1
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Senatus L, Egaña-Gorroño L, López-Díez R, Bergaya S, Aranda JF, Amengual J, Arivazhagan L, Manigrasso MB, Yepuri G, Nimma R, Mangar KN, Bernadin R, Zhou B, Gugger PF, Li H, Friedman RA, Theise ND, Shekhtman A, Fisher EA, Ramasamy R, Schmidt AM. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol 2023; 6:280. [PMID: 36932214 PMCID: PMC10023694 DOI: 10.1038/s42003-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sonia Bergaya
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jaume Amengual
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ramesh Nimma
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kaamashri N Mangar
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rollanda Bernadin
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Boyan Zhou
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Huilin Li
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Neil D Theise
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
3
|
Conlon DM, Schneider CV, Ko YA, Rodrigues A, Guo K, Hand NJ, Rader DJ. Sortilin restricts secretion of apolipoprotein B-100 by hepatocytes under stressed but not basal conditions. J Clin Invest 2022; 132:144334. [PMID: 35113816 PMCID: PMC8920325 DOI: 10.1172/jci144334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Genetic variants at the SORT1 locus in humans, which cause increased SORT1 expression in the liver, are significantly associated with reduced plasma levels of LDL cholesterol and apolipoprotein B (apoB). However, the role of hepatic sortilin remains controversial, as genetic deletion of sortilin in mice has resulted in variable and conflicting effects on apoB secretion. Here, we found that Sort1-KO mice on a chow diet and several Sort1-deficient hepatocyte lines displayed no difference in apoB secretion. When these models were challenged with high-fat diet or ER stress, the loss of Sort1 expression resulted in a significant increase in apoB-100 secretion. Sort1-overexpression studies yielded reciprocal results. Importantly, carriers of SORT1 variant with diabetes had larger decreases in plasma apoB, TG, and VLDL and LDL particle number as compared with people without diabetes with the same variants. We conclude that, under basal nonstressed conditions, loss of sortilin has little effect on hepatocyte apoB secretion, whereas, in the setting of lipid loading or ER stress, sortilin deficiency leads to increased apoB secretion. These results are consistent with the directionality of effect in human genetics studies and suggest that, under stress conditions, hepatic sortilin directs apoB toward lysosomal degradation rather than secretion, potentially serving as a quality control step in the apoB secretion pathway in hepatocytes.
Collapse
Affiliation(s)
- Donna M Conlon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Carolin V Schneider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Yi-An Ko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Amrith Rodrigues
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Kathy Guo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
4
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Sortilin, encoded SORT1 gene at chromosome 1p13.3, is a multiligand receptor that traffics protein from the Golgi to the endosomes, secretory vesicles, and the cell surface. Genome-wide association studies (GWAS) revealed an association between sortilin and reduced plasma LDL-cholesterol (LDL-C) as well as reduced coronary artery disease (CAD). This review explores the various lipid metabolism pathways that are affected by alterations in sortilin expression. RECENT FINDINGS The effects of increased hepatic sortilin on plasma LDL-C levels are mediated by increased clearance of LDL-C and decreased very LDL (VLDL) secretion because of increased autophagy-mediated lysosomal degradation of apolipoproteinB100. Sort1 knockout models have shown opposite VLDL secretion phenotypes as well as whole body lipid metabolism in response to diet challenges, leading to confusion about the true role of sortilin in the liver and other tissues. SUMMARY The regulation of VLDL secretion by hepatic sortilin is complex and remains incompletely understood. Further investigation to determine the specific conditions under which both hepatic sortilin and total body sortilin cause changes in lipid metabolism pathways is needed.
Collapse
Affiliation(s)
- Donna M Conlon
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
Han SH, Korm S, Han YG, Choi SY, Kim SH, Chung HJ, Park K, Kim JY, Myung K, Lee JY, Kim H, Kim DW. GCA links TRAF6-ULK1-dependent autophagy activation in resistant chronic myeloid leukemia. Autophagy 2019; 15:2076-2090. [PMID: 30929559 DOI: 10.1080/15548627.2019.1596492] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Imatinib is the first molecularly targeted compound for chronic myeloid leukemia (CML) capable to inhibit BCR-ABL kinase activity. However, recent clinical evidence indicates that a substantial proportion of CML patients exhibit BCR-ABL-dependent or independent resistance to imatinib. Despite the importance of imatinib resistance in CML, the underlying molecular mechanisms of this resistance are largely unknown. Here, we identified GCA (grancalcin) as a critical regulator of imatinib resistance in chronic phase CML via activation of autophagy. Mechanistically, we demonstrated that GCA activates TRAF6 ubiquitin ligase activity to induce Lys63 ubiquitination of ULK1, a crucial regulator of autophagy, resulting in its stabilization and activation. We also highlighted the role of GCA-TRAF6-ULK1 autophagy regulatory axis in imatinib resistance. Our findings represent the basis for novel therapeutic strategies against CML.Abbreviation: ACTB/β-actin: actin beta; ADM: adrenomedullin; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ANXA5: annexin A5; CP: cytogenetic response; CML: chronic myeloid leukemia; CUL3: cullin 3; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCA: grancalcin; Dx: at diagnosis; E-64-d: (2S,3S)-trans-Epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester; IMres: Imatinib resistance; KLHL20: Kelch-like protein 20; LRMP: lymphoid-restricted membrane protein; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMR: major molecular response; NH4Cl: ammonium chloride; PBMCs: peripheral blood mononuclear cells; PTPRC: protein tyrosine phosphatase, receptor type, C; SQSTM1/p62: sequestosome 1; SYK: spleen associated tyrosine kinase; TAP1: transporter 1, ATP binding cassette subfamily B member; TKIs: ABL-specific tyrosine kinase inhibitors; TLR9: toll- like receptor 9; TRAF6: TNF receptor associated factor 6; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Seung Hun Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sovannarith Korm
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ye Gi Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soo-Young Choi
- Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo-Hyun Kim
- Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Jin Chung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kibeom Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Joo-Yong Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.,Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Hongtae Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Dong-Wook Kim
- Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Hematology, Seoul St. Mary's Hematology Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
8
|
Amengual J, Guo L, Strong A, Madrigal-Matute J, Wang H, Kaushik S, Brodsky JL, Rader DJ, Cuervo AM, Fisher EA. Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circ Res 2018; 122:568-582. [PMID: 29301854 DOI: 10.1161/circresaha.117.311240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/30/2022]
Abstract
RATIONALE Genome-wide association studies identified single-nucleotide polymorphisms near the SORT1 locus strongly associated with decreased plasma LDL-C (low-density lipoprotein cholesterol) levels and protection from atherosclerotic cardiovascular disease and myocardial infarction. The minor allele of the causal SORT1 single-nucleotide polymorphism locus creates a putative C/EBPα (CCAAT/enhancer-binding protein α)-binding site in the SORT1 promoter, thereby increasing in homozygotes sortilin expression by 12-fold in liver, which is rich in this transcription factor. Our previous studies in mice have showed reductions in plasma LDL-C and its principal protein component, apoB (apolipoprotein B) with increased SORT1 expression, and in vitro studies suggested that sortilin promoted the presecretory lysosomal degradation of apoB associated with the LDL precursor, VLDL (very-low-density lipoprotein). OBJECTIVE To determine directly that SORT1 overexpression results in apoB degradation and to identify the mechanisms by which this reduces apoB and VLDL secretion by the liver, thereby contributing to understanding the clinical phenotype of lower LDL-C levels. METHODS AND RESULTS Pulse-chase studies directly established that SORT1 overexpression results in apoB degradation. As noted above, previous work implicated a role for lysosomes in this degradation. Through in vitro and in vivo studies, we now demonstrate that the sortilin-mediated route of apoB to lysosomes is unconventional and intersects with autophagy. Increased expression of sortilin diverts more apoB away from secretion, with both proteins trafficking to the endosomal compartment in vesicles that fuse with autophagosomes to form amphisomes. The amphisomes then merge with lysosomes. Furthermore, we show that sortilin itself is a regulator of autophagy and that its activity is scaled to the level of apoB synthesis. CONCLUSIONS These results strongly suggest that an unconventional lysosomal targeting process dependent on autophagy degrades apoB that was diverted from the secretory pathway by sortilin and provides a mechanism contributing to the reduced LDL-C found in individuals with SORT1 overexpression.
Collapse
Affiliation(s)
- Jaume Amengual
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Liang Guo
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Alanna Strong
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Julio Madrigal-Matute
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Haizhen Wang
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Susmita Kaushik
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Jeffrey L Brodsky
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Daniel J Rader
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Ana Maria Cuervo
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Edward A Fisher
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.).
| |
Collapse
|
9
|
Affiliation(s)
- Charles E Sparks
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
10
|
Smolders L, Mensink RP, Plat J. An acute intake of theobromine does not change postprandial lipid metabolism, whereas a high-fat meal lowers chylomicron particle number. Nutr Res 2017; 40:85-94. [PMID: 28438412 DOI: 10.1016/j.nutres.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/24/2022]
Abstract
Postprandial responses predict cardiovascular disease risk. However, only a few studies have compared acute postprandial effects of a low-fat, high-carbohydrate (LF) meal with a high-fat, low-carbohydrate (HF) meal. Furthermore, theobromine has favorably affected fasting lipids, but postprandial effects are unknown. Because both fat and theobromine have been reported to increase fasting apolipoprotein A-I (apoA-I) concentrations, the main hypothesis of this randomized, double-blind crossover study was that acute consumption of an HF meal and a theobromine meal increased postprandial apoA-I concentrations, when compared with an LF meal. Theobromine was added to the LF meal. Nine healthy men completed the study. After meal intake, blood was sampled frequently for 4hours. Postprandial apoA-I concentrations were comparable after intake of the 3 meals. Apolipoprotein B48 curves, however, were significantly lower and those of triacylglycerol were significantly higher after HF as compared with LF consumption. Postprandial free fatty acid concentrations decreased less, and glucose and insulin concentrations increased less after HF meal consumption. Except for an increase in the incremental area under the curve for insulin, theobromine did not modify responses of the LF meal. These data show that acute HF and theobromine consumption does not change postprandial apoA-I concentrations. Furthermore, acute HF consumption had divergent effects on postprandial apolipoprotein B48 and triacylglycerol responses, suggesting the formation of less, but larger chylomicrons after HF intake. Finally, except for an increase in the incremental area under the curve for insulin, acute theobromine consumption did not modify the postprandial responses of the LF meal.
Collapse
Affiliation(s)
- Lotte Smolders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| | - Ronald P Mensink
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| | - Jogchum Plat
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Zamani M, Taher J, Adeli K. Complex role of autophagy in regulation of hepatic lipid and lipoprotein metabolism. J Biomed Res 2017; 31:377-385. [PMID: 27346467 PMCID: PMC5706430 DOI: 10.7555/jbr.30.20150137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discovering new therapeutic interventions to treat lipid and lipoprotein disorders is of great interest and the discovery of autophagy as a regulator of lipid metabolism has opened up new avenues for targeting modulators of this pathway. Autophagy is a degradative process that targets cellular components to the lysosome and recent studies have indicated a role for autophagy in regulating hepatic lipid metabolism (known as lipophagy) as well as lipoprotein assembly. Autophagy directly targets apolipoprotein B-100 (apoB100), the structural protein component of very low-density lipoproteins (VLDLs), and further targets lipid droplets (LDs), the cellular storage for neutral lipids. Autophagy thus plays a complex and dual role in VLDL particle assembly by regulating apoB100 degradation as well as aiding the maturation of VLDL particles by hydrolyzing lipid from LDs. The purpose of this article is to review our current understanding of molecular and cellular mechanisms mediating authophagic control of hepatic lipid biogenesis and VLDL production as well as dysregulation in insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- Mostafa Zamani
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, ON M5G 0A4, Canada
| | - Jennifer Taher
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5G 0A4, Canada
| | - Khosrow Adeli
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, ON M5G 0A4, Canada
| |
Collapse
|
12
|
Liu L, Zhao X, Wang Q, Sun X, Xia L, Wang Q, Yang B, Zhang Y, Montgomery S, Meng H, Geng T, Gong D. Prosteatotic and Protective Components in a Unique Model of Fatty Liver: Gut Microbiota and Suppressed Complement System. Sci Rep 2016; 6:31763. [PMID: 27550859 PMCID: PMC4994046 DOI: 10.1038/srep31763] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/27/2016] [Indexed: 01/07/2023] Open
Abstract
Goose can develop severe hepatic steatosis without overt injury, thus it may serve as a unique model for uncovering how steatosis-related injury is prevented. To identify the markedly prosteatotic and protective mechanisms, we performed an integrated analysis of liver transcriptomes and gut microbial metagenomes using samples collected from overfed and normally-fed geese at different time points. The results indicated that the fatty liver transcriptome, initially featuring a 'metabolism' pathway, was later joined by 'cell growth and death' and 'immune diseases' pathways. Gut microbiota played a synergistic role in the liver response as microbial and hepatic genes affected by overfeeding shared multiple pathways. Remarkably, the complement system, an inflammatory component, was comprehensively suppressed in fatty liver, which was partially due to increased blood lactic acid from enriched Lactobacillus. Data from in vitro studies suggested that lactic acid suppressed TNFα via the HNF1α/C5 pathway. In conclusion, gut microbes and their hosts respond to excess energy influx as an organic whole, severe steatosis and related tolerance of goose liver may be partially attributable to gut microbiotic products and suppressed complement system, and lactic acid from gut microbiota participates in the suppression of hepatic TNFα/inflammation through the HNF1α/C5 pathway.
Collapse
Affiliation(s)
- Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xing Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxian Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lili Xia
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qianqian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Biao Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Sean Montgomery
- Department of Botany, University of British Columbia, 6270 University Boulevard, British Columbia, V6T 1Z4, Canada
| | - He Meng
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
14
|
Fisher EA. Regression of Atherosclerosis: The Journey From the Liver to the Plaque and Back. Arterioscler Thromb Vasc Biol 2016; 36:226-35. [PMID: 26681754 PMCID: PMC4732981 DOI: 10.1161/atvbaha.115.301926] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
Cardinal events in atherogenesis are the retention of apolipoprotein B-containing lipoproteins in the arterial wall and the reaction of macrophages to these particles. My laboratory has been interested in both the cell biological events producing apolipoprotein B-containing lipoproteins, as well as in the reversal of the damage they cause in the plaques formed in the arterial wall. In the 2013 George Lyman Duff Memorial Lecture, as summarized in this review, I covered 3 areas of my past, present, and future interests, namely, the regulation of hepatic very low density lipoprotein production by the degradation of apolipoprotein B100, the dynamic changes in macrophages in the regression of atherosclerosis, and the application of nanoparticles to both image and treat atherosclerotic plaques.
Collapse
Affiliation(s)
- Edward A Fisher
- From the Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine.
| |
Collapse
|
15
|
Sparks JD, Magra AL, Chamberlain JM, O'Dell C, Sparks CE. Insulin dependent apolipoprotein B degradation and phosphatidylinositide 3-kinase activation with microsomal translocation are restored in McArdle RH7777 cells following serum deprivation. Biochem Biophys Res Commun 2015; 469:326-31. [PMID: 26616056 DOI: 10.1016/j.bbrc.2015.11.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022]
Abstract
Previous studies in rat hepatocytes demonstrated that insulin-dependent apolipoprotein (apo) B degradation (IDAD) is lost when cells are maintained for 3 d under enriched culture conditions. Loss of IDAD correlates with increased expression of protein tyrosine phosphatase 1B (PTP1B) known to be associated with resistance to insulin signaling in the liver. McArdle RH7777 hepatoma (McA) cells cultured in serum containing medium are resistant to IDAD; demonstrate a 30% increase in apo B secretion, and express increased levels of PTP1B protein and mRNA. In addition, insulin-stimulated Class I phosphatidylinositide 3-kinase (PI3K) activity of anti-pY immunoprecipitates is severely blunted. IDAD resistance in McA cells correlates with diminished translocation of insulin-stimulated pY-IRS1 to intracellular membranes. Incubation of McA cells with RK682, a protein tyrosine phosphatase inhibitor, is sufficient to restore IDAD in resistant McA cells. Overall, results further support the importance of Class I PI3K activity in IDAD, and suggest that loss of this activity is sufficient to cause resistance. Although other factors are involved in downstream events including sortilin binding to apo B, autophagy, and lysosomal degradation, loss of signal generation and reduced localization of Class I PI3K to intracellular membranes plays a significant role in IDAD resistance.
Collapse
Affiliation(s)
- Janet D Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Amy L Magra
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jeffrey M Chamberlain
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Colleen O'Dell
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Charles E Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Lupieri A, Smirnova N, Malet N, Gayral S, Laffargue M. PI3K signaling in arterial diseases: Non redundant functions of the PI3K isoforms. Adv Biol Regul 2015; 59:4-18. [PMID: 26238239 DOI: 10.1016/j.jbior.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Cardiovascular diseases are the most common cause of death around the world. This includes atherosclerosis and the adverse effects of its treatment, such as restenosis and thrombotic complications. The development of these arterial pathologies requires a series of highly-intertwined interactions between immune and arterial cells, leading to specific inflammatory and fibroproliferative cellular responses. In the last few years, the study of phosphoinositide 3-kinase (PI3K) functions has become an attractive area of investigation in the field of arterial diseases, especially since inhibitors of specific PI3K isoforms have been developed. The PI3K family includes 8 members divided into classes I, II or III depending on their substrate specificity. Although some of the different isoforms are responsible for the production of the same 3-phosphoinositides, they each have specific, non-redundant functions as a result of differences in expression levels in different cell types, activation mechanisms and specific subcellular locations. This review will focus on the functions of the different PI3K isoforms that are suspected as having protective or deleterious effects in both the various immune cells and types of cell found in the arterial wall. It will also discuss our current understanding in the context of which PI3K isoform(s) should be targeted for future therapeutic interventions to prevent or treat arterial diseases.
Collapse
Affiliation(s)
- Adrien Lupieri
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Natalia Smirnova
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Nicole Malet
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France.
| |
Collapse
|
17
|
Hopkins PN, Brinton EA, Nanjee MN. Hyperlipoproteinemia type 3: the forgotten phenotype. Curr Atheroscler Rep 2015; 16:440. [PMID: 25079293 DOI: 10.1007/s11883-014-0440-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyperlipoproteinemia type 3 (HLP3) is caused by impaired removal of triglyceride-rich lipoproteins (TGRL) leading to accumulation of TGRL remnants with abnormal composition. High levels of these remnants, called β-VLDL, promote lipid deposition in tuberous xanthomas, atherosclerosis, premature coronary artery disease, and early myocardial infarction. Recent genetic and molecular studies suggest more genes than previously appreciated may contribute to the expression of HLP3, both through impaired hepatic TGRL processing or removal and increased TGRL production. HLP3 is often highly amenable to appropriate treatment. Nevertheless, most HLP3 probably goes undiagnosed, in part because of lack of awareness of the relatively high prevalence (about 0.2% in women and 0.4-0.5% in men older than 20 years) and largely because of infrequent use of definitive diagnostic methods.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, 420 Chipeta Way, Room 1160, Salt Lake City, UT, 84108, USA,
| | | | | |
Collapse
|
18
|
|
19
|
Mountford SJ, Zheng Z, Sundaram K, Jennings IG, Hamilton JR, Thompson PE. Class II but Not Second Class-Prospects for the Development of Class II PI3K Inhibitors. ACS Med Chem Lett 2015; 6:3-6. [PMID: 25589915 DOI: 10.1021/ml500354e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Class II PI3 kinases are emerging from the shadows of their Class I cousins. The data emerging from PIK3C2 genetic modification studies and from siRNA knockdown suggest important roles in physiology and pathology. With some well-studied Class I isoform inhibitors showing strong Class II activity and a wealth of crystallographic information available, the structural similarity of these isoforms to Class I provides both the opportunity and the challenge in design of selective pharmacological inhibitors.
Collapse
Affiliation(s)
- Simon J. Mountford
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Zhaohua Zheng
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
- Australian
Centre for Blood Diseases and Department of Clinical Haematology,
L6, Monash University, 89 Commerical Road, Prahran, Victoria 3181, Australia
| | - Krithika Sundaram
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ian G. Jennings
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Justin R. Hamilton
- Australian
Centre for Blood Diseases and Department of Clinical Haematology,
L6, Monash University, 89 Commerical Road, Prahran, Victoria 3181, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
20
|
Emerging regulation and function of betatrophin. Int J Mol Sci 2014; 15:23640-57. [PMID: 25530616 PMCID: PMC4284785 DOI: 10.3390/ijms151223640] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/30/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Betatrophin, also known as TD26/RIFL/lipasin/ANGPTL8/C19orf80, is a novel protein predominantly expressed in human liver. To date, several betatrophin orthologs have been identified in mammals. Increasing evidence has revealed an association between betatrophin expression and serum lipid profiles, particularly in patients with obesity or diabetes. Stimulators of betatrophin, such as insulin, thyroid hormone, irisin and caloric intake, are usually relevant to energy expenditure or thermogenesis. In murine models, serum triglyceride levels as well as pancreatic cell proliferation are potently enhanced by betatrophin. Intriguingly, conflicting phenomena have also been reported that betatrophin suppresses hepatic triglyceride levels, suggesting that betatrophin function is mediated by complex regulatory processes. However, its precise physiological role remains unclear at present. In this review, we have summarized the current findings on betatrophin and their implications.
Collapse
|
21
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
22
|
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014; 54:86-112. [PMID: 24607340 DOI: 10.1016/j.plipres.2014.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Triacyglycerols are a major energy reserve of the body and are normally stored in adipose tissue as lipid droplets (LDs). The liver, however, stores energy as glycogen and digested triglycerides in the form of fatty acids. In stressed condition such as obesity, imbalanced nutrition and drug induced liver injury hepatocytes accumulate excess lipids in the form of LDs whose prolonged storage leads to disease conditions most notably non-alcoholic fatty liver disease (NAFLD). Fatty liver disease has become a major health burden with more than 90% of obese, nearly 70% of overweight and about 25% of normal weight patients being affected. Notably, research in recent years has shown LD as highly dynamic organelles for maintaining lipid homeostasis through fat storage, protein sorting and other molecular events studied in adipocytes and other cells of living organisms. This review focuses on the molecular events of LD formation in hepatocytes and the importance of cross talk between different cell types and their signalling in NAFLD as to provide a perspective on molecular mechanisms as well as possibilities for different therapeutic intervention strategies.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
23
|
Maitin V, Andreo U, Guo L, Fisher EA. Docosahexaenoic acid impairs the maturation of very low density lipoproteins in rat hepatic cells. J Lipid Res 2013; 55:75-84. [PMID: 24136824 DOI: 10.1194/jlr.m043026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One mechanism of the lipid-lowering effects of the fish oil n-3 fatty acids [e.g., docosahexaenoic acid (DHA)] in cell and animal models is induced hepatic apolipoprotein B100 (apoB) presecretory degradation. This degradation occurs post-endoplasmic reticulum, but whether DHA induces it before or after intracellular VLDL formation remains unanswered. We found in McA-RH7777 rat hepatic cells that DHA and oleic acid (OA) treatments allowed formation of pre-VLDL particles and their transport to the Golgi, but, in contrast to OA, with DHA pre-VLDL particles failed to quantitatively assemble into fully lipidated (mature) VLDL. This failure required lipid peroxidation and was accompanied by the formation of apoB aggregates (known to be degraded by autophagy). Preventing the exit of proteins from the Golgi blocked the aggregation of apoB but did not restore VLDL maturation, indicating that failure to fully lipidate apoB preceded its aggregation. ApoB autophagic degradation did not appear to require an intermediate step of cytosolic aggresome formation. Taken with other examples in the literature, the results of this study suggest that pre-VLDL particles that are competent to escape endoplasmic reticulum quality control mechanisms but fail to mature in the Golgi remain subject to quality control surveillance late in the secretory pathway.
Collapse
Affiliation(s)
- Vatsala Maitin
- Departments of Medicine (Leon H. Charney Division of Cardiology) and Cell Biology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016; and
| | | | | | | |
Collapse
|
24
|
|
25
|
Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab 2013; 24:391-7. [PMID: 23721961 PMCID: PMC3810413 DOI: 10.1016/j.tem.2013.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/07/2023]
Abstract
The leading cause of death in diabetic patients is cardiovascular disease. Apolipoprotein B (ApoB)-containing lipoprotein particles, which are secreted and cleared by the liver, are essential for the development of atherosclerosis. Insulin plays a key role in the regulation of ApoB. Insulin decreases ApoB secretion by promoting ApoB degradation in the hepatocyte. In parallel, insulin promotes clearance of circulating ApoB particles by the liver via the low-density lipoprotein receptor (LDLR), LDLR-related protein 1 (LRP1), and heparan sulfate proteoglycans (HSPGs). Consequently, the insulin-resistant state of type 2 diabetes (T2D) is associated with increased secretion and decreased clearance of ApoB. Here, we review the mechanisms by which insulin controls the secretion and uptake of ApoB in normal and diabetic livers.
Collapse
Affiliation(s)
- Mary E Haas
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Sparks JD, O'Dell C, Chamberlain JM, Sparks CE. Insulin-dependent apolipoprotein B degradation is mediated by autophagy and involves class I and class III phosphatidylinositide 3-kinases. Biochem Biophys Res Commun 2013; 435:616-20. [PMID: 23685141 DOI: 10.1016/j.bbrc.2013.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 01/07/2023]
Abstract
Insulin acutely stimulates the degradation of apolipoprotein B (apo B) which decreases very low density lipoprotein (VLDL) secretion by liver. Insulin-dependent apo B degradation (IDAD) occurs following phosphatidylinositide 3-kinase (PI3K) activation and involves lysosomal degradation. Insulin suppression of apo B secretion is blocked by over-expression of phosphatase and tensin homologue (PTEN) in McArdle RH7777 (McA) cells suggesting the importance of Class I PI3K generated PI (3,4,5) triphosphate (PIP3) in IDAD. Classical autophagy inhibitors including 3-methyladenine, L-asparagine and bafilomycin A1 also blocked the ability of insulin to suppress apo B secretion by rat hepatocytes (RH) suggesting that IDAD occurs through an autophagy-related mechanism. IDAD is also blocked following over-expression in McA cells of a dominant negative kinase-defective Vps34, a class III PI3K that generates PI 3-monophosphate required for autophagy. Vps34 inhibition of IDAD occurs without altering insulin-dependent S473 phosphorylation of Akt indicating PI3K/PIP3/Akt signaling is intact. Cellular p62/SQSTM1, an inverse indicator of autophagy, is increased with insulin treatment consistent with the known ability of insulin to inhibit autophagy, and therefore the role of insulin in utilizing components of autophagy for apo B degradation is unexpected. Thapsigargan, an inducer of endoplasmic reticulum (ER) stress, and a recently demonstrated autophagy inhibitor, blocked apo B secretion which contrasted with other autophagy inhibitors and mutant Vps34 results which were permissive with respect to apo B secretion. Pulse chase studies indicated that intact B100 and B48 proteins were retained in cells treated with thapsigargan consistent with their accumulation in autophagosomal vacuoles. Differences between IDAD and ER stress-coupled autophagy mediated by thapsgargin suggest that IDAD involves an unique form of autophagy. Insulin action resulting in hepatic apo B degradation is novel and important in understanding regulation of hepatic VLDL metabolism.
Collapse
Affiliation(s)
- Janet D Sparks
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|