1
|
Singh P, Bankhead T. Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen. PLoS Pathog 2025; 21:e1012871. [PMID: 39792948 PMCID: PMC11756760 DOI: 10.1371/journal.ppat.1012871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/23/2025] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown. The vls locus, which is the site of antigenic variation, has been notoriously challenging to manipulate genetically due to its highly conserved structural features, even with significant advancements in molecular biology and genetic engineering for this highly segmented pathogen. Our study highlights the pivotal role of plasmid topology in facilitating in trans gene recombination. We demonstrate that gene conversion can occur in trans when a copy of vlsE gene is present on a linear plasmid, contrary to previous observations suggesting a cis arrangement is required for vlsE recombination. Significantly, employing this in trans gene conversion strategy with a linear plasmid, we have, for the first time, achieved targeted genetic mutation of putative cis-acting elements in the native vlsE gene. This has unveiled a potentially crucial role for the 17 bp direct repeats that flank the central variable cassette region of vlsE. Furthermore, we validated the reliability and reproducibility of our mutational approach by successfully inserting stop codons at two distinct sites within the central variable cassette of vlsE. Thus, this study presents a significant methodological innovation enabling the direct manipulation of the vls locus and lays the groundwork for systematic exploration of specific mutations affecting the mechanism of antigenic variation. As a result, it creates new avenues for research and raises intriguing questions that could guide the development of novel methods to explore host-pathogen interactions of the agent of Lyme disease.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Rogovskyy AS, Pliasas VC, Buhrer R, Lewy K, Wiener DJ, Jung Y, Bova J, Rogovska Y, Kim SJ, Jeon E“G. Do white-footed mice, the main reservoir of the Lyme disease pathogen in the United States, clinically respond to the borrelial tenancy? Infect Immun 2024; 92:e0038224. [PMID: 39535189 PMCID: PMC11629617 DOI: 10.1128/iai.00382-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
As white-footed mice, Peromyscus leucopus, are considered the primary animal reservoir of Borreliella burgdorferi sensu stricto (Bb), the main agent of Lyme disease (LD) in the United States, these animals represent the most relevant model to study borrelial spirochetes in the context of their natural life cycle. Previous studies have consistently demonstrated that although white-footed mice respond immunologically to the invasion of the Lyme pathogen, P. leucopus adults do not develop a clinically detectable disease. This tolerance, which is common for mammalian reservoirs of different pathogens, contrasts with detrimental anti-borrelial responses of C3H mice, a widely used animal model of LD, which always result in a clinical manifestation (e.g., arthritis). The current investigation is a follow-up of our recent study that already showed a relative quiescence of the spleen transcriptome for Bb-infected white-footed mice compared to the infected C3H mice. In an effort to identify the mechanism behind this tolerance, in this study, we have evaluated an extensive list of hematological and biochemical parameters measured in white-footed mice after their 70-day-long borrelial infection. Despite missing reference intervals for Peromyscus mice, our sex- and age-matched uninfected controls allowed us to assess the blood and serum parameters. In addition, for our assessment, we also utilized behavioral, immunological, and histological analyses. Collectively, by using the metrics reported herein, the present results have demonstrated clinical unresponsiveness of P. leucopus mice to the borrelial infection, presenting no restriction to a long-term host-pathogen co-existence.
Collapse
Affiliation(s)
- Artem S. Rogovskyy
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Vasilis C. Pliasas
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ryan Buhrer
- Comparative Medicine Program, Texas A&M University, College Station, Texas, USA
| | - Keith Lewy
- Division of Laboratory Animal Medicine, Los Angeles School of Medicine, University of California, Los Angeles, California, USA
| | - Dominique J. Wiener
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yoonsung Jung
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, Texas, USA
| | - Jonathan Bova
- Comparative Medicine Program, Texas A&M University, College Station, Texas, USA
| | - Yuliya Rogovska
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sun J. Kim
- Texas A&M Preclinical Phenotyping Core, Texas A&M Institute for Genome Science and Society, Texas A&M University, College Station, Texas, USA
| | - Eunhye “Grace” Jeon
- Texas A&M Preclinical Phenotyping Core, Texas A&M Institute for Genome Science and Society, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Norris SJ, Brangulis K. Meta-analysis of the Vmp-like sequences of Lyme disease Borrelia: evidence for the evolution of an elaborate antigenic variation system. Front Microbiol 2024; 15:1469411. [PMID: 39450289 PMCID: PMC11499132 DOI: 10.3389/fmicb.2024.1469411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
VMP-like sequence (vls) antigenic variation systems are present in every Lyme disease Borrelia strain with complete genome sequences. The linear plasmid-encoded vls system consists of a single expression site (vlsE) and contiguous array(s) of silent cassettes that have ~90% identity with the central cassette region of the cognate vlsE gene; antigenic variation occurs through random, segmental, and unidirectional recombination of vls silent cassette sequences into the vlsE expression site. Automated annotation programs do not accurately recognize vls silent cassette sequences, so these regions are not correctly annotated in most genomic sequences. In this study, the vls sequences were re-analyzed in the genomic sequences of 31 available Lyme disease Borrelia and one relapsing fever Borrelia organisms, and this information was utilized to systematically compare the vls systems in different species and strains. In general, the results confirm the conservation of the overall architecture of the vls system, such as the head-to-head arrangement of vlsE and a contiguous series of vlsS silent cassette sequences and presence of inverted repeat sequences between the two regions. However, the data also provide evidence for the divergence of the vls silent cassette arrays through point mutations, short indels, duplication events, and rearrangements. The probable occurrence of convergent evolution toward a vls system-like locus is exemplified by Borrelia turcica, a variable large protein (Vlp) expressing organism that is a member of the relapsing fever Borrelia group.
Collapse
Affiliation(s)
- Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kalvis Brangulis
- Department of Human Physiology and Biochemistry, Faculty of Medicine, Rīga Stradiņš University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
4
|
Williams MT, Zhang Y, Pulse ME, Berg RE, Allen MS. Suppression of host humoral immunity by Borrelia burgdorferi varies over the course of infection. Infect Immun 2024; 92:e0001824. [PMID: 38514468 PMCID: PMC11003232 DOI: 10.1128/iai.00018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, utilizes a variety of strategies to evade and suppress the host immune response, which enables it to chronically persist in the host. The resulting immune response is characterized by unusually strong IgM production and a lack of long-term protective immunity. Previous studies in mice have shown that infection with B. burgdorferi also broadly suppresses host antibody responses against unrelated antigens. Here, we show that mice infected with B. burgdorferi and concomitantly immunized with recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein had an abrogated antibody response to the immunization. To further define how long this humoral immune suppression lasts, mice were immunized at 2, 4, and 6 weeks post-infection. Suppression of host antibody production against the SARS-CoV-2 spike protein peaked at 2 weeks post-infection but continued for all timepoints measured. Antibody responses against the SARS-CoV-2 spike protein were also assessed following antibiotic treatment to determine whether this immune suppression persists or resolves following clearance of B. burgdorferi. Host antibody production against the SARS-CoV-2 spike protein returned to baseline following antibiotic treatment; however, anti-SARS-CoV-2 IgM remained high, comparable to levels found in B. burgdorferi-infected but untreated mice. Thus, our data demonstrate restored IgG responses following antibiotic treatment but persistently elevated IgM levels, indicating lingering effects of B. burgdorferi infection on the immune system following treatment.
Collapse
Affiliation(s)
- Megan T. Williams
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
- The Tick-Borne Disease Research Laboratory, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yan Zhang
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
- The Tick-Borne Disease Research Laboratory, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Mark E. Pulse
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rance E. Berg
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Michael S. Allen
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
- The Tick-Borne Disease Research Laboratory, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
5
|
Huang J, Chen J, Xie Y, Liu Z. Subversion of the immune response of human pathogenic spirochetes. J Clin Lab Anal 2022; 36:e24414. [PMID: 35403248 PMCID: PMC9102653 DOI: 10.1002/jcla.24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jielite Huang
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
| | - Jinlin Chen
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
| | - Yafeng Xie
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
- Institution of Pathogenic Biology Medical College Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Zhuoran Liu
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
| |
Collapse
|
6
|
Venkataranganayaka Abhilasha K, Kedihithlu Marathe G. Bacterial lipoproteins in sepsis. Immunobiology 2021; 226:152128. [PMID: 34488139 DOI: 10.1016/j.imbio.2021.152128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
Bacterial lipoproteins are membrane proteins derived from both gram-negative and gram-positive bacteria. They seem to have diverse functions not only on bacterial growth, but also play an important role in host's virulence. Bacterial lipoproteins exert their action on host immune cells via TLR2/1 or TLR2/6. Therefore, bacterial lipoproteins also need to be considered while addressing bacterial pathogenicity besides classical bacterial endotoxin like LPS and other microbial associated molecular patterns such as LTA, and peptidoglycans. In this mini-review, we provide an overview of general bacterial lipoprotein biosynthesis and the need to understand the lipoprotein-mediated pathogenicity in diseases like sepsis.
Collapse
Affiliation(s)
- Kandahalli Venkataranganayaka Abhilasha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
7
|
Farber C, Morey R, Krimmer M, Kurouski D, Rogovskyy AS. Exploring a possibility of using Raman spectroscopy for detection of Lyme disease. JOURNAL OF BIOPHOTONICS 2021; 14:e202000477. [PMID: 33486893 DOI: 10.1002/jbio.202000477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Lyme disease (LD), one of the most prevalent tick-borne diseases in the United States (US), is caused by Borreliella burgdorferi sensu stricto (Bb). To date, in the US, LD diagnostics is primarily based on validated two-tiered serological testing, which overall exhibits low sensitivity among other drawbacks. In the present study, a potential of Raman spectroscopy (RS) to detect Bb infection in mice has been explored. For that, C3H mice were infected with wild-type Bb strains, 297, B31, or B31-derived mutant, ∆vlsE. Blood samples taken prior to and post Bb infection were subjected to RS. The data demonstrated that RS did not directly detect Bb spirochetes in blood, but rather sensed biochemical changes associated with Bb infection. Despite Bb infection-associated blood changes detectable by RS were very limited, the partial least square discriminant analysis showed that the average true positive rates were 86% for 297 and 89% for B31 and ∆vlsE.
Collapse
Affiliation(s)
- Charles Farber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Rohini Morey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mark Krimmer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
The Borrelia burgdorferi VlsE Lipoprotein Prevents Antibody Binding to an Arthritis-Related Surface Antigen. Cell Rep 2021; 30:3663-3670.e5. [PMID: 32187539 PMCID: PMC7162589 DOI: 10.1016/j.celrep.2020.02.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 11/21/2022] Open
Abstract
Arp is an immunogenic protein of the Lyme disease spirochete Borrelia burgdorferi and contributes to joint inflammation during infection. Despite Arp eliciting a strong humoral response, antibodies fail to clear the infection. Given previous evidence of immune avoidance mediated by the antigenically variable lipoprotein of B. burgdorferi, VlsE, we use passive immunization assays to examine whether VlsE protects the pathogen from anti-Arp antibodies. The results show that spirochetes are only able to successfully infect passively immunized mice when VlsE is expressed. Subsequent immunofluorescence assays reveal that VlsE prevents binding of Arp-specific antibodies, thereby providing an explanation for the failure of Arp antisera to clear the infection. The results also show that the shielding effect of VlsE is not universal for all B. burgdorferi cell-surface antigens. The findings reported here represent a direct demonstration of VlsE-mediated protection of a specific B. burgdorferi surface antigen through a possible epitope-shielding mechanism. Lone and Bankhead report that the antigenically variable VlsE protein of the Lyme disease agent Borrelia burgdorferi can prevent antibody binding to a surface antigen of the pathogen. They show that protection is likely via an epitope-shielding mechanism, thus expanding the current role of VlsE in immune evasion.
Collapse
|
9
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
10
|
Bockenstedt LK, Wooten RM, Baumgarth N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:145-190. [PMID: 33289684 PMCID: PMC10842262 DOI: 10.21775/cimb.042.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The mammalian host responds to infection with Borrelia spirochetes through a highly orchestrated immune defense involving innate and adaptive effector functions aimed toward limiting pathogen burdens, minimizing tissue injury, and preventing subsequent reinfection. The evolutionary adaptation of Borrelia spirochetes to their reservoir mammalian hosts may allow for its persistence despite this immune defense. This review summarizes our current understanding of the host immune response to B. burgdorferi sensu lato, the most widely studied Borrelia spp. and etiologic agent of Lyme borreliosis. Pertinent literature will be reviewed with emphasis on in vitro, ex vivo and animal studies that influenced our understanding of both the earliest responses to B. burgdorferi as it enters the mammalian host and those that evolve as spirochetes disseminate and establish infection in multiple tissues. Our focus is on the immune response of inbred mice, the most commonly studied animal model of B. burgdorferi infection and surrogate for one of this pathogen's principle natural reservoir hosts, the white-footed deer mouse. Comparison will be made to the immune responses of humans with Lyme borreliosis. Our goal is to provide an understanding of the dynamics of the mammalian immune response during infection with B. burgdorferi and its relation to the outcomes in reservoir (mouse) and non-reservoir (human) hosts.
Collapse
Affiliation(s)
- Linda K. Bockenstedt
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Dept. Pathology, Microbiology and Immunology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
11
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
12
|
Talagrand-Reboul E, Westermann B, Raess MA, Schnell G, Cantero P, Barthel C, Ehret-Sabatier L, Jaulhac B, Boulanger N. Proteomic as an Exploratory Approach to Develop Vaccines Against Tick-Borne Diseases Using Lyme Borreliosis as a Test Case. Vaccines (Basel) 2020; 8:vaccines8030463. [PMID: 32825641 PMCID: PMC7564290 DOI: 10.3390/vaccines8030463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Tick-borne diseases affecting humans and animals are on the rise worldwide. Vaccines constitute an effective control measure, but very few are available. We selected Lyme borreliosis, a bacterial infection transmitted by the hard tick Ixodes, to validate a new concept to identify vaccine candidates. This disease is the most common tick-borne disease in the Northern Hemisphere. Although attempts to develop a vaccine exist, none have been successfully marketed. In tick-borne diseases, the skin constitutes a very specific environment encountered by the pathogen during its co-inoculation with tick saliva. In a mouse model, we developed a proteomic approach to identify vaccine candidates in skin biopsies. We identified 30 bacterial proteins after syringe inoculation or tick inoculation of bacteria. Discovery proteomics using mass spectrometry might be used in various tick-borne diseases to identify pathogen proteins with early skin expression. It should help to better develop sub-unit vaccines based on a cocktail of several antigens, associated with effective adjuvant and delivery systems of antigens. In all vector-borne diseases, the skin deserves further investigation to better define its role in the elaboration of protective immunity against pathogens.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
| | - Benoit Westermann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Matthieu A. Raess
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
| | - Gilles Schnell
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Paola Cantero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Cathy Barthel
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Benoit Jaulhac
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
- French National Reference Center on Lyme Borreliosis, CHRU, 67000 Strasbourg, France
| | - Nathalie Boulanger
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
- French National Reference Center on Lyme Borreliosis, CHRU, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
13
|
Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera. PLoS One 2020; 15:e0226378. [PMID: 31940357 PMCID: PMC6961823 DOI: 10.1371/journal.pone.0226378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Detection of protection-associated epitopes via reverse vaccinology is the first step for development of subunit vaccines against microbial pathogens. Mapping subunit vaccine targets requires high throughput methods, which would allow delineation of epitopes recognized by protective antibodies on a large scale. Phage displayed random peptide library coupled to Next Generation Sequencing (PDRPL/NGS) is the universal platform that enables high-yield identification of peptides that mimic epitopes (mimotopes). Despite being unsurpassed as a tool for discovery of polyclonal serum mimotopes, the PDRPL/NGS is far inferior as a quantitative method of immune response. Difficult-to-control fluctuations in amounts of antibody-bound phages after rounds of selection and amplification diminish the quantitative capacity of the PDRPL/NGS. In an attempt to improve the accuracy of the PDRPL/NGS method, we compared the discriminating capacity of two approaches for PDRPL/NGS data analysis. The whole-unique-sequence-based analysis (WUSA) involved generation of 7-mer peptide profiles and comparison of the numbers of sequencing reads for unique peptide sequences between serum samples. The motif-based analysis (MA) included identification of 4-mer consensus motifs unifying unique 7-mer sequences and comparison of motifs between serum samples. The motif comparison was based not on the numbers of sequencing reads, but on the numbers of distinct 7-mers constituting the motifs. Our PDRPL/NGS datasets generated from biopanning of protective and non-protective anti-Borrelia burgdorferi sera of New Zealand rabbits were used to contrast the two approaches. As a result, the principle component analyses (PCA) showed that the discriminating powers of the WUSA and MA were similar. In contrast, the unsupervised hierarchical clustering obtained via the MA classified the preimmune, non-protective, and protective sera better than the WUSA-based clustering. Also, a total number of discriminating motifs was higher than that of discriminating 7-mers. In sum, our results indicate that MA approach improves the accuracy and quantitative capacity of the PDRPL/NGS method.
Collapse
|
14
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
15
|
Verhey TB, Castellanos M, Chaconas G. Antigenic Variation in the Lyme Spirochete: Insights into Recombinational Switching with a Suggested Role for Error-Prone Repair. Cell Rep 2019; 23:2595-2605. [PMID: 29847791 DOI: 10.1016/j.celrep.2018.04.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 01/14/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
16
|
Delineating Surface Epitopes of Lyme Disease Pathogen Targeted by Highly Protective Antibodies of New Zealand White Rabbits. Infect Immun 2019; 87:IAI.00246-19. [PMID: 31085705 DOI: 10.1128/iai.00246-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD), the most prevalent vector-borne illness in the United States and Europe, is caused by Borreliella burgdorferi No vaccine is available for humans. Dogmatically, B. burgdorferi can establish a persistent infection in the mammalian host (e.g., mice) due to a surface antigen, VlsE. This antigenically variable protein allows the spirochete to continually evade borreliacidal antibodies. However, our recent study has shown that the B. burgdorferi spirochete is effectively cleared by anti-B. burgdorferi antibodies of New Zealand White rabbits, despite the surface expression of VlsE. Besides homologous protection, the rabbit antibodies also cross-protect against heterologous B. burgdorferi spirochetes and significantly reduce the pathology of LD arthritis in persistently infected mice. Thus, this finding that NZW rabbits develop a unique repertoire of very potent antibodies targeting the protective surface epitopes, despite abundant VlsE, prompted us to identify the specificities of the protective rabbit antibodies and their respective targets. By applying subtractive reverse vaccinology, which involved the use of random peptide phage display libraries coupled with next-generation sequencing and our computational algorithms, repertoires of nonprotective (early) and protective (late) rabbit antibodies were identified and directly compared. Consequently, putative surface epitopes that are unique to the protective rabbit sera were mapped. Importantly, the relevance of newly identified protection-associated epitopes for their surface exposure has been strongly supported by prior empirical studies. This study is significant because it now allows us to systematically test the putative epitopes for their protective efficacy with an ultimate goal of selecting the most efficacious targets for development of a long-awaited LD vaccine.
Collapse
|
17
|
New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional vlsE Antigenic Variation System. Infect Immun 2019; 87:IAI.00164-19. [PMID: 30988058 DOI: 10.1128/iai.00164-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Borrelia burgdorferi is a tick-borne bacterium responsible for approximately 300,000 annual cases of Lyme disease (LD) in the United States, with increasing incidences in other parts of the world. The debilitating nature of LD is mainly attributed to the ability of B. burgdorferi to persist in patients for many years despite strong anti-Borrelia antibody responses. Antimicrobial treatment of persistent infection is challenging. Similar to infection of humans, B. burgdorferi establishes long-term infection in various experimental animal models except for New Zealand White (NZW) rabbits, which clear the spirochete within 4 to 12 weeks. LD spirochetes have a highly evolved antigenic variation vls system, on the lp28-1 plasmid, where gene conversion results in surface expression of the antigenically variable VlsE protein. VlsE is required for B. burgdorferi to establish persistent infection by continually evading otherwise potent antibodies. Since the clearance of B. burgdorferi is mediated by humoral immunity in NZW rabbits, the previously reported results that LD spirochetes lose lp28-1 during rabbit infection could potentially explain the failure of B. burgdorferi to persist. However, the present study unequivocally disproves that previous finding by demonstrating that LD spirochetes retain the vls system. However, despite the vls system being fully functional, the spirochete fails to evade anti-Borrelia antibodies of NZW rabbits. In addition to being protective against homologous and heterologous challenges, the rabbit antibodies significantly ameliorate LD-induced arthritis in persistently infected mice. Overall, the current data indicate that NZW rabbits develop a protective antibody repertoire, whose specificities, once defined, will identify potential candidates for a much-anticipated LD vaccine.
Collapse
|
18
|
Winslow C, Coburn J. Recent discoveries and advancements in research on the Lyme disease spirochete Borrelia burgdorferi. F1000Res 2019; 8. [PMID: 31214329 PMCID: PMC6545822 DOI: 10.12688/f1000research.18379.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
This review highlights some of the highest-profile developments and advancements in the research on
Borrelia burgdorferi, the Lyme disease spirochete, that have emerged in the last two years. Particular emphasis is placed on the controversy surrounding genus nomenclature, antigenic variation at the
vlsE locus, genes involved in infectivity and virulence, membrane characteristics of
B. burgdorferi, and developments in experimental approaches.
Collapse
Affiliation(s)
- Christa Winslow
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
19
|
Casselli T, Crowley MA, Highland MA, Tourand Y, Bankhead T. A small intergenic region of lp17 is required for evasion of adaptive immunity and induction of pathology by the Lyme disease spirochete. Cell Microbiol 2019; 21:e13029. [PMID: 30945408 DOI: 10.1111/cmi.13029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/07/2019] [Accepted: 03/30/2019] [Indexed: 01/15/2023]
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, harbours a single linear chromosome and upwards of 23 linear and circular plasmids. Only a minority of these plasmids, including linear plasmid 17, are maintained with near-absolute fidelity during extended in vitro passage, and characterisation of any putative virulence determinants they encode has only recently begun. In this work, a mutant lacking a ~4.7 kb fragment of lp17 was studied. Colonisation of murine tissues by this lp17 mutant was significantly impaired, as was the ability to induce carditis and arthritis. The deficiency in tissue colonisation was alleviated in severe combined immunodeficient (SCID) mice, implicating a role for this plasmid region in adaptive immune evasion. Through genetic complementation, the mutant phenotype could be fully attributed to a 317 bp intergenic region that corresponds to the discontinued bbd07 ORF and upstream sequence. The intergenic region was found to be transcriptionally active, and mutant spirochetes lacking this region exhibited an overall difference in the antigenic profile during infection of an immunocompetent murine host. Overall, this study is the first to provide evidence for the involvement of lp17 in colonisation of joint and heart tissues, along with the associated pathologies caused by the Lyme disease spirochete.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Michael A Crowley
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Margaret A Highland
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA.,Animal Disease Research Unit, USDA Agricultural Research Service, Pullman, Washington, USA
| | - Yvonne Tourand
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
20
|
Bencurova E, Gupta SK, Oskoueian E, Bhide M, Dandekar T. Omics and bioinformatics applied to vaccine development against Borrelia. Mol Omics 2018; 14:330-340. [PMID: 30113617 DOI: 10.1039/c8mo00130h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Borrelia burgdorferi is an extracellular spirochete that causes Lyme disease. Currently, no effective vaccine is available for humans and animals except for dogs. In the present study, an extensive bioinformatics pipeline was established to predict new candidates that can be used for vaccine development including building the protein-protein interaction network based on orthologues of experimentally verified protein-protein interaction networks, elucidation of the proteins involved in the immune response, selection of the topologically-interesting proteins and their prioritization based on their antigenicity. Proteomic network analysis yielded an interactome network with 120 nodes with 97 interactions. Proteins were selected to obtain a subnet containing only the borrelial membrane proteins and immune-related host proteins. This strategy resulted in the selection of 15 borrelial targets, which were subjected to extensive bioinformatics analysis to predict their antigenic properties. Based on the strategy applied in this study the proteins encoded by erpX (ErpX proteins, UniProt ID: H7C7L6), erpL (ErpL protein, UniProt ID: H7C7M3) and erpY (ErpY protein, UniProt ID: Q9S0D9) are suggested as a novel set of vaccine targets to control Lyme disease. Moreover, five different tools were used to validate their antigenicity regarding B-cells. The combination of all these proteins in a vaccine should allow improved protection against Borrelia infection.
Collapse
Affiliation(s)
- Elena Bencurova
- Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Castellanos M, Verhey TB, Chaconas G. A Borrelia burgdorferi mini-vls system that undergoes antigenic switching in mice: investigation of the role of plasmid topology and the long inverted repeat. Mol Microbiol 2018; 109:710-721. [PMID: 29995993 DOI: 10.1111/mmi.14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi evades the host immune system by switching the surface antigen. VlsE, in a process known as antigenic variation. The DNA mechanisms and genetic elements present on the vls locus that participate in the switching process remain to be elucidated. Manipulating the vls locus has been difficult due to its instability on Escherichia coli plasmids. In this study, we generated for the first time a mini-vls system composed of a single silent vlsE variable region (silent cassette 2) through the vlsE gene by performing some cloning steps directly in a highly transformable B. burgdorferi strain. Variants of the mini system were constructed with or without the long inverted repeat (IR) located upstream of vlsE and on both circular and linear plasmids to investigate the importance of the IR and plasmid topology on recombinational switching at vlsE. Amplicon sequencing using PacBio long read technology and analysis of the data with our recently reported pipeline and VAST software showed that the system undergoes switching in mice in both linear and circular versions and that the presence of the hairpin does not seem to be crucial in the linear version, however it is required when the topology is circular.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
22
|
Identification of Surface Epitopes Associated with Protection against Highly Immune-Evasive VlsE-Expressing Lyme Disease Spirochetes. Infect Immun 2018; 86:IAI.00182-18. [PMID: 29866906 DOI: 10.1128/iai.00182-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
The tick-borne pathogen Borrelia burgdorferi is responsible for approximately 300,000 Lyme disease (LD) cases per year in the United States. Recent increases in the number of LD cases, in addition to the spread of the tick vector and a lack of a vaccine, highlight an urgent need for designing and developing an efficacious LD vaccine. Identification of protective epitopes that could be used to develop a second-generation (subunit) vaccine is therefore imperative. Despite the antigenicity of several lipoproteins and integral outer membrane proteins (OMPs) on the B. burgdorferi surface, the spirochetes successfully evade antibodies primarily due to the VlsE-mediated antigenic variation. VlsE is thought to sterically block antibody access to protective epitopes of B. burgdorferi However, it is highly unlikely that VlsE shields the entire surface epitome. Thus, identification of subdominant epitope targets that induce protection when they are made dominant is necessary to generate an efficacious vaccine. Toward the identification, we repeatedly immunized immunocompetent mice with live-attenuated VlsE-deleted B. burgdorferi and then challenged the animals with the VlsE-expressing (host-adapted) wild type. Passive immunization and Western blotting data suggested that the protection of 50% of repeatedly immunized animals against the highly immune-evasive B. burgdorferi was antibody mediated. Comparison of serum antibody repertoires identified in protected and nonprotected animals permitted the identification of several putative epitopes significantly associated with the protection. Most linear putative epitopes were conserved between the main pathogenic Borrelia genospecies and found within known subdominant regions of OMPs. Currently, we are performing immunization studies to test whether the identified protection-associated epitopes are protective for mice.
Collapse
|
23
|
Horowitz R, Freeman PR. Improvement of common variable immunodeficiency using embryonic stem cell therapy in a patient with lyme disease: a clinical case report. Clin Case Rep 2018; 6:1166-1171. [PMID: 29881587 PMCID: PMC5986024 DOI: 10.1002/ccr3.1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Bone marrow transplantation and stem cell therapies have been used for the treatment of common variable immunodeficiency (CVID) and other life-threatening medical disorders. This is the first known case report in the medical literature describing improvement of both Lyme disease and CVID with human embryonic stem cell therapy.
Collapse
Affiliation(s)
- Richard Horowitz
- HHS Tickborne Disease Working GroupWashingtonD.C.USA
- Hudson Valley Healing Arts Center4232 Albany Post RoadHyde ParkNew York12538
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center4232 Albany Post RoadHyde ParkNew York12538
| |
Collapse
|
24
|
James AE, Rogovskyy AS, Crowley MA, Bankhead T. Cis-acting DNA elements flanking the variable major protein expression site of Borrelia hermsii are required for murine persistence. Microbiologyopen 2017; 7:e00569. [PMID: 29250931 PMCID: PMC6011951 DOI: 10.1002/mbo3.569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
In Borrelia hermsii, antigenic variation occurs as a result of a nonreciprocal gene conversion event that places one of ~60 silent variable major protein genes downstream of a single, transcriptionally active promoter. The upstream homology sequence (UHS) and downstream homology sequence (DHS) are two putative cis‐acting DNA elements that have been predicted to serve as crossover points for homologous recombination. In this report, a targeted deletion/in cis complementation technique was used to directly evaluate the role for these elements in antigenic switching. The results demonstrate that deletion of the expression site results in an inability of the pathogen to relapse in immunocompetent mice, and that the utilized technique was successful in producing complemented mutants that are capable of antigenic switching. Additional complemented clones with mutations in the UHS and DHS of the expressed locus were then generated and evaluated for their ability to relapse in immunocompetent mice. Mutation of the UHS and inverted repeat sequence within the DHS rendered these mutants incapable of relapsing. Overall, the results establish the requirement of the inverted repeat of the DHS for antigenic switching, and support the importance of the UHS for B. hermsii persistence in the mammalian host.
Collapse
Affiliation(s)
- Allison E James
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Artem S Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Michael A Crowley
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Troy Bankhead
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
25
|
Verhey TB, Castellanos M, Chaconas G. Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline. Mol Microbiol 2017; 107:104-115. [PMID: 29105221 DOI: 10.1111/mmi.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Abstract
Lyme disease is the most common tick-borne illness in the Northern hemisphere and is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. A first sign of Borrelia infection is a circular skin rash, erythema migrans, but it can develop to more serious manifestations affecting skin, nervous system, joints, and/or heart. The marked increase in Lyme disease incidence over the past decades, the severity of the disease, and the associated high medical costs of, in particular, the persistent forms of Lyme disease requires adequate measures for control. Vaccination would be the most effective intervention for prevention, but at present no vaccine is available. In the 1990s, 2 vaccines against Lyme disease based on the OspA protein from the predominant Borrelia species of the US showed to be safe and effective in clinical phase III studies. However, failed public acceptance led to the demise of these monovalent OspA-based vaccines. Nowadays, public seem to be more aware of the serious health problems that Lyme disease can cause and seem more ready for the use of a broadly protective vaccine. This article discusses several aspects that should be considered to enable the development and implementation of a vaccine to prevent Lyme disease successfully.
Collapse
Affiliation(s)
- Patricia Kaaijk
- a Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Willem Luytjes
- a Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| |
Collapse
|
27
|
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol 2017; 12:1219-1237. [PMID: 28972415 DOI: 10.2217/fmb-2017-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The borrelial resurge demonstrates that Borrelia burgdorferi is a persistent health problem. This spirochete is responsible for a global public health concern called Lyme disease. B. burgdorferi faces diverse environmental conditions of its vector and host during its life cycle. To circumvent the host immune system is a prominent feature of B. burgdorferi. To date, numerous studies have reported on the various mechanisms used by this pathogen to evade the host defense mechanisms. This current review attempts to consolidate this information to describe the immunological and molecular methods used by B. burgdorferi for its survival.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
28
|
Hofmann H, Fingerle V, Hunfeld KP, Huppertz HI, Krause A, Rauer S, Ruf B. Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2017; 15:Doc14. [PMID: 28943834 PMCID: PMC5588623 DOI: 10.3205/000255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 02/07/2023]
Abstract
This guideline of the German Dermatology Society primarily focuses on the diagnosis and treatment of cutaneous manifestations of Lyme borreliosis. It has received consensus from 22 German medical societies and 2 German patient organisations. It is the first part of an AWMF (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.) interdisciplinary guideline: “Lyme Borreliosis – Diagnosis and Treatment, development stage S3”. The guideline is directed at physicians in private practices and clinics who treat Lyme borreliosis. Objectives of this guideline are recommendations for confirming a clinical diagnosis, recommendations for a stage-related laboratory diagnosis (serological detection of IgM and IgG Borrelia antibodies using the 2-tiered ELISA/immunoblot process, sensible use of molecular diagnostic and culture procedures) and recommendations for the treatment of the localised, early-stage infection (erythema migrans, erythema chronicum migrans, and borrelial lymphocytoma), the disseminated early-stage infection (multiple erythemata migrantia, flu-like symptoms) and treatment of the late-stage infection (acrodermatitis chronica atrophicans with and without neurological manifestations). In addition, an information sheet for patients containing recommendations for the prevention of Lyme borreliosis is attached to the guideline.
Collapse
Affiliation(s)
- Heidelore Hofmann
- Klinik für Dermatologie und Allergologie der TU München, München, Germany
| | - Volker Fingerle
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) Oberschleißheim, Germany
| | - Klaus-Peter Hunfeld
- Zentralinstitut für Labormedizin, Mikrobiologie & Krankenhaushygiene, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | - Bernhard Ruf
- Klinik für Infektiologie Klinik St Georg, Leipzig, Germany
| | | |
Collapse
|
29
|
Zhou W, Brisson D. Interactions between host immune response and antigenic variation that control Borrelia burgdorferi population dynamics. MICROBIOLOGY-SGM 2017; 163:1179-1188. [PMID: 28771127 DOI: 10.1099/mic.0.000513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The population dynamics of pathogens within hosts result from interactions between host immune responses and mechanisms of the pathogen to evade or resist immune responses. Vertebrate hosts have evolved adaptive immune responses to eliminate the infection, while many pathogens evade immune clearance through altering surface antigens. Such interactions can result in a characteristic pattern of pathogen population dynamics within hosts consisting of population growth after infection, rapid population decline following specific immune responses, followed by persistence at low densities during a chronic infection stage. Despite the medical importance of chronic infections, little is known about the conditions of the interactions between variable antigens and the adaptive immune system that cause the characteristic pathogen population dynamics. Using the vls antigenic variation system of the Lyme disease pathogen, Borrelia burgdorferi, as a model system, we investigated conditions of the interaction between the antigenic variation system and the adaptive immune response that can explain the within-host population dynamics of B. burgdorferi using mathematical modelling. This characteristic population dynamic pattern can be explained by models that assume a variable immune removal rate of antibody-bound B. burgdorferi. However, models with a constant immune removal rate could reproduce the rapid population decline of B. burgdorferi populations but not their long-term persistence within hosts using parameter values determined by fitting empirical data. The model predictions, along with the assumptions about the interactions between B. burgdorferi and the immune response, can be tested experimentally to estimate the likelihood that each mechanism affects B. burgdorferi population dynamics in real infections.
Collapse
Affiliation(s)
- Wei Zhou
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104, USA
| | - Dustin Brisson
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
31
|
Pětrošová H, Eshghi A, Anjum Z, Zlotnikov N, Cameron CE, Moriarty TJ. Diet-Induced Obesity Does Not Alter Tigecycline Treatment Efficacy in Murine Lyme Disease. Front Microbiol 2017; 8:292. [PMID: 28286500 PMCID: PMC5323460 DOI: 10.3389/fmicb.2017.00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023] Open
Abstract
Obese individuals more frequently suffer from infections, as a result of increased susceptibility to a number of bacterial pathogens. Furthermore, obesity can alter antibiotic treatment efficacy due to changes in drug pharmacokinetics which can result in under-dosing. However, studies on the treatment of bacterial infections in the context of obesity are scarce. To address this research gap, we assessed efficacy of antibiotic treatment in diet-induced obese mice infected with the Lyme disease pathogen, Borrelia burgdorferi. Diet-induced obese C3H/HeN mice and normal-weight controls were infected with B. burgdorferi, and treated during the acute phase of infection with two doses of tigecycline, adjusted to the weights of diet-induced obese and normal-weight mice. Antibiotic treatment efficacy was assessed 1 month after the treatment by cultivating bacteria from tissues, measuring severity of Lyme carditis, and quantifying bacterial DNA clearance in ten tissues. In addition, B. burgdorferi-specific IgG production was monitored throughout the experiment. Tigecycline treatment was ineffective in reducing B. burgdorferi DNA copies in brain. However, diet-induced obesity did not affect antibiotic-dependent bacterial DNA clearance in any tissues, regardless of the tigecycline dose used for treatment. Production of B. burgdorferi-specific IgGs was delayed and attenuated in mock-treated diet-induced obese mice compared to mock-treated normal-weight animals, but did not differ among experimental groups following antibiotic treatment. No carditis or cultivatable B. burgdorferi were detected in any antibiotic-treated group. In conclusion, obesity was associated with attenuated and delayed humoral immune responses to B. burgdorferi, but did not affect efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- Helena Pětrošová
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Azad Eshghi
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Zoha Anjum
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Nataliya Zlotnikov
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Tara J. Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
32
|
Tracy KE, Baumgarth N. Borrelia burgdorferi Manipulates Innate and Adaptive Immunity to Establish Persistence in Rodent Reservoir Hosts. Front Immunol 2017; 8:116. [PMID: 28265270 PMCID: PMC5316537 DOI: 10.3389/fimmu.2017.00116] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 01/17/2023] Open
Abstract
Borrelia burgdorferi sensu lato species complex is capable of establishing persistent infections in a wide variety of species, particularly rodents. Infection is asymptomatic or mild in most reservoir host species, indicating successful co-evolution of the pathogen with its natural hosts. However, infected humans and other incidental hosts can develop Lyme disease, a serious inflammatory syndrome characterized by tissue inflammation of joints, heart, muscles, skin, and CNS. Although B. burgdorferi infection induces both innate and adaptive immune responses, they are ultimately ineffective in clearing the infection from reservoir hosts, leading to bacterial persistence. Here, we review some mechanisms by which B. burgdorferi evades the immune system of the rodent host, focusing in particular on the effects of innate immune mechanisms and recent findings suggesting that T-dependent B cell responses are subverted during infection. A better understanding of the mechanisms causing persistence in rodents may help to increase our understanding of the pathogenesis of Lyme disease and ultimately aid in the development of therapies that support effective clearance of the bacterial infection by the host’s immune system.
Collapse
Affiliation(s)
- Karen E Tracy
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA; Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
33
|
Stone BL, Brissette CA. Host Immune Evasion by Lyme and Relapsing Fever Borreliae: Findings to Lead Future Studies for Borrelia miyamotoi. Front Immunol 2017; 8:12. [PMID: 28154563 PMCID: PMC5243832 DOI: 10.3389/fimmu.2017.00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by the same species of Ixodes ticks that carry the causative agents of Lyme disease in the US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and reservoirs, which could result in unique physiology, including immune evasion mechanisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. This review summarizes and compares the common mechanisms utilized by Lyme and relapsing fever spirochetes, as well as the current state of understanding immune evasion by B. miyamotoi.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| |
Collapse
|
34
|
Zhou W, Brisson D. Correlation between antigenicity and variability in the vls antigenic variation system of Borrelia burgdorferi. Microbes Infect 2017; 19:267-276. [PMID: 28087455 DOI: 10.1016/j.micinf.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
Abstract
Many parasites have evolved antigenic variation systems that alter surface proteins in order to evade recognition by presently expressed antibodies and subsequent death. Although the amino acid positions in antigens to which antibodies most commonly target are expected to be the most variable, this assumption has not been investigated. Using the vls antigenic variation system of Borrelia burgdorferi as a model, we first investigated this assumption computationally and then developed a sensitive immunoassay to experimentally validate the computational results. There was a strong correlation between variability at an amino acid position and each of the computational metrics associated with antibody reactivity. However, empirical measures of antibody reactivity were not consistently greater at the variable amino acid positions than at the invariant amino acid positions. The inconsistent experimental support for this hypothesis suggests that the biological effect of variability at an amino acid position is obfuscated by other factors.
Collapse
Affiliation(s)
- Wei Zhou
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104, United States.
| | - Dustin Brisson
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104, United States
| |
Collapse
|
35
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|
36
|
Antibody Response to Lyme Disease Spirochetes in the Context of VlsE-Mediated Immune Evasion. Infect Immun 2016; 85:IAI.00890-16. [PMID: 27799330 DOI: 10.1128/iai.00890-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne illness in North America, is caused by Borrelia burgdorferi The long-term survival of B. burgdorferi spirochetes in the mammalian host is achieved though VlsE-mediated antigenic variation. It is mathematically predicted that a highly variable surface antigen prolongs bacterial infection sufficiently to exhaust the immune response directed toward invariant surface antigens. If the prediction is correct, it is expected that the antibody response to B. burgdorferi invariant antigens will become nonprotective as B. burgdorferi infection progresses. To test this assumption, changes in the protective efficacy of the immune response to B. burgdorferi surface antigens were monitored via a superinfection model over the course of 70 days. B. burgdorferi-infected mice were subjected to secondary challenge by heterologous B. burgdorferi at different time points postinfection (p.i.). When the infected mice were superinfected with a VlsE-deficient clone (ΔVlsE) at day 28 p.i., the active anti-B. burgdorferi immune response did not prevent ΔVlsE-induced spirochetemia. In contrast, most mice blocked culture-detectable spirochetemia induced by wild-type B. burgdorferi (WT), indicating that VlsE was likely the primary target of the antibody response. As the B. burgdorferi infection further progressed, however, reversed outcomes were observed. At day 70 p.i. the host immune response to non-VlsE antigens became sufficiently potent to clear spirochetemia induced by ΔVlsE and yet failed to prevent WT-induced spirochetemia. To test if any significant changes in the anti-B. burgdorferi antibody repertoire accounted for the observed outcomes, global profiles of antibody specificities were determined. However, comparison of mimotopes revealed no major difference between day 28 and day 70 antibody repertoires.
Collapse
|
37
|
Abstract
Lyme borreliosis is a tick-borne disease that predominantly occurs in temperate regions of the northern hemisphere and is primarily caused by the bacterium Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia. Infection usually begins with an expanding skin lesion, known as erythema migrans (referred to as stage 1), which, if untreated, can be followed by early disseminated infection, particularly neurological abnormalities (stage 2), and by late infection, especially arthritis in North America or acrodermatitis chronica atrophicans in Europe (stage 3). However, the disease can present with any of these manifestations. During infection, the bacteria migrate through the host tissues, adhere to certain cells and can evade immune clearance. Yet, these organisms are eventually killed by both innate and adaptive immune responses and most inflammatory manifestations of the infection resolve. Except for patients with erythema migrans, Lyme borreliosis is diagnosed based on a characteristic clinical constellation of signs and symptoms with serological confirmation of infection. All manifestations of the infection can usually be treated with appropriate antibiotic regimens, but the disease can be followed by post-infectious sequelae in some patients. Prevention of Lyme borreliosis primarily involves the avoidance of tick bites by personal protective measures.
Collapse
Affiliation(s)
- Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, New York, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts Medical Center, Boston, Massachusetts, USA
| | - John A Branda
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joppe W R Hovius
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Xin Li
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | - Paul S Mead
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
38
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
39
|
Polymorphism of 41 kD Flagellin Gene and Its Human B-Cell Epitope in Borrelia burgdorferi Strains of China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1327320. [PMID: 28042565 PMCID: PMC5155069 DOI: 10.1155/2016/1327320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
Abstract
The 41 kD flagellin of Borrelia burgdorferi (B. burgdorferi) is a major component of periplasmic flagellar filament core and a good candidate for serodiagnosis in early stage of Lyme disease. Here, we chose 89 B. burgdorferi strains in China, amplified the gene encoding the 41 kD flagellin, and compared the sequences. The results showed that genetic diversity presented in the 41 kD flagellin genes of all 89 strains among the four genotypes of B. burgdorferi, especially in the genotype of B. garinii. Some specific mutation sites for each genotype of the 41 kD flagellin genes were found, which could be used for genotyping B. burgdorferi strains in China. Human B-cell epitope analysis showed that thirteen of 15 nonsynonymous mutations occurred in the epitope region of 41 kD flagellin and thirty of 42 B-cell epitopes were altered due to all 13 nonsynonymous mutations in the epitope region, which may affect the function of the antigen. Nonsynonymous mutations and changed human B-cell epitopes exist in 41 kD flagellin of B. burgdorferi sensu lato strains; these changes should be considered in serodiagnosis of Lyme disease.
Collapse
|
40
|
Magunda PRH, Bankhead T. Investigating the potential role of non-vls genes on linear plasmid 28-1 in virulence and persistence by Borrelia burgdorferi. BMC Microbiol 2016; 16:180. [PMID: 27502325 PMCID: PMC4977671 DOI: 10.1186/s12866-016-0806-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/04/2016] [Indexed: 12/03/2022] Open
Abstract
Background The lp28-1 plasmid is required for persistent infection by the Lyme disease spirochete, Borrelia burgdorferi. Mutational studies on this plasmid have shown that the vls locus is important for antigenic variation of the VlsE lipoprotein that leads to immune evasion and persistence. However, it is still unknown whether the vls system is the only genetic locus on this plasmid necessary for long-term infection, and thus the potential role of non-vls genes on lp28-1 in virulence and persistence is yet to be fully determined. Despite extensive mutational analyses, two lp28-1 regions containing the ORFs bbf19 - bbf22 and bbf27 – bbf30 have not yet been mutated in their entirety. Results In this study, we set out to establish if these unstudied regions of lp28-1 play a role in spirochete persistence. Results show that the generated mutants were fully infectious in immunocompetent mice, and were able to persist for 91 days following infection. Following this finding, ospC expression by these mutants was determined, as it has been reported that spirochetes lacking lp28-1 fail to downregulate expression of this lipoprotein leading to immune clearance. Data presented here failed to show a definitive difference in ospC expression levels during host infection when the mutants were compared to the wild type. Conclusions Overall, the results strongly suggest that non-vls genes residing on lp28-1 do not play a role in spirochete persistence during infection of the mammalian host, and that the regions under study are likely not involved in the regulation of ospC expression. In conjunction with previous studies involving mutation of non-vls loci on lp28-1, these findings suggest that the vls locus is likely the sole genetic element on this plasmid responsible for immune evasion and persistence exhibited by the Lyme disease pathogen.
Collapse
Affiliation(s)
- Petronella R Hove Magunda
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
41
|
Bankhead T. Role of the VlsE Lipoprotein in Immune Avoidance by the Lyme Disease Spirochete Borrelia burgdorferi. ACTA ACUST UNITED AC 2016; 7:191-204. [PMID: 29876140 DOI: 10.1615/forumimmundisther.2017019625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Borrelia burgdorferi is the causative bacterial agent of Lyme disease, the most prevalent tick-borne infection in North America. The ability of B. burgdorferi to cause disease is highly dependent on its capacity to evade the immune response during infection of the mammalian host. One of the ways in which B. burgdorferi is known to evade the immune response is antigenic variation of the variable major protein (VMP)-like sequence (Vls) E lipoprotein. Past research involving the B. burgdorferi antigenic variation system has implicated a gene-conversion mechanism for vlsE recombination, analyzed the long-term dynamic changes occurring within VlsE, and established the critical importance of antigenic variation for persistent infection of the mammalian host. However, a role for the VlsE protein other than providing an antigenic disguise is currently unknown, but it has been proposed that the protein may function in other forms of immune evasion. Although a substantial number of additional proteins reside on the bacterial surface, VlsE is the only known antigen that exhibits ongoing variation of its surface epitopes. This suggests that B. burgdorferi may use a VlsE-mediated system for immune avoidance of its surface antigens. Several recent experimental studies involving host reinfection, superinfection, and the importance of VlsE antigenic variation during the pathogen's enzootic cycle have been used to address this question. Here, the cumulative results from these studies are reviewed, and the knowledge gaps that remain regarding the role of VlsE for immune avoidance are discussed.
Collapse
Affiliation(s)
- Troy Bankhead
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School of Global Animal Health, Washington State University, Pullman, Washington; Tel.: 509-335-7106
| |
Collapse
|
42
|
Jacek E, Tang KS, Komorowski L, Ajamian M, Probst C, Stevenson B, Wormser GP, Marques AR, Alaedini A. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease. THE JOURNAL OF IMMUNOLOGY 2015; 196:1036-43. [PMID: 26718339 DOI: 10.4049/jimmunol.1501861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022]
Abstract
Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms.
Collapse
Affiliation(s)
- Elzbieta Jacek
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Kevin S Tang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Lars Komorowski
- Institute for Experimental Immunology, Euroimmun AG, D-23560 Lubeck, Germany
| | - Mary Ajamian
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Christian Probst
- Institute for Experimental Immunology, Euroimmun AG, D-23560 Lubeck, Germany
| | - Brian Stevenson
- University of Kentucky College of Medicine, Lexington, KY 40536
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY 10595; and
| | - Adriana R Marques
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
43
|
Dyer A, Brown G, Stejskal L, Laity PR, Bingham RJ. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel. Biosci Rep 2015; 35:e00240. [PMID: 26181365 PMCID: PMC4613713 DOI: 10.1042/bsr20150095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value.
Collapse
Affiliation(s)
- Adam Dyer
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Gemma Brown
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Lenka Stejskal
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Peter R Laity
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K. Present Address: Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, University of Sheffield, Sheffield S1 3JD, U.K
| | - Richard J Bingham
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| |
Collapse
|
44
|
Elsner RA, Hastey CJ, Olsen KJ, Baumgarth N. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection. PLoS Pathog 2015; 11:e1004976. [PMID: 26136236 PMCID: PMC4489802 DOI: 10.1371/journal.ppat.1004976] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/26/2015] [Indexed: 01/17/2023] Open
Abstract
Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host’s ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure to develop long-term immunity to this emerging disease threat. Infections with the Lyme Disease agent, Borrelia burgdorferi, often fail to generate long-term protective immunity. We show here that this is because the immune system of the Borrelia-infected host generates only short-lived, structurally abnormal and non-functional germinal centers. These germinal centers fail to induce memory B cells and long-lived antibody-producing plasma cells, leaving the host susceptible to reinfection with Bb. This inability to induce long-term immunity was not due to the nature of Borrelia antigens, as even T-dependent antigens of Borrelia were unable to induce such responses. Moreover, influenza vaccine antigens, when applied during Borrelia-infection, failed to induce strong antibody responses and immune-protection from influenza challenge. This data illustrate the potent, if temporal, immune suppression induced by Borrelia-infection. Collectively, the data reveal a new mechanism by which B. burgdorferi subverts the adaptive immune response.
Collapse
Affiliation(s)
- Rebecca A. Elsner
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Christine J. Hastey
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Kimberly J. Olsen
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Rogovskyy AS, Casselli T, Tourand Y, Jones CR, Owen JP, Mason KL, Scoles GA, Bankhead T. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi. PLoS One 2015; 10:e0124268. [PMID: 25893989 PMCID: PMC4404307 DOI: 10.1371/journal.pone.0124268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.
Collapse
Affiliation(s)
- Artem S. Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Timothy Casselli
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Yvonne Tourand
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Cami R. Jones
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Jeb P. Owen
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Kathleen L. Mason
- Animal Disease Research Unit, USDA-ARS, Washington State University, Pullman, Washington, United States of America
| | - Glen A. Scoles
- Animal Disease Research Unit, USDA-ARS, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
46
|
Bacterial heterogeneity is a requirement for host superinfection by the Lyme disease spirochete. Infect Immun 2014; 82:4542-52. [PMID: 25114120 DOI: 10.1128/iai.01817-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In nature, mixed Borrelia burgdorferi infections are common and possibly can be acquired by either superinfection or coinfection. Superinfection by heterologous B. burgdorferi strains has been established experimentally, although the ability of homologous B. burgdorferi clones to superinfect a host has not been studied in detail. Information regarding any potential immune barriers to secondary infection also currently is unavailable. In the present study, the ability to superinfect various mouse models by homologous wild-type clones was examined and compared to superinfection by heterologous strains. To assess the ability of homologous B. burgdorferi clones to successfully superinfect a mouse host, primary- and secondary-infecting spirochetes were recovered via in vitro cultivation of collected blood or tissue samples. This was accomplished by generating two different antibiotic-resistant versions of the wild-type B31-A3 clone in order to distinguish superinfecting B. burgdorferi from primary-infecting spirochetes. The data demonstrate an inability of homologous B. burgdorferi to superinfect immunocompetent mice as opposed to heterologous strains. Attempts to superinfect different types of immunodeficient mice with homologous B. burgdorferi indicate that the murine innate immune system represents a major barrier to intrastrain superinfection. Consequently, the possibility of innate immunity as a driving force for B. burgdorferi heterogeneity during the enzootic cycle is discussed.
Collapse
|
47
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
48
|
Potentially conflicting selective forces that shape the vls antigenic variation system in Borrelia burgdorferi. INFECTION GENETICS AND EVOLUTION 2014; 27:559-65. [PMID: 24837669 DOI: 10.1016/j.meegid.2014.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
Abstract
Changing environmental conditions present an evolutionary challenge for all organisms. The environment of microbial pathogens, including the adaptive immune responses of the infected host, changes rapidly and is lethal to the pathogen lineages that cannot quickly adapt. The dynamic immune environment creates strong selective pressures favoring microbial pathogen lineages with antigenic variation systems that maximize the antigenic divergence among expressed antigenic variants. However, divergence among expressed antigens may be constrained by other molecular features such as the efficient expression of functional proteins. We computationally examined potential conflicting selection pressures on antigenic variation systems using the vls antigenic variation system in Borrelia burgdorferi as a model system. The vls system alters the sequence of the expressed antigen by recombining gene fragments from unexpressed but divergent 'cassettes' into the expression site, vlsE. The in silico analysis of natural and altered cassettes from seven lineages in the B. burgdorferi sensu lato species complex revealed that sites that are polymorphic among unexpressed cassettes, as well as the insertion/deletion mutations, are organized to maximize divergence among the expressed antigens within the constraints of translational ability and high translational efficiency. This study provides empirical evidence that conflicting selection pressures on antigenic variation systems can limit the potential antigenic divergence in order to maintain proper molecular function.
Collapse
|
49
|
Presence of Arp specifically contributes to joint tissue edema associated with early-onset Lyme arthritis. Infect Immun 2013; 82:43-51. [PMID: 24101694 DOI: 10.1128/iai.01061-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antiserum to the Borrelia burgdorferi arthritis-related protein, Arp, has been shown to prevent or reduce arthritis in immunodeficient mice. To directly investigate the requirement for this lipoprotein in the generation of Lyme arthritis, we utilized targeted deletion to generate a B. burgdorferi clone that lacked only the arp gene locus. Infection of Lyme disease-susceptible C3H/HeN mice with the arp deletion mutant demonstrated significantly reduced tibiotarsal joint swelling during the first 6 weeks of infection compared to a wild-type control. The severity of joint swelling was restored to wild-type levels in mice infected with an arp mutant clone complemented in cis. Interestingly, the reduced swelling of joint tissues exhibited by mice infected with the arp deletion mutant did not directly correspond to reduced underlying arthritis. Histopathology data at 2 weeks postinfection showed some reduction in arthritis severity caused by the arp mutant clone; however, by 8 weeks, no significant difference was observed between joint tissues infected by the wild-type or arp mutant clones. The spirochete load in the joint tissues of mice infected with the arp mutant was found to be greater than that exhibited by the wild-type control. Our findings demonstrate that this lipoprotein contributes to the generation of early-onset joint swelling and suggests that arp expression has a negative secondary effect on total spirochete numbers in joint tissues.
Collapse
|
50
|
Zückert WR. A call to order at the spirochaetal host-pathogen interface. Mol Microbiol 2013; 89:207-11. [PMID: 23750784 DOI: 10.1111/mmi.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 12/28/2022]
Abstract
As the Lyme disease spirochaete Borrelia burgdorferi shuttles back and forth between arthropod vector and vertebrate host, it encounters vastly different and hostile environments. Major mechanisms contributing to the success of this pathogen throughout this complex transmission cycle are phase and antigenic variation of abundant and serotype-defining surface lipoproteins. These peripherally membrane-anchored virulence factors mediate niche-specific interactions with vector/host factors and protect the spirochaete from the perils of the mammalian immune response. In this issue of Molecular Microbiology, Tilly, Bestor and Rosa redefine the roles of two lipoproteins, OspC and VlsE, during mammalian infection. Using a variety of promoter fusions in combination with a sensitive in vivo 'use it or lose it' gene complementation assay, the authors demonstrate that proper sequential expression of OspC followed by VlsE indeed matters. A previously suggested general functional redundancy between these and other lipoproteins is shown to be limited and dependent on an immunodeficient experimental setting that is arguably of diminished ecological relevance. These data reinforce the notion that OspC plays a unique role during initial infection while the antigenically variant VlsE proteins allow for persistence in the mammalian host.
Collapse
Affiliation(s)
- Wolfram R Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|