1
|
Draper E, Li YY, Mahadevan NR, Laga AC, Hanna J, Russell-Goldman E. Clinicopathologic and Molecular Characterization of Basal Cell Carcinoma Arising at Sun-protected Sites. Am J Surg Pathol 2025; 49:328-335. [PMID: 39807820 DOI: 10.1097/pas.0000000000002366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Basal cell carcinomas (BCC) are driven primarily by cumulative ultraviolet (UV) radiation exposure resulting in activation of the Hedgehog (Hh) signaling pathway, often as a result of UV-mediated Patched-1 ( PTCH1) gene inactivation. Accordingly, BCCs most commonly arise at sun-exposed sites such as the head and neck. Very rarely, BCCs can arise at sun-protected sites such as the genital skin and perianal area. This can pose significant diagnostic challenges not only due to the rarity of BCC at these sites but also due to the potential morphologic overlap with other entities such as basaloid squamous cell carcinoma, trichoblastic carcinoma, and even benign neoplasms such as trichoblastomas. Hh pathway alterations have not yet been described in BCCs arising at genital and perianal sites, and the role of UV radiation is uncertain at these anatomic locations. To address this ambiguity, we report the clinicopathologic features of a cohort of 14 BCCs arising at sun-protected sites (perianal n=7, vulva n=4, scrotum n=3). Furthermore, we use a next-generation DNA sequencing platform to investigate their pathogenesis and compare it to that of a cohort of 8 BCCs arising on sun-exposed skin. We find that BCCs arising on sun-protected sites display a spectrum of morphologic patterns, rarely recur, and do not metastasize. Both sun-protected and sun-exposed BCCs are characterized by recurrent PTCH1 alterations (93% and 100% of cases, respectively), supporting the classification of the tumors arising at sun-protected sites as bona fide BCCs. Notably, in contrast to conventional BCCs, none of the sun-protected BCCs harbored a UV mutation signature, suggesting an alternative mechanism of mutagenesis. Furthermore, the presence of upstream Hh pathway alterations in sun-protected BCCs supports their susceptibility to Hh pathway inhibitors such as vismodegib and sonidegib.
Collapse
Affiliation(s)
| | - Yvonne Y Li
- Department of Pathology, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Navin R Mahadevan
- Department of Pathology, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alvaro C Laga
- Department of Pathology, Brigham and Women's Hospital
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital
| | | |
Collapse
|
2
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. mBio 2024; 15:e0181124. [PMID: 39248565 PMCID: PMC11481495 DOI: 10.1128/mbio.01811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Chapeau EA, Sansregret L, Galli GG, Chène P, Wartmann M, Mourikis TP, Jaaks P, Baltschukat S, Barbosa IAM, Bauer D, Brachmann SM, Delaunay C, Estadieu C, Faris JE, Furet P, Harlfinger S, Hueber A, Jiménez Núñez E, Kodack DP, Mandon E, Martin T, Mesrouze Y, Romanet V, Scheufler C, Sellner H, Stamm C, Sterker D, Tordella L, Hofmann F, Soldermann N, Schmelzle T. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. NATURE CANCER 2024; 5:1102-1120. [PMID: 38565920 PMCID: PMC11286534 DOI: 10.1038/s43018-024-00754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The YAP-TEAD protein-protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP-TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP-TEAD protein-protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel Bauer
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | - Pascal Furet
- Novartis BioMedical Research, Basel, Switzerland
| | - Stefanie Harlfinger
- Novartis BioMedical Research, Basel, Switzerland
- AstraZeneca, Oncology R&D, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Francesco Hofmann
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Group, R&D Medical Care, Toulouse, France
| | | | | |
Collapse
|
4
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583953. [PMID: 38496413 PMCID: PMC10942435 DOI: 10.1101/2024.03.07.583953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active site were required for PTPN14 to promote differentiation. Taken together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Current address: Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Cox CM, Wu MH, Padilla-Rodriguez M, Blum I, Momtaz S, Mitchell SAT, Wilson JM. Regulation of YAP and Wnt signaling by the endosomal protein MAMDC4. PLoS One 2024; 19:e0296003. [PMID: 38787854 PMCID: PMC11125477 DOI: 10.1371/journal.pone.0296003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/04/2023] [Indexed: 05/26/2024] Open
Abstract
Maintenance of the intestinal epithelium requires constant self-renewal and regeneration. Tight regulation of proliferation and differentiation of intestinal stem cells within the crypt region is critical to maintaining homeostasis. The transcriptional co-factors β-catenin and YAP are required for proliferation during normal homeostasis as well as intestinal regeneration after injury: aberrant signaling activity results in over proliferation and tumorigenesis. Although both YAP and β-catenin activity are controlled along canonical pathways, it is becoming increasingly clear that non-canonical regulation of these transcriptional regulators plays a role in fine tuning their activity. We have shown previously that MAMDC4 (Endotubin, AEGP), an integral membrane protein present in endosomes, regulates both YAP and β-catenin activity in kidney epithelial cells and in the developing intestinal epithelium. Here we show that MAMDC4 interacts with members of the signalosome and mediates cross-talk between YAP and β-catenin. Interestingly, this cross-talk occurs through a non-canonical pathway involving interactions between AMOT:YAP and AMOT:β-catenin.
Collapse
Affiliation(s)
- Christopher M. Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Meng-Han Wu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Marco Padilla-Rodriguez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Isabella Blum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Samina Momtaz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Stefanie A. T. Mitchell
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Jean M. Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
- Bio5 Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
6
|
Sarmasti Emami S, Ge A, Zhang D, Hao Y, Ling M, Rubino R, Nicol CJB, Wang W, Yang X. Identification of PTPN12 Phosphatase as a Novel Negative Regulator of Hippo Pathway Effectors YAP/TAZ in Breast Cancer. Int J Mol Sci 2024; 25:4064. [PMID: 38612874 PMCID: PMC11012486 DOI: 10.3390/ijms25074064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo pathway plays crucial roles in governing various biological processes during tumorigenesis and metastasis. Within this pathway, upstream signaling stimuli activate a core kinase cascade, involving MST1/2 and LATS1/2, that subsequently phosphorylates and inhibits the transcriptional co-activators YAP and its paralog TAZ. This inhibition modulates the transcriptional regulation of downstream target genes, impacting cell proliferation, migration, and death. Despite the acknowledged significance of protein kinases in the Hippo pathway, the regulatory influence of protein phosphatases remains largely unexplored. In this study, we conducted the first gain-of-functional screen for protein tyrosine phosphatases (PTPs) regulating the Hippo pathway. Utilizing a LATS kinase biosensor (LATS-BS), a YAP/TAZ activity reporter (STBS-Luc), and a comprehensive PTP library, we identified numerous novel PTPs that play regulatory roles in the Hippo pathway. Subsequent experiments validated PTPN12, a master regulator of oncogenic receptor tyrosine kinases (RTKs), as a previously unrecognized negative regulator of the Hippo pathway effectors, oncogenic YAP/TAZ, influencing breast cancer cell proliferation and migration. In summary, our findings offer valuable insights into the roles of PTPs in the Hippo signaling pathway, significantly contributing to our understanding of breast cancer biology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Sarmasti Emami
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| | - Anni Ge
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| | - Derek Zhang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| | - Yawei Hao
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| | - Min Ling
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| | - Rachel Rubino
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| | - Christopher J. B. Nicol
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92617, USA;
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (A.G.); (D.Z.); (Y.H.); (M.L.); (R.R.); (C.J.B.N.)
| |
Collapse
|
7
|
Skelin J, Luk HY, Butorac D, Boon SS, Tomaić V. The effects of HPV oncoproteins on host communication networks: Therapeutic connotations. J Med Virol 2023; 95:e29315. [PMID: 38115222 DOI: 10.1002/jmv.29315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Human papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms. A comprehensive understanding of these molecular alterations is essential for the development of targeted therapies and strategies to combat HPV-induced premalignancies and prevent their progress to cancer. Furthermore, this review underscores the intricate interplay between HPV oncoproteins and some of the most important cellular signaling pathways: Notch, Wnt/β-catenin, MAPK, JAK/STAT, and PI3K AKT/mTOR. The treatment efficacies of the currently available inhibitors on these pathways in an HPV-positive context are also discussed. This review also highlights the importance of continued research to advance our knowledge and enhance therapeutic interventions for HPV-associated diseases.
Collapse
Affiliation(s)
- Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ho Yin Luk
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Dražan Butorac
- Department of Gynecology and Obstetrics, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
8
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
9
|
Bertagnin C, Messa L, Pavan M, Celegato M, Sturlese M, Mercorelli B, Moro S, Loregian A. A small molecule targeting the interaction between human papillomavirus E7 oncoprotein and cellular phosphatase PTPN14 exerts antitumoral activity in cervical cancer cells. Cancer Lett 2023; 571:216331. [PMID: 37532093 DOI: 10.1016/j.canlet.2023.216331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Human papillomavirus (HPV)-induced cancers still represent a major health issue for worldwide population and lack specific therapeutic regimens. Despite substantial advancements in anti-HPV vaccination, the incidence of HPV-related cancers remains high, thus there is an urgent need for specific anti-HPV drugs. The HPV E7 oncoprotein is a major driver of carcinogenesis that acts by inducing the degradation of several host factors. A target is represented by the cellular phosphatase PTPN14 and its E7-mediated degradation was shown to be crucial in HPV oncogenesis. Here, by exploiting the crystal structure of E7 bound to PTPN14, we performed an in silico screening of small-molecule compounds targeting the C-terminal CR3 domain of E7 involved in the interaction with PTPN14. We discovered a compound able to inhibit the E7/PTPN14 interaction in vitro and to rescue PTPN14 levels in cells, leading to a reduction in viability, proliferation, migration, and cancer-stem cell potential of HPV-positive cervical cancer cells. Mechanistically, as a consequence of PTPN14 rescue, treatment of cancer cells with this compound altered the Yes-associated protein (YAP) nuclear-cytoplasmic shuttling and downstream signaling. Notably, this compound was active against cervical cancer cells transformed by different high-risk (HR)-HPV genotypes indicating a potential broad-spectrum activity. Overall, our study reports the first-in-class inhibitor of E7/PTPN14 interaction and provides the proof-of-principle that pharmacological inhibition of this interaction by small-molecule compounds could be a feasible therapeutic strategy for the development of novel antitumoral drugs specific for HPV-associated cancers.
Collapse
Affiliation(s)
- Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
10
|
Recurrent PTPN14 Mutations in Trichilemmoma: Evidence for Distinct Pathways of Molecular Pathogenesis. Am J Dermatopathol 2022; 44:545-552. [DOI: 10.1097/dad.0000000000002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
12
|
Brimer N, Vande Pol S. Human papillomavirus type 16 E6 induces cell competition. PLoS Pathog 2022; 18:e1010431. [PMID: 35320322 PMCID: PMC8979454 DOI: 10.1371/journal.ppat.1010431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus (HPV) infections induce squamous epithelial tumors in which the virus replicates. Initially, the virus-infected cells are untransformed, but expand in both number and area at the expense of uninfected squamous epithelial cells. We have developed an in vitro assay in which colonies of post-confluent HPV16 expressing cells outcompete and displace confluent surrounding uninfected keratinocytes. The enhanced colony competition induced by the complete HPV16 genome is conferred by E6 expression alone, not by individual expression of E5 or E7, and requires E6 interaction with p53. E6-expressing keratinocytes undermine and displace adjacent normal keratinocytes from contact with the attachment substrate, thereby expanding the area of the E6-expressing colony at the expense of normal keratinocytes. These new results separate classic oncogenicity that is primarily conferred by HPV16 E7 from cell competition that we show is primarily conferred by E6 and provides a new biological role for E6 oncoproteins from high-risk human papillomaviruses. Microbial infections can change the fate and behavior of normal vertebrate cells to resemble oncogenic cells. High-risk papillomaviruses induce infected squamous epithelial cells to form tumors, some of which evolve into malignancies. The present work shows that the enhanced competitiveness of HPV16-infected cells for the basal cell surface is primarily due to the expression of the E6 oncoprotein and not the E7 or E5 oncoproteins. Compared to normal keratinocytes, E6 induces a super-competitor phenotype while E5 and E7 do not. This work shows the importance of measuring oncoprotein traits not only as cell autonomous traits, but in the context of competition with uninfected cells and shows the potential of papillomavirus oncoproteins to be novel genetic probes for the analysis of cell competition.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Guo Y, Luo J, Zou H, Liu C, Deng L, Li P. Context-dependent transcriptional regulations of YAP/TAZ in cancer. Cancer Lett 2022; 527:164-173. [PMID: 34952145 DOI: 10.1016/j.canlet.2021.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
As the downstream effectors of Hippo pathway, YAP/TAZ are identified to participate in organ growth, regeneration and tumorigenesis. However, owing to lack of a DNA-binding domain, YAP/TAZ usually act as coactivators and cooperate with other transcription factors or partners to mediate their transcriptional outputs. In this article, we first present an overview of the core components and the upstream regulators of Hippo-YAP/TAZ signaling in mammals, and then systematically summarize the identified transcription factors or partners that are responsible for the downstream transcriptional output of YAP/TAZ in various cancers.
Collapse
Affiliation(s)
- Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Chenxin Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, 430205, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Zhang D, Wu F, Song J, Meng M, Fan X, Lu C, Weng Q, Fang S, Zheng L, Tang B, Yang Y, Tu J, Xu M, Zhao Z, Ji J. A role for the NPM1/PTPN14/YAP axis in mediating hypoxia-induced chemoresistance to sorafenib in hepatocellular carcinoma. Cancer Cell Int 2022; 22:65. [PMID: 35135548 PMCID: PMC8822852 DOI: 10.1186/s12935-022-02479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
Background Tumor microenvironments are characterized by resistance to chemotherapeutic agents and radiotherapy. Hypoxia plays an important role in the development of tumor resistance, as well as the generation of metastatic potential. YAP also participates in the regulation of hypoxia-mediated chemoresistance, and is negatively regulated by protein tyrosine phosphatase non-receptor type 14 (PTPN14). Methods The PTPN14 expression in hepatocellular carcinoma (HCC) tissues were evaluated by qRT-PCR, western blot and tissue microarrays. The effect of PTPN14 on HCC progression was investigated in vitro and in vivo. Results Here, we report that PTPN14 expression was downregulated in HCC tissues and cell lines. Silencing PTPN14 significantly enhanced proliferation, migration, invasion of HepG2 cells in vitro and tumor growth and metastasis in vivo, whereas overexpression of PTPN14 significantly inhibited these abilities in SK-Hep1 cells. We also found that hypoxia-induced nuclear translocation and accumulation of PTPN14 led to resistance to sorafenib in HCC cells. Further mechanistic studies suggested that NPM1 regulates PTPN14 localization, and that NPM1 regulates YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Conclusions These data suggest that a therapeutic strategy against chemoresistant HCC may involve disruption of NPM1-mediated regulation of YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02479-0.
Collapse
Affiliation(s)
- Dengke Zhang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fazong Wu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jingjing Song
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Miaomiao Meng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaoxi Fan
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chenying Lu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Liyun Zheng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Bufu Tang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Yang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Min Xu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
15
|
Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in Bone and Cartilage Biology. Front Cell Dev Biol 2022; 9:788773. [PMID: 35059398 PMCID: PMC8764375 DOI: 10.3389/fcell.2021.788773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.
Collapse
Affiliation(s)
- Mylène Zarka
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Eric Haÿ
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Martine Cohen-Solal
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
16
|
Nunes-Xavier CE, Zaldumbide L, Mosteiro L, López-Almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021; 9:811297. [PMID: 34957126 PMCID: PMC8692838 DOI: 10.3389/fcell.2021.811297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.
Collapse
Affiliation(s)
- Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Pablo Aguirre
- Department of Pathology, Donostia University Hospital, San Sebastian, Spain
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José I. López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| |
Collapse
|
17
|
Wang LT, Proulx MÈ, Kim AD, Lelarge V, McCaffrey L. A proximity proteomics screen in three-dimensional spheroid cultures identifies novel regulators of lumen formation. Sci Rep 2021; 11:22807. [PMID: 34815476 PMCID: PMC8610992 DOI: 10.1038/s41598-021-02178-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Apical-basal cell polarity and lumen formation are essential features of many epithelial tissues, which are disrupted in diseases like cancer. Here, we describe a proteomics-based screen to identify proteins involved in lumen formation in three-dimensional spheroid cultures. We established a suspension-based culture method suitable for generating polarized cysts in sufficient quantities for proteomic analysis. Using this approach, we identified several known and unknown proteins proximally associated with PAR6B, an apical protein involved in lumen formation. Functional analyses of candidates identified PARD3B (a homolog of PARD3), RALB, and HRNR as regulators of lumen formation. We also identified PTPN14 as a component of the Par-complex that is required for fidelity of apical-basal polarity. Cells transformed with KRASG12V exhibit lumen collapse/filling concomitant with disruption of the Par-complex and down-regulation of PTPN14. Enforced expression of PTPN14 maintained the lumen and restricted the transformed phenotype in KRASG12V-expressing cells. This represents an applicable approach to explore protein–protein interactions in three-dimensional culture and to identify proteins important for lumen maintenance in normal and oncogene-expressing cells.
Collapse
Affiliation(s)
- Li-Ting Wang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Marie-Ève Proulx
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Anne D Kim
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Virginie Lelarge
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada. .,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
18
|
Olafsdottir T, Stacey SN, Sveinbjornsson G, Thorleifsson G, Norland K, Sigurgeirsson B, Thorisdottir K, Kristjansson AK, Tryggvadottir L, Sarin KY, Benediktsson R, Jonasson JG, Sigurdsson A, Jonasdottir A, Kristmundsdottir S, Jonsson H, Gylfason A, Oddsson A, Fridriksdottir R, Gudjonsson SA, Zink F, Lund SH, Rognvaldsson S, Melsted P, Steinthorsdottir V, Gudmundsson J, Mikaelsdottir E, Olason PI, Stefansdottir L, Eggertsson HP, Halldorsson BV, Thorsteinsdottir U, Agustsson TT, Olafsson K, Olafsson JH, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Loss-of-Function Variants in the Tumor-Suppressor Gene PTPN14 Confer Increased Cancer Risk. Cancer Res 2021; 81:1954-1964. [PMID: 33602785 DOI: 10.1158/0008-5472.can-20-3065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
The success of genome-wide association studies (GWAS) in identifying common, low-penetrance variant-cancer associations for the past decade is undisputed. However, discovering additional high-penetrance cancer mutations in unknown cancer predisposing genes requires detection of variant-cancer association of ultra-rare coding variants. Consequently, large-scale next-generation sequence data with associated phenotype information are needed. Here, we used genotype data on 166,281 Icelanders, of which, 49,708 were whole-genome sequenced and 408,595 individuals from the UK Biobank, of which, 41,147 were whole-exome sequenced, to test for association between loss-of-function burden in autosomal genes and basal cell carcinoma (BCC), the most common cancer in Caucasians. A total of 25,205 BCC cases and 683,058 controls were tested. Rare germline loss-of-function variants in PTPN14 conferred substantial risks of BCC (OR, 8.0; P = 1.9 × 10-12), with a quarter of carriers getting BCC before age 70 and over half in their lifetime. Furthermore, common variants at the PTPN14 locus were associated with BCC, suggesting PTPN14 as a new, high-impact BCC predisposition gene. A follow-up investigation of 24 cancers and three benign tumor types showed that PTPN14 loss-of-function variants are associated with high risk of cervical cancer (OR, 12.7, P = 1.6 × 10-4) and low age at diagnosis. Our findings, using power-increasing methods with high-quality rare variant genotypes, highlight future prospects for new discoveries on carcinogenesis. SIGNIFICANCE: This study identifies the tumor-suppressor gene PTPN14 as a high-impact BCC predisposition gene and indicates that inactivation of PTPN14 by germline sequence variants may also lead to increased risk of cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Bardur Sigurgeirsson
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kristin Thorisdottir
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arni Kjalar Kristjansson
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California
| | - Rafn Benediktsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Endocrinology and Metabolic Medicine, Landspitali University Hospital, Reykjavík, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | - Pall Melsted
- deCODE Genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Tomas T Agustsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Endocrinology and Metabolic Medicine, Landspitali University Hospital, Reykjavík, Iceland.,Faculty of Odontology, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Karl Olafsson
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
19
|
Lee HS, Kim MW, Jin KS, Shin HC, Kim WK, Lee SC, Kim SJ, Lee EW, Ku B. Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18. Mol Cells 2021; 44:26-37. [PMID: 33431714 PMCID: PMC7854179 DOI: 10.14348/molcells.2020.0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/10/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
20
|
Feltri ML, Weaver MR, Belin S, Poitelon Y. The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. J Peripher Nerv Syst 2021; 26:4-16. [PMID: 33449435 DOI: 10.1111/jns.12431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Initially identified in Drosophila, the Hippo signaling pathway regulates how cells respond to their environment by controlling proliferation, migration and differentiation. Many recent studies have focused on characterizing Hippo pathway function and regulation in mammalian cells. Here, we present a brief overview of the major components of the Hippo pathway, as well as their regulation and function. We comprehensively review the studies that have contributed to our understanding of the Hippo pathway in the function of the peripheral nervous system and in peripheral nerve diseases. Finally, we discuss innovative approaches that aim to modulate Hippo pathway components in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
21
|
Höffken V, Hermann A, Pavenstädt H, Kremerskothen J. WWC Proteins: Important Regulators of Hippo Signaling in Cancer. Cancers (Basel) 2021; 13:cancers13020306. [PMID: 33467643 PMCID: PMC7829927 DOI: 10.3390/cancers13020306] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The conserved Hippo pathway regulates cell proliferation and apoptosis via a complex interplay of transcriptional activities, post-translational protein modifications, specific protein–protein interactions and cellular transport processes. Deregulating this highly balanced system can lead to hyperproliferation, organ overgrowth and cancer. Although WWC proteins are known as components of the Hippo signaling pathway, their association with tumorigenesis is often neglected. This review aims to summarize the current knowledge on WWC proteins and their contribution to Hippo signaling in the context of cancer. Abstract The Hippo signaling pathway is known to regulate cell differentiation, proliferation and apoptosis. Whereas activation of the Hippo signaling pathway leads to phosphorylation and cytoplasmic retention of the transcriptional coactivator YAP, decreased Hippo signaling results in nuclear import of YAP and subsequent transcription of pro-proliferative genes. Hence, a dynamic and precise regulation of the Hippo signaling pathway is crucial for organ size control and the prevention of tumor formation. The transcriptional activity of YAP is controlled by a growing number of upstream regulators including the family of WWC proteins. WWC1, WWC2 and WWC3 represent cytosolic scaffolding proteins involved in intracellular transport processes and different signal transduction pathways. Earlier in vitro experiments demonstrated that WWC proteins positively regulate the Hippo pathway via the activation of large tumor suppressor kinases 1/2 (LATS1/2) kinases and the subsequent cytoplasmic accumulation of phosphorylated YAP. Later, reduced WWC expression and subsequent high YAP activity were shown to correlate with the progression of human cancer in different organs. Although the function of WWC proteins as upstream regulators of Hippo signaling was confirmed in various studies, their important role as tumor modulators is often overlooked. This review has been designed to provide an update on the published data linking WWC1, WWC2 and WWC3 to cancer, with a focus on Hippo pathway-dependent mechanisms.
Collapse
|
22
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
23
|
Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. New insights in Hippo signalling alteration in human papillomavirus-related cancers. Cell Signal 2020; 76:109815. [PMID: 33148514 DOI: 10.1016/j.cellsig.2020.109815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
The persistent infection with high-risk human papillomavirus (HPV) is an etiologic factor for the development of different types of cancers, mainly attributed to the continuous expression of E6 and E7 HPV oncoproteins, which regulate several cell signalling pathways including the Hippo pathway. It has been demonstrated that E6 proteins promote the increase of the Hippo elements YAP, TAZ and TEAD, at protein level, as well as their transcriptional targets. Also, E6 and E7 oncoproteins promote nuclear YAP localization and a decrease in YAP negative regulators such as MST1, PTPN14 or SOCS6. Interestingly, Hippo signalling components modulate HPV activity, such as TEAD1 and the transcriptional co-factor VGLL1, induce the activation of HPV early and late promoters, while hyperactivation of YAP in specific cells facilitates virus infection by increasing putative HPV receptors and by evading innate immunity. Additionally, alterations in Hippo signalling elements have been found in HPV-related cancers and particularly, the involvement of HPV oncoproteins on the regulation of some of these Hippo components has been also proposed, although the precise mechanisms remain unclear. The present review addresses the recent findings describing the interplay between HPV and Hippo signalling in HPV-related cancers, a fact that highlights the importance of developing more in-depth studies in this field to establish key therapeutic targets.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede sur, Mexico City 14330, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
24
|
Sarmasti Emami S, Zhang D, Yang X. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Cancers (Basel) 2020; 12:E2438. [PMID: 32867200 PMCID: PMC7564220 DOI: 10.3390/cancers12092438] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway is an emerging tumor suppressor signaling pathway involved in a wide range of cellular processes. Dysregulation of different components of the Hippo signaling pathway is associated with a number of diseases including cancer. Therefore, identification of the Hippo pathway regulators and the underlying mechanism of its regulation may be useful to uncover new therapeutics for cancer therapy. The Hippo signaling pathway includes a set of kinases that phosphorylate different proteins in order to phosphorylate and inactivate its main downstream effectors, YAP and TAZ. Thus, modulating phosphorylation and dephosphorylation of the Hippo components by kinases and phosphatases play critical roles in the regulation of the signaling pathway. While information regarding kinase regulation of the Hippo pathway is abundant, the role of phosphatases in regulating this pathway is just beginning to be understood. In this review, we summarize the most recent reports on the interaction of phosphatases and the Hippo pathway in tumorigenesis. We have also introduced challenges in clarifying the role of phosphatases in the Hippo pathway and future direction of crosstalk between phosphatases and the Hippo pathway.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (D.Z.)
| |
Collapse
|
25
|
Wang R, Du Y, Shang J, Dang X, Niu G. PTPN14 acts as a candidate tumor suppressor in prostate cancer and inhibits cell proliferation and invasion through modulating LATS1/YAP signaling. Mol Cell Probes 2020; 53:101642. [PMID: 32645410 DOI: 10.1016/j.mcp.2020.101642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
Protein tyrosine phosphatase, non-receptor type 14 (PTPN14) exerts a profound effect in the progression of multiple malignant tumors. However, whether PTPN14 plays a role in prostate cancer has not been well investigated. Herein, we evaluated the function and potential underlying mechanism of PTPN14 in prostate cancer. Decreased PTPN14 expression was detected in prostate cancer, and restoration of PTPN14 expression in prostate cancer cells inhibited the proliferative and invasive potential. Mechanistically, PTPN14 increased the phosphorylation of Yes-associated protein (YAP) by activation of large tumor suppressor 1 (LATS1), an action that resulted in a significant reduction in YAP-mediated transcriptional activity. Inactivation of YAP by its inhibitor markedly abrogated the PTPN14-knockdown-induced promotion effect on prostate cancer cell proliferation and invasion. Notably, PTPN14 up-regulation also exerted a remarkable suppressive impact on tumorigenesis of prostate cancer in vivo. Taken together, the study reveals a tumor-inhibition role of PTPN14 that represses the proliferation and invasion of prostate cancer by down-regulating YAP activation.
Collapse
Affiliation(s)
- Rong Wang
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yonghao Du
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jin Shang
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xiaomin Dang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Gang Niu
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
26
|
Liang G, Duan C, He J, Ma W, Dai X. PTPN14, a target gene of miR-4295, restricts the growth and invasion of osteosarcoma cells through inactivation of YAP1 signalling. Clin Exp Pharmacol Physiol 2020; 47:1301-1310. [PMID: 32141101 DOI: 10.1111/1440-1681.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 11/26/2022]
Abstract
Non-receptor tyrosine phosphatase 14 (PTPN14) has emerged as a novel tumour-suppressor in a wide range of human cancer types. However, the role of PTPN14 in osteosarcoma remains undetermined. In the present study, we aimed to explore the expression pattern, biological function, and regulation of PTPN14 in osteosarcoma. Low PTPN14 expression levels were detected in osteosarcoma cells, and PTPN14 overexpression markedly decreased the proliferation, colony formation, and invasive potential of osteosarcoma cells. Bioinformatics analysis predicted PTPN14 as a potential target gene of microRNA-4295 (miR-4295), and this prediction was validated by a dual-luciferase reporter assay. PTPN14 expression was negatively modulated by miR-4295 in osteosarcoma cells. Moreover, PTPN14 expression was inversely correlated with miR-4295 expression in osteosarcoma tissues. Notably, miR-4295 inhibition significantly restricted the proliferation and invasion of osteosarcoma cells. PTPN14 overexpression or miR-4295 inhibition increased the phosphorylation of Yes-associated protein 1 (YAP1) and impeded YAP1 nuclear translocation, leading to inhibition of YAP1-mediated transcriptional activity. However, the miR-4925-inhibition-mediated antitumour effect was partially reversed by PTPN14 knockdown. Overall, these results demonstrate that PTPN14 is a miR-4295 target gene and it exerts a tumour-suppressive function in osteosarcoma cells via inactivation of YAP1. Our study uncovers a miR-4295-PTPN14-YAP1 signalling pathway that may play a crucial role in the progression of osteosarcoma.
Collapse
Affiliation(s)
- Gaofeng Liang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, 521 Hospital of Norinco Group, Xi'an, China
| | - Chaopeng Duan
- Department of Orthopaedics, 521 Hospital of Norinco Group, Xi'an, China
| | - June He
- 521 Hospital of Norinco Group, Xi'an, China
| | - Wei Ma
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xing Dai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
28
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
29
|
Yamaguchi H, Taouk GM. A Potential Role of YAP/TAZ in the Interplay Between Metastasis and Metabolic Alterations. Front Oncol 2020; 10:928. [PMID: 32596154 PMCID: PMC7300268 DOI: 10.3389/fonc.2020.00928] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) are the downstream effectors of the Hippo signaling pathway that play a crucial role in various aspects of cancer progression including metastasis. Metastasis is the multistep process of disseminating cancer cells in a body and responsible for the majority of cancer-related death. Emerging evidence has shown that cancer cells reprogram their metabolism to gain proliferation, invasion, migration, and anti-apoptotic abilities and adapt to various environment during metastasis. Moreover, it has increasingly been recognized that YAP/TAZ regulates cellular metabolism that is associated with the phenotypic changes, and recent studies suggest that the YAP/TAZ-mediated metabolic alterations contribute to metastasis. In this review, we will introduce the latest knowledge of YAP/TAZ regulation and function in cancer metastasis and metabolism, and discuss possible links between the YAP/TAZ-mediated metabolic reprogramming and metastasis.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Cancer Research Center, College of Health and Life Sciences, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ghina M Taouk
- Cancer Research Center, College of Health and Life Sciences, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
30
|
Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, Yang B, Seo G, Chuc K, Oh S, El Ali A, Razorenova OV, Chen J, Luo R, Li X, Wang W. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. EMBO J 2020; 39:e102406. [PMID: 31782549 PMCID: PMC6939200 DOI: 10.15252/embj.2019102406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Hippo Signaling Pathway
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Survival Rate
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
- WW Domains
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Rebecca E Vargas
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Vy Thuy Duong
- Department of ChemistryUniversity of California, IrvineIrvineCAUSA
| | - Han Han
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Albert Paul Ta
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Yuxuan Chen
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Shiji Zhao
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Bing Yang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Gayoung Seo
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Kimberly Chuc
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Sunwoo Oh
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Amal El Ali
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Olga V Razorenova
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Junjie Chen
- Department of Experimental Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ray Luo
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Materials Science and EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCAUSA
| | - Xu Li
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Wenqi Wang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| |
Collapse
|
31
|
Szelachowska J, Donizy P, Ratajczak-Wielgomas K, Halon A, Zielecka-Debska D, Lichon K, Maciejczyk A, Lata-Wozniak E, Piotrowska A, Matkowski R. The effect of YAP expression in tumor cells and tumor stroma on the prognosis of patients with squamous cell carcinoma of the oral cavity floor and oral surface of the tongue. Oncol Lett 2019; 18:3561-3570. [PMID: 31579068 PMCID: PMC6757271 DOI: 10.3892/ol.2019.10695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Classic prognostic factors, such as clinical advancement of the disease and histological grade of the tumor, continue to have a decisive role in the selection of therapeutic strategy in patients with carcinoma of the oral cavity floor and oral surface of the tongue (OCC). YAP1/Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif, WWTR1 (TAZ) proteins, appear to be promising markers that may be used to develop personalized therapies. The aim of the present study was to analyze the associations between the levels of YAP, TAZ and tyrosine-protein phosphatase non-receptor type 14 (PTPN14) and to determine whether the increased expression of YAP and TAZ had an effect on tumor cell proliferation, as determined by minichromosome maintenance 7, DNA replication licensing factor 7 expression. Their prognostic value was also assessed. In total, 127 patients who underwent radical surgery and were subjected to adjuvant radiation therapy due to squamous cell OCC were enrolled in the present study. The results demonstrated an evident effect as YAP expression increased in cancer-associated fibroblasts, which induced unfavorable prognosis in patients. In addition, a positive association between proliferation in cancer cells and YAP expression in stromal cells was observed. A lack of YAP expression in the cytoplasm of tumor cells was a factor for poor prognosis with regard to disease-free survival and disease specific survival. No statistically significant correlations between YAP and TAZ expression and PTPN14 expression were identified, nor was a correlation between cell proliferation and the presence of YAP and TAZ in tumor cells observed. The results indicated that YAP expression levels may support the development of personalized therapies for patients.
Collapse
Affiliation(s)
- Jolanta Szelachowska
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dominika Zielecka-Debska
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Surgical Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Krystian Lichon
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Adam Maciejczyk
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Radiation Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Ewelina Lata-Wozniak
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Histology and Embryology Division, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Rafal Matkowski
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Surgical Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| |
Collapse
|
32
|
Corso G, Heusermann W, Trojer D, Görgens A, Steib E, Voshol J, Graff A, Genoud C, Lee Y, Hean J, Nordin JZ, Wiklander OPB, El Andaloussi S, Meisner-Kober N. Systematic characterization of extracellular vesicle sorting domains and quantification at the single molecule - single vesicle level by fluorescence correlation spectroscopy and single particle imaging. J Extracell Vesicles 2019; 8:1663043. [PMID: 31579435 PMCID: PMC6758720 DOI: 10.1080/20013078.2019.1663043] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) convey biological information by transmitting macromolecules between cells and tissues and are of great promise as pharmaceutical nanocarriers, and as therapeutic per se. Strategies for customizing the EV surface and cargo are being developed to enable their tracking, visualization, loading with pharmaceutical agents and decoration of the surface with tissue targeting ligands. While much progress has been made in the engineering of EVs, an exhaustive comparative analysis of the most commonly exploited EV-associated proteins, as well as a quantification at the molecular level are lacking. Here, we selected 12 EV-related proteins based on MS-proteomics data for comparative quantification of their EV engineering potential. All proteins were expressed with fluorescent protein (FP) tags in EV-producing cells; both parent cells as well as the recovered vesicles were characterized biochemically and biophysically. Using Fluorescence Correlation Spectroscopy (FCS) we quantified the number of FP-tagged molecules per vesicle. We observed different loading efficiencies and specificities for the different proteins into EVs. For the candidates showing the highest loading efficiency in terms of engineering, the molecular levels in the vesicles did not exceed ca 40-60 fluorescent proteins per vesicle upon transient overexpression in the cells. Some of the GFP-tagged EV reporters showed quenched fluorescence and were either non-vesicular, despite co-purification with EVs, or comprised a significant fraction of truncated GFP. The co-expression of each target protein with CD63 was further quantified by widefield and confocal imaging of single vesicles after double transfection of parent cells. In summary, we provide a quantitative comparison for the most commonly used sorting proteins for bioengineering of EVs and introduce a set of biophysical techniques for straightforward quantitative and qualitative characterization of fluorescent EVs to link single vesicle analysis with single molecule quantification.
Collapse
Affiliation(s)
- Giulia Corso
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wolf Heusermann
- Novartis Institutes for Biomedical Research, Basel, Switzerland.,Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Dominic Trojer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - André Görgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Emmanuelle Steib
- Novartis Institutes for Biomedical Research, Basel, Switzerland.,Department of Cell Biology, Sciences III, University of Geneva, Geneva Switzerland
| | - Johannes Voshol
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alexandra Graff
- Facility for advanced imaging and microscopy, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christel Genoud
- Facility for advanced imaging and microscopy, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yi Lee
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cancer and Stratified Oncology 5, Astar Genome Institute of Singapore, Singapore
| | - Justin Hean
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joel Z Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Nicole Meisner-Kober
- Novartis Institutes for Biomedical Research, Basel, Switzerland.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
33
|
Lin Z, Yang Z, Xie R, Ji Z, Guan K, Zhang M. Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity. eLife 2019; 8:49439. [PMID: 31486770 PMCID: PMC6744271 DOI: 10.7554/elife.49439] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
WW domain tandem-containing proteins such as KIBRA, YAP, and MAGI play critical roles in cell growth and polarity via binding to and positioning target proteins in specific subcellular regions. An immense disparity exists between promiscuity of WW domain-mediated target bindings and specific roles of WW domain proteins in cell growth regulation. Here, we discovered that WW domain tandems of KIBRA and MAGI, but not YAP, bind to specific target proteins with extremely high affinity and exquisite sequence specificity. Via systematic structural biology and biochemistry approaches, we decoded the target binding rules of WW domain tandems from cell growth regulatory proteins and uncovered a list of previously unknown WW tandem binding proteins including β-Dystroglycan, JCAD, and PTPN21. The WW tandem-mediated target recognition mechanisms elucidated here can guide functional studies of WW domain proteins in cell growth and polarity as well as in other cellular processes including neuronal synaptic signaling.
Collapse
Affiliation(s)
- Zhijie Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhou Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiling Xie
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, United States.,Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zeyang Ji
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kunliang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, United States
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
34
|
Raj N, Bam R. Reciprocal Crosstalk Between YAP1/Hippo Pathway and the p53 Family Proteins: Mechanisms and Outcomes in Cancer. Front Cell Dev Biol 2019; 7:159. [PMID: 31448276 PMCID: PMC6695833 DOI: 10.3389/fcell.2019.00159] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The YAP1/Hippo and p53 pathways are critical protectors of genome integrity in response to DNA damage. Together, these pathways secure cellular adaptation and maintain overall tissue integrity through transcriptional re-programing downstream of various environmental and biological cues generated during normal tissue growth, cell proliferation, and apoptosis. Genetic perturbations in YAP1/Hippo and p53 pathways are known to contribute to the cells’ ability to turn rogue and initiate tumorigenesis. The Hippo and p53 pathways cooperate on many levels and are closely coordinated through multiple molecular components of their signaling pathways. Several functional and physical interactions have been reported to occur between YAP1/Hippo pathway components and the three p53 family members, p53, p63, and p73. Primarily, functional status of p53 family proteins dictates the subcellular localization, protein stability and transcriptional activity of the core component of the Hippo pathway, Yes-associated protein 1 (YAP1). In this review, we dissect the critical points of crosstalk between the YAP1/Hippo pathway components, with a focus on YAP1, and the p53 tumor suppressor protein family. For each p53 family member, we discuss the biological implications of their interaction with Hippo pathway components in determining cell fate under the conditions of tissue homeostasis and cancer pathogenesis.
Collapse
Affiliation(s)
- Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rakesh Bam
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
35
|
Yun HY, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin HC, Park H, Oh BH, Kim WK, Bae KH, Lee SC, Lee EW, Ku B, Kim SJ. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol 2019; 17:e3000367. [PMID: 31323018 PMCID: PMC6668832 DOI: 10.1371/journal.pbio.3000367] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7’s ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis. Human papillomaviruses cause various diseases associated with cellular hyperproliferation, including cervical cancer. Structural, biochemical, and cellular analyses reveal the molecular basis and significance of the intermolecular interaction between the E7 protein of human papillomavirus 18 and the human tumor suppressor protein PTPN14.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Models, Molecular
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Protein Binding
- Protein Domains
- Protein Tyrosine Phosphatases, Non-Receptor/chemistry
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Retinoblastoma Protein/chemistry
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Sequence Homology, Amino Acid
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Min Wook Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Shin
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyunmin Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Kon Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| |
Collapse
|
36
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci U S A 2019; 116:7033-7042. [PMID: 30894485 DOI: 10.1073/pnas.1819534116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomavirus (HPV) E7 proteins enable oncogenic transformation of HPV-infected cells by inactivating host cellular proteins. High-risk but not low-risk HPV E7 target PTPN14 for proteolytic degradation, suggesting that PTPN14 degradation may be related to their oncogenic activity. HPV infects human keratinocytes but the role of PTPN14 in keratinocytes and the consequences of PTPN14 degradation are unknown. Using an HPV16 E7 variant that can inactivate retinoblastoma tumor suppressor (RB1) but cannot degrade PTPN14, we found that high-risk HPV E7-mediated PTPN14 degradation impairs keratinocyte differentiation. Deletion of PTPN14 from primary human keratinocytes decreased keratinocyte differentiation gene expression. Related to oncogenic transformation, both HPV16 E7-mediated PTPN14 degradation and PTPN14 deletion promoted keratinocyte survival following detachment from a substrate. PTPN14 degradation contributed to high-risk HPV E6/E7-mediated immortalization of primary keratinocytes and HPV+ but not HPV- cancers exhibit a gene-expression signature consistent with PTPN14 inactivation. We find that PTPN14 degradation impairs keratinocyte differentiation and propose that this contributes to high-risk HPV E7-mediated oncogenic activity independent of RB1 inactivation.
Collapse
|
38
|
miR-4516 predicts poor prognosis and functions as a novel oncogene via targeting PTPN14 in human glioblastoma. Oncogene 2018; 38:2923-2936. [PMID: 30559405 DOI: 10.1038/s41388-018-0601-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/10/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
Abstract
Glioblastomas (GBMs) are the most aggressive primary brain tumors, with an average survival of less than 15 months. Therefore, there is a critical need to develop novel therapeutic strategies for GBM. This study aimed to assess the prognostic value of miR-4516 and investigate its oncogenic functions and the underlying cellular and molecular mechanisms in GBM. To determine the correlation between miR-4516 expression and overall survival of patients with GBM, total RNAs were isolated from 268 FFPE tumor samples, miR expression was assayed (simultaneously) using the nCounter human miRNA v3a assay followed by univariable and multivariable survival analyses. Further, in vitro and in vivo studies were conducted to define the role of miR-4516 in GBM tumorigenesis and the underlying molecular mechanisms. Upon multivariable analysis, miR-4516 was correlated with poor prognosis in GBM patients (HR = 1.49, 95%CI: 1.12-1.99, P = 0.01). Interestingly, the significance of miR-4516 was retained including MGMT methylation status. Overexpression of miR-4516 significantly enhanced cell proliferation and invasion of GBM cells both in vitro and in vivo. While conducting downstream targeting studies, we found that the tumor-promoting function of miR-4516, in part, was mediated by direct targeting of PTPN14 (protein tyrosine phosphatase, non-receptor type 14) which, in turn, regulated the Hippo pathway in GBM. Taken together, our data suggest that miR-4516 represents an independent negative prognostic factor in GBM patients and acts as a novel oncogene in GBM, which regulates the PTPN14/Hippo pathway. Thus, this newly identified miR-4516 may serve as a new potential therapeutic target for GBM treatment.
Collapse
|
39
|
Abstract
How the organ size is adjusted to the proper size during development and how organs know that they reach the original size during regeneration remain long-standing questions. Based on studies using multiple model organisms and approaches for over 20 years, a consensus has been established that the Hippo pathway plays crucial roles in controlling organ size and maintaining tissue homeostasis. Given the significance of these processes, the dysregulation of the Hippo pathway has also implicated various diseases, such as tissue degeneration and cancer. By regulating the downstream transcriptional coactivators YAP and TAZ, the Hippo pathway coordinates cell proliferation and apoptosis in response to a variety of signals including cell contact inhibition, polarity, mechanical sensation and soluble factors. Since the core components and their functions of the Hippo pathway are evolutionarily conserved, this pathway serves as a global regulator of organ size control. Therefore, further investigation of the regulatory mechanisms will provide physiological insights to better understand tissue homeostasis. In this review, the historical developments and current understandings of the regulatory mechanism of Hippo signaling pathway are discussed.
Collapse
Affiliation(s)
- Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eek-Hoon Jho
- Departement of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
40
|
Hinton SD. The role of pseudophosphatases as signaling regulators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:167-174. [PMID: 30077638 DOI: 10.1016/j.bbamcr.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Pseudophosphatases are atypical members of the protein tyrosine phosphatase superfamily. Mutations within their catalytic signature motif render them catalytically inactive. Despite this lack of catalytic function, pseudophosphatases have been implicated in various diseases such as Charcot Marie-Tooth disorder, cancer, metabolic disorder, and obesity. Moreover, they have roles in various signaling networks such as spermatogenesis, apoptosis, stress response, tumorigenesis, and neurite differentiation. This review highlights the roles of pseudophosphatases as essential regulators in signaling cascades, providing insight into the function of these catalytically inactive enzymes.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
41
|
Moon S, Yeon Park S, Woo Park H. Regulation of the Hippo pathway in cancer biology. Cell Mol Life Sci 2018; 75:2303-2319. [PMID: 29602952 PMCID: PMC11105795 DOI: 10.1007/s00018-018-2804-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 01/23/2023]
Abstract
The Hippo tumor suppressor pathway, which is well conserved from Drosophila to humans, has emerged as the master regulator of organ size, as well as major cellular properties, such as cell proliferation, survival, stemness, and tissue homeostasis. The biological significance and deregulation of the Hippo pathway in tumorigenesis have received a surge of interest in the past decade. In the current review, we present the major discoveries that made substantial contributions to our understanding of the Hippo pathway and discuss how Hippo pathway components contribute to cellular signaling, physiology, and their potential implications in anticancer therapeutics.
Collapse
Affiliation(s)
- Sungho Moon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
de Weck A, Golji J, Jones MD, Korn JM, Billy E, McDonald ER, Schmelzle T, Bitter H, Kauffmann A. Correction of copy number induced false positives in CRISPR screens. PLoS Comput Biol 2018; 14:e1006279. [PMID: 30024886 PMCID: PMC6067744 DOI: 10.1371/journal.pcbi.1006279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/31/2018] [Accepted: 06/07/2018] [Indexed: 01/10/2023] Open
Abstract
Cell autonomous cancer dependencies are now routinely identified using CRISPR loss-of-function viability screens. However, a bias exists that makes it difficult to assess the true essentiality of genes located in amplicons, since the entire amplified region can exhibit lethal scores. These false-positive hits can either be discarded from further analysis, which in cancer models can represent a significant number of hits, or methods can be developed to rescue the true-positives within amplified regions. We propose two methods to rescue true positive hits in amplified regions by correcting for this copy number artefact. The Local Drop Out (LDO) method uses the relative lethality scores within genomic regions to assess true essentiality and does not require additional orthogonal data (e.g. copy number value). LDO is meant to be used in screens covering a dense region of the genome (e.g. a whole chromosome or the whole genome). The General Additive Model (GAM) method models the screening data as a function of the known copy number values and removes the systematic effect from the measured lethality. GAM does not require the same density as LDO, but does require prior knowledge of the copy number values. Both methods have been developed with single sample experiments in mind so that the correction can be applied even in smaller screens. Here we demonstrate the efficacy of both methods at removing the copy number effect and rescuing hits from some of the amplified regions. We estimate a 70-80% decrease of false positive hits with either method in regions of high copy number compared to no correction.
Collapse
Affiliation(s)
- Antoine de Weck
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Javad Golji
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Michael D. Jones
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Joshua M. Korn
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Eric Billy
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - E. Robert McDonald
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | | | - Hans Bitter
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | | |
Collapse
|
43
|
Webb Strickland S, Brimer N, Lyons C, Vande Pol SB. Human Papillomavirus E6 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. Virology 2018; 516:127-138. [PMID: 29346075 DOI: 10.1016/j.virol.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
Abstract
HPV E6 oncoproteins associate with cellular PDZ proteins. In addition to previously identified cellular PDZ proteins, we found association of the HPV16 E6 PBM with the Dystrophin Glycoprotein Complex, LRCC1, and SLC9A3R2. HPV18 E6 had additional associations when lysates from adenomatous cell lines were used including LRPPRC, RLGAPB, EIF3A, SMC2 and 3, AMOT, AMOTL1, and ARHGEF1; some of these cellular PDZ proteins are implicated in the regulation of the YAP1 transcriptional co-activator. In keratinocytes, nuclear translocation of YAP1 was promoted by the complete HPV-16 genome, or by expression of the individual E6 or E7 oncoproteins; the activity of E6 required an intact PBM at the carboxy-terminus. This work demonstrates that E6 association with cellular PDZ proteins promotes the nuclear localization of YAP1. The ability of E6 to promote the nuclear transport of YAP1 thus identifies an E6 activity that could contribute to the transformation of cells by E6.
Collapse
Affiliation(s)
- Sydney Webb Strickland
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Charles Lyons
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States.
| |
Collapse
|
44
|
Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, Gutiérrez García-Rodrigo C, Fargnoli MC. Understanding the Molecular Genetics of Basal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18112485. [PMID: 29165358 PMCID: PMC5713451 DOI: 10.3390/ijms18112485] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/12/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common human cancer and represents a growing public health care problem. Several tumor suppressor genes and proto-oncogenes have been implicated in BCC pathogenesis, including the key components of the Hedgehog pathway, PTCH1 and SMO, the TP53 tumor suppressor, and members of the RAS proto-oncogene family. Aberrant activation of the Hedgehog pathway represents the molecular driver in basal cell carcinoma pathogenesis, with the majority of BCCs carrying somatic point mutations, mainly ultraviolet (UV)-induced, and/or copy-loss of heterozygosis in the PTCH1 gene. Recent advances in sequencing technology allowed genome-scale approaches to mutation discovery, identifying new genes and pathways potentially involved in BCC carcinogenesis. Mutational and functional analysis suggested PTPN14 and LATS1, both effectors of the Hippo–YAP pathway, and MYCN as new BCC-associated genes. In addition, emerging reports identified frequent non-coding mutations within the regulatory promoter sequences of the TERT and DPH3-OXNAD1 genes. Thus, it is clear that a more complex genetic network of cancer-associated genes than previously hypothesized is involved in BCC carcinogenesis, with a potential impact on the development of new molecular targeted therapies. This article reviews established knowledge and new hypotheses regarding the molecular genetics of BCC pathogenesis.
Collapse
Affiliation(s)
- Cristina Pellegrini
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Maria Giovanna Maturo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Lucia Di Nardo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Valeria Ciciarelli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Carlota Gutiérrez García-Rodrigo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Maria Concetta Fargnoli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
45
|
Mesrouze Y, Meyerhofer M, Bokhovchuk F, Fontana P, Zimmermann C, Martin T, Delaunay C, Izaac A, Kallen J, Schmelzle T, Erdmann D, Chène P. Effect of the acylation of TEAD4 on its interaction with co-activators YAP and TAZ. Protein Sci 2017; 26:2399-2409. [PMID: 28960584 DOI: 10.1002/pro.3312] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023]
Abstract
The Hippo pathway is deregulated in various cancers, and the discovery of molecules that modulate this pathway may open new therapeutic avenues in oncology. TEA/ATTS domain (TEAD) transcription factors are the most distal elements of the Hippo pathway and their transcriptional activity is regulated by the Yes-associated protein (YAP). Amongst the various possibilities for targeting this pathway, inhibition of the YAP:TEAD interaction is an attractive strategy. It has been shown recently that TEAD proteins are covalently linked via a conserved cysteine to a fatty acid molecule (palmitate) that binds to a deep hydrophobic cavity present in these proteins. This acylation of TEAD seems to be required for efficient binding to YAP, and understanding how it modulates the YAP:TEAD interaction may provide useful information on the regulation of TEAD function. In this report we have studied the effect of TEAD4 acylation on its interaction with YAP and the other co-activator transcriptional co-activator with PDZ-binding motif (TAZ). We show in our biochemical and cellular assays that YAP and TAZ bind in a similar manner to acylated and non-acylated TEAD4. This indicates that TEAD4 acylation is not a prerequisite for its interaction with YAP or TAZ. However, we observed that TEAD4 acylation significantly enhances its stability, suggesting that it may help this transcription factor to acquire and/or maintain its active conformation.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fedir Bokhovchuk
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrizia Fontana
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Zimmermann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Typhaine Martin
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Clara Delaunay
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Aude Izaac
- Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joerg Kallen
- Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tobias Schmelzle
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
46
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
47
|
Abstract
In this issue of Cancer Cell, Mello et al. investigated how p53 suppresses pancreatic cancer and discovered a key role for the tyrosine phosphatase PTPN14, a p53 transcriptional target. PTPN14 restrains YAP, curbing its potential oncogenic effects. The p53-PTPN14-YAP axis highlights the importance of signaling pathway coordination in cancer prevention.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel.
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
48
|
Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, Bieging-Rolett KT, Lee J, Ivanochko D, Kozak MM, Chang DT, Longacre TA, Koong AC, Arrowsmith CH, Kim SK, Vogel H, Wood LD, Hruban RH, Curtis C, Attardi LD. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 2017; 32:460-473.e6. [PMID: 29017057 PMCID: PMC5659188 DOI: 10.1016/j.ccell.2017.09.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/19/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Stephano S Mello
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liz J Valente
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose A Seoane
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brittany M Flowers
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob McClendon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn T Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonghyeob Lee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Danton Ivanochko
- Princess Margaret Cancer Centre, Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Margaret M Kozak
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teri A Longacre
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Seung K Kim
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Vogel
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Mesrouze Y, Bokhovchuk F, Meyerhofer M, Fontana P, Zimmermann C, Martin T, Delaunay C, Erdmann D, Schmelzle T, Chène P. Dissection of the interaction between the intrinsically disordered YAP protein and the transcription factor TEAD. eLife 2017; 6. [PMID: 28430104 PMCID: PMC5400505 DOI: 10.7554/elife.25068] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/06/2017] [Indexed: 01/23/2023] Open
Abstract
TEAD (TEA/ATTS domain) transcription factors are the most distal effectors of the Hippo pathway. YAP (Yes-associated protein) is a coactivator protein which, upon binding to TEAD proteins, stimulates their transcriptional activity. Since the Hippo pathway is deregulated in various cancers, designing inhibitors of the YAP:TEAD interaction is an attractive therapeutic strategy for oncology. Understanding the molecular events that take place at the YAP:TEAD interface is therefore important not only to devise drug discovery approaches, but also to gain knowledge on TEAD regulation. In this report, combining single site-directed mutagenesis and double mutant analyses, we conduct a detailed analysis on the role of several residues located at the YAP:TEAD interface. Our results provide quantitative understanding of the interactions taking place at the YAP:TEAD interface and give insights into the formation of the YAP:TEAD complex and more particularly on the interaction between TEAD and the Ω-loop found in YAP. DOI:http://dx.doi.org/10.7554/eLife.25068.001
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fedir Bokhovchuk
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrizia Fontana
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Zimmermann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Typhaine Martin
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Clara Delaunay
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tobias Schmelzle
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
50
|
The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7. J Virol 2017; 91:JVI.00057-17. [PMID: 28100625 DOI: 10.1128/jvi.00057-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays.IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor.
Collapse
|