1
|
Yadav P, Vats R, Wadhwa S, Bano A, Namdev R, Gupta M, Bhardwaj R. Enhancing Proliferation of Stem Cells from Human Exfoliated Deciduous Teeth (SHED) through hTERT Expression while Preserving Stemness and Multipotency. Stem Cell Rev Rep 2024; 20:1902-1914. [PMID: 38878252 DOI: 10.1007/s12015-024-10746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Stem cells from human exfoliated deciduous teeth (SHED) hold promise in regenerative medicine owing to their multipotent capabilities resembling mesenchymal stem cells (MSCs). Despite their potential, SHED have not been extensively investigated because their limited lifespan and unavailability of cell-lines pose challenges for therapeutic applications. This study investigated the effect of ectopic human telomerase reverse transcriptase (hTERT) expression on SHEDs' proliferation while preserving stemness and genomic integrity. METHODS Deciduous teeth were collected from children aged 6-10 years. After isolation and characterization, the SHED were transduced with pBabe-puro-hTERT retrovirus to establish SHED cell-line, which was evaluated and compared with pBabe-puro (mock control) for stemness, multipotency and growth attributes through flow cytometry, trilineage differentiation, and growth kinetics. We also estimated hTERT gene expression, genomic integrity, and validated cell-line through STR analysis. RESULTS Following hTERT transduction, SHED displayed elevated hTERT gene expression while retaining fibroblast-like morphology and mesenchymal stem cell markers. Moreover, after hTERT transduction cellular shape remained same along with increased replicative lifespan and proliferation potential. SHED-hTERT cells exhibited multi-potency and maintained stemness, as evidenced by surface marker expression and multilineage differentiation. Furthermore, genomic integrity was not affected by hTERT integration, as confirmed by STR analysis and CDKN2A gene assessment. CONCLUSION Ectopic hTERT expression in SHED successfully prolonged their replicative lifespan and improved their ability to proliferate and migrate, while preserving their stemness, multipotency and genomic integrity, suggesting minimal carcinogenic risk. Establishment of SHED cell-line holds potential in regenerative medicine applications, especially in cell-based drugs and tissue engineering experiments.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Sapna Wadhwa
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India
| | - Ritu Namdev
- Dept. of Pediatric Dentistry, Post Graduate Institute of Dental Sciences, Rohtak, Haryana, 124001, India
| | - Monika Gupta
- Dept. of Pathology, Post Graduate Institute of Medical Sciences, Rohtak, Haryana, 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, 124001, India.
| |
Collapse
|
2
|
Hardy A, Bakshi S, Furnon W, MacLean O, Gu Q, Varjak M, Varela M, Aziz MA, Shaw AE, Pinto RM, Cameron Ruiz N, Mullan C, Taggart AE, Da Silva Filipe A, Randall RE, Wilson SJ, Stewart ME, Palmarini M. The Timing and Magnitude of the Type I Interferon Response Are Correlated with Disease Tolerance in Arbovirus Infection. mBio 2023; 14:e0010123. [PMID: 37097030 PMCID: PMC10294695 DOI: 10.1128/mbio.00101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Infected hosts possess two alternative strategies to protect themselves against the negative impact of virus infections: resistance, used to abrogate virus replication, and disease tolerance, used to avoid tissue damage without controlling viral burden. The principles governing pathogen resistance are well understood, while less is known about those involved in disease tolerance. Here, we studied bluetongue virus (BTV), the cause of bluetongue disease of ruminants, as a model system to investigate the mechanisms of virus-host interactions correlating with disease tolerance. BTV induces clinical disease mainly in sheep, while cattle are considered reservoirs of infection, rarely exhibiting clinical symptoms despite sustained viremia. Using primary cells from multiple donors, we show that BTV consistently reaches higher titers in ovine cells than cells from cattle. The variable replication kinetics of BTV in sheep and cow cells were mostly abolished by abrogating the cell type I interferon (IFN) response. We identified restriction factors blocking BTV replication, but both the sheep and cow orthologues of these antiviral genes possess anti-BTV properties. Importantly, we demonstrate that BTV induces a faster host cell protein synthesis shutoff in primary sheep cells than cow cells, which results in an earlier downregulation of antiviral proteins. Moreover, by using RNA sequencing (RNA-seq), we also show a more pronounced expression of interferon-stimulated genes (ISGs) in BTV-infected cow cells than sheep cells. Our data provide a new perspective on how the type I IFN response in reservoir species can have overall positive effects on both virus and host evolution. IMPORTANCE The host immune response usually aims to inhibit virus replication in order to avoid cell damage and disease. In some cases, however, the infected host avoids the deleterious effects of infection despite high levels of viral replication. This strategy is known as disease tolerance, and it is used by animal reservoirs of some zoonotic viruses. Here, using a virus of ruminants (bluetongue virus [BTV]) as an experimental system, we dissected virus-host interactions in cells collected from species that are susceptible (sheep) or tolerant (cow) to disease. We show that (i) virus modulation of the host antiviral type I interferon (IFN) responses, (ii) viral replication kinetics, and (iii) virus-induced cell damage differ in tolerant and susceptible BTV-infected cells. Understanding the complex virus-host interactions in disease tolerance can allow us to disentangle the critical balance between protective and damaging host immune responses.
Collapse
Affiliation(s)
- Alexandra Hardy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Siddharth Bakshi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Oscar MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Muhamad Afiq Aziz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Andrew E. Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Natalia Cameron Ruiz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Catrina Mullan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Aislynn E. Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Meredith E. Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
3
|
Pais TF, Penha-Gonçalves C. In vitro model of brain endothelial cell barrier reveals alterations induced by Plasmodium blood stage factors. Parasitol Res 2023; 122:729-737. [PMID: 36694092 PMCID: PMC9988999 DOI: 10.1007/s00436-023-07782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 01/26/2023]
Abstract
Cerebral malaria (CM) is a severe neurological condition caused by Plasmodium falciparum. Disruption of the brain-blood barrier (BBB) is a key pathological event leading to brain edema and vascular leakage in both humans and in the mouse model of CM. Interactions of brain endothelial cells with infected red blood cells (iRBCs) and with circulating inflammatory mediators and immune cells contribute to BBB dysfunction in CM. Adjunctive therapies for CM aim at preserving the BBB to prevent neurologic deficits. Experimental animal and cellular models are essential to develop new therapeutic strategies. However, in mice, the disease develops rapidly, which offers a very narrow time window for testing the therapeutic potential of drugs acting in the BBB. Here, we establish a brain endothelial cell barrier whose disturbance can be monitored by several parameters. Using this system, we found that incubation with iRBCs and with extracellular particles (EPs) released by iRBCs changes endothelial cell morphology, decreases the tight junction protein zonula occludens-1 (ZO-1), increases the gene expression of the intercellular adhesion molecule 1 (ICAM-1), and induces a significant reduction in transendothelial electrical resistance (TEER) with increased permeability. We propose this in vitro experimental setup as a straightforward tool to investigate molecular interactions and pathways causing endothelial barrier dysfunction and to test compounds that may target BBB and be effective against CM. A pre-selection of the effective compounds that strengthen the resistance of the brain endothelial cell barrier to Plasmodium-induced blood factors in vitro may increase the likelihood of their efficacy in preclinical disease mouse models of CM and in subsequent clinical trials with patients.
Collapse
Affiliation(s)
- Teresa F Pais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | | |
Collapse
|
4
|
Perusina Lanfranca M, van Loben Sels JM, Ly CY, Grams TR, Dhummakupt A, Bloom DC, Davido DJ. A 77 Amino Acid Region in the N-Terminal Half of the HSV-1 E3 Ubiquitin Ligase ICP0 Contributes to Counteracting an Established Type 1 Interferon Response. Microbiol Spectr 2022; 10:e0059322. [PMID: 35730940 PMCID: PMC9430112 DOI: 10.1128/spectrum.00593-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a human pathogen capable of establishing lifelong latent infections that can reactivate under stress conditions. A viral immediate early protein that plays important roles in the HSV-1 lytic and latent infections is the viral E3 ubiquitin ligase, ICP0. ICP0 transactivates all temporal classes of HSV-1 genes and facilitates viral gene expression. ICP0 also impairs the antiviral effects of interferon (IFN)-β, a component of host innate defenses known to limit viral replication. To begin to understand how ICP0 allows HSV-1 to disarm the IFN-β response, we performed genetic analyses using a series of ICP0 truncation mutants in the absence and presence of IFN-β in cell culture. We observed that IFN-β pretreatment of cells significantly impaired the replication of the ICP0 truncation mutants, n212 and n312, which code for the first 211 and 311 amino acids of ICP0, respectively; this effect of IFN-β correlated with decreased HSV-1 early and late gene expression. This increased sensitivity to IFN-β was not as apparent with the ICP0 mutant, n389. Our mapping studies indicate that loss of 77 amino acids from residues 312 to 388 in the N-terminal half of ICP0 resulted in a virus that was significantly more sensitive to cells pre-exposed to IFN-β. This 77 amino acid region contains a phospho-SUMO-interacting motif or -SIM, which we propose participates in ICP0's ability to counteract the antiviral response established by IFN-β. IMPORTANCE Interferons (IFNs) are secreted cellular factors that are induced by viral infection and limit replication. HSV-1 is largely refractory to the antiviral effects of type 1 IFNs, which are synthesized shortly after viral infection, in part through the activities of the viral regulatory protein, ICP0. To understand how ICP0 impedes the antiviral effects of type 1 IFNs, we used a series of HSV-1 ICP0 mutants and examined their viral replication and gene expression levels in cells stimulated with IFN-β (a type 1 IFN). Our mapping data identifies a discrete 77 amino acid region in the N-terminal half of ICP0 that facilitates HSV-1 resistance to IFN-β. This region of ICP0 is modified by phosphorylation and binds to the posttranslational modification SUMO, suggesting that HSV, and potentially other viruses, may counteract type 1 IFN signaling by altering SUMO and/or SUMO modified cellular proteins.
Collapse
Affiliation(s)
| | | | - Cindy Y. Ly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Tristan R. Grams
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Adit Dhummakupt
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David J. Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Effective Reduction of SARS-CoV-2 RNA Levels Using a Tailor-Made Oligonucleotide-Based RNA Inhibitor. Viruses 2022; 14:v14040685. [PMID: 35458415 PMCID: PMC9029688 DOI: 10.3390/v14040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
In only two years, the coronavirus disease 2019 (COVID-19) pandemic has had a devastating effect on public health all over the world and caused irreparable economic damage across all countries. Due to the limited therapeutic management of COVID-19 and the lack of tailor-made antiviral agents, finding new methods to combat this viral illness is now a priority. Herein, we report on a specific oligonucleotide-based RNA inhibitor targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It displayed remarkable spontaneous cellular uptake, >94% efficiency in reducing RNA-dependent RNA polymerase (RdRp) RNA levels in transfected lung cell lines, and >98% efficiency in reducing SARS-CoV-2 RNA levels in samples from patients hospitalized with COVID-19 following a single application.
Collapse
|
6
|
Charman M, McFarlane S, Wojtus JK, Sloan E, Dewar R, Leeming G, Al-Saadi M, Hunter L, Carroll MW, Stewart JP, Digard P, Hutchinson E, Boutell C. Constitutive TRIM22 Expression in the Respiratory Tract Confers a Pre-Existing Defence Against Influenza A Virus Infection. Front Cell Infect Microbiol 2021; 11:689707. [PMID: 34621686 PMCID: PMC8490869 DOI: 10.3389/fcimb.2021.689707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
The induction of antiviral effector proteins as part of a homeostatically controlled innate immune response to infection plays a critical role in limiting the propagation and transmission of respiratory pathogens. However, the prolonged induction of this immune response can lead to lung hyperinflammation, tissue damage, and respiratory failure. We hypothesized that tissues exposed to the constant threat of infection may constitutively express higher levels of antiviral effector proteins to reduce the need to activate potentially harmful innate immune defences. By analysing transcriptomic data derived from a range of human tissues, we identify lung tissue to express constitutively higher levels of antiviral effector genes relative to that of other mucosal and non-mucosal tissues. By using primary cell lines and the airways of rhesus macaques, we show the interferon-stimulated antiviral effector protein TRIM22 (TRIpartite Motif 22) to be constitutively expressed in the lung independently of viral infection or innate immune stimulation. These findings contrast with previous reports that have shown TRIM22 expression in laboratory-adapted cell lines to require interferon stimulation. We demonstrate that constitutive levels of TRIM22 are sufficient to inhibit the onset of human and avian influenza A virus (IAV) infection by restricting the onset of viral transcription independently of interferon-mediated innate immune defences. Thus, we identify TRIM22 to confer a pre-existing (intrinsic) intracellular defence against IAV infection in cells derived from the respiratory tract. Our data highlight the importance of tissue-specific and cell-type dependent patterns of pre-existing immune gene expression in the intracellular restriction of IAV from the outset of infection.
Collapse
Affiliation(s)
- Matthew Charman
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.,Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Steven McFarlane
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joanna K Wojtus
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elizabeth Sloan
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rebecca Dewar
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Gail Leeming
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mohammed Al-Saadi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Animal Production, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Laura Hunter
- National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - James P Stewart
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Edward Hutchinson
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chris Boutell
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
7
|
Inoue Y, Hasegawa S, Hasebe Y, Kawagishi-Hotta M, Okuno R, Yamada T, Adachi H, Miyachi K, Ishii Y, Sugiura K, Akamatsu H. Establishment of Three Types of Immortalized Human Skin Stem Cell Lines Derived from the Single Donor. Biol Pharm Bull 2021; 44:1403-1412. [PMID: 34602549 DOI: 10.1248/bpb.b21-00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, human-skin derived cell culture is a basic technique essential for dermatological research, cellular engineering research, drug development, and cosmetic development. But the number of donors is limited, and primary cell function reduces through cell passage. In particular, since adult stem cells are present in a small amount in living tissues, it has been difficult to obtain a large amount of stem cells and to stably culture them. In this study, skin derived cells were isolated from the epidermis, dermis, and adipose tissue collected from single donor, and immortalization was induced through gene transfer. Subsequently, cell lines that could be used as stem cell models were selected using the differentiation potential and the expression of stem cell markers as indices, and it was confirmed that these could be stably cultured. The immortalized cell lines established in this study have the potential to be applied not only to basic dermatological research but also to a wide range of fields such as drug screening and cell engineering.
Collapse
Affiliation(s)
- Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine.,Department of Dermatology, Fujita Health University School of Medicine
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine
| | - Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine
| | - Ryosuke Okuno
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Department of Dermatology, Fujita Health University School of Medicine.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine
| | | | | | - Yoshie Ishii
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine
| |
Collapse
|
8
|
Gall B, Pryke K, Abraham J, Mizuno N, Botto S, Sali TM, Broeckel R, Haese N, Nilsen A, Placzek A, Morrison T, Heise M, Streblow D, DeFilippis V. Emerging Alphaviruses Are Sensitive to Cellular States Induced by a Novel Small-Molecule Agonist of the STING Pathway. J Virol 2018; 92:e01913-17. [PMID: 29263267 PMCID: PMC5827377 DOI: 10.1128/jvi.01913-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
The type I interferon (IFN) system represents an essential innate immune response that renders cells resistant to virus growth via the molecular actions of IFN-induced effector proteins. IFN-mediated cellular states inhibit growth of numerous and diverse virus types, including those of known pathogenicity as well as potentially emerging agents. As such, targeted pharmacologic activation of the IFN response may represent a novel therapeutic strategy to prevent infection or spread of clinically impactful viruses. In light of this, we employed a high-throughput screen to identify small molecules capable of permeating the cell and of activating IFN-dependent signaling processes. Here we report the identification and characterization of N-(methylcarbamoyl)-2-{[5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}-2-phenylacetamide (referred to as C11), a novel compound capable of inducing IFN secretion from human cells. Using reverse genetics-based loss-of-function assays, we show that C11 activates the type I IFN response in a manner that requires the adaptor protein STING but not the alternative adaptors MAVS and TRIF. Importantly, treatment of cells with C11 generated a cellular state that potently blocked replication of multiple emerging alphavirus types, including chikungunya, Ross River, Venezuelan equine encephalitis, Mayaro, and O'nyong-nyong viruses. The antiviral effects of C11 were subsequently abrogated in cells lacking STING or the type I IFN receptor, indicating that they are mediated, at least predominantly, by way of STING-mediated IFN secretion and subsequent autocrine/paracrine signaling. This work also allowed characterization of differential antiviral roles of innate immune signaling adaptors and IFN-mediated responses and identified MAVS as being crucial to cellular resistance to alphavirus infection.IMPORTANCE Due to the increase in emerging arthropod-borne viruses, such as chikungunya virus, that lack FDA-approved therapeutics and vaccines, it is important to better understand the signaling pathways that lead to clearance of virus. Here we show that C11 treatment makes human cells refractory to replication of a number of these viruses, which supports its value in increasing our understanding of the immune response and viral pathogenesis required to establish host infection. We also show that C11 depends on signaling through STING to produce antiviral type I interferon, which further supports its potential as a therapeutic drug or research tool.
Collapse
Affiliation(s)
- Bryan Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Kara Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tina M Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | | | - Thomas Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Lu Y, Orr A, Everett RD. Stimulation of the Replication of ICP0-Null Mutant Herpes Simplex Virus 1 and pp71-Deficient Human Cytomegalovirus by Epstein-Barr Virus Tegument Protein BNRF1. J Virol 2016; 90:9664-9673. [PMID: 27535048 PMCID: PMC5068519 DOI: 10.1128/jvi.01224-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022] Open
Abstract
It is now well established that several cellular proteins that are components of promyelocytic leukemia nuclear bodies (PML NBs, also known as ND10) have restrictive effects on herpesvirus infections that are countered by viral proteins that are either present in the virion particle or are expressed during the earliest stages of infection. For example, herpes simplex virus 1 (HSV-1) immediate early (IE) protein ICP0 overcomes the restrictive effects of PML-NB components PML, Sp100, hDaxx, and ATRX while human cytomegalovirus (HCMV) IE protein IE1 targets PML and Sp100, and its tegument protein pp71 targets hDaxx and ATRX. The functions of these viral regulatory proteins are in part interchangeable; thus, both IE1 and pp71 stimulate the replication of ICP0-null mutant HSV-1, while ICP0 increases plaque formation by pp71-deficient HCMV. Here, we extend these studies by examining proteins that are expressed by Epstein-Barr virus (EBV). We report that EBV tegument protein BNRF1, discovered by other investigators to target the hDaxx/ATRX complex, increases the replication of both ICP0-null mutant HSV-1 and pp71-deficient HCMV. In addition, EBV protein EBNA-LP, which targets Sp100, also augments ICP0-null mutant HSV-1 replication. The combination of these two EBV regulatory proteins had a greater effect than each one individually. These findings reinforce the concept that disruption of the functions of PML-NB proteins is important for efficient herpesvirus infections. IMPORTANCE Whether a herpesvirus initiates a lytic infection in a host cell or establishes quiescence or latency is influenced by events that occur soon after the viral genome has entered the host cell nucleus. Certain cellular proteins respond in a restrictive manner to the invading pathogen's DNA, while viral functions are expressed that counteract the cell-mediated repression. One aspect of cellular restriction of herpesvirus infections is mediated by components of nuclear structures known as PML nuclear bodies (PML NBs), or ND10. Members of the alpha-, beta-, and gammaherpesvirus families all express proteins that interact with, degrade, or otherwise counteract the inhibitory effects of various PML NB components. Previous work has shown that there is the potential for a functional interchange between the viral proteins expressed by alpha- and betaherpesviruses, despite a lack of obvious sequence similarity. Here, this concept is extended to include a member of the gammaherpesviruses.
Collapse
Affiliation(s)
- Yongxu Lu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
10
|
Hare D, Collins S, Cuddington B, Mossman K. The Importance of Physiologically Relevant Cell Lines for Studying Virus-Host Interactions. Viruses 2016; 8:v8110297. [PMID: 27809273 PMCID: PMC5127011 DOI: 10.3390/v8110297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Viruses interact intimately with the host cell at nearly every stage of replication, and the cell model that is chosen to study virus infection is critically important. Although primary cells reflect the phenotype of healthy cells in vivo better than cell lines, their limited lifespan makes experimental manipulation challenging. However, many tumor-derived and artificially immortalized cell lines have defects in induction of interferon-stimulated genes and other antiviral defenses. These defects can affect virus replication, especially when cells are infected at lower, more physiologically relevant, multiplicities of infection. Understanding the selective pressures and mechanisms underlying the loss of innate signaling pathways is helpful to choose immortalized cell lines without impaired antiviral defense. We describe the trials and tribulations we encountered while searching for an immortalized cell line with intact innate signaling, and how directed immortalization of primary cells avoids many of the pitfalls of spontaneous immortalization.
Collapse
Affiliation(s)
- David Hare
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| | - Susan Collins
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| | - Breanne Cuddington
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| | - Karen Mossman
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
- Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
11
|
SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1. J Virol 2016; 90:5939-5952. [PMID: 27099310 PMCID: PMC4907222 DOI: 10.1128/jvi.00426-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022] Open
Abstract
Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation.
IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML-NB constituent proteins mediate aspects of intrinsic immunity to restrict herpes simplex virus 1 (HSV-1) as well as other viruses. These proteins repress viral replication through mechanisms that rely on SUMO signaling. However, the participating SUMOylation enzymes are not known. We identify the SUMO ligase PIAS1 as a constituent PML-NB antiviral protein. This finding distinguishes a SUMO ligase that may mediate signaling events important in PML-NB-mediated intrinsic immunity. Moreover, this research complements the recent identification of PIAS4 as an intrinsic antiviral factor, supporting a role for PIAS proteins as both positive and negative regulators of host immunity to virus infection.
Collapse
|
12
|
Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response. J Virol 2016; 90:4807-4826. [PMID: 26937035 PMCID: PMC4836348 DOI: 10.1128/jvi.03055-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection.
Collapse
|
13
|
Establishment and Characterization of a Telomerase-Immortalized Sheep Trophoblast Cell Line. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5808575. [PMID: 26998488 PMCID: PMC4779524 DOI: 10.1155/2016/5808575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023]
Abstract
The primary sheep trophoblast cells (STCs) have a finite lifespan in culture. This feature limits the scope for long-term in vitro studies with STCs. This study was an attempt to establish and characterize a telomerase-immortalized sheep trophoblast cell line. STCs were isolated and purified by using Percoll and specific immunoaffinity purification, respectively. The purified STCs were transfected with a plasmid carrying sequences of human telomerase reverse transcriptase (hTERT) to create immortalized sheep trophoblast cell line (hTERT-STCs). hTERT-STCs showed a stable expression of hTERT gene, serially passaged for a year, and showed active proliferation without signs of senescence. Cytokeratin 7 (CK-7), secreted human chorionic gonadotrophin subunit β (CG-β), placental lactogen (PL), and endogenous jaagsiekte sheep retrovirus (enJSRV) envelope genes were expressed in hTERT-STCs. Transwell cell invasion assay indicated that hTERT-STCs still possessed the same invasive characteristics as normal primary sheep trophoblast cells. hTERT-STCs could not grow in soft agar and did not develop into tumors in nude mice. In this study, we established a strain of immortalized sheep trophoblast cell line which could be gainfully employed in the future as an experimental model to study trophoblast cells with secretory function, invasive features, and probable biological function of enJSRV envelope genes.
Collapse
|
14
|
Development of a novel cell-based assay to monitor the transactivation activity of the HSV-1 protein ICP0. Antiviral Res 2015; 120:1-6. [PMID: 25936965 DOI: 10.1016/j.antiviral.2015.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/21/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early phosphoprotein infected cell protein 0 (ICP0) is a potent transcriptional activator of viral genes and is required for efficient viral replication and reactivation from latency. However, it is largely unknown what role specific cellular factors play in the transactivator function of ICP0. With the long-term goal of identifying these factors, we developed a cell-based assay in a 96-well format to measure this activity of ICP0. We designed a system using a set of HSV-1 GFP reporter viruses in which the expression of GFP is potently induced by ICP0 in cell culture. The initial feasibility of this system was confirmed over a 24-h period by fluorescence microscopy. We adapted this assay to a 96-well plate format, quantifying GFP expression with a fluorescence scanner. Our results indicate that the cell-based assay we developed is a valid and effective method for examining the transactivating activity of ICP0. This assay can be used to identify cellular factors that regulate the transactivating activity of ICP0.
Collapse
|
15
|
Analysis of the functional interchange between the IE1 and pp71 proteins of human cytomegalovirus and ICP0 of herpes simplex virus 1. J Virol 2014; 89:3062-75. [PMID: 25552717 DOI: 10.1128/jvi.03480-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) immediate early protein IE1 and the tegument protein pp71 are required for efficient infection. These proteins have some functional similarities with herpes simplex virus 1 (HSV-1) immediate early protein ICP0, which stimulates lytic HSV-1 infection and derepresses quiescent HSV-1 genomes. All three proteins counteract antiviral restriction mediated by one or more components of promyelocytic leukemia (PML) nuclear bodies, and IE1 and pp71, acting together, almost completely complement ICP0 null mutant HSV-1. Here, we investigated whether ICP0 might substitute for IE1 or pp71 during HCMV infection. Using human fibroblasts that express ICP0, IE1, or pp71 in an inducible manner, we found that ICP0 stimulated replication of both wild-type (wt) and pp71 mutant HCMV while IE1 increased wt HCMV plaque formation and completely complemented the IE1 mutant. Although ICP0 stimulated IE2 expression from IE1 mutant HCMV and increased the number of IE2-positive cells, it could not compensate for IE1 in full lytic replication. These results are consistent with previous evidence that both IE1 and IE2 are required for efficient HCMV gene expression, but they also imply that IE2 functionality is influenced specifically by IE1, either directly or indirectly, and that IE1 may include sequences that have HCMV-specific functions. We discovered a mutant form of IE1 (YL2) that fails to stimulate HCMV infection while retaining 30 to 80% of the activity of the wt protein in complementing ICP0 null mutant HSV-1. It is intriguing that the YL2 mutation is situated in the region of IE1 that is shared with IE2 and which is highly conserved among primate cytomegaloviruses. IMPORTANCE Herpesvirus gene expression can be repressed by cellular restriction factors, one group of which is associated with structures known as ND10 or PML nuclear bodies (PML NBs). Regulatory proteins of several herpesviruses interfere with PML NB-mediated repression, and in some cases their activities are transferrable between different viruses. For example, the requirement for ICP0 during herpes simplex virus 1 (HSV-1) infection can be largely replaced by ICP0-related proteins expressed by other alphaherpesviruses and even by a combination of the unrelated IE1 and pp71 proteins of human cytomegalovirus (HCMV). Here, we report that ICP0 stimulates gene expression and replication of wt HCMV but cannot replace the need for IE1 during infection by IE1-defective HCMV mutants. Therefore, IE1 includes HCMV-specific functions that cannot be replaced by ICP0.
Collapse
|