1
|
Mateo-Fernández M, Alves-Martínez P, Del Río-Celestino M, Font R, Merinas-Amo T, Alonso-Moraga Á. Nutraceutical Potential and Food Safety of Fructose in Soda and Diet Beverages. Foods 2025; 14:648. [PMID: 40002094 PMCID: PMC11854732 DOI: 10.3390/foods14040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Fructose has been considered as an additive from soda beverages. For the approval of new additives or to extend the usage of an approved one, it is necessary to conduct toxicological studies in order to evaluate the DNA damage induced by these compounds. Our study is based on evaluating the safety and the nutraceutical potential of Fructose (FRU), a soda cola beverage (Pepsi-cola, PEP), and a diet soda cola (Diet Coke, DCC), characterizing the DNA changes induced in the Drosophila melanogaster organism model and in the human leukemia HL-60 cells performing different assays. Our results showed neither the toxicity nor mutagenic activity of FRU, PEP, and DCC in Drosophila melanogaster, while only PEP exhibited protective effects in the antitoxity assay, showing an 80% survival rate in combined treatments. FRU, but not PEP, enhanced lifespan parameters by up to 23 more days at the 5 mg/mL concentration. All three substances exhibited chemopreventive properties in some of the checkpoints carried out related to clastogenicity and methylation patterns in HL-60 cells. In conclusion, the tested compounds were safe at tested concentrations in Drosophila and showed moderate chemopreventive activity.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | - Pilar Alves-Martínez
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Avd. Menéndez Pidal, s/n, 14080 Córdoba, Spain;
| | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (M.M.-F.); (P.A.-M.); (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
2
|
Merinas-Amo T, Merinas-Amo R, Alonso-Moraga Á, Font R, Del Río Celestino M. In Vivo and In Vitro Studies Assessing the Safety of Monosodium Glutamate. Foods 2024; 13:3981. [PMID: 39683053 DOI: 10.3390/foods13233981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been used to test a wide range of concentrations for safety purposes: toxicity, genotoxicity, longevity and health span. Medium concentrations corresponding to the human acceptable daily intake (ADI) (0.06 mg/mL) were not toxic nor genotoxic for Drosophila and safe for the lifespan parameters. Once safety was determined, the possible nutraceutical effects of monosodium glutamate was monitored in terms of antitoxicity, antigenotoxicity assays and health span. The results for protective activity against hydrogen peroxide were positive in terms of the medium concentration, antitoxic and antigenotoxic in terms of inhibiting the genotoxicity induced by the oxidative toxin up to 43.7% and increasing the health span expectancy by 32% in terms of days. Monosodium glutamate has been demonstrated to be cytotoxic against the model tumour cell line HL-60, not only in a necrotic way but through internucleosomal DNA fragmentation antitumour activity. The significant LINE1 DNA sequence methylation of HL-60 tumour cells induced by monosodium glutamate is a molecular marker for chemoprevention. Conclusions: the slight or non-significant positive nutraceutical and chemo preventive potential showed by monosodium glutamate at its ADI concentration can be considered as a safe dose for a moderate consumption.
Collapse
Affiliation(s)
| | | | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Av. Menéndez Pidal, s/n, 14080 Córdoba, Spain
| | | |
Collapse
|
3
|
Slama M, Slougui N, Benaissa A, Nekkaa A, Sellam F, Canabady-Rochelle L. Borago Officinalis L.: A Review Oon Extraction, Phytochemical, and Pharmacological Activities. Chem Biodivers 2024; 21:e202301822. [PMID: 38426739 DOI: 10.1002/cbdv.202301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
Borago officinalis L., an annual herb belonging to the Boraginaceae family, is used in the traditional medical practices of various countries and for multiple treatments, including respiratory disorders, colds, influenza, diarrhea, cramps, inflammation, palpitation, hypertension menopause, and post-menopausal symptoms. Its pharmacological properties and biological activities - among them antioxidant, antimicrobial, anticancer, anti-inflammatory, insecticidal, antigenotoxic, and anti-obesity activity - were demonstrated in vitro and in vivo and are related to its rich content of bioactive compounds (mainly phenolic acids, flavonoids, anthocyanins, alkaloids, and terpenes) extracted from various parts of B. officinalis including leaves, flowers, seeds, and roots. This review summarizes all updated information on applied extraction processes, phytochemistry, pharmacology, and toxicity of B. officinalis.
Collapse
Affiliation(s)
- Meriem Slama
- Laboratoire de Génie des Procédés pour le Développement Durable et Les Produits de Santé, Ecole Nationale Polytechnique de Constantine, Constantine, 25016, Algeria
| | - Nabila Slougui
- Laboratoire de Bio Géochimie des Milieux Désertiques, Université Kasdi Merbah Ouargla, Route de Ghardaia, Ouargla, 30000, Algeria
- Ecole Nationale Polytechnique de Constantine, Ville Universitaire Ali Mendjeli, BP 75 A RP Ali Mendjeli, Constantine, 25016, Algeria
| | - Akila Benaissa
- Pharmaceutical Research and Sustainable Development Laboratory (ReMeDD), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Constantine 3 University, Constantine, 25000, Algeria
| | - Amine Nekkaa
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France
| | - Feriel Sellam
- Genetic diagnosis and microscopy laboratory, Health and biotechnology division, National Research Center of Biotechnology, Constantine, Algeria
| | | |
Collapse
|
4
|
Axentii M, Codină GG. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1195. [PMID: 38732410 PMCID: PMC11085551 DOI: 10.3390/plants13091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
Collapse
|
5
|
Shen J, Liu Y, Wang X, Bai J, Lin L, Luo F, Zhong H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023; 15:999. [PMID: 36839357 PMCID: PMC9962526 DOI: 10.3390/nu15040999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Rapeseed oil is the third most consumed culinary oil in the world. It is well-known for its high content of unsaturated fatty acids, especially polyunsaturated fatty acids, which make it of great nutritional value. There is increasing evidence that a diet rich in unsaturated fatty acids offers health benefits. Although the consumption of rapeseed oil cuts across many areas around the world, the nutritional elements of rapeseed oil and the exact efficacy of the nutrients remain unclear. In this review, we systematically summarized the latest studies on functional rapeseed components to ascertain which component of canola oil contributes to its function. Apart from unsaturated fatty acids, there are nine functional components in rapeseed oil that contribute to its anti-microbial, anti-inflammatory, anti-obesity, anti-diabetic, anti-cancer, neuroprotective, and cardioprotective, among others. These nine functional components are vitamin E, flavonoids, squalene, carotenoids, glucoraphanin, indole-3-Carbinol, sterols, phospholipids, and ferulic acid, which themselves or their derivatives have health-benefiting properties. This review sheds light on the health-benefiting effects of rapeseed oil in the hope of further development of functional foods from rapeseed.
Collapse
Affiliation(s)
- Junjun Shen
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Yejia Liu
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
- Faculty of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415006, China
| | - Xiaoling Wang
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Bai
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Kawish S, Hasan N, Beg S, Qadir A, Jain GK, Aqil M, Ahmad FJ. Docetaxel-loaded borage seed oil nanoemulsion with improved antitumor activity for solid tumor treatment: Formulation development, in vitro, in silico and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Toxicological and Nutraceutical Screening Assays of Some Artificial Sweeteners. Processes (Basel) 2022. [DOI: 10.3390/pr10020410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial sweeteners are food additives worldwide used instead of fructose or glucose in many diet beverages. Furthermore, diet beverages intake has been increasing every year. Thus, some food agencies should regulate it based on toxicological studies. Debates and controversial results are demonstrated, and authority can revise its decision on the basis of new data reporting toxicological effects since cyclamate has been forbidden in some countries. Therefore, the aim of this study was to report new data about the toxicity of acesulfame-k, aspartame, and cyclamate, which are useful for authority agencies, determining the toxic potential and nutraceutical capabilities of these compounds. The toxicity, antitoxicity, genotoxicity, antigenotoxicity, and life expectancy assays were carried out in Drosophila as an in vivo model. In addition, in vitro HL-60 line cell was used to evaluate the chemopreventive activity determining the cytotoxic effect and the capability of producing DNA damage due to internucleosomal fragmentation or DNA strand breaks. Furthermore, the methylated status of these cancer cells treated with the tested compounds was assayed as a cancer therapy. Our results demonstrated that all tested compounds were neither toxic nor genotoxic, whereas these compounds resulted in antigenotoxic and cytotoxic substances, except for cyclamate. Aspartame showed antitoxic effects in Drosophila. All tested compounds decreased the quality of life of this in vivo organism model. Acesulfame-k, aspartame, and cyclamate induced DNA damage in the HL-60 cell line in the comet assay, and acesulfame-k generally increased the methylation status. In conclusion, all tested artificial sweeteners were safe compounds at assayed concentrations since toxicity and genotoxicity were not significantly induced in flies. Moreover, Aspartame and Cyclamate showed protective activity against a genotoxin in Drosophila Regarding nutraceutical potential, acesulfame-k and aspartame could be demonstrated to be chemopreventive due to the cytotoxicity activity shown by these compounds. According to DNA fragmentation and comet assays, a necrotic way could be the main mechanism of death cells induced by acesulfame-k and aspartame. Finally, Acesulfame-K hypermethylated repetitive elements, which are hypomethylated in cancer cells resulting in a benefit to humans.
Collapse
|
8
|
Abstract
Nowadays, a general interest in improving health in order to achieve better conditions of life is increasing. Diet is a complex factor affecting health conditions. We analysed the biological activities of three types of alcohol-free lager beer (a blond, a pale-blond and a stout beer) as well as epicatechin gallate (ECG) as one of their most abundant phenols with the aim of revealing them as nutraceuticals. For that purpose, we carried out safety and protective assays of the tested substances in the well-known Drosophila melanogaster animal model. Moreover, chemoprevention studies on human leukaemia cells (HL-60) in an in vitro model were carried out to evaluate the viability and genomic damage potential of the studied compounds on the tumour cell line. Results suggest the safety properties of all compounds, although pale-blond and stout beer only showed genotoxic activity at the lowest concentrations assayed. Moreover, alcohol-free beers and phenols were able to protect against H2O2 oxidative damage as well as to induce an increase in longevity with an improvement of the quality of life in the in vivo animal model assayed. Promising results were obtained with the alcohol-free beers and ECG in the in vitro assays with human leukaemia cells as they inhibited the tumour cells’ growth, induced DNA damage and modified the methylation status of such a cancer cell line. To sum up, alcohol-free beers should be of interest not only because of their reduced calories and isotonic properties but because they can be recognised as nutraceutical substances.
Collapse
|
9
|
Lipid Fraction Properties of Homemade Raw Cat Foods and Selected Commercial Cat Foods. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of the present study was to characterize lipid fraction extracted from five self-prepared and seven commercial cat foods using gas chromatography (GC) and pressurized differential scanning calorimetry (PDSC) techniques. Self-prepared food recipes were composed using BARFny kalkulator, software dedicated for balancing cat diets, and prepared on the basis of fresh raw meat and offal. Extracted fat fractions were compared qualitatively and quantitatively with literature data for the fat of whole prey items to check the main assumptions of the software used. The fatty acid (FA) composition and distribution were determined using GC. The PDSC method was used for the determination of the oxidative stability of extracted fats. The obtained results indicate that self-prepared cat foods contained a high level of essential fatty acids (EFA) but low oxidative stability, especially for those with significant amounts of polyunsaturated FA. The FA profile and oxidative stability were examined for four dry and three wet commercial cat foods. It was found that their omega-6 to omega-3 ratio was beneficial reaching 5.3:1 to 10.1:1, despite the low amount of EFA. The longer induction time was determined for fats extracted from commercial cat foods than for self-prepared ones, which indicate their higher oxidative stability.
Collapse
|
10
|
Merinas-Amo T, Lozano-Baena MD, Obregón-Cano S, Alonso-Moraga Á, de Haro-Bailón A. Role of Glucosinolates in the Nutraceutical Potential of Selected Cultivars of Brassica rapa. Foods 2021; 10:2720. [PMID: 34829001 PMCID: PMC8617875 DOI: 10.3390/foods10112720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Brassica rapa L. subsp. rapa (turnip greens), a traditionally consumed vegetable, is well-known due to its high content of glucosinolates, which are secondary metabolites with a positive biological activity for human health. Our hypothesis has been based on the relation between B. rapa glucosinolate content and its healthy properties, and our aim is to establish guidelines for safe B. rapa vegetable consumption. Three B. rapa cultivars (143N5, 143N7 and 163N7) have been characterized by HPLC analysis of purified extracts from leaf samples in order to determine their glucosinolate content and to relate this content to beneficial effects on DNA protection, lifespan extension and chemoprevention. In order to ascertain the heath properties in vitro and in vivo, toxicity activities were assayed in the Drosophila melanogaster and leukaemia cell models; genomic safety was also assessed in both models using genotoxicity, fragmentation and comet assay. The Drosophila model has also been used to study the antioxidative activity and the longevity induction. Our results showed a relationship between B. rapa glucosinolate content and its safety and benefices in its consumption. Gluconapin, the main B. rapa glucosinolate, was directly related with these wholesome effects. The relevant conclusion in the present research is focused on B. rapa cultivar 163N7 due to its high gluconapin content and low progoitrin content, which exert anti-cancer and DNA protection properties and could be recommended as being safe and healthy for human consumption.
Collapse
Affiliation(s)
- Tania Merinas-Amo
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - María-Dolores Lozano-Baena
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - Sara Obregón-Cano
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (S.O.-C.); (A.d.H.-B.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - Antonio de Haro-Bailón
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (S.O.-C.); (A.d.H.-B.)
| |
Collapse
|
11
|
Health-Promoting Properties of Borage Seed Oil Fractionated by Supercritical Carbon Dioxide Extraction. Foods 2021; 10:foods10102471. [PMID: 34681520 PMCID: PMC8535258 DOI: 10.3390/foods10102471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Borage (Borago officinalis L.) seed oil is an important source of γ–linolenic acid, which is normally used as a treatment against different pathologies. Since the fractionation of this interesting seed oil has many environmental, economic and biological benefits, two borage fractionation techniques after extraction with CO2 under supercritical conditions have been studied: precipitation in two cyclone separators and countercurrent extraction column. Both techniques have successfully collected free fatty acids in one fraction: (i) two separators set up in series obtained the highest concentration of free fatty acids in separator 2 at 90 bar/40 °C; (ii) when countercurrent extraction column was used, the acidity index of the raffinate stream was independent from the operating conditions (2.6 ± 0.5%). Furthermore, the composition of the fatty acids, as well as their antioxidant and cytotoxic activities, were determined. The profile of the fatty acids obtained by either of these two methods remained unaltered, so that the crude oil exhibited improved antioxidant and cytotoxic properties. All the extracts obtained in the two cyclone separators at the same pressure/temperature conditions displayed high tumouricidal activity against HL 60 promyelocytic leukaemia cells, even if the extracts at 50% concentration from separator 2 presented a lower inhibitory activity (IC50). The extracts from separator 2 at 90 bar/40 °C exhibited the highest anti-proliferative activity at low doses (IC50 of 0.3 μL/mL for the trypan blue exclusion test). To reach the lethal dose—IC50—with the product obtained through countercurrent column fractionation, a concentration of 2 μL/mL of crude borage oil raffinate was required.
Collapse
|
12
|
Myers A, Cumberford G. Ahiflower Oil-The Rising GLA Alternative to Evening Primrose for Women & Vegans. Integr Med (Encinitas) 2021; 20:30-33. [PMID: 34602874 PMCID: PMC8483257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
13
|
Vitorović J, Joković N, Radulović N, Mihajilov-Krstev T, Cvetković VJ, Jovanović N, Mitrović T, Aleksić A, Stanković N, Bernstein N. Antioxidant Activity of Hemp ( Cannabis sativa L.) Seed Oil in Drosophila melanogaster Larvae under Non-Stress and H 2O 2-Induced Oxidative Stress Conditions. Antioxidants (Basel) 2021; 10:antiox10060830. [PMID: 34067432 PMCID: PMC8224776 DOI: 10.3390/antiox10060830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
The oil extracted from hemp seeds has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. The potential of this oil for the prevention of oxidative stress and for the treatment of oxidative-stress-induced ailments is of increasing interest. Most studies of hemp seed oil were conducted in-vitro, meaning we lack information about effects and activity in vivo. In the present study, we evaluated the hypothesis that hemp seed oil at different concentrations improves the oxidative state of D. melanogaster, under non-stress as well as hydrogen-peroxide-induced stress. We analyzed the effects of hemp seed oil on oxidative stress markers and on the life cycle of D.melanogaster under non-stress and hydrogen-peroxide-induced stress conditions. D.melanogaster larvae were exposed to hemp seed oil concentrations ranging from 12.5 to 125 μL/mL. The results revealed that under non-stress conditions, oil concentrations up to 62.5 µL/mL did not induce negative effects on the life cycle of D. melanogaster and maintained the redox status of the larval cells at similar levels to the control level. Under oxidative stress conditions, biochemical parameters were significantly affected and only two oil concentrations, 18.7 and 31.2 µL/mL, provided protection against hydrogen peroxide stress effects. A higher oil concentration (125 μL/mL) exerted negative effects on the oxidative status and increased larval mortality. The tested oil was characterized chemically by NMR, transesterification, and silylation, followed by GC-MS analyses, and was shown to contain polyunsaturated fatty acid triglycerides and low levels of tocopherols. The high levels of linoleic and linolenic acids in the oil are suggested to be responsible for the observed in vivo antioxidant effects. Taken together, the results show that hemp seed oil is effective for reducing oxidative stress at the cellular level, thus supporting the hypothesis. The obtained results point to the potential of hemp seed oil for the prevention and treatment of conditions caused by the action of reactive oxygen species.
Collapse
Affiliation(s)
- Jelena Vitorović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nataša Joković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Tatjana Mihajilov-Krstev
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Vladimir J. Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nikola Jovanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Tatjana Mitrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | | | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon LeZion 15159, Israel
- Correspondence:
| |
Collapse
|
14
|
Herbal Additives Substantially Modify Antioxidant Properties and Tocopherol Content of Cold-Pressed Oils. Antioxidants (Basel) 2021; 10:antiox10050781. [PMID: 34069017 PMCID: PMC8157206 DOI: 10.3390/antiox10050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to examine combinations of base oils and herbal additives with a view to obtaining macerates with improved health benefits. Base oils were cold-pressed from the seeds of black cumin, borage, evening primrose, safflower, walnut, common hazel, and oilseed rape, as well as the flesh of sea-buckthorn fruits. They were then supplemented with herbs, including basil, thyme, and sage, in order to create macerates. Total antioxidant activity and tocopherol level were analyzed in oils, macerates, and oil cakes. Additionally, chemical properties of oil cakes—such as the level of fibre, vitamin C, β-carotene, and lutein—were also examined. Supplementation with herbs caused diversified effects on antioxidant activity and tocopherol level in macerates depending on the base oil, herb, and supplementation method. The obtained results indicate that tocopherol level does not play a decisive role in determining the antioxidant properties of oils, macerates, and oil cakes, suggesting significant involvement of other antioxidants. Among the tested macerates, the most promising one seems to be oilseed rape oil enriched with sage or basil to maximize its health benefits. The study can serve as a starting point for the development and implementation of functional macerates and oil cakes in healthy nutrition.
Collapse
|
15
|
Mateo-Fernández M, Valenzuela-Gómez F, Font R, Del Río-Celestino M, Merinas-Amo T, Alonso-Moraga Á. In Vivo and In Vitro Assays Evaluating the Biological Activity of Taurine, Glucose and Energetic Beverages. Molecules 2021; 26:2198. [PMID: 33920365 PMCID: PMC8069289 DOI: 10.3390/molecules26082198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, Avda. Menéndez Pidal, s/n, 14080 Córdoba, Spain; (R.F.); (M.D.R.-C.)
| | | | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
16
|
Toxicological and Epigenetic Studies of Two Types of Ale Beer, Tyrosol and Iso-Alpha Humulone. Processes (Basel) 2021. [DOI: 10.3390/pr9030485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although many benefits drawn from beer consumption are claimed, the epidemiological records are contradictory with respect to cancer prevention. The purpose of this study was to investigate the possible health-related activities involving genome safety and the ageing processes of two types of lyophilised ale beers (blond and stout), as well as two of their bioactive compounds (tyrosol and iso-alpha humulone). A multipurpose trial set of in vivo toxicity, antitoxicity, mutagenicity, antimutagenicity, lifespan and healthspan assays using Drosophila melanogaster were used. In parallel, several in vitro assays were designed using the cancer cell line HL-60 in order to establish the possible chemopreventive activity of the selected substances, where epigenetic modulation of DNA methylation changes, clastogenic activity and tumour cell inhibition growth were evaluated. The safety of the four substances was confirmed: lyophilised blond ale beer (LBAB), lyophilised stout ale beer (LSAB), tyrosol and iso-alpha humulone were neither toxic nor genotoxic. Moreover, all substances, except tyrosol, revealed the ability to protect individual genomes against oxidative radicals and to exert antimutagenic activity against the genotoxin hydrogen peroxide. With respect to the degenerative process indicators of lifespan and healthspan, tyrosol was the only compound that did not exert any influence on the life extension of Drosophila; LBAB induced a significant lifespan extension in D. melanogaster; LSAB and its distinctive compound iso-alpha humulone induced a reduction in longevity. The in vitro assays showed the cytotoxic activity of LBAB, LSAB and tyrosol against HL-60 cells. Moreover, proapoptotic DNA fragmentation or DNA strand breakage was observed for both types of beers and iso-alpha humulone at different concentrations. Furthermore, the lyophilised ale beers and tyrosol exhibited an increasing genome-wide methylation status, while iso-alpha humulone exhibited a demethylation status in repetitive cancer cell sequences. Although the biological activities assigned to beer consumption cannot be linked to any specific molecule/element due to the complexity of the phenolic profile, as well as the multifactor brewing process, the results obtained let us propose lyophilised ale beers as safe potential nutraceutical beverages when consumed in moderate amounts. The prevention of toxicity and genetic oxidative damage, as well as the induction of tumor cell death and modulation of the methylation status, are the key activities of beer that were shown in the present research.
Collapse
|
17
|
Lyashenko S, González-Fernández MJ, Borisova S, Belarbi EH, Guil-Guerrero JL. Mertensia (Boraginaceae) seeds are new sources of γ-linolenic acid and minor functional compounds. Food Chem 2020; 350:128635. [PMID: 33317855 DOI: 10.1016/j.foodchem.2020.128635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
In this work, seeds from selected Mertensia species were analyzed for γ-linolenic acid-rich oils and minor functional compounds. Fatty acids (FA) were analyzed by GC-FID; tocopherols, sterols, squalene, and phenolics compounds by HPLC-DAD, and the structures of the latter were confirmed by LC-MS. M. maritima spp. asiatica and M. sibirica showed the highest amounts of γ-linolenic acid (22.8 and 18.7%, respectively) and total FA (15.9 and 10.9 g/100 g seeds, respectively). M. sibirica had the greatest levels of sterols, phenolics and tocopherols (244.8, 243.9 and 66.3 mg/100 g, respectively), in which stigmasterol, rosmarinic acid and α-tocopherol (237.7, 180.1 and 53.6 mg/100 g, respectively) were the most abundant components. M. maritima spp. asiatica and M. arizonica showed the highest amounts of squalene (2.5 and 1.1 mg /100 g seeds). Mertensia species constitute a new source of GLA-rich oils, suitable to be marketed by the pharmaceutical and food industries.
Collapse
Affiliation(s)
| | | | - Sargilana Borisova
- Botanic Garden of North-Eastern Federal University, 677000 Yakutsk, Russia
| | | | | |
Collapse
|
18
|
Shin JA, Sun M, Jeong JM. Borage Oil Treated with Immobilized Lipase Inhibits Melanogenesis. Lipids 2020; 55:649-659. [PMID: 33128473 DOI: 10.1002/lipd.12266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 11/12/2022]
Abstract
In the present study, we demonstrated that borage (Borago officinalis L.) seed oil subjected to immobilized lipase pretreatment are enriched with linoleic acid (LNA, 18:2n-6), γ-linolenic acid (GLA, 18:3n-6), and oleic acid (OLA, 18:1n-9). We further showed that lipase-treated borage oil (LT-BOL) regulates the activity and degradation of tyrosinase, an important enzyme implicated in the synthesis of melanin in murine melanocytes, B16F10. LT-BOL and its free fatty acid components reduced the levels of melanin and tyrosinase in melanocytes with GLA exerting similar or stronger effects compared with LNA and OLA. The brightening efficacy of LT-BOL on melanin metabolism in humans was tested by an 8-week, double-blind, randomized clinical trial, which enrolled 21 Korean female adults (mean age 48.57 ± 3.28). Visual evaluation showed that cream containing 1% LT-BOL significantly decreased (p < 0.05) melasma on the treated skin area after 6 and 8 weeks. The analysis of the skin brightness using Chromameter CR-400 confirmed that the brightness of the treated area was significantly increased (p < 0.01) after 4, 6, and 8 weeks. Together, our results suggest that LT-BOL may be suitable as a natural skin whitening cosmeceutical product.
Collapse
Affiliation(s)
- Jin A Shin
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Meixiang Sun
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Jong-Moon Jeong
- Department of Bioscience, College of Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Alkhatib MH, Bawadud RS, Gashlan HM. Incorporation of docetaxel and thymoquinone in borage nanoemulsion potentiates their antineoplastic activity in breast cancer cells. Sci Rep 2020; 10:18124. [PMID: 33093596 PMCID: PMC7582846 DOI: 10.1038/s41598-020-75017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Combining more than one anticancer agent in a nanocarrier is beneficial in producing a formula with a low dose and limited adverse side effects. The current study aimed to formulate docetaxel (DTX) and thymoquinone (TQ) in borage oil-based nanoemulsion (B-NE) and evaluate its potential in impeding the growth of breast cancer cells. The formulated B-NE and the combination (DTX + TQ) B-NE were prepared by the ultra-sonication method and physically characterized by the dynamic light scattering techniques. The cytotoxicity analyses of (DTX + TQ) B-NE in MCF-7 and MDA-MB-231 cells were evaluated in vitro by using the SRB assay. Cell death mechanisms were investigated in terms of apoptosis and autophagy pathways by flow cytometry. The optimum mean droplet sizes formulated for blank B-NE and the (DTX + TQ) B-NE were 56.04 ± 4.00 nm and 235.00 ± 10.00 nm, respectively. The determined values of the half-maximal inhibitory concentration (IC50) of mixing one-half amounts of DTX and TQ in B-NE were 1.15 ± 0.097 µM and 0.47 ± 0.091 µM in MCF-7 and MDA-MB-231 cells, respectively, which were similar to the IC50 values of the full amount of free DTX in both tested cell lines. The treatment with (DTX + TQ) B-NE resulted in a synergistic effect on both tested cells. (DTX + TQ) B-NE induced apoptosis that was integrated with the stimulation of autophagy. The produced formulation enhances the DTX efficacy against human breast cancer cells by reducing its effective dose, and thus it could have the potential to minimize the associated toxicity.
Collapse
Affiliation(s)
- Mayson H Alkhatib
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Raghdah S Bawadud
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hana M Gashlan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Chew SC. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Res Int 2020; 131:108997. [DOI: 10.1016/j.foodres.2020.108997] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023]
|
21
|
Ribes taxa: A promising source of γ-linolenic acid-rich functional oils. Food Chem 2019; 301:125309. [DOI: 10.1016/j.foodchem.2019.125309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022]
|
22
|
Mateo-Fernández M, Alves-Martínez P, Del Río-Celestino M, Font R, Merinas-Amo T, Alonso-Moraga Á. Food Safety and Nutraceutical Potential of Caramel Colour Class IV Using In Vivo and In Vitro Assays. Foods 2019; 8:foods8090392. [PMID: 31491925 PMCID: PMC6770427 DOI: 10.3390/foods8090392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023] Open
Abstract
Nutraceutical activity of food is analysed to promote the healthy characteristics of diet where additives are highly used. Caramel is one of the most worldwide consumed additives and it is produced by heating natural carbohydrates. The aim of this study was to evaluate the food safety and the possible nutraceutical potential of caramel colour class IV (CAR). For this purpose, in vivo toxicity/antitoxicity, genotoxicity/antigenotoxicity and longevity assays were performed using the Drosophila melanogaster model. In addition, cytotoxicity, internucleosomal DNA fragmentation, single cell gel electrophoresis and methylation status assays were conducted in the in vitro HL-60 human leukaemia cell line. Our results reported that CAR was neither toxic nor genotoxic and showed antigenotoxic effects in Drosophila. Furthermore, CAR induced cytotoxicity and hipomethylated sat-α repetitive element using HL-60 cell line. In conclusion, the food safety of CAR was demonstrated, since Lethal Dose 50 (LD50) was not reached in toxicity assay and any of the tested concentrations induced mutation rates higher than that of the concurrent control in D. melanogaster. On the other hand, CAR protected DNA from oxidative stress provided by hydrogen peroxide in Drosophila. Moreover, CAR showed chemopreventive activity and modified the methylation status of HL-60 cell line. Nevertheless, much more information about the mechanisms of gene therapies related to epigenetic modulation by food is necessary.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain.
| | - Pilar Alves-Martínez
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain
| | - Mercedes Del Río-Celestino
- Agri-Food Laboratory, Council of Agriculture, Fisheries and Rural Development of Andalusia (CAPDER), 14004 Córdoba, Spain
| | - Rafael Font
- Agri-Food Laboratory, Council of Agriculture, Fisheries and Rural Development of Andalusia (CAPDER), 14004 Córdoba, Spain
| | - Tania Merinas-Amo
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain
| | - Ángeles Alonso-Moraga
- Department of Genetic, Rabanales Campus, University of Córdoba (UCO), 14071 Córdoba, Spain
| |
Collapse
|
23
|
Ergun SB, Saribas GS, Yarayici S, Elmazoglu Z, Cardak A, Ozogul C, Ilhan MN, Karasu C, Evren Kemer O. Comparison of Efficacy and Safety of Two Tea Tree Oil-Based Formulations in Patients with Chronic Blepharitis: A Double-Blinded Randomized Clinical Trial. Ocul Immunol Inflamm 2019; 28:888-897. [DOI: 10.1080/09273948.2019.1644349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sule Berk Ergun
- Department of Ophthalmology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Gulistan Sanem Saribas
- Department of Histology and Embryology, Ahi Evran University Faculty of Medicine, Kırşehir, Turkey
| | - Sait Yarayici
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Zubeyir Elmazoglu
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aziz Cardak
- Department of Ophthalmology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Candan Ozogul
- Department of Histology and Embryology, University of Kyrenia Faculty of Medicine, Kyrenia, Turkish Republic of Northern Cyprus
| | - Mustafa Necmi Ilhan
- Department of Public Health, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozlem Evren Kemer
- Department of Ophthalmology, Health Science University, Numune Health Practice and Research Center, Ankara, Turkey
| |
Collapse
|
24
|
Merinas-Amo T, Merinas-Amo R, García-Zorrilla V, Velasco-Ruiz A, Chladek L, Plachy V, Del Río-Celestino M, Font R, Kokoska L, Alonso-Moraga Á. Toxicological Studies of Czech Beers and Their Constituents. Foods 2019; 8:E328. [PMID: 31398837 PMCID: PMC6723778 DOI: 10.3390/foods8080328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Czech beers are unique because they are brewed using specific technology at a particular latitude and for being entirely produced in the area of the Czech Republic. The purpose of this work is the evaluation of toxicological effects of a variety of freeze-dried Czech beers, their raw materials (malts, hops and yeast) and processed-beer (wort, hopped wort and young beer). METHODS In vivo assays to evaluate the safety and protective effects in the Drosophila melanogaster eukaryotic system, and the in vitro evaluations of chemopreventive and DNA damage activity using the HL-60 tumour human cell line were carried out. RESULTS The safe effects for all the analysed substances and general protective effects against H2O2 were shown both at the individual and genomic level in the Drosophila animal model, with some exceptions. Moreover, all the substances were able to inhibit the tumour cell growth and to induce DNA damage in the HL-60 cells at different levels (proapoptotic, single/double strands breaks and methylation status). CONCLUSIONS The promising effects shown by freeze-dried Czech beers due to their safety, protection against a toxin, chemopreventive potential and the induction of DNA damage in tumour cells, allow the proposition of Czech beer as a beverage with nutraceutic potential.
Collapse
Affiliation(s)
- Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
| | | | | | | | - Ladislav Chladek
- Research and Teaching Brewery, Department of Technological Equipment of Buildings, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Pargue, Czech Republic
| | - Vladimir Plachy
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Pargue, Czech Republic
| | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Pargue, Czech Republic
| | | |
Collapse
|
25
|
Orchard A, van Vuuren SF. Carrier oils in dermatology. Arch Dermatol Res 2019; 311:653-672. [PMID: 31321504 DOI: 10.1007/s00403-019-01951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Wounds are a common medical infliction. With the increase in microbial resistance and a shift of interest towards complementary medicines, essential oils have been shown to be beneficial in suppressing microbial growth. However, in practice, essential oils are more often diluted into a base due to the risk of topical adverse effects, such as dermatitis. There is a lack of collated evidence-based information on toxicity and efficacy of carrier oils. The current information on the subject matter is restricted to generic, aroma-therapeutic books and pamphlets, based on anecdotal evidence rather than an experimental approach. Therefore, this review aimed at identifying the recommended carrier oils used in dermatology and thereafter collating the scientific evidence to support the use of carrier oils together with essential oils recommended for dermatological use. Aloe vera gel had multiple studies demonstrating the ability to enhance wound healing; however, several other carrier oils have been largely neglected. It was observed that the extracts for certain plant species had been used to justify the use of the carrier oils of the same plant species. This is an inaccurate cross assumption due to the difference in chemical composition and biological activities. Lastly, despite these carrier oils being recommended as a base for essential oils, very little data was found on the interactive profile of the carrier oil with the essential oil. This review provides a platform for further studies, especially if essential oils are to receive credence in the scientific field.
Collapse
Affiliation(s)
- Ané Orchard
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Sandy F van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
26
|
Biological Effects of Food Coloring in In Vivo and In Vitro Model Systems. Foods 2019; 8:foods8050176. [PMID: 31137639 PMCID: PMC6560448 DOI: 10.3390/foods8050176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The suitability of certain food colorings is nowadays in discussion because of the effects of these compounds on human health. For this reason, in the present work, the biological effects of six worldwide used food colorings (Riboflavin, Tartrazine, Carminic Acid, Erythrosine, Indigotine, and Brilliant Blue FCF) were analyzed using two model systems. (2) Methods: In vivo toxicity, antitoxicity, and longevity assays using the model organism Drosophila melanogaster and in vitro cytotoxicity, DNA fragmentation, and methylation status assays using HL-60 tumor human cell line were carried out. (3) Results: Our in vivo results showed safe effects in Drosophila for all the food coloring treatments, non-significant protective potential against an oxidative toxin, and different effects on the lifespan of flies. The in vitro results in HL-60 cells, showed that the tested food colorings increased tumor cell growth but did not induce any DNA damage or modifications in the DNA methylation status at their acceptable daily intake (ADI) concentrations. (4) Conclusions: From the in vivo and in vitro studies, these results would support the idea that a high chronic intake of food colorings throughout the entire life is not advisable.
Collapse
|
27
|
Urrestarazu M, Gallegos-Cedillo VM, Ferrón-Carrillo F, Guil-Guerrero JL, Lao MT, Álvaro JE. Effects of the electrical conductivity of a soilless culture system on gamma linolenic acid levels in borage seed oil. PLoS One 2019; 14:e0207106. [PMID: 30779750 PMCID: PMC6380564 DOI: 10.1371/journal.pone.0207106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022] Open
Abstract
Borage is a well-known plant of great importance in human nutrition and health. Expanding knowledge of particular plants that have anti-cancer products is a global concern. There is substantial information regarding the benefits, presence and extraction of gamma linolenic acid (GLA; 18:3n6) in different plants around the world, especially in borage seeds. However, there is little information concerning the effects of the salinity of the nutrient solution on the growth and presence of GLA in borage seeds. The objective of this work was to determine the optimal salinity of the nutrient solution for obtaining GLA in soilless cultivation systems. Borage plants were grown in coconut fibre and provided three treatments of nutrient solution of 2.20, 3.35 and 4.50 dS m-1, increasing solution salinity with the standard nutrient solution of concentrated macronutrients as a reference. Vegetative growth, seed production and GLA ratio were measured. The results of vegetative development and GLA production doubled and tripled with the increase in salinity of the nutrient solution, respectively.
Collapse
Affiliation(s)
- Miguel Urrestarazu
- Departamento de Agronomía, Universidad de Almería, Almería, Spain
- * E-mail:
| | | | | | | | - María Teresa Lao
- Departamento de Agronomía, Universidad de Almería, Almería, Spain
| | - Juan Eugenio Álvaro
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| |
Collapse
|
28
|
Al-Okbi SY, El-Qousy SM, El-Ghlban S, Moawad HF. Role of Borage Seed Oil and Fish Oil with or without Turmeric and Alpha- Tocopherol in Prevention of Cardiovascular Disease and Fatty Liver in Rats. J Oleo Sci 2018; 67:1551-1562. [PMID: 30429440 DOI: 10.5650/jos.ess18064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present research was to Study the prevention of dyslipidemia, oxidative stress, inflammation and fatty liver as risk factors for cardiovascular disease via intervention by borage oil (B) and fish oil (F) with or without turmeric (T) and alpha-tocopherols (TC). Fatty acids were assessed in both oils while curcuminoids were determined in turmeric. Rats were divided into; first group fed on balanced diet and designated as normal control (NC), second fed on dyslipidemic and steatohepatitis (DS) inducer diet which represented the DS control group and groups 3-6 fed on DS inducer diet with daily oral administration of B, B+T+TC, F and F+T+TC; respectively for 5 weeks. Liver fat and plasma lipid profile, oxidative stress and inflammatory biomarker and liver and heart histopathology were assessed. Results showed gamma linolenic to be 21.01% in B. F contained eicosapentaenoic as 22.768% and docosahexaenoic acid as 13.574%.Total curcuminoids were 4.63 mg/g turmeric. The DS control group showed significant dyslipidemia, elevated malondialdehyde (MDA), tumor necrosis factor-alpha and liver fat with significant reduction in total antioxidant capacity (TAC) compared to NC. The different treatments produced significant improvement in all the parameters and histopathology. F was superior to B in ameliorating liver histopathological changes while B was more efficient in elevating TAC. B was more promising in improving lipid profile and liver fat compared to B + T + TC, while the latter was superior in improving MDA and liver histopathology. Fish oil was more efficient than F+TC+T except for TAC and high density lipoprotein cholesterol which were more improved on addition of TC and T. Conclusion: Borage and fish oil with or without antioxidants protect from cardiovascular and fatty liver diseases with variable degrees.
Collapse
Affiliation(s)
- Sahar Y Al-Okbi
- Nutrition and Food Sciences Department, National Research Centre
| | - Salah M El-Qousy
- Chemistry Department, Faculty of Science El Menoufeia University
| | - Samah El-Ghlban
- Chemistry Department, Biochemistry Division, Faculty of Science El Menoufeia University
| | - Hosam F Moawad
- Medical Research Center, Faculty of Medicine, Ain Shams University
| |
Collapse
|
29
|
Fernández-Bedmar Z, Anter J, Alonso Moraga Á. Anti/genotoxic, longevity inductive, cytotoxic, and clastogenic-related bioactivities of tomato and lycopene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:427-437. [PMID: 29569272 DOI: 10.1002/em.22185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 05/17/2023]
Abstract
The aim of this study was to evaluate some biological activities of tomato as well as lycopene and to consider a new nutraceutic value for this fruit regarding to the protection against genetic damage and as a chemopreventive agent. Genotoxicity, DNA-protection against hydrogen peroxide, and lifespan properties of tomato and lycopene were assessed through wing spot test and longevity assay using the Drosophila in vivo model. Additionally, chemopreventive activity was investigated through cytotoxicity, DNA-fragmentation comet and annexin V FITC/PI assays using HL60 in vitro model. Results showed that: (i) tomato and lycopene are not genotoxic and protect against H2 O2 -induced damage; (ii) with respect to the lifespan, tomato and lycopene are harmless at the lowest concentration; (iii) tomato is cytotoxic in a dose-dependent manner, but not lycopene; (iv) tomato and lycopene do not induce internucleosomal DNA-fragmentation although they induce significant clastogenic activity at low level in the leukemia cells. To sum up, tomato is a good candidate to be considered as a nutraceutical substance. Furthermore, synergistic action among other components within tomato matrix could be the cause of the health effects observed in this vegetable, which are not fully explained by lycopene. Environ. Mol. Mutagen. 59:427-437, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zahira Fernández-Bedmar
- Department of Genetics, Campus Rabanales, Gregor Mendel Building, University of Córdoba, Córdoba, 14071, Spain
| | - Jaouad Anter
- Department of Genetics, Campus Rabanales, Gregor Mendel Building, University of Córdoba, Córdoba, 14071, Spain
| | - Ángeles Alonso Moraga
- Department of Genetics, Campus Rabanales, Gregor Mendel Building, University of Córdoba, Córdoba, 14071, Spain
| |
Collapse
|
30
|
Guil-Guerrero JL, Gómez-Mercado F, Ramos-Bueno RP, González-Fernández MJ, Urrestarazu M, Jiménez-Becker S, de Bélair G. Fatty acid profiles and sn -2 fatty acid distribution of γ-linolenic acid-rich Borago species. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Khanna S, Jaiswal KS, Gupta B. Managing Rheumatoid Arthritis with Dietary Interventions. Front Nutr 2017; 4:52. [PMID: 29167795 PMCID: PMC5682732 DOI: 10.3389/fnut.2017.00052] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
Self-help by means of dietary interventions can help in management of various disorders including rheumatoid arthritis (RA), a debilitating autoimmune disease. Dietary interventions necessitate a widespread appeal for both patients as well as clinicians due to factors including affordability, accessibility, and presence of scientific evidences that demonstrate substantial benefits in reducing disease symptoms such as pain, joint stiffness, swelling, tenderness and associated disability with disease progression. However, there is still an uncertainty among the community about the therapeutic benefits of dietary manipulations for RA. In the present review, we provide an account of different diets and their possible molecular mechanism of actions inducing observed therapeutic benefits for remission and management of RA. We further indicate food that can be a potential aggravating factor for the disease or may help in symptomatic relief. We thereafter summarize and thereby discuss various diets and food which help in reducing levels of inflammatory cytokines in RA patients that may play an effective role in management of RA following proper patient awareness. We thus would like to promote diet management as a tool that can both supplement and complement present treatment strategies for a better patient health and recovery.
Collapse
Affiliation(s)
- Shweta Khanna
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Kumar Sagar Jaiswal
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
32
|
Martínez-Valdivieso D, Font R, Fernández-Bedmar Z, Merinas-Amo T, Gómez P, Alonso-Moraga Á, Del Río-Celestino M. Role of Zucchini and Its Distinctive Components in the Modulation of Degenerative Processes: Genotoxicity, Anti-Genotoxicity, Cytotoxicity and Apoptotic Effects. Nutrients 2017; 9:E755. [PMID: 28708122 PMCID: PMC5537869 DOI: 10.3390/nu9070755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022] Open
Abstract
Zucchini (Cucurbita pepo subsp. pepo) is a seasonal vegetable with high nutritional and medical values. Many useful properties of this fruit are attributed to bioactive compounds. Zucchini fruits ("Yellow" and "Light Green" varieties) and four distinctive components (lutein, β-carotene, zeaxanthin and dehydroascorbic acid) were selected. Firstly, the lutein, β-carotene, zeaxanthin and dehydroascorbic acid contents were determined in these fruits. Then, in order to evaluate the safety and suitability of their use, different assays were carried out: (i) genotoxicity and anti-genotoxicity tests to determine the safety and DNA-protection against hydrogen peroxide; (ii) cytotoxicity; and (iii) DNA fragmentation and Annexin V/PI (Propidium Iodide) assays to evaluate the pro-apoptotic effect. Results showed that: (i) all the substances were non-genotoxic; (ii) all the substances were anti-genotoxic except the highest concentration of lutein; (iii) "Yellow" zucchini epicarp and mesocarp exhibited the highest cytotoxic activity (IC50 > 0.1 mg/mL and 0.2 mg/mL, respectively); and (iv) "Light Green" zucchini skin induced internucleosomal DNA fragmentation, β-carotene being the possible molecule responsible for its pro-apoptotic activity. To sum up, zucchini fruit could play a positive role in human health and nutrition due to this fruit and its components were safe, able to inhibit significantly the H₂O₂-induced damage and exhibit anti-proliferative and pro-apoptotic activities toward HL60 (human promyelocytic leukemia cells) tumor cells. The information generated from this research should be considered when selecting potential accessions for breeding program purposes.
Collapse
Affiliation(s)
- Damián Martínez-Valdivieso
- Department of Genomics and Biotechnology, IFAPA (Andalusian Institute of Agricultural Research and Training, Fisheries, Food and Ecological Production) Center La Mojonera, Camino San Nicolás, 1 La Mojonera, 04745 Almería, Spain.
| | - Rafael Font
- Department of Food and Health, IFAPA Center La Mojonera Camino San Nicolás, 1 La Mojonera, 04745 Almería, Spain.
| | - Zahira Fernández-Bedmar
- Department of Genetics, University of Córdoba, Campus Rabanales, Gregor Mendel Building, 14071 Córdoba, Spain.
| | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, Campus Rabanales, Gregor Mendel Building, 14071 Córdoba, Spain.
| | - Pedro Gómez
- Department of Genomics and Biotechnology, IFAPA (Andalusian Institute of Agricultural Research and Training, Fisheries, Food and Ecological Production) Center La Mojonera, Camino San Nicolás, 1 La Mojonera, 04745 Almería, Spain.
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, Campus Rabanales, Gregor Mendel Building, 14071 Córdoba, Spain.
| | - Mercedes Del Río-Celestino
- Department of Genomics and Biotechnology, IFAPA (Andalusian Institute of Agricultural Research and Training, Fisheries, Food and Ecological Production) Center La Mojonera, Camino San Nicolás, 1 La Mojonera, 04745 Almería, Spain.
| |
Collapse
|
33
|
Khattab HAH, Abdallah IZA, Yousef FM, Huwait EA. EFFICIENCY OF BORAGE SEEDS OIL AGAINST GAMMA IRRADIATION-INDUCED HEPATOTOXICITY IN MALE RATS: POSSIBLE ANTIOXIDANT ACTIVITY. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638880 PMCID: PMC5471464 DOI: 10.21010/ajtcam.v14i4.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Borage (Borago officinal L.) is an annual herbaceous plant of great interest because its oil contains a high percentage of γ-linolenic acid (GLA). The present work was carried out to detect fatty acids composition of the oil extracted from borage seeds (BO) and its potential effectiveness against γ-irradiation- induced hepatotoxicity in male rats. Materials and Methods: GC-MS analysis of fatty acids methyl esters of BO was performed to identify fatty acids composition. Sixty rats were divided into five groups (12 rats each): Control, irradiated; rats were exposed to (6.5 Gy) of whole body γ-radiation, BO (50 mg/kg b.wt), irradiated BO post-treated and irradiated BO prepost-treated. Six rats from each group were sacrificed at two time intervals 7 and 15 days post-irradiation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT) levels, lipids profile, as well as serum and hepatic reduced glutathione (GSH) and lipid peroxide (malondialdehyde) (MDA) levels were assessed. Histopathological examination of liver sections were also carried out. Results: The results showed that the high contents of BO extracted by cold pressing, were linoleic acid (34.23%) and GLA (24.79%). Also, oral administration of BO significantly improved serum levels of liver enzymes, lipids profile, as well as serum and hepatic GSH and MDA levels (p<0.001) as compared with irradiated rats after 15 days post irradiation. Moreover, it exerted marked amelioration against irradiation-induced histopathological changes in liver tissues. The improvement was more pronounced in irradiated BO prepost-treated group than irradiated BO post-treated. Conclusion: BO has a beneficial role in reducing hepatotoxicity and oxidative stress induced by radiation exposure. Therefore, BO may be used as a beneficial supplement for patients during radiotherapy treatment.
Collapse
Affiliation(s)
- Hala A H Khattab
- Food and Nutrition Department, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia.,Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Egypt
| | - Inas Z A Abdallah
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Egypt
| | - Fatimah M Yousef
- Food and Nutrition Department, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Etimad A Huwait
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Merinas-Amo T, Tasset-Cuevas I, Díaz-Carretero AM, Alonso-Moraga Á, Calahorro F. Role of Choline in the Modulation of Degenerative Processes: In Vivo and In Vitro Studies. J Med Food 2017; 20:223-234. [PMID: 28103133 DOI: 10.1089/jmf.2016.0075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of the present study was to examine the nutraceutical potential of choline as an added value to its well-known brain nutrient role. Several toxicity, antitoxicity, genotoxicity, antigenotoxicity, and longevity endpoints were checked in the somatic mutation and recombination test in in vivo Drosophila animal model. Cytotoxicity in human leukemia-60 cell line (HL-60) promyelocytic and NIH3T3 mouse fibroblast cells, proapoptotic DNA fragmentation, comet assay, methylation status, and macroautophagy (MA) activity were tested in in vitro assays. Choline is not only safe but it is also able to protect against the DNA damage caused by an oxidative genotoxin. Moreover, it improves the life extension in the animal model. The in vitro results show that it is able to exhibit genetic damage against leukemia HL-60 cells. Single-strand breaks in DNA are observed at the molecular level in treatments with choline, although only a significant hypermethylation on the long interspersed elements-1 and a hypomethylation on the satellite-alpha DNA repetitive DNA sequences of HL-60 cells at the lowest concentration (0.447 mM) were observed. Besides, choline decreased MA at the lower assayed concentration and the MA response to topoisomerase inhibitor (etoposide) is maintained in the presence of treatment with 0.22 mM choline. Taking into account the hopeful results obtained in the in vivo and in vitro assays, choline could be proposed as a substance with an important nutraceutical value for different purposes.
Collapse
Affiliation(s)
| | - Inmaculada Tasset-Cuevas
- 2 Department of Developmental and Molecular Biology, Yeshiva University Albert Einstein College , New York, New York, USA
| | - Antonio M Díaz-Carretero
- 2 Department of Developmental and Molecular Biology, Yeshiva University Albert Einstein College , New York, New York, USA
| | | | - Fernando Calahorro
- 3 Faculty of Natural and Environmental Science, Institute of Life Sciences, Center for Biological Sciences, University of Southampton , Southampton, United Kingdom
| |
Collapse
|
35
|
In vivo and in vitro studies of the role of lyophilised blond Lager beer and some bioactive components in the modulation of degenerative processes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Fernández-Bedmar Z, Alonso-Moraga A. In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food Chem Toxicol 2016; 98:89-99. [PMID: 27746329 DOI: 10.1016/j.fct.2016.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/18/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022]
Abstract
The purpose of this study is to determine the nutraceutic potential of different Capsicum sp, capsaicin, capsanthin and lutein and provide data in order to clarify the conflicting results obtained for capsaicin by different authors. To achieve these objectives, in vivo (geno/antigenotoxicity and lifespan assays in the animal model Drosophila) and in vitro (cytotoxicity and DNA-fragmentation assays in HL60 promyelocytic cell line) assays were carried out. Results showed that i) none of the tested substances were genotoxic except green hot pepper and capsaicin at the highest tested concentration (5 mg/mL and 11.5 μM respectively), ii) all tested substances except green hot pepper are antimutagenic against H2O2-induced damage, iii) only red sweet pepper significantly extend the lifespan and healthspan of D. melanogaster at 1.25 and 2.5 mg/mL, iv) all pepper varieties induce dose-depended cytotoxic effect in HL60 cells with different IC50, and v) all pepper varieties and capsaicin exerted proapoptotic effect on HL60 cells. IN CONCLUSION (i) sweet peppers could be suggested as nutraceutical food, (ii) hot peppers should be moderately consumed, and (iii) supplementary studies are necessary to clarify the synergic effect of the carotenoids and capsaicinoids in the hot pepper food matrix.
Collapse
|
37
|
Guil-Guerrero JL, Gómez-Mercado F, Ramos-Bueno RP, González-Fernández MJ, Urrestarazu M, Rincón-Cervera MÁ. Sardinian Boraginaceae are new potential sources of gamma-linolenic acid. Food Chem 2016; 218:435-439. [PMID: 27719932 DOI: 10.1016/j.foodchem.2016.09.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
Abstract
The aim of this work was to establish the richness in γ-linolenic acid (GLA, 18:3n6) and stearidonic acid (SDA, 18:4n3) of several Sardinian Boraginaceae species. To this end, seeds of selected species were collected from their natural habitats and analysed. The highest GLA contents were found in the seed oils of two endemic Borago taxa, i.e. B. morisiana (24.4 and 24.6% GLA of total fatty acids for samples from San Pietro Island and Sardinia Island, respectively), and 22.9% GLA for B. pygmaea. Both Borago species contained more GLA than B. officinalis collected in the same ecosystems. SDA was found in significant amounts in Echium plantagineum seed oil from the Lattias Mountains (15% SDA of total fatty acids). It is notable that both Borago GLA-rich species are under threat of extinction, thus revealing the importance of the preservation of the natural Sardinian ecosystems for endangered species and human health.
Collapse
Affiliation(s)
- José Luis Guil-Guerrero
- Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain.
| | | | - Rebeca Pilar Ramos-Bueno
- Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| | | | - Miguel Urrestarazu
- Agronomy Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| | - Miguel Ángel Rincón-Cervera
- Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain; Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| |
Collapse
|
38
|
In Vivo and In Vitro Genotoxic and Epigenetic Effects of Two Types of Cola Beverages and Caffeine: A Multiassay Approach. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7574843. [PMID: 27471731 PMCID: PMC4947684 DOI: 10.1155/2016/7574843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/14/2016] [Accepted: 06/05/2016] [Indexed: 12/25/2022]
Abstract
The aim of this work was to assess the biological and food safety of two different beverages: Classic Coca Cola™ (CCC) and Caffeine-Free Coca Cola (CFCC). To this end, we determined the genotoxicological and biological effects of different doses of lyophilised CCC and CFCC and Caffeine (CAF), the main distinctive constituent. Their toxic/antitoxic, genotoxic/antigenotoxic, and chronic toxicity (lifespan assay) effects were determined in vivo using the Drosophila model. Their cytotoxic activities were determined using the HL-60 in vitro cancer model. In addition, clastogenic DNA toxicity was measured using internucleosomal fragmentation and SCGE assays. Their epigenetic effects were assessed on the HL-60 methylation status using some repetitive elements. The experimental results showed a slight chemopreventive effect of the two cola beverages against HL-60 leukaemia cells, probably mediated by nonapoptotic mechanisms. Finally, CCC and CAF induced a global genome hypomethylation evaluated in LINE-1 and Alu M1 repetitive elements. Overall, we demonstrated for the first time the safety of this famous beverage in in vivo and in vitro models.
Collapse
|
39
|
Lozano-Baena MD, Tasset I, Muñoz-Serrano A, Alonso-Moraga Á, de Haro-Bailón A. Cancer Prevention and Health Benefices of Traditionally Consumed Borago officinalis Plants. Nutrients 2016; 8:E48. [PMID: 26797631 PMCID: PMC4728661 DOI: 10.3390/nu8010048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/28/2015] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
Nowadays, healthy eating is increasing the demand of functional foods by societies as sources of bioactive products with healthy qualities. For this reason, we tested the safety of the consumption of Borago officinalis L. and its main phenolic components as well as the possibility of its use as a nutraceutical plant to help in cancer prevention. The in vivo Drosophila Somatic Mutation and Recombination Test (SMART) and in vitro HL-60 human cell systems were performed, as well-recognized methods for testing genotoxicity/cytotoxicity of bioactive compounds and plant products. B. officinalis and the tested compounds possess antigenotoxic activity. Moreover, B. officinalis wild type cultivar exerts the most antigenotoxic values. Cytotoxic effect was probed for both cultivars with IC50 values of 0.49 and 0.28 mg · mL(-1) for wild type and cultivated plants respectively, as well as their constituent rosmarinic acid and the assayed phenolic mixture (IC50 = 0.07 and 0.04 mM respectively). B. officinalis exerts DNA protection and anticarcinogenic effects as do its component rosmarinic acid and the mixture of the main phenolics presented in the plant. In conclusion, the results showed that B. officinalis may represent a high value plant for pleiotropic uses and support its consumption as a nutraceutical plant.
Collapse
Affiliation(s)
- María-Dolores Lozano-Baena
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Av. Menéndez Pidal s/n, Córdoba E-14004, Spain.
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Andrés Muñoz-Serrano
- Department of Genetics, Gregor Mendel Building, Faculty of Science, University of Córdoba, Campus Rabanales, Córdoba 14014, Spain.
| | - Ángeles Alonso-Moraga
- Department of Genetics, Gregor Mendel Building, Faculty of Science, University of Córdoba, Campus Rabanales, Córdoba 14014, Spain.
| | - Antonio de Haro-Bailón
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Av. Menéndez Pidal s/n, Córdoba E-14004, Spain.
| |
Collapse
|
40
|
Shahraki MR, Ahmadimoghadm M, Shahraki AR. The Antinociceptive Effects of Hydroalcoholic Extract of Borago Officinalis Flower in Male Rats Using Formalin Test. Basic Clin Neurosci 2015; 6:285-90. [PMID: 26649166 PMCID: PMC4668875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Borago officinalis flower (borage) is a known sedative in herbal medicine; the aim of the present study was to evaluate the antinociceptive effect of borage hydroalcoholic extract in formalin test male rats. METHODS Fifty-six adult male albino Wistar rats were randomly divided into seven groups: Control groups of A (intact), B (saline), and C (Positive control) plus test groups of D, E, F, and G (n=8). The groups D, E, and F received 6.25, 12.5, and 25 mg/kg, Borago officinalis flower hydroalcholic extract before the test, respectively but group G received 25 mg/kg borage extract and aspirin before the test. A biphasic pain was induced by injection of formalin 1%. The obtained data were analyzed by SPSS software ver. 17 employing statistical tests of Kruskal-Wallis and Mann-Whitney. The results were expressed as mean±SD. Statistical differences were considered significant at P<0.05. RESULTS The results revealed that the acute and chronic pain behavior score in test groups of D, E, F, and G significantly decreased compared to groups A and B, but this score did not show any difference compared to group C. Moreover, chronic pain behavior score in group G was significantly lower than all other groups. DISCUSSION The results indicated that Borago officinalis hydroalcoholic extract affects the acute and chronic pain behavior response in formaline test male rats.
Collapse
Affiliation(s)
- Mohammad Reza Shahraki
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences and Health Services, Zahedan, Iran
| | - Mahdieh Ahmadimoghadm
- Academic Center for Education, Culture, and Research (ACECR), Sistan and Baluchistan Branch, Zahedan, Iran.,Corresponding Author: Mahdieh Ahmadimoghadm, MSc, Address: Local Studies & Specialty Services of Jahad-e-Daneshgahi, Sistan and Baluchistan Branch, Zahedan, Iran., Tel: +98 (921) 5731663, E-mail:
| | - Ahmad Reza Shahraki
- Imam Ali Hospital, Department of Surgery, Zahedan University of Medical Sciences and Health Services, Zahedan, Iran
| |
Collapse
|
41
|
Antigenotoxicity and Tumor Growing Inhibition by Leafy Brassica carinata and Sinigrin. Molecules 2015; 20:15748-65. [PMID: 26343628 PMCID: PMC6331809 DOI: 10.3390/molecules200915748] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/12/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022] Open
Abstract
Cruciferous vegetables are well known and worldwide consumed due to their health benefits and cancer prevention properties. As a desirable cruciferous plant, Ethiopian mustard (Brassica carinata A. Braun) and its glucosinolate sinigrin were tested in the in vivo Drosophila melanogaster (SMART) and the in vitro HL60 (human promyelocytic leukaemia cell line) systems. High performance liquid chromatography (HPLC) analysis of plant samples confirmed the presence of sinigrin as principal B. carinata glucosinolate. SMART was performed by feeding D. melanogaster larvae either with different concentrations of plant/compound samples or combining them with hydrogen peroxide (a potent oxidative mutagen) being both antimutagenics. HL60 assays showed the tumoricidal activity of plant samples (IC50 = 0.28 mg·mL−1) and the breakdown products of sinigrin hydrolysis (IC50 = 2.71 µM). Our results enhance the potential of B. carinata as health promoter and chemopreventive in both systems and the leading role of sinigrin in these effects.
Collapse
|
42
|
Fatty acid lithium salts fromCunninghamella echinulatahave cytotoxic and genotoxic effects on HL-60 human leukemia cells. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
43
|
Ghahremanitamadon F, Shahidi S, Zargooshnia S, Nikkhah A, Ranjbar A, Soleimani Asl S. Protective effects of Borago officinalis extract on amyloid β-peptide(25-35)-induced memory impairment in male rats: a behavioral study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:798535. [PMID: 25013802 PMCID: PMC4071970 DOI: 10.1155/2014/798535] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and most common form of dementia that leads to memory impairment. In the present study we have examined the protective effects of Borago officinalis (borage) extract on Amyloid β (A β)-Induced memory impairment. Wistar male rats received intrahippocampal (IHP) injection of the A β (25-35) and borage extract throughout gestation (100 mg/kg). Learning and memory functions in the rats were examined by the passive avoidance and the Morris water maze (MWM) tasks. Finally, the antioxidant capacity of hippocampus was measured using ferric ion reducing antioxidant power (FRAP) assay. The results showed that A β (25-35) impaired step-through latency and time in dark compartment in passive avoidance task. In the MWM, A β (25-35) significantly increased escape latency and traveled distance. Borage administration attenuated the A β-induced memory impairment in both the passive avoidance and the MWM tasks. A β induced a remarkable decrease in antioxidant power (FRAP value) of hippocampus and borage prevented the decrease of the hippocampal antioxidant status. This data suggests that borage could improve the learning impairment and oxidative damage in the hippocampal tissue following A β treatment and that borage consumption may lead to an improvement of AD-induced cognitive dysfunction.
Collapse
Affiliation(s)
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Somayeh Zargooshnia
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Ali Nikkhah
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan 65178-3-8736, Iran
| |
Collapse
|
44
|
Villatoro-Pulido M, Font R, Obregón-Cano S, Moreno-Rojas R, Amaro-López MÁ, Anter J, Muñoz-Serrano A, De Haro Bailón A, Alonso-Moraga A, Del Río-Celestino M. Cytotoxic and genotoxic effects of metal(oid)s bioactivated in rocket leaves (Eruca vesicaria subsp. sativa Miller). CHEMOSPHERE 2013; 93:2554-2561. [PMID: 24161580 DOI: 10.1016/j.chemosphere.2013.09.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
Rocket is an important source of essential elements. However, it may also accumulate toxic elements such as metal(oids). The objectives of the present work were (i) to study the uptake of arsenic, lead, cadmium and zinc in rocket grown in contaminated soils, (ii) to establish the genotoxic and cytotoxic activities of this vegetable material, and (iii) to study the modulator role of the glucosinolate and metal contents in the genotoxic/cytotoxic activities. Lead, cadmium and zinc leaf concentrations in our study were over the concentrations allowed by the statutory limit set for metal(oid) contents in vegetables. The accessions were non genotoxic at the different concentrations studied, although one of the accessions showed the highest mutation rates doubling those of negative control. The cytotoxicity assays with HL60 human leukaemia cells showed that the tumouricide activities of rocket leaves decreased with the increasing of metal(oid) concentrations and also with the decreasing of glucosinolate concentrations in their tissues. An interaction between metal(oid)s and glucosinolate degradation products contained in rocket leaves is suggested as the main modulator agents of the biological activity of the plants grown in metal-contaminated soils.
Collapse
Affiliation(s)
- Myriam Villatoro-Pulido
- Department of Plant Breeding and Crop Biotechnology, Center IFAPA Alameda del Obispo s/n, Apartado 3092, 14080 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|