen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes. G3-GENES GENOMES GENETICS 2015; 5:2903-11. [PMID: 26438296 PMCID: PMC4683661 DOI: 10.1534/g3.115.021709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis.
Collapse
|
12
|
Simpfendorfer KR, Strugnell RA, Brodnicki TC, Wijburg OLC. Increased autoimmune diabetes in pIgR-deficient NOD mice is due to a "Hitchhiking" interval that refines the genetic effect of Idd5.4. PLoS One 2015; 10:e0121979. [PMID: 25835383 PMCID: PMC4383422 DOI: 10.1371/journal.pone.0121979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/05/2015] [Indexed: 01/12/2023] Open
Abstract
Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces “hitchhiking” (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large “hitchhiking” genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of “hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci.
Collapse
MESH Headings
- Age Factors
- Alleles
- Animals
- Chromosome Mapping
- Chromosomes, Mammalian/chemistry
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Female
- Genetic Loci
- Genetic Predisposition to Disease
- Genome
- Humans
- Immunoglobulin A/blood
- Immunoglobulin A/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Receptors, Polymeric Immunoglobulin/deficiency
- Receptors, Polymeric Immunoglobulin/genetics
- Receptors, Polymeric Immunoglobulin/immunology
Collapse
Affiliation(s)
- Kim R. Simpfendorfer
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Richard A. Strugnell
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- The Australian Bacterial Pathogenesis Program, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas C. Brodnicki
- Immunology & Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Odilia L. C. Wijburg
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- The Australian Bacterial Pathogenesis Program, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Affiliation(s)
- William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
15
|
Chen YG, Forsberg MH, Khaja S, Ciecko AE, Hessner MJ, Geurts AM. Gene targeting in NOD mouse embryos using zinc-finger nucleases. Diabetes 2014; 63:68-74. [PMID: 23974926 PMCID: PMC3868049 DOI: 10.2337/db13-0192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies in NOD mice have provided important insight into the genetics and pathogenesis of type 1 diabetes (T1D). Our goal was to further explore novel methods of genetic manipulation in this mouse model. We tested the feasibility of using zinc-finger nucleases (ZFNs) to knock out a gene directly in a pure NOD background, bypassing the need of embryonic stem cells. We report here the successful application of ZFN pairs to specifically and efficiently knock out Tnfrsf9 (encoding CD137/4-1BB) directly in the NOD mouse by embryo microinjection. Histology and T1D incidence studies indicated that CD137 was dispensable for the development of insulitis but played a role to promote progression to overt diabetes in NOD mice. We also demonstrated that CD137-deficient T-cells were less diabetogenic than their wild-type counterpart when adoptively transferred into NOD.Rag1(-/-) recipients, even when CD25(+) cells were predepleted. In vitro assays suggested that CD137 deficiency had a limited effect on the suppressive function of CD4(+)CD25(+) regulatory T-cells (Tregs). Therefore, CD137 deficiency predominately affected effector T-cells rather than Tregs. Our study demonstrates the ability to generate gene-targeted knockouts in a pure NOD background by using ZFNs without potential confounding factors introduced by contaminating genetic materials obtained from other strains.
Collapse
Affiliation(s)
- Yi-Guang Chen
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
- Corresponding author: Yi-Guang Chen,
| | - Matthew H. Forsberg
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Shamim Khaja
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Ashley E. Ciecko
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Martin J. Hessner
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Aron M. Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
16
|
Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol 2013; 26:115-22. [PMID: 24463216 DOI: 10.1016/j.coi.2013.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Abstract
Peptide loading of class II MHC molecules in endosomal compartments is regulated by HLA-DM. HLA-DO modulates HLA-DM function, with consequences for the spectrum of MHC-bound epitopes presented at the cell surface for interaction with T cells. Here, we summarize and discuss recent progress in investigating the molecular mechanisms of action of HLA-DM and HLA-DO and in understanding their roles in immune responses. Key findings are the long-awaited structures of HLA-DM in complex with its class II substrate and with HLA-DO, and observation of a novel phenotype--autoimmunity combined with immunodeficiency--in mice lacking HLA-DO. We also highlight several areas where gaps persist in our knowledge about this pair of proteins and their molecular biology and immunobiology.
Collapse
Affiliation(s)
- Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA 94305, United States
| | - Lawrence J Stern
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
17
|
De Riva A, Busch R. MHC Class II Protein Turnover In vivo and Its Relevance for Autoimmunity in Non-Obese Diabetic Mice. Front Immunol 2013; 4:399. [PMID: 24324466 PMCID: PMC3839011 DOI: 10.3389/fimmu.2013.00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex class II (MHCII) proteins are loaded with endosomal peptides and reside at the surface of antigen-presenting cells (APCs) for a time before being degraded. In vitro, MHCII protein levels and turnover are affected by peptide loading and by rates of ubiquitin-dependent internalization from the cell surface, which is in turn affected by APC type and activation state. Prior work suggested that fast turnover of disease-associated MHCII alleles may contribute to autoimmunity. We recently developed novel stable isotope tracer techniques to test this hypothesis in vivo. In non-obese diabetic (NOD) mice, a model of type 1 diabetes (T1D), MHCII turnover was affected by APC type, but unaffected by disease-associated structural polymorphism. Differences in MHCII turnover were observed between NOD colonies with high and low T1D incidence, but fast turnover was dispensable for autoimmunity. Moreover, NOD mice with gene knockouts of peptide loading cofactors do not develop T1D. Thus, fast turnover does not appear pathogenic, and conventional antigen presentation is critical for autoimmunity in NOD mice. However, shared environmental factors may underpin colony differences in MHCII protein turnover, immune regulation, and pathogenesis.
Collapse
Affiliation(s)
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Driver JP, Chen YG, Mathews CE. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes. Rev Diabet Stud 2012; 9:169-87. [PMID: 23804259 DOI: 10.1900/rds.2012.9.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Science, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
19
|
Holmes N, Cooke A. Genetic analysis of type 1 diabetes: embryonic stem cells as new tools to unlock biological mechanisms in type 1 diabetes. Rev Diabet Stud 2012; 9:137-47. [PMID: 23804257 DOI: 10.1900/rds.2012.9.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonobese diabetic (NOD) mouse has provided an important animal model for studying the mechanism and genetics of type 1 diabetes over the past 30 years. Arguably, the bio-breeding (BB) rat model may be an even closer phenotypic mimic of the typical human disease. A large number of distinct genetic traits which influence diabetes development have been defined through an extraordinary effort, most conspicuously in the mouse model. However, in both NOD and BB models the lack of availability of robust means for experimental genetic manipulation has restricted our understanding of the mechanisms underlying this spontaneous autoimmune disease. Recent developments in the derivation of embryonic stem (ES) cells have the potential to transform this picture. We argue here that targeting of NOD strain ES cells can bring much needed certainty to our present understanding of the genetics of type 1 diabetes in the NOD mouse. In addition, ES cells can play important roles in the future, in both the NOD mouse and BB rat models, through the generation of new tools to investigate the mechanisms by which genetic variation acts to promote diabetes.
Collapse
Affiliation(s)
- Nick Holmes
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|