1
|
Madangopal R, Zhao Y, Heins C, Zhou J, Liang B, Barbera G, Lam KC, Komer LE, Weber SJ, Thompson DJ, Gera Y, Pham DQ, Savell KE, Warren BL, Caprioli D, Venniro M, Bossert JM, Ramsey LA, Jedema HP, Schoenbaum G, Lin DT, Shaham Y, Pereira F, Hope BT. Distinct prelimbic cortex ensembles encode response execution and inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639736. [PMID: 40060503 PMCID: PMC11888377 DOI: 10.1101/2025.02.23.639736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Learning when to initiate or withhold actions is essential for survival and requires integration of past experiences with new information to adapt to changing environments. While stable prelimbic cortex (PL) ensembles have been identified during reward learning, it remains unclear how they adapt when contingencies shift. Does the same ensemble adjust its activity to support behavioral suppression upon reward omission, or is a distinct ensemble recruited for this new learning? We used single-cell calcium imaging to longitudinally track PL neurons in rats across operant food reward Training, Extinction and Reinstatement, trained rat-specific decoders to predict trial-wise behavior, and implemented an in-silico deletion approach to characterize ensemble contributions to behavior. We show that operant training and extinction recruit distinct PL ensembles that encode response execution and inhibition, and that both ensembles are re-engaged and maintain their roles during Reinstatement. These findings highlight ensemble-based encoding of multiple learned associations within a region, with selective ensemble recruitment supporting behavioral flexibility under changing contingencies.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yuan Zhao
- Machine Learning Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Conor Heins
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jingfeng Zhou
- Cellular and Neurocomputational Systems Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Bo Liang
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Giovanni Barbera
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Ka Chun Lam
- Machine Learning Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Lauren E Komer
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sophia J Weber
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Drake J Thompson
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yugantar Gera
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Diana Q Pham
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Katherine E Savell
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Brandon L Warren
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Daniele Caprioli
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Marco Venniro
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jennifer M Bossert
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Hank P Jedema
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Geoffrey Schoenbaum
- Cellular and Neurocomputational Systems Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Da-Ting Lin
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Francisco Pereira
- Machine Learning Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Bruce T Hope
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
2
|
Mueller LE, Konya C, Sharpe MJ, Wikenheiser AM, Schoenbaum G. Prior cocaine use diminishes encoding of latent information by orbitofrontal, but not medial, prefrontal ensembles. Curr Biol 2024; 34:5223-5238.e3. [PMID: 39454572 PMCID: PMC11576232 DOI: 10.1016/j.cub.2024.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/28/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Maladaptive decision-making is a hallmark of substance use disorders (SUDs), though how drugs of abuse alter neural representations supporting adaptive behavior remains poorly understood. Past studies show that the orbitofrontal (OFC) and prelimbic (PL) cortices are important for decision-making, tracking both task-relevant and latent information. However, previous studies have focused on how drugs of abuse impact the firing rates of individual units. More work at the ensemble level is necessary to accurately characterize potential drug-induced changes. Using single-unit recordings in rats during a multidimensional decision-making task and then applying population- and ensemble-level analyses, we show that prior use of cocaine altered the strength and structure of task-relevant and latent representations in the OFC, changes relatable to suboptimal decision-making in this and perhaps other settings. These data expand our understanding of the neuropathological underpinnings of maladaptive decision-making in SUDs, potentially enabling enhanced future treatment strategies.
Collapse
Affiliation(s)
- Lauren E Mueller
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Caitlin Konya
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Melissa J Sharpe
- The University of Sydney, School of Psychology, Griffith Taylor Building, Manning Road, Camperdown, Sydney, NSW 2006, Australia
| | - Andrew M Wikenheiser
- Department of Psychology, University of California, Los Angeles, Franz Hall, 502 Portola Plaza, Los Angeles, CA 90095, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Nieves GM, Rahn RM, Baskoylu SN, Liston CM. Divergent reward cue representations in prefrontal cortex underlie differences in reward motivation between adolescents and adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.565069. [PMID: 37986789 PMCID: PMC10659319 DOI: 10.1101/2023.11.07.565069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A prevailing view on postnatal brain development is that brain regions gradually acquire adult functions as they mature. The medial prefrontal cortex (mPFC) regulates reward learning, motivation, and behavioral inhibition, and undergoes a protracted postnatal maturation. During adolescence, reward-seeking behavior is heightened compared to adulthood - a developmental difference that may be driven by a hypoactive mPFC, with decreased top-down control of impulsive reward-seeking. However, this hypothesis has been difficult to test directly, due in part to technical challenges of recording neuronal activity in vivo across this developmental period. Here, using a novel 2-photon imaging-compatible platform for recording mPFC activity during an operant reward conditioning task beginning early in life, we show that the adolescent mPFC is hyper-responsive to reward cues. Distinct populations of mPFC neurons encode reward-predictive cues across development, but representations of no-reward cues and unrewarded outcomes are relatively muted in adolescence. Chemogenetic inhibition of GABAergic neurons decreased motivation in adolescence but not in adulthood. Together, our findings indicate that reward-related activity in the adolescent mPFC does not gradually increase across development. On the contrary, adolescent mPFC neurons are hyper-responsive to reward-related stimuli and encode reward-predictive cues and outcomes through qualitatively different mechanisms relative to the adult mPFC, opening avenues to developing distinct, developmentally informed strategies for modulating reward-seeking behavior in adolescence and adulthood.
Collapse
Affiliation(s)
- Gabriela Manzano Nieves
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rachel M Rahn
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Saba N Baskoylu
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Conor M Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Velazquez-Hernandez G, Miller NW, Curtis VR, Rivera-Pacheco CM, Lowe SM, Moy SS, Zannas AS, Pégard NC, Burgos-Robles A, Rodriguez-Romaguera J. Social threat alters the behavioral structure of social motivation and reshapes functional brain connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599379. [PMID: 38948883 PMCID: PMC11212885 DOI: 10.1101/2024.06.17.599379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traumatic social experiences redefine socially motivated behaviors to enhance safety and survival. Although many brain regions have been implicated in signaling a social threat, the mechanisms by which global neural networks regulate such motivated behaviors remain unclear. To address this issue, we first combined traditional and modern behavioral tracking techniques in mice to assess both approach and avoidance, as well as sub-second behavioral changes, during a social threat learning task. We were able to identify previously undescribed body and tail movements during social threat learning and recognition that demonstrate unique alterations into the behavioral structure of social motivation. We then utilized inter-regional correlation analysis of brain activity after a mouse recognizes a social threat to explore functional communication amongst brain regions implicated in social motivation. Broad brain activity changes were observed within the nucleus accumbens, the paraventricular thalamus, the ventromedial hypothalamus, and the nucleus of reuniens. Inter-regional correlation analysis revealed a reshaping of the functional connectivity across the brain when mice recognize a social threat. Altogether, these findings suggest that reshaping of functional brain connectivity may be necessary to alter the behavioral structure of social motivation when a social threat is encountered.
Collapse
|
5
|
Barber KR, Vizcarra VS, Zilch A, Majuta L, Diezel CC, Culver OP, Hughes BW, Taniguchi M, Streicher JM, Vanderah TW, Riegel AC. The Role of Ryanodine Receptor 2 in Drug-Associated Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560743. [PMID: 37873212 PMCID: PMC10592901 DOI: 10.1101/2023.10.03.560743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type-2 ryanodine receptor (RyR2) ion channels facilitate the release of Ca 2+ from stores and serve an important function in neuroplasticity. The role for RyR2 in hippocampal-dependent learning and memory is well established and chronic hyperphosphorylation of RyR2 (RyR2P) is associated with pathological calcium leakage and cognitive disorders, including Alzheimer's disease. By comparison, little is known about the role of RyR2 in the ventral medial prefrontal cortex (vmPFC) circuitry important for working memory, decision making, and reward seeking. Here, we evaluated the basal expression and localization of RyR2 and RyR2P in the vmPFC. Next, we employed an operant model of sucrose, cocaine, or morphine self-administration (SA) followed by a (reward-free) recall test, to reengage vmPFC neurons and reactivate reward-seeking and re-evaluated the expression and localization of RyR2 and RyR2P in vmPFC. Under basal conditions, RyR2 was expressed in pyramidal cells but not regularly detected in PV/SST interneurons. On the contrary, RyR2P was rarely observed in PFC somata and was restricted to a different subcompartment of the same neuron - the apical dendrites of layer-5 pyramidal cells. Chronic SA of drug (cocaine or morphine) and nondrug (sucrose) rewards produced comparable increases in RyR2 protein expression. However, recalling either drug reward impaired the usual localization of RyR2P in dendrites and markedly increased its expression in somata immunoreactive for Fos, a marker of highly activated neurons. These effects could not be explained by chronic stress or drug withdrawal and instead appeared to require a recall experience associated with prior drug SA. In addition to showing the differential distribution of RyR2/RyR2P and affirming the general role of vmPFC in reward learning, this study provides information on the propensity of addictive drugs to redistribute RyR2P ion channels in a neuronal population engaged in drug-seeking. Hence, focusing on the early impact of addictive drugs on RyR2 function may serve as a promising approach to finding a treatment for substance use disorders.
Collapse
|
6
|
Ross RA, Kim A, Das P, Li Y, Choi YK, Thompson AT, Douglas E, Subramanian S, Ramos K, Callahan K, Bolshakov VY, Ressler KJ. Prefrontal cortex melanocortin 4 receptors (MC4R) mediate food intake behavior in male mice. Physiol Behav 2023; 269:114280. [PMID: 37369302 PMCID: PMC10528493 DOI: 10.1016/j.physbeh.2023.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Melanocortin 4 receptor (MC4R) activity in the hypothalamus is crucial for regulation of metabolism and food intake. The peptide ligands for the MC4R are associated with feeding, energy expenditure, and also with complex behaviors that orchestrate energy intake and expenditure, but the downstream neuroanatomical and neurochemical targets associated with these behaviors are elusive. In addition to strong expression in the hypothalamus, the MC4R is highly expressed in the medial prefrontal cortex, a region involved in executive function and decision-making. METHODS Using viral techniques in genetically modified male mice combined with molecular techniques, we identify and define the effects on feeding behavior of a novel population of MC4R expressing neurons in the infralimbic (IL) region of the cortex. RESULTS Here, we describe a novel population of MC4R-expressing neurons in the IL of the mouse prefrontal cortex that are glutamatergic, receive input from melanocortinergic neurons, and project to multiple regions that coordinate appetitive responses to food-related stimuli. The neurons are stimulated by application of MC4R-specific peptidergic agonist, THIQ. Deletion of MC4R from the IL neurons causes increased food intake and body weight gain and impaired executive function in simple food-related behavior tasks. CONCLUSION Together, these data suggest that MC4R neurons of the IL play a critical role in the regulation of food intake in male mice.
Collapse
Affiliation(s)
- Rachel A Ross
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry, McLean Hospital, Boston, MA, USA.
| | - Angela Kim
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Priyanka Das
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan Li
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kat Ramos
- Northeastern University, Boston, MA, USA
| | - Kathryn Callahan
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Diehl GW, Redish AD. Differential processing of decision information in subregions of rodent medial prefrontal cortex. eLife 2023; 12:e82833. [PMID: 36652289 PMCID: PMC9848391 DOI: 10.7554/elife.82833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Decision-making involves multiple cognitive processes requiring different aspects of information about the situation at hand. The rodent medial prefrontal cortex (mPFC) has been hypothesized to be central to these abilities. Functional studies have sought to link specific processes to specific anatomical subregions, but past studies of mPFC have yielded controversial results, leaving the precise nature of mPFC function unclear. To settle this debate, we recorded from the full dorso-ventral extent of mPFC in each of 8 rats, as they performed a complex economic decision task. These data revealed four distinct functional domains within mPFC that closely mirrored anatomically identified subregions, including novel evidence to divide prelimbic cortex into dorsal and ventral components. We found that dorsal aspects of mPFC (ACC, dPL) were more involved in processing information about active decisions, while ventral aspects (vPL, IL) were more engaged in motivational factors.
Collapse
Affiliation(s)
- Geoffrey W Diehl
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
| | - A David Redish
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
8
|
Fernandez-Leon JA, Engelke DS, Aquino-Miranda G, Goodson A, Rasheed MN, Do Monte FH. Neural correlates and determinants of approach-avoidance conflict in the prelimbic prefrontal cortex. eLife 2021; 10:74950. [PMID: 34913438 PMCID: PMC8853658 DOI: 10.7554/elife.74950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022] Open
Abstract
The recollection of environmental cues associated with threat or reward allows animals to select the most appropriate behavioral responses. Neurons in the prelimbic (PL) cortex respond to both threat- and reward-associated cues. However, it remains unknown whether PL regulates threat-avoidance vs. reward-approaching responses when an animals’ decision depends on previously associated memories. Using a conflict model in which male Long–Evans rats retrieve memories of shock- and food-paired cues, we observed two distinct phenotypes during conflict: (1) rats that continued to press a lever for food (Pressers) and (2) rats that exhibited a complete suppression in food seeking (Non-pressers). Single-unit recordings revealed that increased risk-taking behavior in Pressers is associated with persistent food-cue responses in PL, and reduced spontaneous activity in PL glutamatergic (PLGLUT) neurons during conflict. Activating PLGLUT neurons in Pressers attenuated food-seeking responses in a neutral context, whereas inhibiting PLGLUT neurons in Non-pressers reduced defensive responses and increased food approaching during conflict. Our results establish a causal role for PLGLUT neurons in mediating individual variability in memory-based risky decision-making by regulating threat-avoidance vs. reward-approach behaviors.
Collapse
Affiliation(s)
| | - Douglas S Engelke
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | - Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | | | - Maria N Rasheed
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| |
Collapse
|
9
|
Lucantonio F, Kim E, Su Z, Chang AJ, Bari BA, Cohen JY. Aversive stimuli bias corticothalamic responses to motivationally significant cues. eLife 2021; 10:57634. [PMID: 34738905 PMCID: PMC8570692 DOI: 10.7554/elife.57634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Making predictions about future rewards or punishments is fundamental to adaptive behavior. These processes are influenced by prior experience. For example, prior exposure to aversive stimuli or stressors changes behavioral responses to negative- and positive-value predictive cues. Here, we demonstrate a role for medial prefrontal cortex (mPFC) neurons projecting to the paraventricular nucleus of the thalamus (PVT; mPFC→PVT) in this process. We found that a history of aversive stimuli negatively biased behavioral responses to motivationally relevant cues in mice and that this negative bias was associated with hyperactivity in mPFC→PVT neurons during exposure to those cues. Furthermore, artificially mimicking this hyperactive response with selective optogenetic excitation of the same pathway recapitulated the negative behavioral bias induced by aversive stimuli, whereas optogenetic inactivation of mPFC→PVT neurons prevented the development of the negative bias. Together, our results highlight how information flow within the mPFC→PVT circuit is critical for making predictions about motivationally-relevant outcomes as a function of prior experience.
Collapse
Affiliation(s)
- Federica Lucantonio
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Eunyoung Kim
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhixiao Su
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Anna J Chang
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Bilal A Bari
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremiah Y Cohen
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
10
|
Castillo Díaz F, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev 2021; 131:953-963. [PMID: 34655655 DOI: 10.1016/j.neubiorev.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons projecting from the Substantia Nigra to the Striatum play a critical role in motor functions while dopaminergic neurons originating in the Ventral Tegmental Area (VTA) and projecting to the Nucleus Accumbens, Hippocampus and other cortical structures regulate rewarding learning. While VTA mainly consists of dopaminergic neurons, excitatory (glutamate) and inhibitory (GABA) VTA-neurons have also been described: these neurons may also modulate and contribute to shape the final dopaminergic response, which is critical for memory formation. However, given the large amount of information that is handled daily by our brain, it is essential that irrelevant information be deleted. Recently, apart from the well-established role of dopamine (DA) in learning, it has been shown that DA plays a critical role in the intrinsic active forgetting mechanisms that control storage information, contributing to the deletion of a consolidated memory. These new insights may be instrumental to identify therapies for those disorders that involve memory alterations.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
11
|
Madangopal R, Ramsey LA, Weber SJ, Brenner MB, Lennon VA, Drake OR, Komer LE, Tunstall BJ, Bossert JM, Shaham Y, Hope BT. Inactivation of the infralimbic cortex decreases discriminative stimulus-controlled relapse to cocaine seeking in rats. Neuropsychopharmacology 2021; 46:1969-1980. [PMID: 34162997 PMCID: PMC8429767 DOI: 10.1038/s41386-021-01067-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023]
Abstract
Persistent susceptibility to cue-induced relapse is a cardinal feature of addiction. Discriminative stimuli (DSs) are one type of drug-associated cue that signal drug availability (DS+) or unavailability (DS-) and control drug seeking prior to relapse. We previously established a trial-based procedure in rats to isolate DSs from context, conditioned stimuli, and other drug-associated cues during cocaine self-administration and demonstrated DS-controlled cocaine seeking up to 300 abstinence days. The behavioral and neural mechanisms underlying trial-based DS-control of drug seeking have rarely been investigated. Here we show that following discrimination training in our trial-based procedure, the DS+ and DS- independently control the expression and suppression of cocaine seeking during abstinence. Using microinjections of GABAA + GABAB receptor agonists (muscimol + baclofen) in medial prefrontal cortex, we report that infralimbic, but not prelimbic, subregion of medial prefrontal cortex is critical to persistent DS-controlled relapse to cocaine seeking after prolonged abstinence, but not DS-guided discriminated cocaine seeking or DS-controlled cocaine self-admininstration. Finally, using ex vivo whole-cell recordings from pyramidal neurons in the medial prefrontal cortex, we demonstrate that the disruption of DS-controlled cocaine seeking following infralimbic cortex microinjections of muscimol+baclofen is likely a result of suppression of synaptic transmission in the region via a presynaptic mechanism of action.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leslie A Ramsey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Megan B Brenner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Veronica A Lennon
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia R Drake
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lauren E Komer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Brendan J Tunstall
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
12
|
Wallace T, Myers B. Effects of Biological Sex and Stress Exposure on Ventromedial Prefrontal Regulation of Mood-Related Behaviors. Front Behav Neurosci 2021; 15:737960. [PMID: 34512290 PMCID: PMC8426926 DOI: 10.3389/fnbeh.2021.737960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ventral portion of the medial prefrontal cortex (vmPFC) regulates mood, sociability, and context-dependent behaviors. Consequently, altered vmPFC activity has been implicated in the biological basis of emotional disorders. Recent methodological advances have greatly enhanced the ability to investigate how specific prefrontal cell populations regulate mood-related behaviors, as well as the impact of long-term stress on vmPFC function. However, emerging preclinical data identify prominent sexual divergence in vmPFC behavioral regulation and stress responsivity. Notably, the rodent infralimbic cortex (IL), a vmPFC subregion critical for anti-depressant action, shows marked functional divergence between males and females. Accordingly, this review examines IL encoding and modulation of mood-related behaviors, including coping style, reward, and sociability, with a focus on sex-based outcomes. We also review how these processes are impacted by prolonged stress exposure. Collectively, the data suggest that chronic stress has sex-specific effects on IL excitatory/inhibitory balance that may account for sex differences in the prevalence and course of mood disorders.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Sun W, Yang Y, Chen X, Cheng Y, Li X, An L. Light Promotes Neural Correlates of Fear Memory via Enhancing Brain-Derived Neurotrophic Factor (BDNF) Expression in the Prelimbic Cortex. ACS Chem Neurosci 2021; 12:1802-1810. [PMID: 33961393 DOI: 10.1021/acschemneuro.1c00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to light has been shown to enhance vigilance and improve working memory, possibly due to changes in prefrontal function. Ample evidence supports the critical role of prefrontal cortex (PFC) in fear memory performance. However, the effects of light on memory processing and its potential mechanisms remain unclear. Here, through rats exposure conditioned to light at different memory phases, we sought evidence for the influences by employing behavioral tests, pharmacological infusions, immunoblotting, and electrophysiological recording. Exposure to light immediately following conditioning of 30 min or longer could effectively improve consolidation of fear memory without altering short-term memory or upgrading the original fear. The absence of significant freezing during baseline and intertrial interval periods ruled out the possibility of a general induction of freezing by light. Meanwhile, rats exposed to light in homecages or conditioning chambers exhibited a similar memory phenotype, indicating that light specifically enhanced the fear stimulus rather than the contextual environment. Furthermore, light exposure elevated the training-induced brain-derived neurotrophic factor (BDNF) expression in the prelimbic, but not infralimbic, subregion of the PFC. Moreover, the BDNF-TrkB pathway, but not the BDNF-p75NTR pathway, was involved in light-mediated fear memory. The enhancement in BDNF activity effectively facilitated firing correlates of prelimbic pyramidal neurons but not fast-spiking interneurons. Blocking the training-induced BDNF by its antibody abolished the effects of light on neural function and fear memory. Therefore, our findings indicate that light enhances training-induced BDNF expression that promotes the neural correlate of memory function.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yan Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiaolian Li
- Department of Neurology, Jinan Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Physiology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
14
|
Food-Seeking Behavior Is Mediated by Fos-Expressing Neuronal Ensembles Formed at First Learning in Rats. eNeuro 2021; 8:ENEURO.0373-20.2021. [PMID: 33472867 PMCID: PMC8174054 DOI: 10.1523/eneuro.0373-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
Neuronal ensembles in the infralimbic cortex (IL) develop after prolonged food self-administration training. However, rats demonstrate evidence of learning the food self-administration response as early as day 1, with responding quickly increasing to asymptotic levels. Since the contribution of individual brain regions to task performance shifts over the course of training, it remains unclear whether IL ensembles are gradually formed and refined over the course of extensive operant training, or whether functionally-relevant ensembles might be recruited and formed as early as the initial acquisition of food self-administration behavior. Here, we aimed to determine the role of IL ensembles at the earliest possible point after demonstrable learning of a response-outcome association. We first allowed rats to lever press for palatable food pellets and stopped training rats once their behavior evidenced the response-outcome association (learners). We compared their food-seeking behavior and neuronal activation (Fos protein expression) to similarly trained rats that did not form this association (non-learners). Learners had greater food-seeking behavior and neuronal activation within the medial prefrontal cortex (mPFC), suggesting that mPFC subregions might encode initial food self-administration memories. To test the functional relevance of mPFC Fos-expressing ensembles to subsequent food seeking, we tested region-wide inactivation of the IL using muscimol+baclofen and neuronal ensemble-specific ablation using the Daun02 inactivation procedure. Both region-wide inactivation and ensemble-specific inactivation of the IL significantly decreased food seeking. These data suggest that IL neuronal ensembles form during initial learning of food self-administration behavior, and furthermore, that these ensembles play a functional role in food seeking.
Collapse
|
15
|
Bravo-Rivera H, Rubio Arzola P, Caban-Murillo A, Vélez-Avilés AN, Ayala-Rosario SN, Quirk GJ. Characterizing Different Strategies for Resolving Approach-Avoidance Conflict. Front Neurosci 2021; 15:608922. [PMID: 33716644 PMCID: PMC7947632 DOI: 10.3389/fnins.2021.608922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 12/01/2022] Open
Abstract
The ability of animals to maximize benefits and minimize costs during approach-avoidance conflicts is an important evolutionary tool, but little is known about the emergence of specific strategies for conflict resolution. Accordingly, we developed a simple approach-avoidance conflict task in rats that pits the motivation to press a lever for sucrose against the motivation to step onto a distant platform to avoid a footshock delivered at the end of a 30 s tone (sucrose is available only during the tone). Rats received conflict training for 16 days to give them a chance to optimize their strategy by learning to properly time the expression of both behaviors across the tone. Rats unexpectedly separated into three distinct subgroups: those pressing early in the tone and avoiding later (Timers, 49%); those avoiding throughout the tone (Avoidance-preferring, 32%); and those pressing throughout the tone (Approach-preferring, 19%). The immediate early gene cFos revealed that Timers showed increased activity in the ventral striatum and midline thalamus relative to the other two subgroups, Avoidance-preferring rats showed increased activity in the amygdala, and Approach-preferring rats showed decreased activity in the prefrontal cortex. This pattern is consistent with low fear and high behavioral flexibility in Timers, suggesting the potential of this task to reveal the neural mechanisms of conflict resolution.
Collapse
Affiliation(s)
- Hector Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Patricia Rubio Arzola
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Albit Caban-Murillo
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Adriana N. Vélez-Avilés
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Shantée N. Ayala-Rosario
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J. Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
16
|
Kaminska B, Caballero JP, Moorman DE. Integration of value and action in medial prefrontal neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:57-82. [PMID: 33785156 DOI: 10.1016/bs.irn.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rodent medial prefrontal cortex (mPFC) plays a key role in regulating cognition, emotion, and behavior. mPFC neurons are activated in diverse experimental paradigms, raising the questions of whether there are specific task elements or dimensions encoded by mPFC neurons, and whether these encoded parameters are selective to neurons in particular mPFC subregions or networks. Here, we consider the role of mPFC neurons in processing appetitive and aversive cues, outcomes, and related behaviors. mPFC neurons are strongly activated in tasks probing value and outcome-associated actions, but these responses vary across experimental paradigms. Can we identify specific categories of responses (e.g., positive or negative value), or do mPFC neurons exhibit response properties that are too heterogeneous/complex to cluster into distinct conceptual groups? Based on a review of relevant studies, we consider what has been done and what needs to be further explored in order to address these questions.
Collapse
Affiliation(s)
- Beata Kaminska
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jessica P Caballero
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States; Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
17
|
An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat Methods 2020; 17:1147-1155. [PMID: 32895537 PMCID: PMC8169200 DOI: 10.1038/s41592-020-0936-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
Genetically encoded dopamine sensors based on green fluorescent protein (GFP) enable high-resolution imaging of dopamine dynamics in behaving animals. However, these GFP-based variants cannot be readily combined with commonly used optical sensors and actuators, due to spectral overlap. We therefore engineered red-shifted variants of dopamine sensors called RdLight1, based on mApple. RdLight1 can be combined with GFP-based sensors with minimal interference and shows high photostability, permitting prolonged continuous imaging. We demonstrate the utility of RdLight1 for receptor-specific pharmacological analysis in cell culture, simultaneous assessment of dopamine release and cell-type-specific neuronal activity and simultaneous subsecond monitoring of multiple neurotransmitters in freely behaving rats. Dual-color photometry revealed that dopamine release in the nucleus accumbens evoked by reward-predictive cues is accompanied by a rapid suppression of glutamate release. By enabling multiplexed imaging of dopamine with other circuit components in vivo, RdLight1 opens avenues for understanding many aspects of dopamine biology.
Collapse
|
18
|
Hart EE, Sharpe MJ, Gardner MPH, Schoenbaum G. Responding to preconditioned cues is devaluation sensitive and requires orbitofrontal cortex during cue-cue learning. eLife 2020; 9:e59998. [PMID: 32831173 PMCID: PMC7481003 DOI: 10.7554/elife.59998] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The orbitofrontal cortex (OFC) is necessary for inferring value in tests of model-based reasoning, including in sensory preconditioning. This involvement could be accounted for by representation of value or by representation of broader associative structure. We recently reported neural correlates of such broader associative structure in OFC during the initial phase of sensory preconditioning (Sadacca et al., 2018). Here, we used optogenetic inhibition of OFC to test whether these correlates might be necessary for value inference during later probe testing. We found that inhibition of OFC during cue-cue learning abolished value inference during the probe test, inference subsequently shown in control rats to be sensitive to devaluation of the expected reward. These results demonstrate that OFC must be online during cue-cue learning, consistent with the argument that the correlates previously observed are not simply downstream readouts of sensory processing and instead contribute to building the associative model supporting later behavior.
Collapse
Affiliation(s)
- Evan E Hart
- National Institute on Drug Abuse Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Melissa J Sharpe
- National Institute on Drug Abuse Intramural Research Program, National Institutes of HealthBaltimoreUnited States
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Matthew PH Gardner
- National Institute on Drug Abuse Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, National Institutes of HealthBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Psychiatry, University of Maryland School of MedicineBaltimoreUnited States
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
19
|
Kyriazi P, Headley DB, Paré D. Different Multidimensional Representations across the Amygdalo-Prefrontal Network during an Approach-Avoidance Task. Neuron 2020; 107:717-730.e5. [PMID: 32562662 PMCID: PMC7442738 DOI: 10.1016/j.neuron.2020.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
The prelimbic (PL) area and basolateral amygdala (lateral [LA] and basolateral [BL] nuclei) have closely related functions and similar extrinsic connectivity. Reasoning that the computational advantage of such redundancy should be reflected in differences in how these structures represent information, we compared the coding properties of PL and amygdala neurons during a task that requires rats to produce different conditioned defensive or appetitive behaviors. Rather than unambiguous regional differences in the identities of the variables encoded, we found gradients in how the same variables are represented. Whereas PL and BL neurons represented many different parameters through minor variations in firing rates, LA cells coded fewer task features with stronger changes in activity. At the population level, whereas valence could be easily distinguished from amygdala activity, PL neurons could distinguish both valence and trial identity as well as or better than amygdala neurons. Thus, PL has greater representational capacity.
Collapse
Affiliation(s)
- Pinelopi Kyriazi
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers State University, Newark, NJ 07102, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA.
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA.
| |
Collapse
|
20
|
Sex and region-specific effects of high fat diet on PNNs in obesity susceptible rats. Physiol Behav 2020; 222:112963. [PMID: 32416158 DOI: 10.1016/j.physbeh.2020.112963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that primarily surround fast-spiking parvalbumin (PV)-containing interneurons within the PFC. They regulate PV neuron function and plasticity to maintain cortical excitatory/inhibitory balance. For example, reductions in PNN intensity are associated with reduced local inhibition and enhanced pyramidal neuron firing. We previously found that exposure to dietary high fat reduced PNN intensity within the PFC of male Sprague-Dawley (SD) rats. However, how high fat affects PNNs in the PFC of females or in obesity-vulnerable vs. -resistant models is unknown. Therefore, we gave male and female SD, selectively bred obesity-prone (OP), and obesity-resistant rats (OR) free access to standard lab chow or 60% high fat for 21 days. We then measured the number of PNN positive cells and PNN intensity (determined by Wisteria floribunda agglutinin [WFA] staining) as well as the number of PV positive neurons using immunohistochemistry. We found sex and region-specific effects of dietary high fat on PNN intensity, in the absence of robust changes in cell number. Effects were comparable in SD and OP but differed in OR rats. Specifically, high fat reduced PNN intensities in male SD and OP rats but increased PNN intensities in female SD and OP rats. In contrast, effects in ORs were opposite, with males showing increases in PNN intensity and females showing a reduction in intensity. Finally, these effects were also region specific, with diet-induced reductions in PNN intensity found in the prelimbic PFC (PL-PFC) and ventral medial orbital frontal cortex (vmOFC) of SD and OP males in the absence of changes in the infralimbic PFC (IL-PFC), and increases in PNN intensity in the IL-PFC of SD and OP females in the absence of changes in other regions. These results are discussed in light of roles PNNs may play in influencing PFC neuronal activity and the differential role of these sub-regions in food-seeking and motivation.
Collapse
|
21
|
Reyes-Ortega P, Ragu Varman D, Rodríguez VM, Reyes-Haro D. Anorexia induces a microglial associated pro-inflammatory environment and correlates with neurodegeneration in the prefrontal cortex of young female rats. Behav Brain Res 2020; 392:112606. [PMID: 32387351 DOI: 10.1016/j.bbr.2020.112606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 01/13/2023]
Abstract
Dehydration-Induced Anorexia (DIA) is a murine model that reproduces weight loss and avoidance of food, despite its availability. The prefrontal cortex (PFC) integrates sensory inputs and updates associative learning to promote (hunger) or inhibit (satiety) food-seeking behavior. In this study we tested if anorexia induces a pro-inflammatory environment associated with microglia in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC), specific subregions of the PFC involved in appetite. Our results showed that anorexia increased microglial density, promoted a de-ramified morphology and augmented the de-ramified/ramified ratio in the mPFC and OFC but not in the motor cortex. Anorexia also increased the expression of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. This pro-inflammatory environment associated with microglia activation correlates with neuronal damage as revealed by Fluoro Jade C (FJC) and NeuN immunolabeling. We conclude that anorexia triggers a pro-inflammatory environment associated with microglia that correlates with neurodegeneration in the mPFC and OFC.
Collapse
Affiliation(s)
- Pamela Reyes-Ortega
- Departamento de Neurobiología Celular y Molecular. Instituto de Neurobiología. Universidad Nacional Autónoma de México, Campus Juriquilla. Boulevard Juriquilla #3001. Juriquilla, Querétaro; CP 76230, México
| | - Durairaj Ragu Varman
- Departamento de Neurobiología Celular y Molecular. Instituto de Neurobiología. Universidad Nacional Autónoma de México, Campus Juriquilla. Boulevard Juriquilla #3001. Juriquilla, Querétaro; CP 76230, México; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Verónica M Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva. Instituto de Neurobiología. Universidad Nacional Autónoma de México, Campus Juriquilla. Boulevard Juriquilla #3001. Juriquilla, Querétaro; CP 76230, México
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular. Instituto de Neurobiología. Universidad Nacional Autónoma de México, Campus Juriquilla. Boulevard Juriquilla #3001. Juriquilla, Querétaro; CP 76230, México.
| |
Collapse
|
22
|
Ishikawa J, Sakurai Y, Ishikawa A, Mitsushima D. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology (Berl) 2020; 237:639-654. [PMID: 31912190 DOI: 10.1007/s00213-019-05398-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
RATIONALE Control of reward-seeking behavior under conditions of punishment is an important function for survival. OBJECTIVES AND METHODS We designed a task in which rats could choose to either press a lever and obtain a food pellet accompanied by a footshock or refrain from pressing the lever to avoid footshock, in response to tone presentation. In the task, footshock intensity steadily increased, and the task was terminated when the lever press probability reached < 25% (last intensity). Rats were trained until the last intensity was stable. Subsequently, we investigated the effects of the pharmacological inactivation of the ventromedial prefrontal cortex (vmPFC), lateral orbitofrontal cortex (lOFC), and basolateral amygdala (BLA) on task performance. RESULTS Bilateral inactivation of the vmPFC, lOFC, and BLA did not alter lever press responses at the early stage of the task. The number of lever presses increased following vmPFC and BLA inactivation but decreased following lOFC inactivation during the later stage of the task. The last intensity was elevated by vmPFC or BLA inactivation but lowered by lOFC inactivation. Disconnection of the vmPFC-BLA pathway induced behavioral alterations that were similar to vmPFC or BLA inactivation. Inactivation of any regions did not alter footshock sensitivity and anxiety levels. CONCLUSIONS Our results demonstrate a strong role of the vmPFC and BLA and their interactions in reward restraint to avoid punishment and a prominent role of the lOFC in reward-seeking under reward/punishment conflict situations.
Collapse
Affiliation(s)
- Junko Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Yoshio Sakurai
- Laboratory of Neural Information, Systems Neuroscience, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Akinori Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Dai Mitsushima
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
23
|
Keefer SE, Petrovich GD. The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning. Behav Neurosci 2020; 134:34-44. [PMID: 31829643 PMCID: PMC6944768 DOI: 10.1037/bne0000349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmental cues can become predictors of food availability through Pavlovian conditioning. Two forebrain regions important in this associative learning are the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). Recent work showed the BLA-mPFC pathway is activated when a cue reliably signals food, suggesting the BLA informs the mPFC of the cue's value. The current study tested this hypothesis by altering the value of 2 food cues using reversal learning and illness-induced devaluation paradigms. Rats that received unilateral excitotoxic lesions of the BLA and mPFC contralaterally placed, along with ipsilateral and sham controls, underwent discriminative conditioning, followed by reversal learning and then devaluation. All groups successfully discriminated between 2 auditory stimuli that were followed by food delivery (conditional stimulus [CS] +) or not rewarded (CS-), demonstrating this learning does not require BLA-mPFC communication. When the outcomes of the stimuli were reversed, the rats with disconnected BLA-mPFC (contralateral condition) showed increased responding to the CSs, especially to the rCS + (original CS-) during the first session, suggesting impaired cue memory recall and behavioral inhibition compared to the other groups. For devaluation, all groups successfully learned conditioned taste aversion; however, there was no evidence of cue devaluation or differences between groups. Interestingly, at the end of testing, the nondevalued contralateral group was still responding more to the original CS + (rCS-) compared to the devalued contralateral group. These results suggest a potential role for BLA-mPFC communication in guiding appropriate responding during periods of behavioral flexibility when the outcomes, and thus the values, of learned cues are altered. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Sara E. Keefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | - Gorica D. Petrovich
- Department of Psychology, Boston College, 140 Commomwealth Avenue, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
24
|
Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex. Psychopharmacology (Berl) 2020; 237:1267-1280. [PMID: 32025777 PMCID: PMC7196947 DOI: 10.1007/s00213-020-05454-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/05/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE During value-based decision-making, organisms make choices on the basis of reward expectations, which have been formed during prior action-outcome learning. Although it is known that neuronal manipulations of different subregions of the rat prefrontal cortex (PFC) have qualitatively different effects on behavioral tasks involving value-based decision-making, it is unclear how these regions contribute to the underlying component processes. OBJECTIVES Assessing how different regions of the rodent PFC contribute to component processes of value-based decision-making behavior, including reward (or positive feedback) learning, punishment (or negative feedback) learning, response persistence, and exploration versus exploitation. METHODS We performed behavioral modeling of data of rats in a probabilistic reversal learning task after pharmacological inactivation of five PFC subregions, to assess how inactivation of these different regions affected the structure of responding of animals in the task. RESULTS Our results show reductions in reward and punishment learning after PFC subregion inactivation. The prelimbic, infralimbic, lateral orbital, and medial orbital PFC particularly contributed to punishment learning, and the prelimbic and lateral orbital PFC to reward learning. In addition, response persistence depended on the infralimbic and medial orbital PFC. As a result, pharmacological inactivation of the infralimbic and lateral orbitofrontal cortex reduced the number of reversals achieved, whereas inactivation of the prelimbic and medial orbitofrontal cortex decreased the number of rewards obtained. Finally, using simulated data, we explain discrepancies with a previous study and demonstrate complex, interacting relationships between conventional measures of probabilistic reversal learning performance, such as win-stay/lose-switch behavior, and component processes of value-based decision-making. CONCLUSIONS Together, our data suggest that distinct components of value-based learning and decision-making are generated in medial and orbital PFC regions, displaying functional specialization and overlap, with a prominent role of large parts of the PFC in negative feedback processing.
Collapse
|
25
|
Burgos-Robles A, Gothard KM, Monfils MH, Morozov A, Vicentic A. Conserved features of anterior cingulate networks support observational learning across species. Neurosci Biobehav Rev 2019; 107:215-228. [PMID: 31509768 PMCID: PMC6875610 DOI: 10.1016/j.neubiorev.2019.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
The ability to observe, interpret, and learn behaviors and emotions from conspecifics is crucial for survival, as it bypasses direct experience to avoid potential dangers and maximize rewards and benefits. The anterior cingulate cortex (ACC) and its extended neural connections are emerging as important networks for the detection, encoding, and interpretation of social signals during observational learning. Evidence from rodents and primates (including humans) suggests that the social interactions that occur while individuals are exposed to important information in their environment lead to transfer of information across individuals that promotes adaptive behaviors in the form of either social affiliation, alertness, or avoidance. In this review, we first showcase anatomical and functional connections of the ACC in primates and rodents that contribute to the perception of social signals. We then discuss species-specific cognitive and social functions of the ACC and differentiate between neural activity related to 'self' and 'other', extending into the difference between social signals received and processed by the self, versus observing social interactions among others. We next describe behavioral and neural events that contribute to social learning via observation. Finally, we discuss some of the neural mechanisms underlying observational learning within the ACC and its extended network.
Collapse
Affiliation(s)
- Anthony Burgos-Robles
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Katalin M Gothard
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Marie H Monfils
- Department of Psychology, Institute for Mental Health Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexei Morozov
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Rockville, MD 20852, USA.
| |
Collapse
|
26
|
Differential Effects of Dorsal and Ventral Medial Prefrontal Cortex Inactivation during Natural Reward Seeking, Extinction, and Cue-Induced Reinstatement. eNeuro 2019; 6:ENEURO.0296-19.2019. [PMID: 31519696 PMCID: PMC6763834 DOI: 10.1523/eneuro.0296-19.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 01/23/2023] Open
Abstract
Rodent dorsal medial prefrontal cortex (mPFC), typically prelimbic cortex, is often described as promoting actions such as reward seeking, whereas ventral mPFC, typically infralimbic cortex, is thought to promote response inhibition. However, both dorsal and ventral mPFC are necessary for both expression and suppression of different behaviors, and each region may contribute to different functions depending on the specifics of the behavior tested. To better understand the roles of dorsal and ventral mPFC in motivated behavior we pharmacologically inactivated each area during operant fixed ratio 1 (FR1) seeking for a natural reward (sucrose), extinction, cue-induced reinstatement, and progressive ratio (PR) sucrose seeking in male Long–Evans rats. Bilateral inactivation of dorsal mPFC, but not ventral mPFC increased reward seeking during FR1. Inactivation of both dorsal and ventral mPFC decreased seeking during extinction. Bilateral inactivation of ventral mPFC, but not dorsal mPFC decreased reward seeking during cue-induced reinstatement. No effect of inactivation was found during PR. Our data contrast sharply with observations seen during drug seeking and fear conditioning, indicating that previously established roles of dorsal mPFC = going versus ventral mPFC = stopping are not applicable to all motivated behaviors and/or outcomes. Our results indicate that dichotomous functions of dorsal versus ventral mPFC, if they exist, may align better with other models, or may require the development of a new framework in which these multifaceted brain areas play different roles in action control depending on the behavioral context in which they are engaged.
Collapse
|
27
|
Khoo SY, Sciascia JM, Pettorelli A, Maddux JMN, Chaudhri N. The medial prefrontal cortex is required for responding to alcohol-predictive cues but only in the absence of alcohol delivery. J Psychopharmacol 2019; 33:842-854. [PMID: 31070082 DOI: 10.1177/0269881119844180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The prelimbic medial prefrontal cortex is implicated in promoting drug-seeking in relapse tests. However, drug-seeking behaviour is typically extinguished before a test and tests normally occur without drug delivery. AIMS We investigated the involvement of the prelimbic and the infralimbic cortex in responding elicited by a non-extinguished cue for alcohol that was presented without alcohol in an alcohol-associated context or a neutral context, and in responding to the same cue when it was paired with alcohol. METHODS Male, Long-Evans rats (220-240 g on arrival) were acclimated to 15% ethanol (v/v; 'alcohol') and then trained to associate a conditioned stimulus (10 s white noise; 15 trials/session) with alcohol delivery into a fluid port (0.2 mL/conditioned stimulus, 3 mL per session) for oral intake. Conditioning sessions occurred in a specific 'alcohol context' and were alternated daily with exposure to a second 'neutral' context that contained neither the conditioned stimulus nor alcohol. RESULTS At test, functional prelimbic cortex inactivation using baclofen/muscimol reduced fluid port entries elicited by a non-extinguished conditioned stimulus that was presented without alcohol, but had no subsequent impact on port entries when the conditioned stimulus was paired with alcohol. Similar results were obtained following infralimbic cortex inactivation; however, infralimbic cortex inactivation also non-specifically reduced port entries in the absence of alcohol. CONCLUSIONS These data indicate that the prelimbic and infralimbic cortex are involved in responding to cues for alcohol when alcohol delivery is omitted, but suggest that other brain regions are engaged in responding to such cues in the presence of alcohol.
Collapse
Affiliation(s)
- Shaun Y Khoo
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| | - Joanna M Sciascia
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| | - Annie Pettorelli
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| | - Jean-Marie N Maddux
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada.,2 Department of Psychology, Lake Forest College, Lake Forest, IL, USA
| | - Nadia Chaudhri
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| |
Collapse
|
28
|
Corticolimbic Mechanisms of Behavioral Inhibition under Threat of Punishment. J Neurosci 2019; 39:4353-4364. [PMID: 30902868 DOI: 10.1523/jneurosci.2814-18.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023] Open
Abstract
Being able to limit the pursuit of reward to prevent negative consequences is an important expression of behavioral inhibition. Everyday examples of an inability to exert such control over behavior are the overconsumption of food and drugs of abuse, which are important factors in the development of obesity and addiction, respectively. Here, we use a behavioral task that assesses the ability of male rats to exert behavioral restraint at the mere sight of palatable food during the presentation of an audiovisual threat cue to investigate the corticolimbic underpinnings of behavioral inhibition. We demonstrate a prominent role for the medial prefrontal cortex in the exertion of control over behavior under threat of punishment. Moreover, task engagement relies on function of the ventral striatum, whereas the basolateral amygdala mediates processing of the threat cue. Together, these data show that inhibition of reward pursuit requires the coordinated action of a network of corticolimbic structures.SIGNIFICANCE STATEMENT There is a need for translational models that allow to dissect mechanisms underlying the processes involved in controlling behavior. In this study, we present a novel behavioral task that assesses the ability of rats to exert behavioral restraint over the consumption of a visually present sucrose pellet during the presentation of an audiovisual threat cue. This task requires relatively little behavioral training and it discerns distinct behavioral impairments, including a failure to retrieve stimulus value, a reduced task engagement, and compromised inhibition of behavior. Using pharmacological inactivations of different regions of the corticolimbic system of the rat, we demonstrate dissociable roles for the prefrontal cortex, amygdala, and striatum in inhibition of reward pursuit under threat of punishment.
Collapse
|
29
|
Zhao Z, Ma L, Wang Y, Qin L. A comparison of neural responses in the primary auditory cortex, amygdala, and medial prefrontal cortex of cats during auditory discrimination tasks. J Neurophysiol 2019; 121:785-798. [PMID: 30649979 DOI: 10.1152/jn.00425.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Discriminating biologically relevant sounds is crucial for survival. The neurophysiological mechanisms that mediate this process must register both the reward significance and the physical parameters of acoustic stimuli. Previous experiments have revealed that the primary function of the auditory cortex (AC) is to provide a neural representation of the acoustic parameters of sound stimuli. However, how the brain associates acoustic signals with reward remains unresolved. The amygdala (AMY) and medial prefrontal cortex (mPFC) play keys role in emotion and learning, but it is unknown whether AMY and mPFC neurons are involved in sound discrimination or how the roles of AMY and mPFC neurons differ from those of AC neurons. To examine this, we recorded neural activity in the primary auditory cortex (A1), AMY, and mPFC of cats while they performed a Go/No-go task to discriminate sounds with different temporal patterns. We found that the activity of A1 neurons faithfully coded the temporal patterns of sound stimuli; this activity was not affected by the cats' behavioral choices. The neural representation of stimulus patterns decreased in the AMY, but the neural activity increased when the cats were preparing to discriminate the sound stimuli and waiting for reward. Neural activity in the mPFC did not represent sound patterns, but it showed a clear association with reward and was modulated by the cats' behavioral choices. Our results indicate that the initial auditory representation in A1 is gradually transformed into a stimulus-reward association in the AMY and mPFC to ultimately generate a behavioral choice. NEW & NOTEWORTHY We compared the characteristics of neural activities of primary auditory cortex (A1), amygdala (AMY), and medial prefrontal cortex (mPFC) while cats were performing the same auditory discrimination task. Our results show that there is a gradual transformation of the neural code from a faithful temporal representation of the stimulus in A1, which is insensitive to behavioral choices, to an association with the predictive reward in AMY and mPFC, which, to some extent, is correlated with the animal's behavioral choice.
Collapse
Affiliation(s)
- Zhenling Zhao
- Jinan Biomedicine R&D Center, School of Life Science and Technology, Jinan University , Guangzhou , People's Republic of China
| | - Lanlan Ma
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yifei Wang
- Jinan Biomedicine R&D Center, School of Life Science and Technology, Jinan University , Guangzhou , People's Republic of China
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
30
|
Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 2018; 1713:16-31. [PMID: 30513287 DOI: 10.1016/j.brainres.2018.11.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
Decades of research suggest that the mesocortical dopamine system exerts powerful control over mPFC physiology and function. Indeed, dopamine signaling in the medial prefrontal cortex (mPFC) is implicated in a vast array of processes, including working memory, stimulus discrimination, stress responses, and emotional and behavioral control. Consequently, even slight perturbations within this delicate system result in profound disruptions of mPFC-mediated processes. Many neuropsychiatric disorders are associated with dysregulation of mesocortical dopamine, including schizophrenia, depression, attention deficit hyperactivity disorder, post-traumatic stress disorder, among others. Here, we review the anatomy and functions of the mesocortical dopamine system. In contrast to the canonical role of striatal dopamine in reward-related functions, recent work has revealed that mesocortical dopamine fine-tunes distinct efferent projection populations in a manner that biases subsequent behavior towards responding to stimuli associated with potentially aversive outcomes. We propose a framework wherein dopamine can serve as a signal for switching mPFC states by orchestrating how information is routed to the rest of the brain.
Collapse
Affiliation(s)
- Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Ventral CA3 Activation Mediates Prophylactic Ketamine Efficacy Against Stress-Induced Depressive-like Behavior. Biol Psychiatry 2018; 84:846-856. [PMID: 29615190 PMCID: PMC6107435 DOI: 10.1016/j.biopsych.2018.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND We previously reported that a single injection of ketamine prior to stress protects against the onset of depressive-like behavior and attenuates learned fear. However, the molecular pathways and brain circuits underlying ketamine-induced stress resilience are still largely unknown. METHODS Here, we tested whether prophylactic ketamine administration altered neural activity in the prefrontal cortex and/or hippocampus. Mice were injected with saline or ketamine (30 mg/kg) 1 week before social defeat. Following behavioral tests assessing depressive-like behavior, mice were sacrificed and brains were processed to quantify ΔFosB expression. In a second set of experiments, mice were stereotaxically injected with viral vectors into ventral CA3 (vCA3) in order to silence or overexpress ΔFosB prior to prophylactic ketamine administration. In a third set of experiments, ArcCreERT2 mice, a line that allows for the indelible labeling of neural ensembles activated by a single experience, were used to quantify memory traces representing a contextual fear conditioning experience following prophylactic ketamine administration. RESULTS Prophylactic ketamine administration increased ΔFosB expression in the ventral dentate gyrus and vCA3 of social defeat mice but not of control mice. Transcriptional silencing of ΔFosB activity in vCA3 inhibited prophylactic ketamine efficacy, while overexpression of ΔFosB mimicked and occluded ketamine's prophylactic effects. In ArcCreERT2 mice, ketamine administration altered memory traces representing the contextual fear conditioning experience in vCA3 but not in the ventral dentate gyrus. CONCLUSIONS Our data indicate that prophylactic ketamine may be protective against a stressor by altering neural activity, specifically the neural ensembles representing an individual stressor in vCA3.
Collapse
|
32
|
Selleck RA, Zhang W, Mercier HD, Padival M, Rosenkranz JA. Limited prefrontal cortical regulation over the basolateral amygdala in adolescent rats. Sci Rep 2018; 8:17171. [PMID: 30464293 PMCID: PMC6249319 DOI: 10.1038/s41598-018-35649-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023] Open
Abstract
Cognitive regulation of emotion develops from childhood into adulthood. This occurs in parallel with maturation of prefrontal cortical (PFC) regulation over the amygdala. The cellular substrates for this regulation may include PFC activation of inhibitory GABAergic elements in the amygdala. The purpose of this study was to determine whether PFC regulation over basolateral amygdala area (BLA) in vivo is immature in adolescence, and if this is due to immaturity of GABAergic elements or PFC excitatory inputs. Using in vivo extracellular electrophysiological recordings from anesthetized male rats we found that in vivo summation of PFC inputs to the BLA was less regulated by GABAergic inhibition in adolescents (postnatal day 39) than adults (postnatal day 72-75). In addition, stimulation of either prelimbic or infralimbic PFC evokes weaker inhibition over basal (BA) and lateral (LAT) nuclei of the BLA in adolescents. This was dictated by both weak recruitment of inhibition in LAT and weak excitatory effects of PFC in BA. The current results may contribute to differences in adolescent cognitive regulation of emotion. These findings identify specific elements that undergo adolescent maturation and may therefore be sensitive to environmental disruptions that increase risk for psychiatric disorders.
Collapse
Affiliation(s)
- Ryan A. Selleck
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Wei Zhang
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Hannah D. Mercier
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Mallika Padival
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - J. Amiel Rosenkranz
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| |
Collapse
|
33
|
Alcohol Consumption during Adolescence in a Mouse Model of Binge Drinking Alters the Intrinsic Excitability and Function of the Prefrontal Cortex through a Reduction in the Hyperpolarization-Activated Cation Current. J Neurosci 2018; 38:6207-6222. [PMID: 29915134 DOI: 10.1523/jneurosci.0550-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 12/20/2022] Open
Abstract
Periodic episodes of excessive alcohol consumption ("binge drinking") occur frequently among adolescents, and early binge drinking is associated with an increased risk of alcohol use disorders later in life. The PFC undergoes significant development during adolescence and hence may be especially susceptible to the effects of binge drinking. In humans and in animal models, adolescent alcohol exposure is known to alter PFC neuronal activity and produce deficits in PFC-dependent behaviors, such as decision making, response inhibition, and working memory. Using a voluntary intermittent access to alcohol (IA EtOH) procedure in male mice, we demonstrate that binge-level alcohol consumption during adolescence leads to altered drinking patterns and working memory deficits in young adulthood, two outcomes that suggest medial PFC dysfunction. We recorded from pyramidal neurons (PNs) in the prelimbic subregion of the medial PFC in slices obtained from mice that had IA EtOH and found that they display altered excitability, including a hyperpolarization of the resting membrane potential and reductions in the hyperpolarization-activated cation current (Ih) and in intrinsic persistent activity (a mode of neuronal firing that is dependent on Ih). Many of these effects on intrinsic excitability were sustained following abstinence and observed in mice that showed working memory deficits. In addition, we found that resting membrane potential and the Ih-dependent voltage "sag" in prelimbic PFC PNs are developmentally regulated during adolescence, suggesting that adolescent alcohol exposure may compromise PFC function by arresting the normal developmental trajectory of PN intrinsic excitability.SIGNIFICANCE STATEMENT Binge alcohol drinking during adolescence has negative consequences for the function of the developing PFC. Using a mouse model of voluntary binge drinking during adolescence, we found that this behavior leads to working memory deficits and altered drinking behavior in adulthood. In addition, we found that adolescent drinking is associated with specific changes to the intrinsic excitability of pyramidal neurons in the PFC, reducing the ability of these neurons to generate intrinsic persistent activity, a phenomenon thought to be important for working memory. These findings may help explain why human adolescent binge drinkers show performance deficits on tasks mediated by the PFC.
Collapse
|
34
|
Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ. Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. eLife 2018; 7:34657. [PMID: 29851381 PMCID: PMC5980229 DOI: 10.7554/elife.34657] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/06/2018] [Indexed: 12/27/2022] Open
Abstract
Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Christian Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Pablo A Pagan-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Anthony Burgos-Robles
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ciorana Roman-Ortiz
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
35
|
Neural Activity in Ventral Medial Prefrontal Cortex Is Modulated More Before Approach Than Avoidance During Reinforced and Extinction Trial Blocks. J Neurosci 2018; 38:4584-4597. [PMID: 29661965 DOI: 10.1523/jneurosci.2579-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022] Open
Abstract
Ventromedial prefrontal cortex (vmPFC) is thought to provide regulatory control over Pavlovian fear responses and has recently been implicated in appetitive approach behavior, but much less is known about its role in contexts in which appetitive and aversive outcomes can be obtained and avoided, respectively. To address this issue, we recorded from single neurons in vmPFC while male rats performed our combined approach and avoidance task under reinforced and non-reinforced (extinction) conditions. Surprisingly, we found that cues predicting reward modulated cell firing in vmPFC more often and more robustly than cues preceding avoidable shock; in addition, firing of vmPFC neurons was both response (press or no-press) and outcome (reinforced or extinction) selective. These results suggest a complex role for vmPFC in regulating behavior and support its role in appetitive contexts during both reinforced and non-reinforced conditions.SIGNIFICANCE STATEMENT Selecting context-appropriate behaviors to gain reward or avoid punishment is critical for survival. Although the role of ventromedial prefrontal cortex (vmPFC) in mediating fear responses is well established, vmPFC has also been implicated in the regulation of reward-guided approach and extinction. Many studies have used indirect methods and simple behavioral procedures to study vmPFC, which leaves the literature incomplete. We recorded vmFPC neural activity during a complex cue-driven combined approach and avoidance task and during extinction. Surprisingly, we found very little vmPFC modulation to cues predicting avoidable shock, whereas cues predicting reward approach robustly modulated vmPFC firing in a response- and outcome-selective manner. This suggests a more complex role for vmPFC than current theories suggest, specifically regarding context-specific behavioral optimization.
Collapse
|
36
|
Exposure to the Abused Inhalant Toluene Alters Medial Prefrontal Cortex Physiology. Neuropsychopharmacology 2018; 43:912-924. [PMID: 28589963 PMCID: PMC5809778 DOI: 10.1038/npp.2017.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022]
Abstract
Inhalants, including toluene, target the addiction neurocircuitry and are often one of the first drugs of abuse tried by adolescents. The medial prefrontal cortex (mPFC) is involved in regulating goal-directed/reward-motivated behaviors and different mPFC sub-regions have been proposed to promote (prelimbic, PRL) or inhibit (infralimbic, IL) these behaviors. While this dichotomy has been studied in the context of other drugs of abuse, it is not known whether toluene exposure differentially affects neurons within PRL and IL regions. To address this question, we used whole-cell electrophysiology and determined the intrinsic excitability of PRL and IL pyramidal neurons in adolescent rats 24 h following a brief exposure to air or toluene vapor (10 500 p.p.m.). Prior to exposure, fluorescent retrobeads were injected into the NAc core (NAcc) or shell (NAcs) sub-regions to identify projection-specific mPFC neurons. In toluene treated adolescent rats, layer 5/6 NAcc projecting PRL (PRL5/6) neurons fired fewer action potentials and this was associated with increased rheobase, increased spike duration, and reductions in membrane resistance and amplitude of the Ih current. No changes in excitability were observed in layer 2/3 NAcc projecting PRL (PRL2/3) neurons. In contrast to PRL neurons, layer 5 IL (IL5) and layer 2/3 (IL2/3) NAcc projecting neurons showed enhanced firing in toluene-exposed animals and in IL5 neurons, this was associated with a reduction in rheobase and AHP. For NAcs projecting neurons, toluene exposure significantly decreased firing of IL5 neurons and this was accompanied by an increased rheobase, increased spike duration, and reduced Ih amplitude. The intrinsic excitability of PRL5, PRL2/3, and IL2/3 neurons projecting to the NAcs was not affected by exposure to toluene. The changes in excitability observed 24 h after toluene exposure were not observed when recordings were performed 7 days after the exposure. Finally, there were no changes in intrinsic excitability of any region in rats exposed to toluene as adults. These findings demonstrate that specific projections of the reward circuitry are uniquely susceptible to the effects of toluene during adolescence supporting the idea that adolescence is a critical period of the development that is vulnerable to drugs of abuse.
Collapse
|
37
|
Sun W, Li X, An L. Distinct roles of prelimbic and infralimbic proBDNF in extinction of conditioned fear. Neuropharmacology 2018; 131:11-19. [DOI: 10.1016/j.neuropharm.2017.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/10/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022]
|
38
|
Chemogenetic Excitation of Accumbens-Projecting Infralimbic Cortical Neurons Blocks Toluene-Induced Conditioned Place Preference. J Neurosci 2018; 38:1462-1471. [PMID: 29317484 DOI: 10.1523/jneurosci.2503-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022] Open
Abstract
Abuse rates for inhalants among adolescents continue to be high, yet preclinical models for studying mechanisms underlying inhalant abuse remain limited. Our laboratory has previously shown that, in male rats, an acute binge-like exposure to toluene vapor that mimics human solvent abuse modifies the intrinsic excitability of mPFC pyramidal neurons projecting to the NAc. These changes showed region (infralimbic; IL vs prelimbic; PRL), layer (shallow; 2/3 vs deep; 5/6), target (core vs shell), and age (adolescent vs adult) dependent differences (Wayman and Woodward, 2017). To expand these findings using reward-based models that may better mimic human drug abuse, we used whole-cell electrophysiology and drug receptors exclusively activated by designer drugs to examine changes in neuronal function and behavior in rats showing a conditioned place preference (CPP) to toluene. Repeated pairings of adolescent rats to binge concentrations of toluene vapor previously shown to enhance dopamine release in reward-sensitive areas of the brain produced CPP that persisted for 7 but not 30 d. Toluene-induced CPP was associated with increased excitability of IL5/6 mPFC neurons projecting to the core of the NAc and reduced excitability of those projecting to the NAc shell. No changes in PRL-NAc-projecting neurons were found in toluene-CPP rats. Chemogenetic reversal of the toluene-induced decrease in IL5/6-NAc shell neurons blocked the expression of toluene-induced CPP while manipulating IL5/6-NAc core neuron activity had no effect. These data reveal that alterations in selective mPFC-NAc pathways are required for expression of toluene-induced CPP.SIGNIFICANCE STATEMENT Disturbed physiology of pyramidal neurons projecting from the mPFC to the NAc has been shown to have different roles in drug-seeking behaviors for a number of drugs (e.g., methamphetamine, cocaine, ecstasy, alcohol, heroin). Here, we report that rats repeatedly exposed to the volatile organic solvent toluene, a member of the class of abused inhalants often used for intoxicating purposes by adolescents, induces a preference for the drug-paired environment that is accompanied by altered physiology of a specific population of NAc-projecting mPFC neurons. Chemogenetic correction of this deficit before testing prevented expression of drug preference. Overall, these findings highlight the importance of corticolimbic circuitry in mediating the rewarding properties of abused inhalants.
Collapse
|
39
|
Fan C, Zhu X, Song Q, Wang P, Liu Z, Yu SY. MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology 2018; 131:364-376. [PMID: 29329879 DOI: 10.1016/j.neuropharm.2018.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/21/2022]
Abstract
Increasing evidence has suggested that depression is a neuropsychiatric condition associated with neuroplasticity within specific brain regions. However, the mechanisms by which neuroplasticity exerts its effects in depression remain largely uncharacterized. In the present study we show that chronic stress effectively induces depression-like behaviors in rats, an effect which was associated with structural changes in dendritic spines and synapse abnormalities within neurons of the ventromedial prefrontal cortex (vmPFC). Moreover, unpredictable chronic mild stress (UCMS) exposure significantly increased the expression of miR-134 within the vmPFC, an effect which was paralleled with a decrease in the levels of expression and phosphorylation of the synapse-associated proteins, LIM-domain kinase 1 (Limk1) and cofilin. An intracerebral infusion of the adenovirus associated virus (AAV)-miR-134-sponge into the vmPFC of stressed rats, which blocks mir-134 function, significantly ameliorated neuronal structural abnormalities, biochemical changes and depression-like behaviors. Chronic administration of ginsenoside Rg1 (40 mg/kg, 5 weeks), a potential neuroprotective agent extracted from ginseng, significantly ameliorated the behavioral and biochemical changes induced by UCMS exposure. These results suggest that miR-134-mediated dysregulation of structural plasticity may be related to the display of depression-like behaviors in stressed rats. The neuroprotective effects of ginsenoside Rg1, which produces an antidepressant like effect in this model of depression, appears to result from modulation of the miR-134 signaling pathway within the vmPFC.
Collapse
Affiliation(s)
- Cuiqin Fan
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Xiuzhi Zhu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Qiqi Song
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Peng Wang
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Zhuxi Liu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China; Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China.
| |
Collapse
|
40
|
Levin N, Kritman M, Maroun M, Akirav I. Differential roles of the infralimbic and prelimbic areas of the prefrontal cortex in reconsolidation of a traumatic memory. Eur Neuropsychopharmacol 2017. [PMID: 28647452 DOI: 10.1016/j.euroneuro.2017.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies about reconsolidation of conditioned fear memories have shown that pharmacological manipulation at memory reactivation can attenuate or enhance the subsequent expression of the conditioned fear response. Here we examined the effects of a single injection of the mTOR inhibitor rapamycin (Rap) into the infralimbic (IL) and prelimbic (PL) areas [which compose the ventromedial prefrontal cortex (PFC)] on reconsolidation and extinction of a traumatic fear memory. We found opposite effects of Rap infused into the PL and IL on reconsolidation and extinction: intra-PL Rap and systemic Rap impaired reconsolidation and facilitated extinction whereas intra-IL Rap enhanced reconsolidation and impaired extinction. These effects persisted at least 10 days after reactivation. Shock exposure induced anxiety-like behavior and impaired working memory and intra-IL and -PL Rap normalized these effects. Finally, when measured after fear retrieval, shocked rats exhibited reduced and increased phosphorylated p70s6K levels in the IL and basolateral amygdala, respectively. No effect on phosphorylated p70s6K levels was observed in the PL. The study points to the differential roles of the IL and PL in memory reconsolidation and extinction. Moreover, inhibiting mTOR via rapamycin following reactivation of a fear memory may be a novel approach in attenuating enhanced fear memories.
Collapse
Affiliation(s)
- Natali Levin
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Milly Kritman
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
41
|
Burgos-Robles A, Kimchi EY, Izadmehr EM, Porzenheim MJ, Ramos-Guasp WA, Nieh EH, Felix-Ortiz AC, Namburi P, Leppla CA, Presbrey KN, Anandalingam KK, Pagan-Rivera PA, Anahtar M, Beyeler A, Tye KM. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat Neurosci 2017; 20:824-835. [PMID: 28436980 PMCID: PMC5448704 DOI: 10.1038/nn.4553] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral nucleus of the amygdala (BLA) and prelimbic (PL) medial prefrontal cortex have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task wherein competing shock- and sucrose-predictive cues were simultaneously presented. The correlated firing primarily displayed a BLA→PL directionality during the shock-associated cue. Furthermore, BLA neurons optogenetically identified as projecting to PL more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally photostimulation of the BLA→PL projection increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. Therefore, the BLA→PL circuit is critical in governing the selection of behavioral responses in the face of competing signals.
Collapse
Affiliation(s)
- Anthony Burgos-Robles
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eyal Y Kimchi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ehsan M Izadmehr
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mary Jane Porzenheim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - William A Ramos-Guasp
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Edward H Nieh
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ada C Felix-Ortiz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Praneeth Namburi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Leppla
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kara N Presbrey
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kavitha K Anandalingam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pablo A Pagan-Rivera
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Melodi Anahtar
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anna Beyeler
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kay M Tye
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Keefer SE, Petrovich GD. Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning. Neurobiol Learn Mem 2017; 141:27-32. [PMID: 28288832 DOI: 10.1016/j.nlm.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
Associative learning can enable environmental cues to signal food and stimulate feeding, independent of physiological hunger. Two forebrain regions necessary in cue driven feeding, the basolateral area of the amygdala and the medial prefrontal cortex, communicate via extensive, topographically organized connections. The basolateral nucleus (BLA) sends extensive projections to the prelimbic cortex (PL), and our aim here was to determine if this pathway was selectively recruited during cue-food associative learning. The anterior and posterior basolateral nuclei are recruited during different phases of cue-food learning, and thus we examined whether distinct pathways that originate in these nuclei and project to the PL are differently recruited during early and late stages of learning. To accomplish this we used neuroanatomical tract tracing combined with the detection of Fos induction. To identify projecting neurons within the BLA, prior to training, rats received a retrograde tracer, Fluoro-Gold (FG) into the PL. Rats were given either one or ten sessions of tone-food presentations (Paired group) or tone-only presentations (Control group). The Paired group learned the tone-food association quickly and robustly and had greater Fos induction within the anterior and posterior BLA during early and late learning compared to the Control group. Notably, the Paired group had more double-labeled neurons (FG + Fos) during late training compared to the Control group, specifically in the anterior BLA. This demonstrates selective recruitment of the anterior BLA-PL pathway by late cue-food learning. These findings indicate plasticity and specificity in the BLA-PL pathways across cue-food associative learning.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - Gorica D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
43
|
Meyer HC, Bucci DJ. Age differences in appetitive Pavlovian conditioning and extinction in rats. Physiol Behav 2016; 167:354-362. [PMID: 27737779 PMCID: PMC5159263 DOI: 10.1016/j.physbeh.2016.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 01/10/2023]
Abstract
Mounting evidence indicates that adolescents exhibit heightened sensitivity to rewards and reward-related cues compared to adults, and that adolescents are often unable to exert behavioral control in the face of such cues. Moreover, differences in reward processing during adolescence have been linked to heightened risk taking and impulsivity. However, little is known about the processes by which adolescents learn about the appetitive properties of environmental stimuli that signal reward. To address this, Pavlovian conditioning procedures were used to test for differences in excitatory conditioning between adult and adolescent rats using various schedules of reinforcement. Specifically, separate cohorts of adult and adolescent rats were trained under conditions of consistent (continuous) or intermittent (partial) reinforcement. We found that the acquisition of anticipatory responding to a continuously-reinforced cue proceeded similarly in adolescents and adults. In contrast, responding increased at a greater rate in adolescents compared to adults during presentations of a partially-reinforced cue. We subsequently compared the ability of adolescent and adult rats to dynamically adjust the representation of a reward-predictive cue during extinction trials, in which a secondary inhibitory representation is acquired for the previously-reinforced stimulus. We observed significant age differences in the ability to flexibly update cue representations during extinction, in that the appetitive properties of cues with a history of either continuous or partial reinforcement persisted to a greater extent in adolescents relative to adults.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, United States.
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, United States
| |
Collapse
|
44
|
Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex—Possible involvement of 5-HT1A and CB1 receptors. Behav Brain Res 2016; 303:218-27. [DOI: 10.1016/j.bbr.2016.01.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 01/24/2023]
|
45
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
46
|
Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP, Newmyer BA, Joy-Gaba J, Ohmura Y, Perez-Reyes E, Güler AD, Patel MK, Scott MM. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Front Behav Neurosci 2016; 10:63. [PMID: 27065827 PMCID: PMC4813092 DOI: 10.3389/fnbeh.2016.00063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Philip S Lambeth
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Bryan Scot Barker
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Brandon A Newmyer
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Jonathan Joy-Gaba
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Ali D Güler
- Department of Biology, University of Virginia Charlottesville, VA, USA
| | - Manoj K Patel
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Michael M Scott
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
47
|
Negrón-Oyarzo I, Aboitiz F, Fuentealba P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast 2016; 2016:7539065. [PMID: 26904302 PMCID: PMC4745936 DOI: 10.1155/2016/7539065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| |
Collapse
|
48
|
Fu J, Xing X, Han M, Xu N, Piao C, Zhang Y, Zheng X. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats. Neurobiol Learn Mem 2016; 128:80-91. [PMID: 26768356 DOI: 10.1016/j.nlm.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/28/2015] [Accepted: 12/20/2015] [Indexed: 01/23/2023]
Abstract
The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear return and connections between PL and vCA1 may be involved in the modulation of this process.
Collapse
Affiliation(s)
- Juan Fu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Department of Life Sciences, Binzhou University, Binzhou, Shandong Province, PR China
| | - Xiaoli Xing
- School of Education Science, Henan University, Kaifeng, Henan Province, PR China
| | - Mengfi Han
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Na Xu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Chengji Piao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Yue Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xigeng Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
49
|
Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 2015; 1628:130-46. [PMID: 25529632 PMCID: PMC4472631 DOI: 10.1016/j.brainres.2014.12.024] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
The prefrontal cortex plays an important role in shaping cognition and behavior. Many studies have shown that medial prefrontal cortex (mPFC) plays a key role in seeking, extinction, and reinstatement of cocaine seeking in rodent models of relapse. Subregions of mPFC appear to play distinct roles in these behaviors, such that the prelimbic cortex (PL) is proposed to drive cocaine seeking and the infralimbic cortex (IL) is proposed to suppress cocaine seeking after extinction. This dichotomy of mPFC function may be a general attribute, as similar dorsal-ventral distinctions exist for expression vs. extinction of fear conditioning. However, other results indicate that the role of mPFC neurons in reward processing is more complex than a simple PL-seek vs. IL-extinguish dichotomy. Both PL and IL have been shown to drive and inhibit drug seeking (and other types of behaviors) depending on a range of factors including the behavioral context, the drug-history of the animal, and the type of drug investigated. This heterogeneity of findings may reflect multiple subcircuits within each of these PFC areas supporting unique functions. It may also reflect the fact that the mPFC plays a multifaceted role in shaping cognition and behavior, including those overlapping with cocaine seeking and extinction. Here we discuss research leading to the hypothesis that dorsal and ventral mPFC differentially control drug seeking and extinction. We also present recent results calling the absolute nature of a PL vs. IL dichotomy into question. Finally, we consider alternate functions for mPFC that correspond less to response execution and inhibition and instead incorporate the complex cognitive behavior for which the mPFC is broadly appreciated.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Morgan H James
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Ellen M McGlinchey
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; Program in Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
50
|
Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol 2015; 25:2449-58. [PMID: 26419294 DOI: 10.1016/j.euroneuro.2015.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022]
Abstract
Role of brain-derived neurotrophic factor (BDNF)-TrkB signaling in a learned helplessness (LH) model of depression was investigated. LH rats showed a reduction of BDNF in the medial prefrontal cortex (mPFC), CA3, and dentate gyrus (DG) of the hippocampus, whereas LH rats showed an increase in BDNF in the nucleus accumbens (NAc). Furthermore, levels of proBDNF, a BDNF precursor, were higher in the mPFC, but lower in the NAc, of LH rats. A single bilateral infusion of a TrkB agonist 7,8-DHF, but not a TrkB antagonist ANA-12, into the infralimbic (IL) of mPFC, DG, and CA3, but not the prelimbic (PrL) of mPFC, exerted antidepressant effects in LH rats. In contrast, a single bilateral infusion of ANA-12, but not 7,8-DHF, into the core and shell of NAc exerted antidepressant-like effects in LH rats, with more potent effects observed for the NAc core than for NAc shell. Interestingly, a single administration of 7,8-DHF (10mg/kg, i.p.) significantly improved a decreased phosphorylation of TrkB in the mPFC, CA3, and DG of LH rats. Additionally, ANA-12 (0.5mg/kg, i.p.) significantly improved an increased phosphorylation of TrkB in the NAc of LH rats. In conclusion, these results suggest that LH causes depression-like behavior by altering BDNF in the brain regions, and that proBDNF-BDNF processing and transport may be altered in the mPFC-NAc circuit of LH rats. Therefore, TrkB agonists might exert antidepressant effects by stimulating TrkB in the IL, CA3, and DG, while TrkB antagonists might exert antidepressant effects by blocking TrkB in the NAc.
Collapse
|