1
|
Meki IK, Huditz HI, Strunov A, van der Vlugt RAA, Kariithi HM, Rezapanah M, Miller WJ, Vlak JM, van Oers MM, Abd-Alla AMM. Characterization and Tissue Tropism of Newly Identified Iflavirus and Negeviruses in Glossina morsitans morsitans Tsetse Flies. Viruses 2021; 13:v13122472. [PMID: 34960741 PMCID: PMC8704047 DOI: 10.3390/v13122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
Tsetse flies cause major health and economic problems as they transmit trypanosomes causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in animals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful application of SIT, it is important to establish and maintain healthy insect colonies and produce flies with competitive fitness. However, mass production of tsetse is threatened by covert virus infections, such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans morsitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can be found not only in the host’s brain and fat bodies but also in their reproductive organs, and in milk and salivary glands. These findings suggest a potential horizontal viral transmission during feeding and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species show any signs of disease from these viruses.
Collapse
Affiliation(s)
- Irene K. Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
| | - Hannah-Isadora Huditz
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Anton Strunov
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (A.S.); (W.J.M.)
| | - René A. A. van der Vlugt
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA-ARS, Athens, GA 30605, USA
- Biotechnology Research Center, Kenya Agricultural and Livestock Research Organization, Nairobi P.O. Box 57811-00200, Kenya
| | - Mohammadreza Rezapanah
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research Education and Extension Organization (AREEO), Tehran 19395, Iran;
| | - Wolfgang J. Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (A.S.); (W.J.M.)
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (R.A.A.v.d.V.); (J.M.V.); (M.M.v.O.)
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria; (I.K.M.); (H.-I.H.); (H.M.K.)
- Correspondence: ; Tel.: +43-12-60-02-84-25
| |
Collapse
|
2
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
3
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
4
|
Channumsin M, Ciosi M, Masiga D, Turner CMR, Mable BK. Sodalis glossinidius presence in wild tsetse is only associated with presence of trypanosomes in complex interactions with other tsetse-specific factors. BMC Microbiol 2018; 18:163. [PMID: 30470184 PMCID: PMC6251152 DOI: 10.1186/s12866-018-1285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies. Results Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly. Conclusions We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions. Electronic supplementary material The online version of this article (10.1186/s12866-018-1285-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manun Channumsin
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand.
| | - Marc Ciosi
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya.
| | - Dan Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya
| | - C Michael R Turner
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, University Place, Glasgow, G12 0PT, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
5
|
Demirbas-Uzel G, Parker AG, Vreysen MJB, Mach RL, Bouyer J, Takac P, Abd-Alla AMM. Impact of Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) on a heterologous tsetse fly host, Glossina fuscipes fuscipes. BMC Microbiol 2018; 18:161. [PMID: 30470172 PMCID: PMC6251146 DOI: 10.1186/s12866-018-1276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies' productivity, mortality, survival, flight propensity and mating ability and insemination rates. RESULTS Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate. CONCLUSION These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia.,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
6
|
Kariithi HM, Boucias DG, Murungi EK, Meki IK, Demirbaş-Uzel G, van Oers MM, Vreysen MJB, Abd-Alla AMM, Vlak JM. Coevolution of hytrosaviruses and host immune responses. BMC Microbiol 2018; 18:183. [PMID: 30470186 PMCID: PMC6251100 DOI: 10.1186/s12866-018-1296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hytrosaviruses (SGHVs; Hytrosaviridae family) are double-stranded DNA (dsDNA) viruses that cause salivary gland hypertrophy (SGH) syndrome in flies. Two structurally and functionally distinct SGHVs are recognized; Glossina pallidipes SGHV (GpSGHV) and Musca domestica SGHV (MdSGHV), that infect the hematophagous tsetse fly and the filth-feeding housefly, respectively. Genome sizes and gene contents of GpSGHV (~ 190 kb; 160-174 genes) and MdSGHV (~ 124 kb; 108 genes) may reflect an evolution with the SGHV-hosts resulting in differences in pathobiology. Whereas GpSGHV can switch from asymptomatic to symptomatic infections in response to certain unknown cues, MdSGHV solely infects symptomatically. Overt SGH characterizes the symptomatic infections of SGHVs, but whereas MdSGHV induces both nuclear and cellular hypertrophy (enlarged non-replicative cells), GpSGHV induces cellular hyperplasia (enlarged replicative cells). Compared to GpSGHV's specificity to Glossina species, MdSGHV infects other sympatric muscids. The MdSGHV-induced total shutdown of oogenesis inhibits its vertical transmission, while the GpSGHV's asymptomatic and symptomatic infections promote vertical and horizontal transmission, respectively. This paper reviews the coevolution of the SGHVs and their hosts (housefly and tsetse fly) based on phylogenetic relatedness of immune gene orthologs/paralogs and compares this with other virus-insect models. RESULTS Whereas MdSGHV is not vertically transmitted, GpSGHV is both vertically and horizontally transmitted, and the balance between the two transmission modes may significantly influence the pathogenesis of tsetse virus. The presence and absence of bacterial symbionts (Wigglesworthia and Sodalis) in tsetse and Wolbachia in the housefly, respectively, potentially contributes to the development of SGH symptoms. Unlike MdSGHV, GpSGHV contains not only host-derived proteins, but also appears to have evolutionarily recruited cellular genes from ancestral host(s) into its genome, which, although may be nonessential for viral replication, potentially contribute to the evasion of host's immune responses. Whereas MdSGHV has evolved strategies to counteract both the housefly's RNAi and apoptotic responses, the housefly has expanded its repertoire of immune effector, modulator and melanization genes compared to the tsetse fly. CONCLUSIONS The ecologies and life-histories of the housefly and tsetse fly may significantly influence coevolution of MdSGHV and GpSGHV with their hosts. Although there are still many unanswered questions regarding the pathogenesis of SGHVs, and the extent to which microbiota influence expression of overt SGH symptoms, SGHVs are attractive 'explorers' to elucidate the immune responses of their hosts, and the transmission modes of other large DNA viruses.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Kaptagat Rd, Loresho, Nairobi, 00200, Kenya. .,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria. .,Present Address: US National Poultry Research Centre, Southeast Poultry Research Laboratory, USDA-ARS, 934 College Station Road, Athens, GA, 30605, USA.
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL, 32611, USA
| | - Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, 20115, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria.,Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Güler Demirbaş-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
7
|
Meki IK, Kariithi HM, Ahmadi M, Parker AG, Vreysen MJB, Vlak JM, van Oers MM, Abd-Alla AM. Hytrosavirus genetic diversity and eco-regional spread in Glossina species. BMC Microbiol 2018; 18:143. [PMID: 30470191 PMCID: PMC6251127 DOI: 10.1186/s12866-018-1297-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The management of the tsetse species Glossina pallidipes (Diptera; Glossinidae) in Africa by the sterile insect technique (SIT) has been hindered by infections of G. pallidipes production colonies with Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; Hytrosaviridae family). This virus can significantly decrease productivity of the G. pallidipes colonies. Here, we used three highly diverged genes and two variable number tandem repeat regions (VNTRs) of the GpSGHV genome to identify the viral haplotypes in seven Glossina species obtained from 29 African locations and determine their phylogenetic relatedness. RESULTS GpSGHV was detected in all analysed Glossina species using PCR. The highest GpSGHV prevalence was found in G. pallidipes colonized at FAO/IAEA Insect Pest Control Laboratory (IPCL) that originated from Uganda (100%) and Tanzania (88%), and a lower prevalence in G. morsitans morsitans from Tanzania (58%) and Zimbabwe (20%). Whereas GpSGHV was detected in 25-40% of G. fuscipes fuscipes in eastern Uganda, the virus was not detected in specimens of neighboring western Kenya. Most of the identified 15 haplotypes were restricted to specific Glossina species in distinct locations. Seven haplotypes were found exclusively in G. pallidipes. The reference haplotype H1 (GpSGHV-Uga; Ugandan strain) was the most widely distributed, but was not found in G. swynnertoni GpSGHV. The 15 haplotypes clustered into three distinct phylogenetic clades, the largest contained seven haplotypes, which were detected in six Glossina species. The G. pallidipes-infecting haplotypes H10, H11 and H12 (from Kenya) clustered with H7 (from Ethiopia), which presumably corresponds to the recently sequenced GpSGHV-Eth (Ethiopian) strain. These four haplotypes diverged the most from the reference H1 (GpSGHV-Uga). Haplotypes H1, H5 and H14 formed three main genealogy hubs, potentially representing the ancestors of the 15 haplotypes. CONCLUSION These data identify G. pallidipes as a significant driver for the generation and diversity of GpSGHV variants. This information may provide control guidance when new tsetse colonies are established and hence, for improved management of the virus in tsetse rearing facilities that maintain multiple Glossina species.
Collapse
Affiliation(s)
- Irene K. Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Loresho, Nairobi, Kenya
| | - Mehrdad Ahmadi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
- Insect Genetics Unit, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| |
Collapse
|
8
|
Meki IK, Kariithi HM, Parker AG, Vreysen MJB, Ros VID, Vlak JM, van Oers MM, Abd-Alla AMM. RNA interference-based antiviral immune response against the salivary gland hypertrophy virus in Glossina pallidipes. BMC Microbiol 2018; 18:170. [PMID: 30470195 PMCID: PMC6251114 DOI: 10.1186/s12866-018-1298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; Hytrosaviridae) is a non-occluded dsDNA virus that specifically infects the adult stages of the hematophagous tsetse flies (Glossina species, Diptera: Glossinidae). GpSGHV infections are usually asymptomatic, but unknown factors can result to a switch to acute symptomatic infection, which is characterized by the salivary gland hypertrophy (SGH) syndrome associated with decreased fecundity that can ultimately lead to a colony collapse. It is uncertain how GpSGHV is maintained amongst Glossina spp. populations but RNA interference (RNAi) machinery, a conserved antiviral defense in insects, is hypothesized to be amongst the host’s mechanisms to maintain the GpSGHV in asymptomatic (persistent or latent) infection state. Here, we investigated the involvement of RNAi during GpSGHV infections by comparing the expression of three key RNAi machinery genes, Dicer (DCR), Argonaute (AGO) and Drosha, in artificially virus injected, asymptomatic and symptomatic infected G. pallidipes flies compared to PBS injected (controls) individuals. We further assessed the impact of AGO2 knockdown on virus infection by RT-qPCR quantification of four selected GpSGHV genes, i.e. odv-e66, dnapol, maltodextrin glycosyltransferase (a tegument gene) and SGHV091 (a capsid gene). Results We show that in response to hemocoelic injections of GpSGHV into G. pallidipes flies, increased virus replication was accompanied by significant upregulation of the expression of three RNAi key genes; AGO1, AGO2 and DCR2, and a moderate increase in the expression of Drosha post injection compared to the PBS-injected controls. Furthermore, compared to asymptomatically infected individuals, symptomatic flies showed significant downregulation of AGO1, AGO2 and Drosha, but a moderate increase in the expression of DCR2. Compared to the controls, knockdown of AGO2 did not have a significant impact on virus infection in the flies as evidenced by unaltered transcript levels of the selected GpSGHV genes. Conclusion The upregulation of the expression of the RNAi genes implicate involvement of this machinery in controlling GpSGHV infections and the establishment of symptomatic GpSGHV infections in Glossina. These findings provide a strategic foundation to understand GpSGHV infections and to control latent (asymptomatic) infections in Glossina spp. and thereby control SGHVs in insect production facilities. Electronic supplementary material The online version of this article (10.1186/s12866-018-1298-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Henry M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Loresho, Nairobi, Kenya
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
9
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|
10
|
Meki IK, İnce İA, Kariithi HM, Boucias DG, Ozcan O, Parker AG, Vlak JM, van Oers MM, Abd-Alla AMM. Expression Profile of Glossina pallidipes MicroRNAs During Symptomatic and Asymptomatic Infection With Glossina pallidipes Salivary Gland Hypertrophy Virus (Hytrosavirus). Front Microbiol 2018; 9:2037. [PMID: 30233523 PMCID: PMC6129597 DOI: 10.3389/fmicb.2018.02037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infects tsetse flies predominantly asymptomatically and occasionally symptomatically. Symptomatic infections are characterized by overt salivary gland hypertrophy (SGH) in mass reared tsetse flies, which causes reproductive dysfunctions and colony collapse, thus hindering tsetse control via sterile insect technique (SIT). Asymptomatic infections have no apparent cost to the fly's fitness. Here, small RNAs were sequenced and profiles in asymptomatically and symptomatically infected G. pallidipes flies determined. Thirty-eight host-encoded microRNAs (miRNAs) were present in both the asymptomatic and symptomatic fly profiles, while nine host miRNAs were expressed specifically in asymptomatic flies versus 10 in symptomatic flies. Of the shared 38 miRNAs, 15 were differentially expressed when comparing asymptomatic with symptomatic flies. The most up-regulated host miRNAs in symptomatic flies was predicted to target immune-related mRNAs of the host. Six GpSGHV-encoded miRNAs were identified, of which five of them were only in symptomatic flies. These virus-encoded miRNAs may not only target host immune genes but may also participate in viral immune evasion. This evidence of differential host miRNA profile in Glossina in symptomatic flies advances our understanding of the GpSGHV-Glossina interactions and provides potential new avenues, for instance by utilization of particular miRNA inhibitors or mimics to better manage GpSGHV infections in tsetse mass-rearing facilities, a prerequisite for successful SIT implementation.
Collapse
Affiliation(s)
- Irene K. Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - İkbal A. İnce
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Drion G. Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Orhan Ozcan
- Department of Biostatistics and Medical Informatics, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
11
|
‘The importance of symbiosis in philosophy of biology: an analysis of the current debate on biological individuality and its historical roots’. Symbiosis 2018. [DOI: 10.1007/s13199-018-0556-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Demirbas-Uzel G, Kariithi HM, Parker AG, Vreysen MJB, Mach RL, Abd-Alla AMM. Susceptibility of Tsetse Species to Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV). Front Microbiol 2018; 9:701. [PMID: 29686664 PMCID: PMC5901070 DOI: 10.3389/fmicb.2018.00701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 01/18/2023] Open
Abstract
Salivary gland hytrosaviruses (SGHVs, family Hytrosaviridae) are non-occluded dsDNA viruses that are pathogenic to some dipterans. SGHVs primarily replicate in salivary glands (SG), thereby inducing overt salivary gland hypertrophy (SGH) symptoms in their adult hosts. SGHV infection of non-SG tissues results in distinct pathobiologies, including reproductive dysfunctions in tsetse fly, Glossina pallidipes (Diptera: Glossinidae) and house fly. Infection with the G. pallidipes virus (GpSGHV) resulted in the collapse of several laboratory colonies, which hindered the implementation of area wide integrated pest management (AW-IPM) programs that had a sterile insect technique (SIT) component. Although the impact of GpSGHV infection has been studied in some detail in G. pallidipes, the impact of the virus infection on other tsetse species remains largely unknown. In the current study, we assessed the susceptibility of six Glossina species (G. pallidipes, G. brevipalpis, G. m. morsitans, G. m. centralis, G. f. fuscipes, and G. p. gambiensis) to GpSGHV infections, and the impact of the viral infection on the fly pupation rate, adult emergence, and virus replication and transmission from the larval to adult stages. We also evaluated the ability of the virus to infect conspecific Glossina species through serial passages. The results indicate that the susceptibility of Glossina to GpSGHV varied widely amongst the tested species, with G. pallidipes and G. brevipalpis being the most susceptible and most refractory to the virus, respectively. Further, virus injection into the hemocoel of teneral flies led to increased viral copy number over time, while virus injection into the third instar larvae delayed adult eclosion. Except in G. pallidipes, virus injection either into the larvae or teneral adults did not induce any detectable SGH symptoms, although virus infections were PCR-detectable in the fly carcasses. Taken together, our results indicate that although GpSGHV may only cause minor damage in the mass-rearing of tsetse species other than G. pallidipes, preventive control measures are required to avoid viral contamination and transmission in the fly colonies, particularly in the facilities where multiple tsetse species are reared.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Henry M. Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, Nairobi, Kenya
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
13
|
Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D. Biotic interactions as drivers of algal origin and evolution. THE NEW PHYTOLOGIST 2017; 216:670-681. [PMID: 28857164 DOI: 10.1111/nph.14760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/07/2023]
Abstract
Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
Collapse
Affiliation(s)
- Juliet Brodie
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Steven G Ball
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille CNRS, F 59000, Lille, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, University Pierre et Marie Curie, University of Paris VI, CNRS, F-66650, Banyuls-sur-Mer, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281, S8, 9000, Gent, Belgium
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, F-29688, France
| | | | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Mahasweta Saha
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
14
|
Okeyo WA, Saarman NP, Mengual M, Dion K, Bateta R, Mireji PO, Okoth S, Ouma JO, Ouma C, Ochieng J, Murilla G, Aksoy S, Caccone A. Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasit Vectors 2017; 10:471. [PMID: 29017572 PMCID: PMC5635580 DOI: 10.1186/s13071-017-2415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/01/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya. The disease imposes economic burden on endemic regions in Kenya, including south-western Kenya, which has undergone intense but unsuccessful tsetse fly control measures. We genotyped 387 G. pallidipes flies at 13 microsatellite markers to evaluate levels of temporal genetic variation in two regions that have been subjected to intensive eradication campaigns from the 1960s to the 1980s. One of the regions, Nguruman Escarpment, has been subject to habitat alteration due to human activities, while the other, Ruma National Park, has not. In addition, Nguruman Escarpment is impacted by the movement of grazing animals into the area from neighboring regions during the drought season. We collected our samples from three geographically close sampling sites for each of the two regions. Samples were collected between the years 2003 and 2015, spanning ~96 tsetse fly generations. RESULTS We established that allelic richness averaged 3.49 and 3.63, and temporal Ne estimates averaged 594 in Nguruman Escarpment and 1120 in Ruma National Park. This suggests that genetic diversity is similar to what was found in previous studies of G. pallidipes in Uganda and Kenya, implying that we could not detect a reduction in genetic diversity following the extensive control efforts during the 1960s to the 1980s. However, we did find differences in temporal patterns of genetic variation between the two regions, indicated by clustering analysis, pairwise FST, and Fisher's exact tests for changes in allele and genotype frequencies. In Nguruman Escarpment, findings indicated differentiation among samples collected in different years, and evidence of local genetic bottlenecks in two locations previous to 2003, and between 2009 and 2015. In contrast, there was no consistent evidence of differentiation among samples collected in different years, and no evidence of local genetic bottlenecks in Ruma National Park. CONCLUSION Our findings suggest that, despite extensive control measures especially between the 1960s and the 1980s, tsetse flies in these regions persist with levels of genetic diversity similar to that found in populations that did not experience extensive control measures. Our findings also indicate temporal genetic differentiation in Nguruman Escarpment detected at a scale of > 80 generations, and no similar temporal differentiation in Ruma National Park. The different level of temporal differentiation between the two regions indicates that genetic drift is stronger in Nugruman Escarpment, for as-yet unknown reasons, which may include differences in land management. This suggests land management may have an impact on G. pallidipes population genetics, and reinforces the importance of long term monitoring of vector populations in estimates of parameters needed to model and plan effective species-specific control measures.
Collapse
Affiliation(s)
- Winnie A. Okeyo
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Michael Mengual
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Paul O. Mireji
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Johnson O. Ouma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Africa Technical Research Center, Vector Health International, Arusha, Tanzania
| | - Collins Ouma
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Joel Ochieng
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, CT USA
| | - Adalgisa Caccone
- Yale School of Public Health, Yale University, New Haven, CT USA
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| |
Collapse
|
15
|
Kariithi HM, Meki IK, Boucias DG, Abd-Alla AM. Hytrosaviruses: current status and perspective. CURRENT OPINION IN INSECT SCIENCE 2017; 22:71-78. [PMID: 28805642 DOI: 10.1016/j.cois.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Salivary gland hytrosaviruses (SGHVs) are entomopathogenic dsDNA, enveloped viruses that replicate in the salivary glands (SGs) of the adult dipterans, Glossina spp (GpSGHV) and Musca domestica (MdSGHV). Although belonging to the same virus family (Hytrosaviridae), SGHVs have distinct morphologies and pathobiologies. Two GpSGHV strains potentially account for the differential pathologies in lab-bred tsetse. New data suggest incorporation of host-derived cellular proteins and lipids into mature SGHVs. In addition to within the SGs, MdSGHV undergoes limited replication in the corpora allata, potentially disrupting hormone biosynthesis, and GpSGHV replicates in the milk glands providing a transmission conduit to progeny tsetse. Whereas MdSGHV is a potential biocontrol agent, the vertically transmitted GpSGHV is unsuitable for tsetse vector control but does jeopardize tsetse mass rearing.
Collapse
Affiliation(s)
- Henry M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Steinmetz Hall, Gainesville, FL 32611, USA
| | - Adly Mm Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria.
| |
Collapse
|
16
|
Tripp EA, Zhang N, Schneider H, Huang Y, Mueller GM, Hu Z, Häggblom M, Bhattacharya D. Reshaping Darwin's Tree: Impact of the Symbiome. Trends Ecol Evol 2017; 32:552-555. [PMID: 28601483 DOI: 10.1016/j.tree.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/10/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
Abstract
Much of the undescribed biodiversity on Earth is microbial, often in mutualistic or pathogenic associations. Physically associated and coevolving life forms comprise a symbiome. We propose that systematics research can accelerate progress in science by introducing a new framework for phylogenetic analysis of symbiomes, here termed SYMPHY (symbiome phylogenetics).
Collapse
Affiliation(s)
- Erin A Tripp
- Department of Ecology and Evolutionary Biology and Museum of Natural History, University of Colorado, Boulder, Colorado, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Harald Schneider
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China; Department of Life Sciences, Natural History Museum, London, UK
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Zhihong Hu
- State Key Laboratory for Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
17
|
Kariithi HM, Yao X, Yu F, Teal PE, Verhoeven CP, Boucias DG. Responses of the Housefly, Musca domestica, to the Hytrosavirus Replication: Impacts on Host's Vitellogenesis and Immunity. Front Microbiol 2017; 8:583. [PMID: 28424677 PMCID: PMC5380684 DOI: 10.3389/fmicb.2017.00583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Hytrosaviridae family members replicate in the salivary glands (SGs) of their adult dipteran hosts and are transmitted to uninfected hosts via saliva during feeding. Despite inducing similar gross symptoms (SG hypertrophy; SGH), hytrosaviruses (SGHVs) have distinct pathobiologies, including sex-ratio distortions in tsetse flies and refusal of infected housefly females to copulate. Via unknown mechanism(s), SGHV replication in other tissues results in reduced fecundity in tsetse flies and total shutdown of vitellogenesis and sterility in housefly females. We hypothesized that vitellogenesis shutdown was caused by virus-induced modulation of hormonal titers. Here, we used RNA-Seq to investigate virus-induced modulation of host genes/pathways in healthy and virus-infected houseflies, and we validated expression of modulated genes (n = 23) by RT-qPCR. We also evaluated the levels and activities of hemolymph AMPs, levels of endogenous sesquiterpenoids, and impacts of exogenous hormones on ovarian development in viremic females. Of the 973 housefly unigenes that were significantly modulated (padj ≤ 0.01, log2FC ≤ -2.0 or ≥ 2.0), 446 and 527 genes were downregulated and upregulated, respectively. While the most downregulated genes were related to reproduction (embryogenesis/oogenesis), the repertoire of upregulated genes was overrepresented by genes related to non-self recognition, ubiquitin-protease system, cytoskeletal traffic, cellular proliferation, development and movement, and snRNA processing. Overall, the virus, Musca domestica salivary gland hytrosavirus (MdSGHV), induced the upregulation of various components of the siRNA, innate antimicrobial immune, and autophagy pathways. We show that MdSGHV undergo limited morphogenesis in the corpora allata/corpora cardiaca (CA/CC) complex of M. domestica. MdSGHV replication in CA/CC potentially explains the significant reduction of hemolymph sesquiterpenoids levels, the refusal to mate, and the complete shutdown of egg development in viremic females. Notably, hormonal rescue of vitellogenesis did not result in egg production. The mechanism underlying MdSGHV-induced sterility has yet to be resolved.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research OrganizationNairobi, Kenya.,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna, Austria
| | - Xu Yao
- Entomology and Nematology Department, University of FloridaGainesville, FL, USA
| | - Fahong Yu
- Interdisciplinary Centre for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Peter E Teal
- Center for Medical, Agricultural and Veterinary Entomology, USDA, ARSGainesville, FL, USA
| | - Chelsea P Verhoeven
- Entomology and Nematology Department, University of FloridaGainesville, FL, USA
| | - Drion G Boucias
- Entomology and Nematology Department, University of FloridaGainesville, FL, USA
| |
Collapse
|
18
|
Maciel-Vergara G, Ros VID. Viruses of insects reared for food and feed. J Invertebr Pathol 2017; 147:60-75. [PMID: 28189501 DOI: 10.1016/j.jip.2017.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in industrial settings, can be the key for a change in the way natural resources are utilized in order to produce meat, animal protein and a list of other valuable animal products. However, because insect mass rearing technology is relatively new, little is known about the different factors that determine the quality and yield of the production process. Obtaining such knowledge is crucial for the success of insect-based product development. One of the issues that is likely to compromise the success of insect rearing is the outbreak of insect diseases. In particular, viral diseases can be devastating for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks in mass rearing systems, ranging from simple sanitation methods to highly sophisticated methods including RNAi and transgenics.
Collapse
Affiliation(s)
- Gabriela Maciel-Vergara
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
19
|
Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz 2017; 112:81-93. [PMID: 28177042 PMCID: PMC5293117 DOI: 10.1590/0074-02760160373] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023] Open
Abstract
Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted.
Collapse
Affiliation(s)
- Miguel A Saldaña
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX, USA
| | - Shivanand Hegde
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
| | - Grant L Hughes
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
- University of Texas Medical Branch, Institute for Human Infections and Immunity, Galveston, TX, USA
- University of Texas Medical Branch, Center for Biodefense and Emerging Infectious Disease, Galveston, TX, USA
- University of Texas Medical Branch, Center for Tropical Diseases, Galveston, TX, USA
| |
Collapse
|
20
|
Abstract
The advent of relatively inexpensive tools for characterizing microbial communities has led to an explosion of research exploring the diversity, ecology, and evolution of microbe-host systems. Some now question whether existing conceptual frameworks are adequate to explain microbe-host systems. One popular paradigm is the "holobiont-hologenome," which argues that a host and its microbiome evolve as a single cooperative unit of selection (i.e., a superorganism). We argue that the hologenome is based on overly restrictive assumptions which render it an approach of little research utility. A host plus its microbiome is more effectively viewed as an ecological community of organisms that encompasses a broad range of interactions (parasitic to mutualistic), patterns of transmission (horizontal to vertical), and levels of fidelity among partners. The hologenome requires high partner fidelity if it is to evolve as a unit. However, even when this is achieved by particular host-microbe pairs, it is unlikely to hold for the entire host microbiome, and therefore the community is unlikely to evolve as a hologenome. Both mutualistic and antagonistic (fitness conflict) evolution can occur among constituent members of the community, not just adaptations at the "hologenome" level, and there is abundant empirical evidence for such divergence of selective interests among members of host-microbiome communities. We believe that the concepts and methods of ecology, genetics, and evolutionary biology will continue to provide a well-grounded intellectual framework for researching host-microbiome communities, without recourse to the limiting assumption that selection acts predominantly at the holobiont level.
Collapse
|
21
|
Kariithi HM, İnce İA, Boeren S, Murungi EK, Meki IK, Otieno EA, Nyanjom SRG, van Oers MM, Vlak JM, Abd-Alla AMM. Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies. Front Microbiol 2016; 7:89. [PMID: 26903969 PMCID: PMC4746320 DOI: 10.3389/fmicb.2016.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) is a dsDNA virus exclusively pathogenic to tsetse flies (Diptera; Glossinidae). The 190 kb GpSGHV genome contains 160 open reading frames and encodes more than 60 confirmed proteins. The asymptomatic GpSGHV infection in flies can convert to symptomatic infection that is characterized by overt salivary gland hypertrophy (SGH). Flies with SGH show reduced general fitness and reproductive dysfunction. Although the occurrence of SGH is an exception rather than the rule, G. pallidipes is thought to be the most susceptible to expression of overt SGH symptoms compared to other Glossina species that are largely asymptomatic. Although Glossina salivary glands (SGs) play an essential role in GpSGHV transmission, the functions of the salivary components during the virus infection are poorly understood. In this study, we used mass spectrometry to study SG proteomes of G. pallidipes and G. m. morsitans, two Glossina model species that exhibit differential GpSGHV pathologies (high and low incidence of SGH, respectively). A total of 540 host proteins were identified, of which 23 and 9 proteins were significantly up- and down-regulated, respectively, in G. pallidipes compared to G. m. morsitans. Whereas 58 GpSGHV proteins were detected in G. pallidipes F1 progenies, only 5 viral proteins were detected in G. m. morsitans. Unlike in G. pallidipes, qPCR assay did not show any significant increase in virus titers in G. m. morsitans F1 progenies, confirming that G. m. morsitans is less susceptible to GpSGHV infection and replication compared to G. pallidipes. Based on our results, we speculate that in the case of G. pallidipes, GpSGHV employs a repertoire of host intracellular signaling pathways for successful infection. In the case of G. m. morsitans, antiviral responses appeared to be dominant. These results are useful for designing additional tools to investigate the Glossina-GpSGHV interactions.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research OrganizationNairobi, Kenya; Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - İkbal Agah İnce
- Department of Medical Microbiology, Acıbadem University İstanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | - Edwin K Murungi
- South African National Bioinformatics Institute, University of the Western Cape Cape Town, South Africa
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - Everlyne A Otieno
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | - Steven R G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | | | - Just M Vlak
- Laboratory of Virology, Wageningen University Wageningen, Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency Vienna, Austria
| |
Collapse
|
22
|
Abd-Alla AMM, Kariithi HM, Cousserans F, Parker NJ, İnce İA, Scully ED, Boeren S, Geib SM, Mekonnen S, Vlak JM, Parker AG, Vreysen MJB, Bergoin M. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach. J Gen Virol 2016; 97:1010-1031. [PMID: 26801744 DOI: 10.1099/jgv.0.000409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Henry M Kariithi
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.,Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, PO Box 57811, Loresho, Nairobi, Kenya.,Laboratory of Virology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - François Cousserans
- Laboratoire de Pathologie Comparée, Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France
| | | | - İkbal Agah İnce
- Department of Medical Microbiology, School of Medicine, Acibadem University, 34752 Atas¸ehir, Istanbul, Turkey
| | - Erin D Scully
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska East Campus, Lincoln, NE 68583, USA
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Centre, Hilo, HI 96720, USA
| | - Solomon Mekonnen
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), Addis Ababa, Ethiopia
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Andrew G Parker
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Max Bergoin
- Laboratoire de Pathologie Comparée, Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
23
|
Mbewe NJ, Mweempwa C, Guya S, Wamwiri FN. Microbiome frequency and their association with trypanosome infection in male Glossina morsitans centralis of Western Zambia. Vet Parasitol 2015; 211:93-8. [PMID: 25983231 DOI: 10.1016/j.vetpar.2015.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023]
Abstract
Tsetse flies (Diptera: Glossinidae) are considered primary cyclical vectors that transmit pathogenic trypanosomes in Africa. They harbour a variety of microbes including Wolbachia, Sodalis and the salivary gland hypertrophy virus (SGHV) which are all vertically transmitted. Knowledge on tsetse microbiome and their interactions may identify novel strategies for tsetse fly and trypanosomiasis control. Area-wide application of such strategies requires an understanding of the natural microbiome frequency in the different species and subspecies of Glossina in their geographical populations. Consequently, this study determined the prevalence of Sodalis, Wolbachia, SGHV and trypanosome infections in Glossina morsitanscentralis from two sites of Western Zambia. We also explored possible associations of the microbes with trypanosome infections. Male G. morsitanscentralis samples were collected from two sites (Lyoni and Lusinina) in Western Zambia. The age structure of the flies at each site was determined using the wing fray method. DNA was extracted from the samples and analyzed for Wolbachia, Sodalis, SGHV and trypanosome presence using PCR. Associations and measures of associations between trypanosome infection and microbes in the fly were determined. The flies from the two locations (Lusinina, n=45 and Lyoni, n=24) had a similar age structure with their median fray category not being significantly different (p=0.698). The overall prevalence of Wolbachia was 72.5% (95% CI: 61.6-83.3%), Sodalis was 15.9% (95% CI: 7.1-24.8%), SGHV was 31.9% (95% CI: 20.6-43.2%) and Trypanosoma species was 23.2% (95% CI: 13-33.4%). The prevalence of Wolbachia was significantly higher in Lusinina than Lyoni (p=0.000). However this was not the case for Sodalis, SGHV and Trypanosoma species. Despite the low number of flies that were positive for both trypanosome and Sodalis (6; 8.7%), a statistically significant association (p=0.013; AOR 6.2; 95% CI: 1.5-25.8) was observed in G. morsitanscentralis. The study showed that the prevalence of microbiota may vary within the same species of the tsetse depending on the geographical location as was the case of Wolbachia. Further it showed that infection with Sodalis could affect vector competence. The study concludes that Sodalis could be an ideal candidate for symbiont-mediated trypanosomiasis control interventions in G. morsitanscentralis.
Collapse
Affiliation(s)
- Njelembo J Mbewe
- Department of Veterinary Services, Tsetse and Trypanosomiasis Control Section, Chilanga, 350001, Zambia.
| | - Cornelius Mweempwa
- Department of Veterinary Services, Tsetse and Trypanosomiasis Control Section, Chilanga, 350001, Zambia
| | - Samuel Guya
- Kenya Agriculture and Livestock Research Organisation,Biotechnology Research Institute, Kikuyu, 362 00902, Kenya
| | - Florence N Wamwiri
- Kenya Agriculture and Livestock Research Organisation,Biotechnology Research Institute, Kikuyu, 362 00902, Kenya
| |
Collapse
|
24
|
Vallejo CR, Lee JA, Keesling JE, Geden CJ, Lietze VU, Boucias DG. A Mathematic Model That Describes Modes of MdSGHV Transmission within House Fly Populations. INSECTS 2013; 4:683-93. [PMID: 26462530 PMCID: PMC4553510 DOI: 10.3390/insects4040683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
Abstract
In this paper it is proposed that one potential component by which the Musca domestica salivary gland hypertrophy virus (MdSGHV) infects individual flies is through cuticular damage. Breaks in the cuticle allow entry of the virus into the hemocoel causing the infection. Male flies typically have a higher rate of infection and a higher rate of cuticular damage than females. A model for the transmission of MdSGHV was formulated assuming several potential and recognized means of transmission. The model yields results that are in agreement with field data that measured the infection rate in house flies on dairy farms in Florida. The results from this model indicate that MdSGHV will be maintained at a stable rate within house fly populations and support the future use of MdSGHV as a birth control agent in house fly management.
Collapse
Affiliation(s)
- Celeste R Vallejo
- Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611, USA.
| | - Jo Ann Lee
- Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611, USA.
| | - James E Keesling
- Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611, USA.
| | - Christopher J Geden
- Center for Medical, Agricultural, and Veterinary Entomology, USDA, ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Verena-Ulrike Lietze
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA.
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
Wang J, Weiss BL, Aksoy S. Tsetse fly microbiota: form and function. Front Cell Infect Microbiol 2013; 3:69. [PMID: 24195062 PMCID: PMC3810596 DOI: 10.3389/fcimb.2013.00069] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022] Open
Abstract
Tsetse flies are the primary vectors of African trypanosomes, which cause Human and Animal African trypanosomiasis in 36 countries in sub-Saharan Africa. These flies have also established symbiotic associations with bacterial and viral microorganisms. Laboratory-reared tsetse flies harbor up to four vertically transmitted organisms—obligate Wigglesworthia, commensal Sodalis, parasitic Wolbachia and Salivary Gland Hypertrophy Virus (SGHV). Field-captured tsetse can harbor these symbionts as well as environmentally acquired commensal bacteria. This microbial community influences several aspects of tsetse's physiology, including nutrition, fecundity and vector competence. This review provides a detailed description of tsetse's microbiome, and describes the physiology underlying host-microbe, and microbe-microbe, interactions that occur in this fly.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health New Haven, CT, USA
| | | | | |
Collapse
|
26
|
Kariithi HM, van Oers MM, Vlak JM, Vreysen MJB, Parker AG, Abd-Alla AMM. Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae). INSECTS 2013; 4:287-319. [PMID: 26462422 PMCID: PMC4553466 DOI: 10.3390/insects4030287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023]
Abstract
The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was first isolated from hypertrophied salivary glands of the tsetse fly, Glossina pallidipes Austen (Diptera; Glossinidae) collected in Kenya in 1986. A certain proportion of laboratory G. pallidipes flies infected by Glossina hytrosavirus develop hypertrophied salivary glands and midgut epithelial cells, gonadal anomalies and distorted sex-ratios associated with reduced insemination rates, fecundity and lifespan. These symptoms are rare in wild tsetse populations. In East Africa, G. pallidipes is one of the most important vectors of African trypanosomosis, a debilitating zoonotic disease that afflicts 37 sub-Saharan African countries. There is a large arsenal of control tactics available to manage tsetse flies and the disease they transmit. The sterile insect technique (SIT) is a robust control tactic that has shown to be effective in eradicating tsetse populations when integrated with other control tactics in an area-wide integrated approach. The SIT requires production of sterile male flies in large production facilities. To supply sufficient numbers of sterile males for the SIT component against G. pallidipes, strategies have to be developed that enable the management of the Glossina hytrosavirus in the colonies. This review provides a historic chronology of the emergence and biogeography of Glossina hytrosavirus, and includes researches on the infectomics (defined here as the functional and structural genomics and proteomics) and pathobiology of the virus. Standard operation procedures for viral management in tsetse mass-rearing facilities are proposed and a future outlook is sketched.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
- Biotechnology Centre, Kenya Agricultural Research Institute, Waiyaki Way, P.O. Box 14733-00100, Nairobi, Kenya.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Marc J B Vreysen
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Andrew G Parker
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| |
Collapse
|