1
|
Ortega-Portilla PA, Carrisoza-Urbina J, Bedolla-Alva MA, Cortéz-Hernández O, Juárez-Ramírez M, Baay-Guzmán G, Huerta-Yepez S, Gutiérrez-Pabello JA. Necrosis plays a role in the concentration of mycobacterial antigens in granulomas from Mycobacterium bovis naturally infected cattle. Vet Immunol Immunopathol 2024; 272:110757. [PMID: 38723459 DOI: 10.1016/j.vetimm.2024.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
The dynamics that develop between cells and molecules in the host against infection by Mycobacterium bovis, leads to the formation of granulomas mainly present in the lungs and regional lymph nodes in cattle. Cell death is one of the main features in granuloma organization, however, it has not been characterized in granulomatous lesions caused by M. bovis. In this study we aimed to identify the profiles of cell death in the granuloma stages and its relationship with the accumulation of bacteria. We identified necrosis, activated caspase-3, LC3B/p62 using immunohistochemistry and digital pathology analysis on 484 granulomatous lesions in mediastinal lymph nodes from 23 naturally infected cattle. Conclusions: greater amounts of mycobacterial antigens were identified in granulomas from calves compared with adult cattle. The highest percentage of necrosis and quantity of mycobacterial antigens were identified in granuloma stages (III/IV) from adults. The LC3B/p62 profile was heterogeneous in granulomas between adults and calves. Our data suggest that necrosis is associated with a higher amount of mycobacterial antigens in the late stages of granuloma and the development of autophagy appears to play an heterogeneous effector response against infection in adults and calves. These results represent one of the first approaches in the identification of cell death in the four stages of granulomas in bovine tuberculosis.
Collapse
Affiliation(s)
- Paola A Ortega-Portilla
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacobo Carrisoza-Urbina
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mario A Bedolla-Alva
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Cortéz-Hernández
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mireya Juárez-Ramírez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Escobar-Chavarría O, Benitez-Guzman A, Jiménez-Vázquez I, Carrisoza-Urbina J, Arriaga-Pizano L, Huerta-Yépez S, Baay-Guzmán G, Gutiérrez-Pabello JA. Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells 2023; 12:2079. [PMID: 37626889 PMCID: PMC10453650 DOI: 10.3390/cells12162079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium bovis is a facultative intracellular bacterium that produces cellular necrosis in granulomatous lesions in bovines. Although M. bovis-induced inflammation actively participates in granuloma development, its role in necrotic cell death and in bovine macrophages has not been fully explored. In this study, we evaluate the effect of M. bovis AN5 and its culture filtrate protein extract (CFPE) on inflammasome activation in bovine macrophages and its consequences on cell death. Our results show that both stimuli induce necrotic cell death starting 4 h after incubation. CFPE treatment and M. bovis infection also induce the maturation of IL-1β (>3000 pg/mL), oligomerization of ASC (apoptosis-associated speck-like protein containing CARD), and activation of caspase-1, following the canonical activation pathway of the NLRP3 inflammasome. Inhibiting the oligomerization of NLRP3 and caspase-1 decreases necrosis among the infected or CFPE-stimulated macrophages. Furthermore, histological lymph node sections of bovines naturally infected with M. bovis contained cleaved gasdermin D, mainly in macrophages and giant cells within the granulomas. Finally, the induction of cell death (apoptosis and pyroptosis) decreased the intracellular bacteria count in the infected bovine macrophages, suggesting that cell death helps to control the intracellular growth of the mycobacteria. Our results indicate that M. bovis induces pyroptosis-like cell death that is partially related to the NLRP3 inflammasome activation and that the cell death process could control bacterial growth.
Collapse
Affiliation(s)
- Omar Escobar-Chavarría
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Alejandro Benitez-Guzman
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Itzel Jiménez-Vázquez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Jacobo Carrisoza-Urbina
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sara Huerta-Yépez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (S.H.-Y.); (G.B.-G.)
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (S.H.-Y.); (G.B.-G.)
| | - José A. Gutiérrez-Pabello
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| |
Collapse
|
3
|
Flores-Villalva S, Remot A, Carreras F, Winter N, Gordon SV, Meade KG. Vitamin D induced microbicidal activity against Mycobacterium bovis BCG is dependent on the synergistic activity of bovine peripheral blood cell populations. Vet Immunol Immunopathol 2023; 256:110536. [PMID: 36586390 DOI: 10.1016/j.vetimm.2022.110536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
A growing appreciation is emerging of the beneficial role of vitamin D for health and resistance against infectious diseases, including tuberculosis. However, research has predominantly focused on murine and human species and functional data in bovines is limited. Therefore, the objective of this study was to assess the microbicidal activity and immunoregulatory effect of the vitamin D metabolite 1,25(OH)2D3 on bovine peripheral blood leukocytes (PBL) in response to Mycobacterium bovis BCG (BCG) infection using a combination of functional assays and gene expression profiling. Blood from Holstein-Friesian bull calves with low circulating levels of 25(OH)D was stimulated with 1,25(OH)2D3 for 2 h, and then infected with M. bovis BCG. Results showed that 1,25(OH)2D3 supplementation significantly increased BCG killing by on average 16 %, although responses varied between 1 % and 38 % killing. Serial cell subset depletion was then performed on PBL prior to 1,25(OH)2D3 incubation and BCG infected as before to analyse the contribution of major cell types to mycobacterial growth control. Specific antibodies and either magnetic cell separation or density gradient centrifugation of monocytes, granulocytes, CD3+, CD4+, and CD8+ T lymphocytes were used to capture each cell subset. Results showed that depletion of granulocytes had the greatest impact on BCG growth, leading to a significant enhancement of bacterial colonies. In contrast, depletion of CD4+ or CD8+ T cells individually, or in combination (CD3+), had no impact on mycobacterial growth control. In agreement with our previous data, 1,25(OH)2D3 significantly increased bacterial killing in PBL, in monocyte depleted samples, and a similar trend was observed in the granulocyte depleted subset. In addition, specific analysis of sorted neutrophils treated with 1,25(OH)2D3 showed an enhanced microbicidal activity against both BCG and a virulent strain of M. bovis. Lastly, data showed that 1,25(OH)2D3 stimulation increased reactive oxygen species (ROS) production and the expression of genes encoding host defence peptides (HDP) and pathogen recognition receptors (PRRs), factors that play an important role in the microbicidal activity against mycobacteria. In conclusion, the vitamin D metabolite 1,25(OH)2D3 improves antimycobacterial killing in bovine PBLs via the synergistic activity of monocytes and granulocytes and enhanced activation of innate immunity.
Collapse
Affiliation(s)
- Susana Flores-Villalva
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; CENID Fisiología, INIFAP, Querétaro, Mexico
| | - Aude Remot
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| | | | | | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Liu W, Deng Y, Tan A, Zhao F, Chang O, Wang F, Lai Y, Huang Z. Intracellular behavior of Nocardia seriolae and its apoptotic effect on RAW264.7 macrophages. Front Cell Infect Microbiol 2023; 13:1138422. [PMID: 36926518 PMCID: PMC10011490 DOI: 10.3389/fcimb.2023.1138422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Nocardia seriolae, an intracellular gram-positive pathogen, is prone to infecting immunocompromised and surface-damaged fish, causing serious losses to the aquaculture industry. Although a previous study has demonstrated that N. seriolae infects macrophages, the persistence of this bacterium in macrophages has not been well characterized. To address this gap, we used the macrophage cell line RAW264.7, to investigate the interactions between N. seriolae and macrophages and deciphered the intracellular survival mechanism of N. seriolae. Confocal and light microscopy revealed that N. seriolae entered macrophages 2 hours post-inoculation (hpi), were phagocytosed by macrophages at 4-8 hpi, and induced the formation of multinucleated macrophages by severe fusion at 12 hpi. Flow cytometry, evaluation of mitochondrial membrane potential, release of lactate dehydrogenase, and observation of the ultrastructure of macrophages revealed that apoptosis was induced in the early infection stage and inhibited in the middle and later periods of infection. Additionally, the expression of Bcl-2, Bax, Cyto-C, Caspase-3, Capase-8, and Caspase-9 was induced at 4 hpi, and then decreased at 6-8 hpi, illustrating that N. seriolae infection induces the activation of extrinsic and intrinsic apoptotic pathways in macrophages, followed by the inhibition of apoptosis to survive inside the cells. Furthermore, N. seriolae inhibits the production of reactive oxygen species and releases large amounts of nitric oxide, which persists in macrophages during infection. The present study provides the first comprehensive insight into the intracellular behavior of N. seriolae and its apoptotic effect on macrophages and may be important for understanding the pathogenicity of fish nocardiosis.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products of Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- *Correspondence: Yuting Deng,
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Ouqing Chang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Fang Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| |
Collapse
|
5
|
Deletion in KARLN intron 5 and predictive relationship with bovine tuberculosis and brucellosis infection phenotype. Vet Res Commun 2022; 47:779-789. [DOI: 10.1007/s11259-022-10039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
|
6
|
Figueroa-Valenzuela C, Montes-García JF, Vazquez-Cruz C, Zenteno E, Pereyra MA, Negrete-Abascal E. Mannheimia haemolytica OmpH binds fibrinogen and fibronectin and participates in biofilm formation. Microb Pathog 2022; 172:105788. [PMID: 36126788 DOI: 10.1016/j.micpath.2022.105788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Mannheimia haemolytica is the causal agent of the shipping fever in bovines and produces high economic losses worldwide. This bacterium possesses different virulence attributes to achieve a successful infection. One of the main virulence factors expressed by a pathogen is through adhesion molecules; however, the components participating in this process are not totally known. The present work identified a M. haemolytica 41 kDa outer membrane protein (Omp) that participates in bacterial adhesion. This protein showed 100% identity with the OmpH from M. haemolytica as determined by mass spectrometry and it interacts with sheep fibrinogen. The 41 kDa M. haemolytica OmpH interacts with bovine monocytes; a previous incubation of M. haemolytica with a rabbit hyperimmune serum against this Omp diminished 45% cell adhesion. The OmpH was recognized by serum from bovines affected by acute or chronic pneumonia, indicating its in vivo expression; moreover, it showed immune cross-reaction with the serum of rabbit infected with Pasteurella multocida. The OmpH is present in biofilms and previous incubation of M. haemolytca with rabbit serum against this protein diminished biofilm, indicating this protein's participation in biofilm formation. M. haemolytica OmpH is proposed as a relevant immunogen in bovine pneumonia protection.
Collapse
Affiliation(s)
- Cecilia Figueroa-Valenzuela
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, UNAM; Av. de los Barrios # 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico; Departamento de Ciencias Veterinarias, Campus Nuevo Casas Grandes, UACJ, C.P. 31803, Chihuahua, Mexico
| | - J Fernando Montes-García
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, UNAM; Av. de los Barrios # 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico
| | - Candelario Vazquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, BUAP, Apdo. Postal 1622, Puebla, 72560, Puebla, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohamed Alí Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, UNAM; Av. de los Barrios # 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico.
| |
Collapse
|
7
|
López-Constantino S, Barragan EA, Alfonseca-Silva E. Reduced levels of serum 25(OH)D 3 are associated with tuberculosis positive cattle under conditions of high natural exposure to Mycobacterium bovis. Comp Immunol Microbiol Infect Dis 2022; 81:101746. [PMID: 35030535 DOI: 10.1016/j.cimid.2022.101746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 12/31/2022]
Abstract
Serum vitamin D (25(OH)D3) concentrations of < 30 ng/mL in cattle are insufficient to induce an adequate immune response against intracellular pathogens, which suggests that the efficacy of the immune response may be highly dependent on the bioavailability of 25(OH)D3. This study shows an overview of both in vitro and in vivo 25(OH)D3-mediated immune modulation amongst dairy cattle naturally exposed to M. bovis. Tuberculin status was confirmed by interferon gamma release assay (IGRA), and natural exposure was demonstrated by polymerase chain reaction (PCR). Tuberculin (-) cattle have a higher serum concentration of 25(OH)D3 (X¯= 87.12 ng/mL) when compared to tuberculin (+) cattle (X¯ = 45.86 ng/mL). Reduced serum 25(OH)D3 levels are associated with the presence of bovine TB, and serum 25(OH)D3 levels of > 80 ng/mL are necessary to counteract infection by M. bovis. Kill assays were performed to evaluate in vitro 25(OH)D3 modulation of intracellular M. bovis growth in bovine macrophages, which showed that reduced serum 25(OH)D3 levels are associated with diminished mycobactericidal capacity in this experimental model. On the other hand, increased 25(OH)D3 in culture media enhances phagocytosis and nitric oxide production, which in turn improves capacity to combat M. bovis.
Collapse
Affiliation(s)
- Sofía López-Constantino
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Evaristo A Barragan
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Edgar Alfonseca-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
8
|
Characterization of innate immune response to Brucella melitensis infection in goats with permissive or restrictive phenotype for Brucella intramacrophagic growth. Vet Immunol Immunopathol 2021; 234:110223. [PMID: 33711712 DOI: 10.1016/j.vetimm.2021.110223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
Caprine brucellosis is a chronic, world-wide distributed disease which causes reproductive failure in goats and Brucella melitensis, its causative agent, bears a great zoonotic potential. There is evidence suggesting that some cattle and pigs have an innate ability to resist Brucella infection, but this has not yet been investigated in goats. In this study, we compared caprine macrophages that exhibit extreme restriction and permissiveness to B. melitensis' intracellular growth in vitro. Monocyte derived macrophages (MDMs) from 110 female goats were cultured and challenged in vitro with B. melitensis 16 M. After initial screening, 18 donor goats were selected based on their macrophages ability to restrict or allow bacterial intracellular growth and some elements of humoral and cellular immunity were studied in depth. MDMs that were able to restrict the pathogen's intracellular growth showed enhanced bacterial internalization, although there were no differences between groups in the production of reactive oxygen and nitrogen intermediates following 48 h treatment with heat-killed B. melitensis. Moreover, there were no differences between groups in the level of antibodies reacting with keyhole limpet hemocyanin (natural antibodies, NAbs) or with Brucella LPS antigens (cross-reacting antibodies, CrAbs), although a strong positive correlation between individual levels of IgM NAbs and IgM CrAbs was detected. Altogether, these results represent an initial step in understanding innate primary host response to B. melitensis, and deciphering which mechanisms may determine a successful outcome of the infection in goats.
Collapse
|
9
|
Pal R, Mukhopadhyay S. PPE2 protein of Mycobacterium tuberculosis affects myeloid hematopoiesis in mice. Immunobiology 2020; 226:152051. [PMID: 33352401 DOI: 10.1016/j.imbio.2020.152051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022]
Abstract
Irregularity in hematopoiesis is noted in humans during tuberculosis. However, influence of mycobacterial protein(s) on bone marrow hematopoiesis is not fully understood. In this study, we have demonstrated the role of a mycobacterial protein, PPE2 (Rv0256c) in suppressing hematopoiesis during infection. PPE2 belongs to PPE (proline-proline-glutamine) family of mycobacterial proteins which are well known for hijacking host machineries for better survival inside host. In the present study, we have shown that mice infected with Mycobacterium smegmatis expressing PPE2 (M. smeg-PPE2) had a marked reduction in cells of myeloid lineage in bone marrow and peripheral blood along with altered bone marrow phenotype. Bone marrow of M. smeg-PPE2-infected mice showed an overall hypo-cellularity with an increase in population of immature cells, along with reduction in mature cell population. Higher number of M. smeg-PPE2 bacilli was observed in bone-marrow, lung, liver and spleen of mice as compared to the control mycobacteria (M. smeg-pVV16). M. smeg-PPE2-infected mice also showed higher expression of IFN-γ than those infected with M. smeg-pVV16. We conclude that PPE2 affects bone-marrow hematopoiesis of myeloid cells, probably by increasing IFN-γ levels, both locally and systemically, thus favoring the bacilli to establish a positive infection.
Collapse
Affiliation(s)
- Ravi Pal
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad - 500039, Telangana, India; Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad - 500039, Telangana, India.
| |
Collapse
|
10
|
Assessment of candidate biomarkers to detect resistance to Mycobacterium bovis in Holstein-Friesian cattle. Res Vet Sci 2020; 132:416-425. [PMID: 32768870 DOI: 10.1016/j.rvsc.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/30/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Bovine tuberculosis (bTB) caused by Mycobacterium bovis has a significant economic impact worldwide each year. Control of bTB is based on skin testing and removal of reactors. However, additional strategies are required to control this disorder. Natural disease resistance has been defined as the inherent capacity of an individual to resist disease when exposed to pathogens without previous exposure or immunization. However, little is known about natural disease resistance against Mycobacterium bovis in cattle. In this study, we aimed to identify candidate biomarkers to detect host resistance to M. bovis. We used a microbicidal assay to identify the resistance phenotype. A genomic microarray analysis was carried out on RNA from 2 resistant (R) and 2 susceptible (S) cows. Our results evidenced 69 differentially expressed genes. A subset of six genes that showed differential up (IL1RN), and down-regulation (VNN, GATM, ARHGEF11, NAAA and HSPA2) were selected for further analysis. To further validate the candidate biomarkers, we identified the R phenotype in 31 cattle (9 R and 22 S). Macrophage mRNA was isolated from this group of cattle. Expression of candidate biomarkers was evaluated by qPCR 2-ΔCt and ROC curves to determine their diagnostic potential. Candidates IL1RN and ARHGEF11 discriminates between R and S cattle. Furthermore, combination of candidates ARHGEF11: VNN: HSPA2 discriminate between R from S with AUC 0.7993 and agreement index of 0.853 (p ≤ 0.01). Our data suggest that candidate biomarkers may support the preliminary screening to identify natural resistance in herds against Mycobacterium bovis in Holstein-Friesian cattle.
Collapse
|
11
|
Benítez-Guzmán A, Esquivel-Solís H, Romero-Torres C, Arriaga-Díaz C, Gutiérrez-Pabello JA. Genetically Related Mycobacterium bovis Strains Displayed Differential Intracellular Growth in Bovine Macrophages. Vet Sci 2019; 6:vetsci6040081. [PMID: 31635257 PMCID: PMC6958473 DOI: 10.3390/vetsci6040081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
Molecular typing of bacterial isolates provides a powerful approach for distinguishing Mycobacterium bovis (M. bovis) genotypes. It is known that M. bovis strain virulence plays a role in prevalence and spread of the disease, suggesting that strain virulence and prevailing genotypes are associated. However, it is not well understood whether strain virulence correlates with particular genotypes. In this study, we assessed the in vitro intracellular growth of 18 M. bovis isolates in bovine macrophages as an indicator of bacterial virulence and sought a relationship with the genotype identified by spoligotyping. We found 14 different spoligotypes—11 were already known and three spoligotypes had never been reported before. We identified 2 clusters that were phylogenetically related, containing 10 and 6 strains, respectively, and 2 orphan strains. Intracellular growth and phagocytic rates of 18 M. bovis strains were heterogeneous. Our results suggest that M. bovis intracellular growth and phagocytosis are independent of the bacterial lineage identified by spoligotyping.
Collapse
Affiliation(s)
- Alejandro Benítez-Guzmán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Hugo Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico.
| | - Cecilia Romero-Torres
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CENID Microbiología, Ciudad de México 05110, Mexico.
| | - Camila Arriaga-Díaz
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CENID Microbiología, Ciudad de México 05110, Mexico.
| | - José A Gutiérrez-Pabello
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
12
|
Jensen K, Stevens JM, Glass EJ. Interleukin 10 knock-down in bovine monocyte-derived macrophages has distinct effects during infection with two divergent strains of Mycobacterium bovis. PLoS One 2019; 14:e0222437. [PMID: 31527895 PMCID: PMC6748433 DOI: 10.1371/journal.pone.0222437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis (TB), a cattle disease of global importance. M. bovis infects bovine macrophages (Mø) and subverts the host cell response to generate a suitable niche for survival and replication. We investigated the role of the anti-inflammatory cytokine interleukin (IL) 10 during in vitro infection of bovine monocyte-derived Mø (bMDM) with two divergent UK strains of M. bovis, which differentially modulate expression of IL10. The use of IL10-targeting siRNA revealed that IL10 inhibited the production of IL1B, IL6, tumour necrosis factor (TNF) and interferon gamma (IFNG) during infection of bMDM with the M. bovis strain G18. In contrast, IL10 only regulated a subset of these genes; TNF and IFNG, during infection with the M. bovis reference strain AF2122/97. Furthermore, nitric oxide (NO) production was modulated by IL10 during AF2122/97 infection, but not at the nitric oxide synthase 2 (NOS2) mRNA level, as observed during G18 infection. However, IL10 was found to promote survival of both M. bovis strains during early bMDM infection, but this effect disappeared after 24 h. The role of IL10-induced modulation of TNF, IFNG and NO production in M. bovis survival was investigated using siRNA targeting TNF, IFNG receptor 1 (IFNGR1) and NOS2. Knock-down of these genes individually did not promote survival of either M. bovis strain and therefore modulation of these genes does not account for the effect of IL10 on M. bovis survival. However, TNF knock-down was found to be detrimental to the survival of the M. bovis strain G18 during early infection. The results provide further evidence for the importance of IL10 during M. bovis infection of Mø. Furthermore, they highlight M. bovis strain specific differences in the interaction with the infected bMDM, which may influence the course of infection and progression of bovine TB.
Collapse
Affiliation(s)
- Kirsty Jensen
- Division of Infection & Immunity, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- * E-mail:
| | - Joanne M. Stevens
- Division of Infection & Immunity, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Elizabeth J. Glass
- Division of Infection & Immunity, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
13
|
Imrie H, Williams DJL. Stimulation of bovine monocyte-derived macrophages with lipopolysaccharide, interferon-ɣ, Interleukin-4 or Interleukin-13 does not induce detectable changes in nitric oxide or arginase activity. BMC Vet Res 2019; 15:45. [PMID: 30704453 PMCID: PMC6357487 DOI: 10.1186/s12917-019-1785-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/16/2019] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Bacterial lipopolysaccharide and interferon-γ stimulation of rodent macrophages in vitro induces up-regulation of inducible nitric oxide synthase, whereas interleukin-4 stimulation results in increased activity of arginase-1. Thus different stimulants result in differing macrophage phenotypes, appropriate for responses to a range of pathogens. The current study was conducted in order to determine whether bovine macrophages derived from monocytes and spleen respond similarly. RESULTS Lipopolysaccharide and interferon-γ did not induce detectable increases in nitric oxide production by bovine monocyte-derived or splenic macrophages in vitro. Similarly, interleukin-4 and interleukin-13 did not affect arginase activity. However, changes in transcription of genes coding for these products were detected. CONCLUSION Differences between macrophage activation patterns exist between cattle and other species and these differences may occur during the post-transcription phase.
Collapse
Affiliation(s)
- Heather Imrie
- Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF UK
- Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Lane, Southwell, NG25 0DT UK
| | - Diana J. L. Williams
- Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF UK
| |
Collapse
|
14
|
García-Barragán Á, Gutiérrez-Pabello JA, Alfonseca-Silva E. Calcitriol increases nitric oxide production and modulates microbicidal capacity against Mycobacterium bovis in bovine macrophages. Comp Immunol Microbiol Infect Dis 2018; 59:17-23. [PMID: 30290883 DOI: 10.1016/j.cimid.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022]
Abstract
Bovine tuberculosis, a re-emerging infectious disease caused by Mycobacterium bovis, can be transmitted to humans. Global prevalence of M. bovis in humans is underestimated and represents a serious public health risk in developing countries. In light of this situation, it is important to note that our understanding of the immunopathogenesis of human tuberculosis can be improved by studying this disease in the bovine model. Stimulation of the bovine innate immune system with calcitriol (1,25(OH)2D3) leads to an increase in bactericidal molecules involved in macrophage antimicrobial activity. It is unknown, however, if calcitriol´s effect on bovine macrophages impacts intracellular bacterial replication. With these considerations in mind, this study sought to investigate the specific role of calcitriol in tuberculosis control in bovine macrophages, in the hopes of uncovering information applicable to human tuberculosis. As such, infection with M. bovis was shown to induce expression of CYP27B1 and VDR genes in macrophages. Moreover, addition of 1,25(OH)2D3 to cultures of macrophages previously infected with mycobacteria and/or activated by LPS triggered cellular expression of nitric oxide synthase (NOS2) and increased nitrite concentrations, both indicators of nitric oxide (NO) production. By means of a microbicidal assay, addition of 1,25(OH)2D3 was seen to increase macrophage phagocytosis and to decrease mycobacterial intracellular replication. Thus, taken together, our results show that calcitriol can help stimulate the innate immune system of bovines by increasing phagocytosis and decreasing intracellular replication of microorganisms, such as M. bovis, in macrophages, through the VDR pathway.
Collapse
Affiliation(s)
- Ángel García-Barragán
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - José A Gutiérrez-Pabello
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Edgar Alfonseca-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Benítez-Guzmán A, Arriaga-Pizano L, Morán J, Gutiérrez-Pabello JA. Endonuclease G takes part in AIF-mediated caspase-independent apoptosis in Mycobacterium bovis-infected bovine macrophages. Vet Res 2018; 49:69. [PMID: 30021619 PMCID: PMC6052627 DOI: 10.1186/s13567-018-0567-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis encodes different virulence mechanisms to survive inside of host cells. One of the possible outcomes in this host-pathogen interaction is cell death. Previous results from our group showed that M. bovis induces a caspase-independent apoptosis in bovine macrophages with the possible participation of apoptosis inducing factor mitochondria associated 1 (AIFM1/AIF), a flavoprotein that functions as a cell-death regulator. However, contribution of other caspase-independent cell death mediators in M. bovis-infected macrophages is not known. In this study, we aimed to further characterize M. bovis-induced apoptosis, addressing Endonuclease G (Endo G) and Poly (ADP-ribose) polymerase 1 (PARP-1). In order to accomplish our objective, we infected bovine macrophages with M. bovis AN5 (MOI 10:1). Analysis of M. bovis-infected nuclear protein extracts by immunoblot, identified a 15- and 43-fold increase in concentration of mitochondrial proteins AIF and Endo G respectively. Interestingly, pretreatment of M. bovis-infected macrophages with cyclosporine A, a mitochondrial permeability transition pore inhibitor, abolished AIF and Endo G nuclear translocation. In addition, it also decreased macrophage DNA fragmentation to baseline and caused a 26.2% increase in bacterial viability. We also demonstrated that PARP-1 protein expression in macrophages did not change during M. bovis infection. Furthermore, pretreatment of M. bovis-infected bovine macrophages with 3-aminobenzamide, a PARP-1 inhibitor, did not change the proportion of macrophage DNA fragmentation. Our results suggest participation of Endo G, but not PARP-1, in M. bovis-induced macrophage apoptosis. To the best of our knowledge this is the first report associating Endo G with caspase-independent apoptosis induced by a member of the Mycobacterium tuberculosis complex.
Collapse
Affiliation(s)
- Alejandro Benítez-Guzmán
- Laboratorio de Investigación en Tuberculosis Bovina, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Unidad Médica de Investigación en Inmunoquímica, Hospital Siglo XXI, IMSS, Mexico City, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis Bovina, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
16
|
Variation in the Early Host-Pathogen Interaction of Bovine Macrophages with Divergent Mycobacterium bovis Strains in the United Kingdom. Infect Immun 2018; 86:IAI.00385-17. [PMID: 29263113 PMCID: PMC5820943 DOI: 10.1128/iai.00385-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis has been an escalating animal health issue in the United Kingdom since the 1980s, even though control policies have been in place for over 60 years. The importance of the genetics of the etiological agent, Mycobacterium bovis, in the reemergence of the disease has been largely overlooked. We compared the interaction between bovine monocyte-derived macrophages (bMDM) and two M. bovis strains, AF2122/97 and G18, representing distinct genotypes currently circulating in the United Kingdom. These M. bovis strains exhibited differences in survival and growth in bMDM. Although uptake was similar, the number of viable intracellular AF2122/97 organisms increased rapidly, while G18 growth was constrained for the first 24 h. AF2122/97 infection induced a greater transcriptional response by bMDM than G18 infection with respect to the number of differentially expressed genes and the fold changes measured. AF2122/97 infection induced more bMDM cell death, with characteristics of necrosis and apoptosis, more inflammasome activation, and a greater type I interferon response than G18. In conclusion, the two investigated M. bovis strains interact in significantly different ways with the host macrophage. In contrast to the relatively silent infection by G18, AF2122/97 induces greater signaling to attract other immune cells and induces host cell death, which may promote secondary infections of naive macrophages. These differences may affect early events in the host-pathogen interaction, including granuloma development, which could in turn alter the progression of the disease. Therefore, the potential involvement of M. bovis genotypes in the reemergence of bovine tuberculosis in the United Kingdom warrants further investigation.
Collapse
|
17
|
Nelson CD, Merriman KE, Poindexter MB, Kweh MF, Blakely LP. Symposium review: Targeting antimicrobial defenses of the udder through an intrinsic cellular pathway. J Dairy Sci 2017; 101:2753-2761. [PMID: 29290431 DOI: 10.3168/jds.2017-13426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/11/2017] [Indexed: 11/19/2022]
Abstract
The bovine innate immune system has a strong repertoire of antimicrobial defenses to rapidly attack infectious pathogens that evade physical barriers of the udder. Exploration of the intracrine vitamin D pathway of bovine macrophages has improved understanding of the signals that initiate antimicrobial defenses that protect the udder. In the intracrine vitamin D pathway, pathogen recognition receptors upregulate CYP27B1 mRNA that encodes for the enzyme that converts 25-hydroxyvitamin D [25(OH)D3] to the active vitamin D hormone, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 1,25(OH)2D3, in turn, is generally known to increase antimicrobial activity and decrease inflammatory responses of immune cells. In cattle specifically, 1,25(OH)2D3 increases nitric oxide and β-defensin antimicrobial responses of bovine monocytes. Immune activation of the intracrine vitamin D pathway, including induction of inducible nitric oxide synthase and β-defensin gene expression by 1,25(OH)2D3, has been documented in the mammary glands of lactating dairy cows. Furthermore, intramammary 25(OH)D3 treatment decreased bacteria counts and indicators of mastitis severity in cows experimentally infected with Streptococcus uberis. We propose that vitamin D signaling in the udder contributes to containment of bacterial pathogens and inflammatory responses of the udder. Verification of vitamin D-mediated defenses of the mammary gland potentially provides a path for development of alternative solutions (i.e., nutritional, genetic, therapeutic) to increase mastitis resistance of dairy cows. Continued exploration of the intrinsic cellular pathways that specifically promote antimicrobial defenses of the udder, such as the vitamin D pathway, is needed to support mastitis control efforts for dairy cows.
Collapse
Affiliation(s)
- Corwin D Nelson
- Department of Animal Sciences, Cellular Biology Graduate Program, University of Florida, Gainesville 32611.
| | - Kathryn E Merriman
- Animal Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville 32611
| | - Michael B Poindexter
- Animal Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville 32611
| | - Mercedes F Kweh
- Animal Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville 32611
| | - Leslie P Blakely
- Department of Animal Sciences, Cellular Biology Graduate Program, University of Florida, Gainesville 32611
| |
Collapse
|
18
|
Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, Adcock IM, Garssen J. Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis. Front Microbiol 2017; 8:2008. [PMID: 29085351 PMCID: PMC5649180 DOI: 10.3389/fmicb.2017.02008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is globally known as one of the most important human pathogens. Mtb is estimated to infect nearly one third of the world's population with many subjects having a latent infection. Thus, from an estimated 2 billion people infected with Mtb, less than 10% may develop symptomatic TB. This indicates that the host immune system may constrain pathogen replication in most infected individuals. On entering the lungs of the host, Mtb initially encounters resident alveolar macrophages which can engulf and subsequently eliminate intracellular microbes via a plethora of bactericidal mechanisms including the generation of free radicals such as reactive oxygen and nitrogen species. Nitric oxide (NO), a key anti-mycobacterial molecule, is detected in the exhaled breath of patients infected with Mtb. Recent knowledge regarding the regulatory role of NO in airway function and Mtb proliferation paves the way of exploiting the beneficial effects of this molecule for the treatment of airway diseases. Here, we discuss the importance of NO in the pathogenesis of TB, the diagnostic use of exhaled and urinary NO in Mtb infection and the potential of NO-based treatments.
Collapse
Affiliation(s)
- Hamidreza Jamaati
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Zeinab Pajouhi
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Mehrnaz Movassaghi
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| |
Collapse
|
19
|
Merriman KE, Poindexter MB, Kweh MF, Santos JEP, Nelson CD. Intramammary 1,25-dihydroxyvitamin D 3 treatment increases expression of host-defense genes in mammary immune cells of lactating dairy cattle. J Steroid Biochem Mol Biol 2017; 173:33-41. [PMID: 28229929 DOI: 10.1016/j.jsbmb.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Bacterial infection of the mammary gland activates an intracrine vitamin D pathway in macrophages of dairy cows. The active hormone of the vitamin D pathway, 1,25-dihydroxyvitamin D3 (1,25D), stimulates nitric oxide and β-defensin responses in bovine monocyte cultures, but the effect of 1,25D on innate immune genes in the mammary gland remained unknown. Therefore, the objective of this study was to determine the effects intramammary 1,25D treatment on expression of vitamin D associated host-defenses of the bovine mammary gland. Intramammary treatment of normal, healthy mammary glands of lactating dairy cows (n=14) with 10μg 1,25D increased inducible nitric oxide synthase (iNOS) and β-defensin 7 (DEFB7) gene expression in total milk somatic cells more than two-fold relative to placebo-treated glands within 8h after treatment. The vitamin D 24-hydroxylase gene (CYP24A1) also was increased nearly 100-fold in 1,25D-treated glands within 4h after treatment but was not affected in placebo-treated glands. Both macrophages and neutrophils isolated from milk had increased CYP24A1 expression in response to 1,25D treatment but only macrophages had increased iNOS expression. Repeated intramammary 1,25D treatment, every 12h for 48h, of infected mammary glands of cows diagnosed with subclinical mastitis resulted in increased expression of CYP24A1, DEFB4, DEFB7 and iNOS genes compared to placebo-treated glands. The 1,25D treatment resulted in elevated serum 1,25D concentrations (55 vs 33pg/mL) compared to placebo but it did not change serum calcium concentrations or bacteria counts in milk of infected mammary glands. In conclusion, 1,25D upregulates iNOS and β-defensin genes in vivo in cattle and affirms earlier reports that vitamin D supports innate immune functions of cattle.
Collapse
Affiliation(s)
- Kathryn E Merriman
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Michael B Poindexter
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Mercedes F Kweh
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Jose E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
20
|
Bilham K, Boyd AC, Preston SG, Buesching CD, Newman C, Macdonald DW, Smith AL. Badger macrophages fail to produce nitric oxide, a key anti-mycobacterial effector molecule. Sci Rep 2017; 7:45470. [PMID: 28382943 PMCID: PMC5382539 DOI: 10.1038/srep45470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
The European badger is recognised as a wildlife reservoir for bovine tuberculosis (bTB); the control of which is complex, costly and controversial. Despite the importance of badgers in bTB and the well-documented role for macrophages as anti-mycobacterial effector cells, badger macrophage (bdMφ) responses remain uncharacterised. Here, we demonstrate that bdMφ fail to produce nitric oxide (NO) or upregulate inducible nitric oxide synthase (iNOS) mRNA following Toll-like receptor (TLR) agonist treatment. BdMφ also failed to make NO after stimulation with recombinant badger interferon gamma (bdIFNγ) or a combination of bdIFNγ and lipopolysaccharide. Exposure of bdMφ to TLR agonists and/or bdIFNγ resulted in upregulated cytokine (IL1β, IL6, IL12 and TNFα) mRNA levels indicating that these critical pathways were otherwise intact. Although stimulation with most TLR agonists resulted in strong cytokine mRNA responses, weaker responses were evident after exposure to TLR9 agonists, potentially due to very low expression of TLR9 in bdMφ. Both NO and TLR9 are important elements of innate immunity to mycobacteria, and these features of bdMφ biology would impair their capacity to resist bTB infection. These findings have significant implications for the development of bTB management strategies, and support the use of vaccination to reduce bTB infection in badgers.
Collapse
Affiliation(s)
- Kirstin Bilham
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom.,Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - Amy C Boyd
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom
| | - Stephen G Preston
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom
| | - Christina D Buesching
- Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - Chris Newman
- Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - David W Macdonald
- Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - Adrian L Smith
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom
| |
Collapse
|
21
|
Divergent macrophage responses to Mycobacterium bovis among naturally exposed uninfected and infected cattle. Immunol Cell Biol 2016; 95:436-442. [PMID: 27833091 DOI: 10.1038/icb.2016.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), is a successful pathogen that remains an important global threat to livestock. Cattle naturally exposed to M. bovis normally become reactive to the M. bovis-purified protein derivative (tuberculin) skin test; however, some individuals remain negative, suggesting that they may be resistant to infection. To better understand host innate resistance to infection, 26 cattle from herds with a long history of high TB prevalence were included in this study. We investigated the bactericidal activity, the production of reactive oxygen and nitrogen species and the TB-related gene expression profile after in vitro M. bovis challenge of monocyte-derived macrophages from cattle with TB (n=17) and from non-infected, exposed cattle (in-contacts, n=9). The disease status was established based on the tuberculin skin test and blood interferon-gamma test responses, the presence of visible lesions at inspection on abattoirs and the histopathology and culture of M. bovis. Although macrophages from TB-infected cattle enabled M. bovis replication, macrophages from healthy, exposed cattle had twofold lower bacterial loads, overproduced nitric oxide and had lower interleukin (IL)-10 gene expression (P⩽0.05). Higher mRNA expression levels of inducible nitric oxide synthase, C-C motif chemokine ligand 2 and IL-12 were observed in macrophages from all in-contact cattle than in macrophages from their TB-infected counterparts, which expressed more tumour necrosis factor-α; however, the differences were not statistically significant owing to individual variation. These results confirm that macrophage bactericidal responses have a crucial role in innate resistance to M. bovis infection in cattle.
Collapse
|
22
|
Mycobacterium bovis-infected macrophages from resistant and susceptible cattle exhibited a differential pro-inflammatory gene expression profile depending on strain virulence. Vet Immunol Immunopathol 2016; 176:34-43. [DOI: 10.1016/j.vetimm.2016.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/05/2016] [Accepted: 02/24/2016] [Indexed: 11/18/2022]
|
23
|
Ganbat D, Seehase S, Richter E, Vollmer E, Reiling N, Fellenberg K, Gaede KI, Kugler C, Goldmann T. Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells. BMC Pulm Med 2016; 16:19. [PMID: 26803467 PMCID: PMC4724406 DOI: 10.1186/s12890-016-0185-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Mycobacterial infections remain a significant cause of morbidity and mortality worldwide. Due to limitations of the currently available model systems, there are still comparably large gaps in the knowledge about the pathogenesis of these chronic inflammatory diseases in particular with regard to the human host. Therefore, we aimed to characterize the initial phase of mycobacterial infections utilizing a human ex vivo lung tissue culture model designated STST (Short-Term Stimulation of Tissues). Methods Human lung tissues from 65 donors with a size of 0.5–1 cm3 were infected each with two strains of three different mycobacterial species (M. tuberculosis, M. avium, and M. abscessus), respectively. In order to preserve both morphology and nucleic acids, the HOPE® fixation technique was used. The infected tissues were analyzed using histo- and molecular-pathological methods. Immunohistochemistry was applied to identify the infected cell types. Results Morphologic comparisons between ex vivo incubated and non-incubated lung specimens revealed no noticeable differences. Viability of ex vivo stimulated tissues demonstrated by TUNEL-assay was acceptable. Serial sections verified sufficient diffusion of the infectious agents deep into the tissues. Infection was confirmed by Ziel Neelsen-staining and PCR to detect mycobacterial DNA. We observed the infection of different cell types, including macrophages, neutrophils, monocytes, and pneumocytes-II, which were critically dependent on the mycobacterial species used. Furthermore, different forms of nuclear alterations (karyopyknosis, karyorrhexis, karyolysis) resulting in cell death were detected in the infected cells, again with characteristic species-dependent differences. Conclusion We show the application of a human ex vivo tissue culture model for mycobacterial infections. The immediate primary infection of a set of different cell types and the characteristic morphologic changes observed in these infected human tissues significantly adds to the current understanding of the initial phase of human pulmonary tuberculosis. Further studies are ongoing to elucidate the molecular mechanisms involved in the early onset of mycobacterial infections in the human lung.
Collapse
Affiliation(s)
- Dariimaa Ganbat
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany. .,Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Sophie Seehase
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany. .,Airway Research Center North (ARCN), Member of the German Center for Lung Research, Gießen, Germany.
| | - Elvira Richter
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany. .,Present address: Labor Limbach, Heidelberg, Germany.
| | - Ekkehard Vollmer
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany. .,Airway Research Center North (ARCN), Member of the German Center for Lung Research, Gießen, Germany.
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Borstel, Germany.
| | | | - Karoline I Gaede
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany. .,Airway Research Center North (ARCN), Member of the German Center for Lung Research, Gießen, Germany.
| | - Christian Kugler
- Airway Research Center North (ARCN), Member of the German Center for Lung Research, Gießen, Germany. .,Thoracic Surgery, Lungen Clinic Grosshansdorf, Grosshansdorf, Germany.
| | - Torsten Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany. .,Airway Research Center North (ARCN), Member of the German Center for Lung Research, Gießen, Germany.
| |
Collapse
|
24
|
EBP50 induces apoptosis in macrophages by upregulating nitric oxide production to eliminate intracellular Mycobacterium tuberculosis. Sci Rep 2016; 6:18961. [PMID: 26729618 PMCID: PMC4700441 DOI: 10.1038/srep18961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium bovis BCG is known to have the capacity to inhibit the positioning of iNOS on BCG-containing phagosomes by interfering with EBP50, a scaffolding protein that controls the recruitment of inducible nitric oxide synthase (iNOS) at the vicinity of phagosomes in macrophages. However, knockdown of the expression of EBP50 still facilitates the intracellular survival of BCG, which suggested that EBP50 may have some other unknown antimycobacterial properties. In this study we show that overexpression of EBP50 by a recombinant lentivirus had no effect on the iNOS recruitment to M.tuberculosis-containing phagosomes, but significantly promoted the elimination of intracellular M.tuberculosis. We revealed in the present study that the enhancement of intracellular killing to M. tuberculosis upon EBP50 overexpression was due to the increased level of apoptosis in macrophages. We showed that EBP50 overexpression significantly increased the expression of iNOS and generation of nitric oxide (NO), and EBP50-induced apoptosis was NO-dependent and mediated by Bax and caspase-3. We found that M. tuberculosis decreases while Mycobacterium smegmatis increases the expression of EBP50 in RAW264.7 cells, which suggested that virulent mycobacteria are capable of modulating the antimycobacterial properties of macrophages by inhibiting the expression and interfering with the function of EBP50.
Collapse
|
25
|
Huang C, Lu X, Tong L, Wang J, Zhang W, Jiang B, Yang R. Requirement for endogenous heat shock factor 1 in inducible nitric oxide synthase induction in murine microglia. J Neuroinflammation 2015; 12:189. [PMID: 26467650 PMCID: PMC4607096 DOI: 10.1186/s12974-015-0406-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/28/2015] [Indexed: 01/17/2023] Open
Abstract
Background Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflammation. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of κB-α (IκB-α)-nuclear factor-κB (NF-κB) cascade, whereas interferon-γ (IFN-γ) acts through Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signals. Heat shock factor 1 (HSF1), a major regulator of heat shock protein transcription, has been shown to regulate the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but it remains obscure whether and how HSF1 affects iNOS induction. Methods Western blot was used to measure the protein expression. The mRNA level was measured by real-time PCR. Silence of HSF1 was achieved by small interfering RNA. Nitric oxide (NO) content and NF-κB binding activity were assayed by commercial kits. Chromatin immunoprecipitation (ChIP) was used to measure the binding activity of NF-κB and STAT1 to iNOS promoters. Results HSF1 inhibition or knockdown prevented the LPS- and/or IFN-γ-stimulated iNOS protein expression in cultured microglia. HSF1 inhibition blocked iNOS mRNA transcription. These inhibitory effects of HSF1 inhibition on iNOS expression were confirmed in brain tissues from endotoxemic mice. Further analysis showed that HSF1 inhibition had no effect on IκB-α degradation and NF-κB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-κB or STAT1 was also not affected by HSF1 inhibition, but HSF1 inhibition reduced the binding of NF-κB and STAT1 to their DNA elements. In addition, HSF1 inhibition reduced NF-κB and STAT1 bindings to iNOS promoter inside the LPS/IFN-γ-stimulated cells. Conclusions This preventing effect of HSF1 inhibition on iNOS mRNA transcription presents the necessary role of HSF1 in iNOS induction.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China. .,Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China. .,Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China. .,Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Jili Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China. .,Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China. .,Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China. .,Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
26
|
Huang C, Tong L, Lu X, Wang J, Yao W, Jiang B, Zhang W. Methylene Blue Attenuates iNOS Induction Through Suppression of Transcriptional Factor Binding Amid iNOS mRNA Transcription. J Cell Biochem 2015; 116:1730-40. [DOI: 10.1002/jcb.25132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Chao Huang
- Department of Pharmacology; School of Pharmacy; Nantong University; #19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Lijuan Tong
- Department of Pharmacology; School of Pharmacy; Nantong University; #19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Xu Lu
- Department of Pharmacology; School of Pharmacy; Nantong University; #19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Jia Wang
- Department of Pharmacology; School of Pharmacy; Nantong University; #19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Wenjuan Yao
- Department of Pharmacology; School of Pharmacy; Nantong University; #19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Bo Jiang
- Department of Pharmacology; School of Pharmacy; Nantong University; #19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Wei Zhang
- Department of Pharmacology; School of Pharmacy; Nantong University; #19 Qixiu Road Nantong Jiangsu Province 226001 China
| |
Collapse
|
27
|
|
28
|
Souza CD. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis. Vet Immunol Immunopathol 2015; 164:1-9. [DOI: 10.1016/j.vetimm.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/19/2014] [Accepted: 01/26/2015] [Indexed: 01/04/2023]
|
29
|
Li S, Yue Y, Xu W, Xiong S. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PLoS One 2013; 8:e81438. [PMID: 24358114 PMCID: PMC3864784 DOI: 10.1371/journal.pone.0081438] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/21/2013] [Indexed: 12/28/2022] Open
Abstract
Background Apart from triggering host immune responses, macrophages also act as a major reservoir for mycobacteria. For better survival, mycobacteria have evolved various mechanisms to modulate the production of proinflammatory cytokines in macrophages, and manipulation of micro-RNA (miRNA) expression has been considered as an important one. Methodology/Principal Findings In this study, we found that miR-146a expression was significantly increased in a time- and dose-dependent manner in mycobacteria-infected macrophages. It could obviously reduce the induction of proinflammatory cytokines TNF-α, IL-1β, IL-6 and chemokine MCP-1 by targeting interleukin-1 receptor-associated kinase-1 (IRAK-1) and TNF receptor-associated factor-6 (TRAF-6), two key elements involved in the TLR/NF-κB signaling pathway cascades. Consistent with the anti-inflammation effect, a higher bacterial burden was seen in miR-146a mimics-treated macrophages. Conclusion/Significance Here, we demonstrated that mycobacteria-induced miR-146a could modulate inflammatory response by targeting IRAK1 and TRAF6 and facilitate mycobacteria replication in macrophages.
Collapse
Affiliation(s)
- Shuo Li
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Sidong Xiong
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
30
|
Larsen AK, Nymo IH, Boysen P, Tryland M, Godfroid J. Entry and elimination of marine mammal Brucella spp. by hooded seal (Cystophora cristata) alveolar macrophages in vitro. PLoS One 2013; 8:e70186. [PMID: 23936159 PMCID: PMC3723690 DOI: 10.1371/journal.pone.0070186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/16/2013] [Indexed: 11/26/2022] Open
Abstract
A high prevalence of Brucellapinnipedialis serology and bacteriology positive animals has been found in the Northeast Atlantic stock of hooded seal (Cystophoracristata); however no associated gross pathological changes have been identified. Marine mammal brucellae have previously displayed different infection patterns in human and murine macrophages. To investigate if marine mammal Brucella spp. are able to invade and multiply in cells originating from a presumed host species, we infected alveolar macrophages from hooded seal with a B. pinnipedialis hooded seal isolate. Hooded seal alveolar macrophages were also challenged with B. pinnipedialis reference strain (NCTC 12890) from harbor seal (Phocavitulina), B. ceti reference strain (NCTC 12891) from harbor porpoise (Phocoenaphocoena) and a B. ceti Atlantic white-sided dolphin (Lagenorhynchusacutus) isolate (M83/07/1), to evaluate possible species-specific differences. Brucella suis 1330 was included as a positive control. Alveolar macrophages were obtained by post mortem bronchoalveolar lavage of euthanized hooded seals. Phenotyping of cells in the lavage fluid was executed by flow cytometry using the surface markers CD14 and CD18. Cultured lavage cells were identified as alveolar macrophages based on morphology, expression of surface markers and phagocytic ability. Alveolar macrophages were challenged with Brucella spp. in a gentamicin protection assay. Following infection, cell lysates from different time points were plated and evaluated quantitatively for colony forming units. Intracellular presence of B. pinnipedialis hooded seal isolate was verified by immunocytochemistry. Our results show that the marine mammal brucellae were able to enter hooded seal alveolar macrophages; however, they did not multiply intracellularly and were eliminated within 48 hours, to the contrary of B. suis that showed the classical pattern of a pathogenic strain. In conclusion, none of the four marine mammal strains tested were able to establish a persistent infection in primary alveolar macrophages from hooded seal.
Collapse
Affiliation(s)
- Anett K Larsen
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway.
| | | | | | | | | |
Collapse
|